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Abstract

FSO (Free Space Optics) is a well established wireless optical transmission technology con-
sidered as an alternative to radio communications, for example in metropolitan wireless mesh
networks. An FSO link is established by means of a laser beam connecting the transmitter
and the receiver placed in the line of sight. A major disadvantage of FSO links (with respect
to fiber links) is their sensitivity to weather conditions such as fog, rain and snow, causing
substantial loss of the transmission power over the optical channel due mostly to absorption
and scattering. Thus, although the FSO technology allows for fast and low-cost deploy-
ment of broadband networks, its operation will be affected by this sensitivity, manifested
by substantial losses in links’ transmission capacity with respect to the nominal capacity.
Therefore, a proper approach to FSO network dimensioning should take such losses into ac-
count so that the level of carried traffic is satisfactory under all observed weather conditions.
In the paper we describe such an approach. We introduce a relevant dimensioning problem
and present a robust optimization algorithm for such enhanced dimensioning. A substantial
part of the paper is devoted to present a numerical study of two FSO network instances that
illustrates the promising effectiveness of the proposed approach.

Keywords: Resilient and survivable networks, free space optics, variable link capacity,
linear and mixed-integer programming, robust optimization, multicommodity flows.

1. Introduction

The considerations of this paper are devoted to dimensioning communication networks
resilient with respect to multiple partial link failures. The main application area we have
in mind are networks that apply Free Space Optics (FSO) – a well established broadband
wireless optical transmission technology where the communication links are provided by
means of a laser beam sent from the transmitter to the receiver placed in the line of sight.
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FSO links are considered as an alternative to radio links for example in metropolitan Wireless
Mesh Networks (WMN).

FSO networks exhibit several important advantages: transmission range of several kilo-
meters, high transmission bandwidth, secure communication, quick and easy deployment,
lower cost (as compared with the fiber optical technology), immunity to electromagnetic
interference, license-free long-range operation (contrary to radio communications). A disad-
vantage is vulnerability of the FSO links to weather conditions such as fog, rain, and snow
(and pollution, for that matter), causing substantial loss of the transmission power over op-
tical channel, mostly due to absorption and scattering. This makes the problem of network
dimensioning important, and, as a matter of fact, difficult.

Typically, a given weather condition affects a subset of the network links and each affected
link looses a portion (fraction) of its nominal capacity (i.e., of the bit-rate realized when
weather is fine). Such a fraction is called the link failure (degradation) ratio that can assume
some value between 0 (no capacity loss) and 1 (total capacity loss). As we will see in
Section 2, typical values of the link failure ratio are 0.25, 0.50 and 1. In consequence, each
particular weather condition that may occur defines a failure state referred to as the multiple
partial link failure state.

The above discussion motivates the network optimization problem studied in this paper:
how to dimension the network links at the lowest cost and at the same time assure the traffic
demand satisfaction at an acceptable level for all observed/predicted weather conditions. As
we will demonstrate, the problem can be approached by the methods of robust optimization
[1].

The impact of weather conditions on the wireless networks transmission capacity has
been studied to some extent, but the majority of works have considered failure modeling for
a single region failure (some investigations for the case of weather perturbations occurring
simultaneously in different regions can be found in [2]). In particular, paper [3] discusses
three measures of the WMN survivability for a regional failure scenario assuming circular
failure areas with random location of failure epicenters. As observed in [3], from the network
topology viewpoint, networks with nodes covering a square area in a regular way have a better
performance in terms of the total traffic surviving a regional failure. It is also shown that in
the case of heavy rain storms, using information on forecasted attenuation of links based on
radar measurements allows for periodic updates of the network topology in advance, and thus
dealing efficiently with these phenomena. In [4], a mixed-integer programming (MIP) model
for network reconfiguration in case of unfavorable weather conditions is presented. The model
looks for alternative routes for rerouting some of the disturbed traffic, while reducing the
interference between adjacent transmission links. Other studies, such as [5], have considered
the relevance and impact of specific weather factors on the FSO links capacity. In Section 2,
we will present a short study on such an impact in terms of simultaneously affected FSO
links.

As already mentioned, the paper introduces a (new) optimization model for robust dimen-
sioning of FSO networks in order to achieve resilience with respect to multiple partial link
failures. Similar problems have been widely investigated in the literature but for a given list
of failure states, see for instance [6] and the list of literature therein. More recently, robust
optimization approaches to resilient network dimensioning have been developed in [7, 8, 9]
(under traffic demand uncertainty), and in [10] (under signal propagation uncertainty in
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wireless networks). Yet, to the best of our knowledge, no models have been developed for
uncertainty concerning available capacity on transmission links, i.e., for the case relevant
to networks employing FSO. Also, as majority of work on traffic restoration and resilient
network dimensioning has been done for wired networks, multiple partial link failures are
virtually not considered despite common appearance of this phenomenon in modern wireless
networks that cope with it by means of adjustable modulation and coding schemes (MCS).
Multiple partial link failures were addressed in [6] (for the so called Unrestricted Reconfig-
uration mechanism, commonly called Global Rerouting [11]), and more recently in [12] (for
the so called oblivious routing) and in [13] (see below). An optimization approach, based on
disjoint path routing, to FSO networks with multiple partial failures is presented in [14].

Paper [13], along with [15], are the starting point for this work. In those two papers we
have studied a specific traffic protection mechanism, called Flow Thinning (FT). The main
feature of FT is handling partial failures without any traffic rerouting at all. In FT, each
traffic demand is equipped with a set of dedicated routing paths whose flows are thinned
accordingly to the current availability of network link capacity (for more details on FT see
[13]). Although the context of the present study and of [13] and [15] is the same, as we deal
with cost-efficient dimensioning of communication networks resilient to multiple link failures,
the following differences main can be observed. First, the current paper assumes the Global
Rerouting mechanism instead of FT. (Recall that Global Rerouting allows for establishing
path flows in an unrestricted way from scratch when a failure state occurs – this feature
makes the cheapest possible mechanism traffic protection mechanism in terms of the cost of
link capacity.) Next, in the present study we focus on specific features of the FSO networks
such as full-duplex links, realistic link failure scenarios, etc. Finally, now we concentrate on
estimating the reference failure set by means of an approximate compact set of failure states,
which opens a way to a considerable reduction of computation time.

The contribution of this work consists in studying a network dimensioning problem taking
into account resilience with respect to multiple partial link failures. In contrast to the
previous investigations, we deal with the problem involving a very large number of failure
states, described by the so called uncertainty set (an instance of the budgeted uncertainty
set formally described in [1]) for which we propose an optimization model together with a
cut generation solution algorithm, and use it for a numerical study on robust dimensioning
of a specific FSO network.

The paper is organized as follows. In Section 2 we discuss the issues of modeling weather
conditions based on meteorological records for a given time period, and the associated link
capacity degradation. In Section 3 we present a mathematical formulation of the robust
network dimensioning problem that is central to our investigations. Section 4 develops a
solution approach to the problem based on a cut generation algorithm, and is followed by
by Section 5 discussing computational complexity of the considered optimization problem.
Then, in Section 6, modifications and enhancements of our solution approach are discussed.
Next, in Section 7, results of extensive numerical studies illustrating the efficiency of our
approach to robust FSO network dimensioning are presented. Finally, in Section 8, we give
concluding remarks and outline the future work.
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2. Modeling of link availability states

As already mentioned, the optimization approach developed in this paper is motivated
by the necessity of dealing with degradation of FSO links caused by weather conditions.
Just like radio technology, FSO suffers from a major limitation – sensitivity of the data
transmission quality to weather conditions. In fact, in case of bad weather conditions, the
FSO data transmission quality may be severely affected if no special actions are undertaken.
A solution is to control the current signal modulation and coding scheme (MCS) applied at
the transmitter of the affected FSO link to secure correct data transmission. This, however,
results in decreasing effective transmission data rates. In the sequel, the fraction of the
maximal attainable (i.e., nominal) link capacity (bit-rate) lost due to a change of its MCS
is called link failure ratio.

In the paper a link represents a set of parallel FSO transmission systems. If not stated
explicitly otherwise, the systems are assumed to be full duplex, so that a system between node
v and node w is composed of two pairs of transceivers. One such pair provides transmission
over a light beam from v to w, and the other over a light beam from w to v. Each such light
beam carries the data with a given nominal bit-rate of M Gbps, which is typically of the
order of 1–20 Gbps [16, 17]. The quantity M is called link capacity module.

In our considerations we assume four operation modes for each link. The first (basic)
mode realizes the nominal link capacity, and is applied in normal (good) weather conditions
using the 16-QAM (quadrature-amplitude modulation, see [18]) MCS. The second mode
corresponds to weather conditions worse than normal when the scheme is switched to 4-QAM
– this assures approximately 75% of the nominal link capacity (failure ratio 0.25). When the
weather conditions are even more degraded, the third mode is applied by switching to the
QPSK scheme (quadrature phase-shift keying, see [19]) scheme, losing approximately 50%
of the nominal link capacity (failure ratio 0.5). The last mode corresponds to harsh weather
conditions that make correct data transmission impossible (failure ratio 1).

In order to consider link capacity degradation in optimization modeling, we need to
estimate the link failure ratios for various weather conditions that can occur during the
network lifetime. Having distinguished the four operation modes, we can determine what
is the proper operation mode for each FSO link in a given weather state (note that in
general different links see different weather conditions in a given weather state). To do
this we apply the formulae given in [20] and deduce the vector of the link failure ratios for
each of the considered weather states. The set of all such (different) vectors constitutes
the reference failure set denoted by S. In our state modeling methodology we analyse the
weather records observed over a time period, typically over one year. For each hourly period
(out of 365× 24 = 8760 periods) we translate the observed weather conditions into the link
failure ratios – in effect each of the hourly period is assigned its link failure ratio vector. That
is, when at a given hourly period some geographical area is affected by bad weather, the
corresponding (link availability) state is characterized by assigning appropriate failure ratios
to the links in this area, for example the ratios equal to 0.25 or 0.5, depending on the degree
of degradation the affected links experience. Next, we identify the subset of periods with
different link failure ratio vectors to form the so called reference failure set (denoted with S
below). The so formed reference failure sets are used in the numerical study presented in
Section 7.
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In the paper we also consider a special kind of virtual failure sets, called K-sets (see
Section 4.3), parameterized by an integer value K, where K is less than or equal to the
number of all links in the network. For a given K, the K-set contains all states corresponding
to all combinations of K, or less, simultaneously affected links. It is additionally assumed
that when a link is affected, it is always affected with the same failure ratio. For example, the
set of single link failure states frequently considered in the literature is a specific case ofK-set,
where K = 1 and the link failure ratio is set to 1 for all links. In our optimization approach
the K-sets are used as an approximation of the reference failure set S. The approach consists
in using K-sets (for a set of selected values of parameter K) as an input (instead of the true
reference failure set) to the robust network dimensioning problem formulated in Section 3,
and then testing the so obtained optimal link capacities (called the robust solution) on the
true reference failure state. Clearly, the larger the K value, the more severe failure states
the K-set contains, resulting in general in more robust (and at the same time likely more
costly) solutions.

3. Problem specification

3.1. Notation

The considered network is modeled by means of a bi-directed graph G = (V ,A, E) com-
posed of the set of nodes V , the set of (directed) arcs A ⊆ V2 \ {(v, v) : v ∈ V}, and the set
of (bi-directed) links E ⊆ V |2| (where V |2| denotes the family of all 2-element subsets of the
set of nodes V).

Since the graph is bi-directed, each arc a = (v, w) ∈ A has its oppositely directed
counterpart a′ = (w, v) ∈ A. For a given arc a = (v, w), its originating node v will be
denoted by o(a) and its terminating node by t(a), i.e., o(a) = v and t(a) = w. Furthermore,
for each node v ∈ V we define δ+(v) := {a ∈ A : o(a) = v} (the set of arcs outgoing from
node v) and δ−(v) := {a ∈ A : t(a) = v} (the set of links incoming to node v). In the
sequel, the number of nodes |V| and the number of arcs |A| will be denoted by V and A,
respectively.

To each pair of two oppositely directed arcs a = (v, w), a′ = (w, v) there corresponds a
bi-directed link e = {v, w} ∈ E denoted by e(a) (or e(a′)). Thus, the set of links is defined
as E := {e(a) : a ∈ A}. The two oppositely directed arcs corresponding to link e will be
denoted by a(e) and a′(e), hence for e = {v, w}, a(e) = (v, w) and a′(e) = (w, v). Clearly,
the number of links E = |E| is two times less than the number of arcs: A = 2E.

Capacity of links is modular and each module provides the bit-rate of M Gbps separately
for each of the two oppositely directed arcs related to the link – this assumption corresponds
to full duplex transmission. The capacity of a link is composed of several modules. When
the link capacity is optimized, the number of modules installed on link e ∈ E is denoted by
ye. Thus, ye is a non-negative integer variable whose value specifies the link capacity equal
to Mye. When the link capacity is fixed, it is denoted by c(e), where c(e) = Mn(e) for some
fixed non-negative integer n(e). As a consequence, each of the two oppositely directed arcs
of link e has capacity Mye or Mn(e). To each link e ∈ E there corresponds a non-negative
module cost ξ(e) (a parameter). Hence, the total cost of the network is given by

∑
e∈E ξ(e)ye

or
∑

e∈E ξ(e)n(e). In the sequel, notation y := (ye, e ∈ E) and c := (c(e), e ∈ E) will be
used.
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Traffic demands are represented by the set D (the number of demands |D| will be denoted
by D). Each demand d ∈ D is represented by an ordered pair of nodes (o(d), t(d)) (its origin
and termination) and the volume h(d) (a parameter) that has to be realized from o(d) to
t(d). The demand volumes and link capacity modules are expressed in the same units.

The set of network links is subject to multiple partial failures (link degradations). A
particular configuration of such degradations is referred to a network failure state, and the
set of failure states is denoted S (the number of states |S| is denoted by S). When a link
is degraded then it loses a fraction of its capacity specified by a failure ratio (between 0
and 1) from a given set of possible failure ratios R, for example R = {0, 0.25, 0.5, 1}. In
consequence, each failure state s ∈ S can be identified with a vector of the link failure ratios
β(s) = (β(e, s), e ∈ E), where β(e, s) ∈ R is the fraction of capacity lost on link e in state
s. Thus, in state s ∈ S the available capacity of link e ∈ E is equal to

(
1− β(e, s)

)
Mye (or(

1− β(e, s)
)
c(e)).

Finally, we assume that in any failure state s ∈ S each demand d ∈ D can be routed in
a bifurcated way along all possible paths from o(d) to t(d), and the resulting traffic flows in
particular states are independent of each other. This means that the network applies the so
called Global Rerouting or Unrestricted Reconfiguration mechanism [6, 11].

3.2. Problem formulation

The problem considered in the paper is formulated as a mixed-integer program (MIP) in
the node-arc notation (using arc-flow variables x := (xsad, a ∈ A, d ∈ D, s ∈ S) and the link
capacity variables y). The notation is summarized in Table 1.

parameters description

V set of nodes v (v ∈ V)

A set of (directed) arcs a (a ∈ A)

E set of (bi-directed) links e (e ∈ E , composed of two oppositely directed arcs)

δ+(v)(δ−(v)) set of arcs outgoing from (incoming to) node v ∈ V
a(e), a′(e) two oppositely directed arcs corresponding to link e ∈ E

e(a) bi-directed link e corresponding to arc a ∈ A
c(e) capacity of link e ∈ E (when fixed and given)

M capacity of the link capacity module

ξ(e) cost of one capacity module on link e ∈ E
D set of traffic demands d (d ∈ D)

S set of failure states s (s ∈ S)

R given set of possible failure ratios (R = {0, 0.25, 0.5, 1})
β(e, s) fraction of capacity lost on link e ∈ E in state s ∈ S (β(e, s) ∈ R)

variables description

xsad flow carrying traffic of demand d on arc a in state s (no-negative continuous)

ye number of modules installed on link e (non-negative integer)

λvd, πa dual variables

Table 1: Basic parameters and variables of the optimization model.
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Note that in this paper we use the following convention for vector notation. When a
represents a vector of given parameters, then a = (a(1), a(2), . . . , a(n)) (so that a denotes an
n-element vector, and a(i) is one of its elements). Yet, when a denotes a vector of variables,
then a = (a1, a2, . . . , an). Alternatively, when the set of indices is represented by N (i.e.,
N = {1, 2, . . . , n}), then we write a = (a(i), i ∈ N ) or a = (ai, i ∈ N ), respectively.

The formulation of the the optimization problem in question is as follows.

Problem P(S) (main problem in node-arc formulation):

C(S) = min
∑

e∈E ξ(e)ye (1a)

∑
a∈δ+(v) x

s
ad −

∑
a∈δ−(v) x

s
ad =


h(d), if v = o(d)
−h(d), if v = t(d), d ∈ D, v ∈ V , s ∈ S
0, otherwise

(1b)

∑
d∈D x

s
ad ≤

(
1− β(e(a), s)

)
Mye(a), a ∈ A, s ∈ S (1c)

x ≥ 0 and continuous; y ≥ 0 and integer. (1d)

Above, xsad is the flow on arc a dedicated to carry the traffic of demand d in state s. The
objective of P(S), i.e., minimizing the cost of links, is specified in (1a). Constraint (1b)
represents the flow conservation equation for each demand d at each node v in each state s,
assuring the realization of h(d) for all d in each state s. Finally, the capacity constraint (1c)
ensures that the capacity of link e is not exceeded in any state s.

Because of modular links, problem P(S) is NP-hard even for a polynomial number of
states in set S (see [6]). Moreover, the direct approach to P(S) requires solving linear
programs involving a large number of arc-flow variables x (linear relaxations of (1) assuming
continuous y) during the branch-and-bound process performed by the MIP solver. For this
reason, we have developed a more efficient approach to P(S). The approach, based on
Benders’ decomposition [21], is presented in the next sections.

4. Solving P(S) by cut generation

4.1. Feasibility testing

Let Y denote the set of all capacity vectors feasible for (1) and suppose we wish to test
whether a given capacity vector c = (c(e), e ∈ E) is in Y . Because the demand routing in a
particular failure state is independent of the demand routing in the remaining states, we can
perform the feasibility test in question by checking the feasibility separately for each state
by means of the following linear program.

Problem F(c, s) (feasibility of c in state s):

O(c, s) = min
∑

e∈E ze (2a)

[λvd]
∑

a∈δ+(v) xad −
∑

a∈δ−(v) xad =


h(d), if v = o(d)
−h(d), if v = t(d), d ∈ D, v ∈ V
0, otherwise

(2b)

[πa ≥ 0]
∑

d∈D xad ≤
(
1− β(e(a), s)

)
c(e(a)) + ze(a), a ∈ A (2c)
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x, z ≥ 0 and continuous, (2d)

where O(c, s) expresses the minimum of the sum of links’ overloads measured by the com-
ponents of the vector z := (ze, e ∈ E). The test is valid since c is feasible for s if, and only
if, O(c, s) = 0. If the result of the test is negative (i.e., O(c, s) > 0) we need to find an
inequality that separates c from Y . This can be done by considering the dual to (2) (whose
variables λ := (λvd, v ∈ V , d ∈ D) and π := (πa, a ∈ A) correspond to the primal constraints
(2b) and (2c), respectively).

Problem D(c, s) (dual to F(c, s)):

W (c, s) = max
{ ∑

d∈D λ
t(d)
d h(d)−

∑
e∈E(πa(e) + πa′(e))

(
1− β(e, s)

)
c(e)

}
(3a)

πa(e) + πa′(e) ≤ 1, e ∈ E ; λ
o(d)
d = 0, d ∈ D (3b)

λ
t(a)
d − λo(a)d ≤ πa, a ∈ A, d ∈ D (3c)

π ≥ 0 and continuous, λ continuous. (3d)

Let λ∗, π∗ be an optimal solution of problem D(c, s). Since W (c, s) = O(c, s) (where O(c, s)
is defined by (2a)), the inequality that separates c from Y (provided W (c, s) > 0) is as
follows: ∑

e∈E(π
∗
a(e) + π∗a′(e))

(
1− β(e, s)

)
Mye ≥

∑
d∈D λ

t(d)
d

∗
h(d). (4)

Since
∑

e∈E(π
∗
a(e) + π∗a′(e))

(
1 − β(e, s)

)
c(e) =

∑
d∈D λ

t(d)
d

∗
h(d) −W (c, s) (and W (c, s) > 0),

My = c does not fulfil (4).
Note that to make sure that c ∈ Y , we in general need to perform the feasibility test (3)

individually for all states s in S.

4.2. A cut generation algorithm for a given explicit list of states S
The iterative algorithm for solving problem (1) for an arbitrary (but given) explicit list

of states S is presented below. It results from application of the classical Benders’ decompo-
sition method [21] to P(S) (this particular application can be found in [6]). In each iteration
the master problem involving only the capacity variables y is solved and then its optimal
solution y∗ is tested for feasibility with respect to P(S). If the test is positive, the algorithm
is stopped and y∗ is optimal for (1). If not, new inequalities deduced from the feasibility
tests are added to the master problem and the algorithm is reiterated. (Below, the notation
y ∈ Ω means that y fulfills all inequalities in the set of inequalities Ω.)

Algorithm 1: cut generation algorithm for an explicit list of states S

Step 0: Ω := {y ≥ 0}.

Step 1: Solve the master problem:

minimize
∑

e∈E ξ(e)ye (5a)

subject to y ∈ Ω and integer, (5b)

and put c = (My∗e , e ∈ E).
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Step 2: For each s ∈ S solve the feasibility test (3) and if W (c, s) > 0, then add
inequality (4) to Ω.

Step 3: If no inequalities have been added to Ω in Step 2, then stop (c is the capacity
vector optimal for problem (1)). Otherwise go to Step 1.

To solve a given instance of problem P(S) we use a modified (two-phase) version of the
above algorithm. First, in Phase 1, we apply Algorithm 1 to the linear relaxation of P(S),
i.e., we assume continuous instead of integer y in (5b) which makes the master problem (5) a
linear program. When Phase 1 is completed, we start Phase 2: we bring back the integrality
requirement on y to (5b) in the master problem and continue.

4.3. Feasibility testing for K-sets
It is important to observe that Algorithm 1 can become ineffective when the set S contains

a large number of states, as this leads to an excessive number of feasibility tests to be
performed in each iteration. A way to deal with issue is proposed below.

Let us consider a special case of the family of state sets denoted by F . A set S belongs
to F when each link e ∈ E is degraded (if at all) with the same failure rate β(e), in all
states s in S: β(e, s) ∈ {β(e), 0}, s ∈ S. A particular example of such a set is the state
set S(K) determined by the so called K-set. A K-set, denoted with U(K), is defined, for
any integer K = 1, 2, . . . , E, as the set of binary vectors U(K) := {u = (u(e), e ∈ E) :∑

e∈E u(e) ≤ K, u(e) ∈ {0, 1}, e ∈ E}. Each u ∈ U(K) determines a state s(u) ∈ S(K) by
putting β(e, s(u)) := β(e)u(e), e ∈ E . Thus, the support of u determines the set of links
failing in s(u), wherein each such link fails with ratio β(e). Note that from the viewpoint of
problem P(S) formulated in (1), every set S in F is dominated by the set S(K) induced by
the K-set with K = max{|supp(β(s))| : s ∈ S}, where |supp(β(s))| denotes the number of
non-zero elements in the failure ratio vector β(s). The domination in question means that
each feasible solution of P(S(K)) is feasible for P(S). Thus the optimal solution of P(S(K))
will be resilient with respect to all states in S. For convenience, the optimization problem (1)
corresponding to a K-set U(K) will be from now on denoted by P(K) instead of P(S(K)).

Note that the number U(K) :=
∑K

k=0

(
E
k

)
of the states in U(K) grows exponentially with

the number of links E, provided K increases linearly with E, for example when K = bE
2
c.

Thus, although problem P(K) is linear, it is in general non-compact as the number of vari-
ables and constraints is proportional to U(K) and hence exponential with E. Therefore, the
direct approach to P(K) by means of an LP solver is not applicable for large networks, and
neither is Benders’ decomposition applied in Algorithm 1 presented in the previous section
(to make sure that c ∈ Y , Algorithm 1 needs to perform test (3) individually for all states s
in S). For this reason, we have developed a more efficient approach to P(K). The approach
is similar to Benders’ decomposition used in Algorithm 1. The difference is that for the state
set S(K) determined by a K-set (for some fixed K), the feasibility test can be made efficient
by finding the maximum W (c) := maxs∈S(K)W (c, s). The adjusted test makes use of binary
variables u := (ue, e ∈ E) that correspond to the vectors u = (u(e), e ∈ E) ∈ U(K), and is
as follows.

Problem G(c) (maximum violation):

W (c) = (6a)

9



= max
{ ∑

d∈D λ
t(d)
d h(d)−

∑
e∈E(πa(e) + πa′(e))c(e) +

∑
e∈E β(e)c(e)(πa(e) + πa′(e))ue

}
πa(e) + πa′(e) ≤ 1, e ∈ E ; λ

o(d)
d = 0, d ∈ D (6b)

λ
t(a)
d − λo(a)d ≤ πa, a ∈ A, d ∈ D (6c)∑
e∈E ue ≤ K, (6d)

π ≥ 0 and continuous; λ continuous;u binary. (6e)

Above, any vector of binary variables u := (ue, e ∈ E) fulfilling constraints (6d) defines a
state s(u) ∈ S(K) with the failure ratio vector (β(e, s(u)) = β(e)ue, e ∈ E). Moreover,
for any fixed feasible u the value of the objective function maximized over λ, π is equal to
W (c, s) for the so defined s(u). Since in (6) we are maximizing also over u, we finally observe
that W (c) = maxs∈S(K)W (c, s), as required.

Note that if we define the set Ũ(K) := {u = (u(e), e ∈ E) :
∑

e∈E u(e) ≤ K, 0 ≤ u(e) ≤
1, e ∈ E} (i.e., the convex hull of U(K), called the uncertainty polytope [22]), then any
given capacity vector c is feasible for P(K) if, and only if, it is feasible for the state set
S̄(K) := {s(u) : u ∈ Ū(K)} characterized by the following vectors of failure ratios:

β(s(u)) := (β(e)u(e), e ∈ E), u ∈ Ũ(K).

This follows from the fact that the version of G(c) with λ and π fixed and u relaxed, i.e.,
with 0 ≤ ue ≤ 1 instead of ue ∈ {0, 1}, e ∈ E , is an LP problem with a totally unimodular
matrix of coefficients (recall that K is a positive integer).

Certainly, to obtain a proper mixed-integer programming formulation we need to take
care of bi-linearities in (6) induced by multiplications of variables (πa(e) + πa′(e)) · ue, e ∈ E ,
with ue binary and the value of (πa(e) + πa′(e)) between 0 and 1. To get rid of these bi-
linearities we introduce additional (continuous) variables Ue, e ∈ E , that in the optimal
solution will be equal to (πa(e) + πa′(e)) · ue. This is done in the next formulation.

Problem GMIP(c) (MIP version of G(c)):

W (c) = max {
∑

d∈D λ
t(d)
d h(d)−

∑
e∈E(πa(e) + πa′(e))c(e) +

∑
e∈E β(e)c(e)Ue } (7a)

πa(e) + πa′(e) ≤ 1, e ∈ E ; λ
o(d)
d = 0, d ∈ D (7b)

λ
t(a)
d − λo(a)d ≤ πa, a ∈ A, d ∈ D (7c)∑
e∈E ue ≤ K, (7d)

Ue ≤ πa(e) + πa′(e), Ue ≤ ue, e ∈ E (7e)

π ≥ 0 and continuous; λ, U continuous; u binary. (7f)

Note that the (otherwise necessary) condition Ue ≥ πa(e) + πa′(e) + ue − 1 is omitted in
formulation (7) since the values Ue in the vector U := (Ue, e ∈ E) are maximized by objective
(7a). Now let λ∗, π∗, U∗ (and u∗) be an optimal solution of (7). If W (c) > 0 then the
capacity vector c is infeasible for the main problem P(K) formulated in (1), and the following
(Benders) inequality (written in variables y)∑

e∈E(π
∗
a(e) + π∗a′(e))(1− β(e)u∗e)Mye −

∑
d∈D λ

t(d)
d

∗
h(d) ≥ 0 (8)
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separates c from the set of capacity vectors feasible for P(K). Note that c breaks the above
inequality by W (c) = maxs∈S(K)O(c, s), i.e., by the sum of the link overloads (minimized
over the demand routing) in the “worst state” s ∈ S(K).

4.4. A cut generation algorithm for S(K)

The iterative algorithm for solving problem (1) for link availability states specified through
a given K-set is presented below. As for Algorithm 1 for a fixed list of states discussed in
Section 4.2, in each iteration the master problem involving only the capacity variables y is
solved and then its optimal solution y∗ is tested for feasibility with respect to P(K). If the
test is positive, the algorithm is stopped and y∗ is optimal for (1). If not, a new inequal-
ity deduced from the feasibility test is added to the master problem and the algorithm is
reiterated. (Recall that notation y ∈ Ω means that y fulfills all inequalities in the set of
inequalities Ω.)

Algorithm 2: cut generation algorithm for the set of states S(K)

Step 0: Ω := {y ≥ 0}.

Step 1: Solve the master problem:

minimize
∑

e∈E ξ(e)ye (9a)

subject to y ∈ Ω and integer, (9b)

and put c = (My∗e , e ∈ E).

Step 2: Solve the feasibility test (7). If W (c) ≤ 0, then stop (c is the capacity vector
optimal for problem (1)).

Step 3: Otherwise, add inequality (8) to Ω and go to Step 1.

As with Algorithm 1, in the computations we apply the two-phase version of Algorithm 2.

5. Computational complexity of P(K)

When the set of states S is determined by means of K-sets, i.e., when S = S(K), already
the linear relaxation of problem P(K) (linear relaxation of P(K) assumes continuous link
capacities) becomes difficult. This, as discussed below, is suggested by coNP-completeness
of the decision version of the feasibility test (6). (For a presentation of the computational
complexity theory, and the notion of coNP-completeness in particular, see [23].)

For the purpose of this section we will assume that the network graph G = (V ,A, E)
described in Section 3.1 is composed of undirected rather than bi-directed links (and call
such a graph undirected). As for the bi-directed case, the set A of arcs is composed of the
directed arcs corresponding to the (undirected) links E (there are two oppositely directed
arcs corresponding to each link). In graph G the capacity c(e) (or ye when the link capacity
is an optimization variable) of a link e ∈ E is undirected and shared by the (directed) flows
using this link in both directions. In other words, the load of link e is the sum of the loads
of the two oppositely directed arcs associated with link e, i.e., a(e) and a′(e), that compete
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for the undirected link capacity. In the undirected graph setting, problem P(S) is as follows.

Problem P(S) (main problem for undirected graphs):

C(S) = min
∑

e∈E ξ(e)ye (10a)

∑
a∈δ+(v) x

s
ad −

∑
a∈δ−(v) x

s
ad =


h(d), if v = o(d)
−h(d), if v = t(d), d ∈ D, v ∈ V , s ∈ S
0, otherwise

(10b)

∑
d∈D(xsa(e)d + xsa′(e)d) ≤

(
1− β(e, s)

)
Mye, e ∈ E , s ∈ S (10c)

x ≥ 0 and continuous; y ≥ 0 and integer. (10d)

Although the above formulation requires some (straightforward) adjustments in the feasi-
bility tests, the undirected link assumption does not affect the essence of the optimization
algorithm presented above. In particular, the feasibility test formulated in (2) adjusted for
P(S) formulated in (10) takes the following form.

Problem F(c, s) (feasibility of c in state s for undirected graphs):

O(c, s) = min
∑

e∈E ze (11a)

∑
a∈δ+(v) xad −

∑
a∈δ−(v) xad =


h(d), if v = o(d)
−h(d), if v = t(d), d ∈ D, v ∈ V
0, otherwise

(11b)

∑
d∈D(xa(e)d + xa′(e)d) ≤

(
1− β(e, s)

)
c(e) + ze, e ∈ E (11c)

x, z ≥ 0 and continuous, (11d)

For a given undirected network graph G = (V ,A, E), parameter K (1 ≤ K ≤ |E|), and
vectors h = (h(d), d ∈ D) and β = (β(e), e ∈ E), let C(S(K)) be the set (a polyhedron)
of all (continuous) link capacity vectors c that are feasible for all states s ∈ S(K), i.e., for
which O(c, s) = 0 for all s ∈ S(K) (see (11a)). The separation problem for polyhedron
C(S(K)), corresponding to the feasibility test (11) and referred to as DSPS/IN, is defined
as the following decision problem:

DSPS/IN: does a given link capacity vector c belong to polyhedron C(S(K))?

Note that DSPS/IN is in class coNP of decision problems since its complement, i.e., the
separation problem of the form

DSPS/OUT: is a given link capacity vector c outside polyhedron C(S(K))?

is in class NP . This is true because if c is a YES instance of DSPS/OUT, then any state
s ∈ S(K) for which c is infeasible can be used as a certificate for verifying this in polynomial
time.

Now let us consider a decision problem similar to DSPS/IN for an undirected network
graph G = (V ,A, E) where D represents a set of single source demands having their origins
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in a fixed vertex w ∈ V , i.e., o(d) = w, t(d) ∈ V \ {w}, d ∈ D. For a given parameter K
(1 ≤ K ≤ |D|), let H(K) be the set of (binary) demand volume vectors h defined as:

H(K) := {h = (h(d), d ∈ D) :
∑

d∈D h(d) ≤ K, h(d) ∈ {0, 1}, d ∈ D}.

Further, let C(H(K)) be a polyhedron of all link capacity vectors c that are feasible for
demand volume vectors h ∈ H(K). Note that in the considered setting link capacities are
not subject to failures, and each vector h is realized by means of its individual routing, just
like in the DSPS/IN setting each state s is realized by its individual routing, see (10b).
Finally, define the following decision (separation) problem referred to as DSPH/IN:

DSPH/IN: does a given link capacity vector c belong to polyhedron C(H(K))?

It is shown in Section 2 of [24] that DSPH/IN is coNP-complete, provided the unique games
conjecture holds. (The conjecture has already been used to prove hardness for different prob-
lems that have resisted previous attempts, see [25] for an introduction to the conjecture).
We will make use of this fact to show that DSPS/IN is coNP-complete (provided the unique
games conjecture holds) by constructing a polynomial transformation of the instances of
DSPH/IN to instances of DSPS/IN.

Proposition 1: DSPH/IN polynomially transforms to DSPS/IN.

Proof. Consider an instance of problem DSPH/IN for a given link capacity vector c =
(c(e), e ∈ E) and an undirected graph G = (V ,A, E) with the set D of single-source demands
and (uncertain) demand volumes described by the set H(K). Our transformation uses an
augmented (with respect to G) undirected graph G ′ = (V ,A′, E ′). The set of undirected links
is defined as follows: E ′ = E ∪ E ′′, where E ′′ :=

⋃
d∈D

{
e(d)}

}
and e(d) := {w, t(d)}. We

assume that the sets E ′′ and E are disjoint – this means that when, for a given d ∈ D, the link
between nodes w and t(d) already exists in the original set of links E , an extra parallel link
e(d) is created. Next, we assume that D′ = D, i.e., the origins and destinations of the de-
mands in the augmented graph G ′ are unchanged. Yet, for G ′, the demand volumes are fixed
and h′(d) is equal to 1 for each d ∈ D′. Finally, we define β(e) = 0, e ∈ E , β(e) = 1, e ∈ E ′′,
and c′(e) = c(e), e ∈ E , c′(e) = 1, e ∈ E ′′.

We claim that c (the vector of link capacities in graph G) is feasible for all demand volume
vectors h in H(K) if, and only if, c′ (the vector of link capacities in graph G ′) is feasible for
all states s in S(K). In other words, c ∈ C(H(K)) if, and only if, c′ ∈ C(S(K)); this implies
the proposition we are proving.

To prove the claim we first note that the assumption β(e) = 0, e ∈ E , implies that c′

is feasible for all states induced by U(K) (i.e, the K-set considered for G ′; the definition of
U(K) is given in Section 4.3) if, and only if, c′ is feasible for all states induced by the set

Û(K) := {u ∈ U(K) : u(e) = 0, e ∈ E}, i.e., for those states in U(K) that affect only
the extra links (in E ′′), and not the original links of graph G (in E). Next, we define the

bijection ϕ : Û(K) 7→ H(K), where ϕ(u) = h = (h(d), d ∈ D) is, for each u ∈ Û(K), defined
as h(d) := 1 − u(e(d)), d ∈ D. In other words, ϕ(u)(d) = h(d) = 1 if, and only if, link
e(d) = {w, t(d)} ∈ E ′′ fails (totally, since by assumption, β(e(d)) = 1 for all d ∈ D) in state

u ∈ Û(K).
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As shown below, for each u ∈ Û(K), routing the demand volume vector h = ϕ(u) in
the link capacity c available in graph G is equivalent to routing the demand volume vector
h′ = (h′(d), d ∈ D′) (where, by definition, all h′(d) are equal to 1) in the link capacity c′

available in graph G ′ in the state s(u) determined by a given u ∈ Û(K). Since the mapping

ϕ : Û(K) 7→ H(K) is a bijection, this actually means that c ∈ C(H(K)) if, and only if,
c′ ∈ C(S(K)) (as claimed).

To complete the proof let us assume that the link capacity vector c of links E is feasible
for routing a given vector h = (h(d), d ∈ D) ∈ H(K) in graph G. Then a feasible, with
respect to the link capacity vector c′ of links in E ′, routing of the demand vector h′ (with all
entries equal to 1) in state u = ϕ−1(h) in graph G ′ is obvious: each demand d ∈ D′ for which
h(d) = 0 is routed over the extra direct link e(d) (note that the capacity of each such link in
state u is equal, by construction, to 1), while the remaining demands (for which h(d) = 1)
are routed as before, i.e., using only the capacity c of the links in E .

Now, let us assume that the link capacity vector c′ of the links in E ′ is feasible for routing
the demand volume vector h′ (with all entries equal to 1) in graph G ′ in state s(u) for a

given u ∈ Û(K). Let F ′ denote a set of path-flows in graph G ′ resulting from the arc-flows
(see (11b)) that specify the feasible routing in question. (Note that the directed arcs are not
needed to describe the set F ′ as paths are characterized simply by the sets of undirected
links they traverse.) Without loss of generality, we can assume that in F ′, for each given
d ∈ D′, the path-flows between w and t(d) that realize h′(d) are undirected and contain
no loops. We will show that there exits a feasible routing specified by an analogous set
F ′′ of path-flows with the following property holding for each demand d ∈ D′: d is routed
entirely on the extra link e(d) = {w, t(d)} when u(e(d)) = 0; otherwise, when u(e(d)) = 1,
d is routed entirely over graph G. Indeed, consider a demand d ∈ D′ with u(e(d)) = 0 and
assume that a part of its volume, say g (where 0 < g ≤ h′(d) = 1) is routed by means of
flows in F ′ realized on paths not-containing link e(d). In such a case, the part equal to 1− g
of the capacity of link e(d) (note that c(e(d)) = 1) is occupied by a flow in F ′ realizing
demand d (from w to t(d)), and the remaining part (equal to g) is used by the path-flows in
F ′ realizing demands other than d. Assume that the total volume of these path-flows is g′

(where g′ ≤ g). Suppose that we disconnect the segment of each such path-flow consisting of
link e(d). As the result, the part of 1− g of the capacity of link e(g) becomes idle and hence
we can re-switch the path-flows in F ′ realizing d around link e(d) back to e(d) making the
link fully occupied by demand d. After doing that, capacity equal to g on paths between w
and t(d) not containing e(d) becomes idle and we can use it to move the path-flow segments
removed from link e(d) to them, in this way restoring the previously disconnected path-flows.
(Note that this operation may create loops but they can be easily eliminated.) The above
described procedure must be executed one-by-one for all demands in D′. Finally, consider
the demand volume vector h = ϕ(u) and observe that when the process is completed, the
demands in D′ with h(d) = 0 are realized on the extra links e(d) exhausting their capacity,
so that the demand in D′ with h(d) = 1 must be routed in graph G. Thus, F ′′ defines a
feasible routing for h in G.

Corollary: If the unique games conjecture holds, the feasibility test based on formulation
(11) (used in Algorithm 2) is NP-hard.
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Proof. Assume that the unique games conjecture is true. Then, Proposition 1 implies
that DSPS/IN is coNP-complete since the decision problem DSPH/IN (whose coNP-
completeness is proven in [24]) can be polynomially transformed to DSPS/IN. It follows
that DSPS/OUT, as the complement of DSPS/IN, is NP-complete (see Theorem 15.31 in
[23]). Thus, the problem formulated in (11), as an optimization version of DSPS/OUT, is
NP-hard.

Finally we note that NP-hardness of the test (11) does not necessarily mean that the
problem represented by the linear relaxation of formulation P(K) is NP-hard. In fact, it
only means, by equivalence of separation and optimization (see Section 3 of Chapter I.6 in
[26]), that the family of linear programming problems defined on polyhedron C(S(K)) (linear
relaxation of the master problem (9) with Ω = C(S(K)) is a member of this family) contains
NP-hard linear programming problems. Yet, in general, there can be polynomial problems
in the considered family as well. (For a discussion of this issue in the network optimization
context see [27].) Nevertheless, NP-hardness of (11) makes NP-hardness of P(K) (also in
its basic, bi-directional form) likely.

6. Modifications and improvements

6.1. Modifications of the optimization model

As shown below, the node-arc formulation (1) of P(S) can be easily modified in order
to capture other types of network graphs besides the so far considered case assuming the
bi-directed graph with full-duplex link capacity. Also, the aggregated node-arc formulations
(see [6]) can be applied to (1) and all the modifications discussed in Sections 6.1.1 and 6.1.2.
Such formulations use aggregated arc-flows of the form xsav (related to the ordinary arc-flows
through equality xsad =

∑
d∈D,t(d)=v x

s
ad, a ∈ A, v ∈ V , s ∈ S) expressing the total flow of

traffic destined to node v on arc a in state s. Finally, link-path formulations can be used, as
shown in Section 6.1.3

6.1.1. Directed links

In this case the network graph G = (V ,A) is directed (rather than bi-directed) so it is not
necessary that each arc has its oppositely directed counterpart. Besides, the link capacity is
directed so each arc has its individual capacity ya (or n(a)). To consider this, the objective
(1a) and constraint (1c) are (respectively) modified as follows:

C(S) = min
∑

a∈E ξ(a)ya,
∑

d∈D x
s
ad ≤

(
1− β(a, s)

)
Mya, a ∈ A, s ∈ S,

where ξ(a) and β(a, s) are module costs and failure ratios, respectively, defined for individual
arcs (although if two oppositely directed arcs connect the same pair of nodes it is natural to
assume that in all states in S they have equal failure ratios).

Formulations of the feasibility test, its dual, and the maximum violation problem cor-
responding to the so modified formulation of (1) are obtained in essentially the same as
formulations (2), (3), and (6), respectively.
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6.1.2. Undirected links

In this case the network graph G = (V , E) is composed of the set of nodes V and the
set of (undirected) links E ⊆ V |2|. The extension of (1) is is obtained by substituting
each undirected edge e = {v, w} ∈ E by two oppositely directed arcs a(e) = (v, w) and
a′(e) = (w, v) (that specify an auxiliary bi-directed graph used to route the arc-flows) and
defining the load of edge {v, w} as the sum of the loads of arcs (v, w) and (w, v). This is
expressed by substituting constraint (1c) with∑

d∈D(xsa(e)d + xsa′(e)d) ≤
(
1− β(e, s)

)
Mye, e ∈ E , s ∈ S.

The so adjusted formulation of P(S) works for directed demands (as assumed in Section 3.1)
as well for undirected demands. In the latter case, each demand d ∈ D, connecting nodes v
and w, say, should be made directed through selecting one of v, w for the originating node
o(d) and the other for the terminating node t(d).

As before, formulations of the feasibility test, its dual, and the maximum violation prob-
lem for the so modified formulation are essentially the same as for (1).

6.1.3. Link-path formulations

All the cases of problem P(S) considered in this paper can be also treated by means of
link-path formulations involving path-flows (for a given list of predefined allowable routing
paths) instead of arc-flows. The link-path formulation corresponding to node-arc formula-
tion (1) is as follows.

Problem P(S) (main problem in link-path formulation):

C(S) = min
∑

e∈E ξ(e)ye (13a)∑
p∈P(d) x

s
dp = h(d), d ∈ D, s ∈ S (13b)∑

d∈D
∑

p∈P(d) δ(a, d, p)x
s
dp ≤

(
1− β(e(a), s)

)
Mye(a), a ∈ A, s ∈ S (13c)

x ≥ 0 and continuous; y ≥ 0 and integer. (13d)

Above, xsdp is the flow on path p ∈ P(d) dedicated to carry the traffic of demand d ∈ D
in state s ∈ S, where P(d) is a predefined list of elementary directed paths in graph G =
(V ,A) from node o(d) (origin of demand d) to node t(d) (termination of d). (Recall that
an elementary path does not traverse any node more than once.) The left-hand side of
the capacity constraint (13c) expresses the load of arc a using the given binary arc-path
incidence coefficients δ(a, d, p) (δ(a, d, p) = 1 if, and only if, arc a belongs to path p ∈ P(d)).
Clearly, the arc-flow xsad induced by a given set of path-flows realizing demand d is equal to∑

p∈P(d) δ(a, d, p)x
s
dp. The inverse relationship cannot be unambiguously specified, as a given

set of arc-flows may induce different sets of path-flows. Yet, a set of path-flows corresponding
to a given set of arc-flows can be easily obtained (see [23]).

Although the link-path formulation leads to a dual polytope different from (3b)-(3d), the
dual function (3a) used for testing feasibility of the link capacity vector c remains essentially
the same. The link-path formulation is valid for both bi-directed, directed and undirected
networks, but requires path generation for finding the lists of allowable paths necessary to
find the optimal solution when all possible paths are considered.
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6.2. Valid inequalities

In fact, the Benders cutting plane approach may need a large number of Benders’ in-
equalities to converge to optimum. This may pose an efficiency issue since test (7) (called
also the separation problem) performed in Step 2 of our algorithm contains binary variables.
One way to deal with this issue is to try to speed up the convergence of the algorithm by
using additional valid inequalities on top of the Benders cuts in the master problem solved
in Step 1 of the algorithm.

A valid inequality can be obtained by substituting the last sum in (6a) by the quantity

K · B, where B :=
∑

e∈E β(e)c(e)(πa(e)+πa′(e))

E
is the average value of the terms β(e)c(e)(πa(e) +

πa′(e)), e ∈ E . The corresponding test would thus be as follows:

max
{∑

d∈D λ
t(d)
d h(d)−

∑
e∈E(πa(e) + πa′(e))c(e) + K

E

∑
e∈E β(e)c(e)(πa(e) + πa′(e))

}
(14a)

πa(e) + πa′(e) ≤ 1, e ∈ E λ
o(d)
d = 0, d ∈ D (14b)

λ
t(a)
d − λo(a)d ≤ πa, a ∈ E , d ∈ D (14c)

π ≥ 0 and continuous, λ continuous. (14d)

When the resulting maximum is positive, the following valid inequality∑
d∈D λ

t(d)
d

∗
h(d)−

∑
e∈E(π

∗
a(e) + π∗a′(e))ye + K

E

∑
e∈E(π

∗
a(e) + π∗a′(e))β(e)ye ≤ 0 (15)

is obtained. Note that (14) is a linear programming problem while formulation (7) requires
binary variables,

Similar valid inequalities can be obtained for subsets E ′ of links with k := |E ′| ≤ K. In
the corresponding feasibility test the objective is as follows:

max
{ ∑

d∈D λ
t(d)
d h(d)−

∑
e∈E(πa(e) + πa′(e))c(e)+

+K−k
E−k

∑
e∈E\E ′ β(e)c(e)(πa(e) + πa′(e)) +

∑
e∈E ′ β(e)c(e)(πa(e) + πa′(e))

}
. (16a)

Another useful class of valid inequalities are the cutset inequalities, first introduced in
the robust context in [9]. Given a partition V = V1 ∪ V2 of the nodes, the cutset inequality
associated with the partition states that the amount of capacity installed on the arcs going
from V1 to V2 should not be less than the sum of the volumes of the demands from V1 to
V2. Defining E(V1,V2) = {a ∈ A : o(a) ∈ V1 ∧ t(a) ∈ V2} and D(V1,V2) = {d ∈ D : o(d) ∈
V1 ∧ t(d) ∈ V2}, the inequality is formally defined as

mins∈S
∑

a∈E(V1,V2)
(
1− β(e(a), s)

)
c(e(a)) ≥

∑
d∈D(V1,V2) h(d) (17)

While the exact separation of (17) requires solving mixed-integer programs, this can also be
done heuristically. For instance, in [28] the nodes are randomly partitioned into two subsets
and then a local search is performed, picking up one node and moving it to the other subset
until there is no more improvement in the violation. If no violated inequality has been found,
another initial partition is considered up to a maximum of 5 iterations.

In this context, it is noteworthy that recent implementations of Benders’ decomposition
have witnessed improvements when interior points instead of extreme points are separated
in the algorithm, see [29].
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6.3. K-set extension

The model presented and tested in the current paper takes into account one (but link-
dependent) failure ratio level β(e) for each link e ∈ E . In reality, however, links may
be affected with different levels of failure ratios, depending on the modulation and coding
scheme applied in response to current weather conditions. As mentioned in Section 2, these
ratios can for example be equal to 0, 0.25, 0.5, and 1.

To admit such multiple failure ratio levels we can assume that there are K different levels
0 ≥ β(k) ≤ 1, k ∈ K = {1, 2, . . . , K}, and that in any considered state s at most N(k) links
can experience failure ratio β(k), where 1 ≤ N(k) ≤ E, k ∈ K. The corresponding polytope
is specified as follows.∑

k∈K u
k
e = 1, e ∈ E ,

∑
e∈E u

k
e ≤ N(k), k ∈ K,

where the binary variable uke = 1 if, and only if, link e is degraded with the failure ratio
β(k).

The so obtained state characterization can be used to solve the problem analogous to
P(K) by appropriately modifying formulations (6) and (7). In fact, an even more general
version of the K-set (referred to as the uncertainty polytope) was considered in [13].

7. Numerical studies

In this section we will describe two case studies: a test network example taken from the
network instances library SNDlib [30], and a realistic network instance prepared especially
for this paper. All the experiments were performed on an Intel (R) Core (TM) i7- 4610M,
3.0 GHz computer with 16 GB of RAM. The algorithms code was written in Java and
the optimization problems were solved with IBM ILOG CPLEX 12.6 (both using Concert
Technology) running with the default setting.

7.1. Results for a test network

The discussion presented in this section aims at illustrating various aspects of the pro-
posed robust approach based on Algorithm 2 on a reasonable (but actually not real) FSO
network example (a slightly different variant of the considered example was studied in [31]).
To speed up the calculations we have considered only the linear relaxation of P(S), that is
we have used only Phase 1 of Algorithm 2.

7.1.1. Experiment layout

We have tested the proposed algorithm on a network example derived from the instance
called polska that can be found in SNDlib (available at sndlib.zib.de). The original instance
from SNDlib connects V = 12 nodes (metropolitan areas) and is composed of E = 18
undirected links. There are D = 66 undirected traffic demands expressed in Mbps. In
our study we have examined a bi-directed version of polska, i.e., the basic network type
considered in this paper, with A = 2E = 36 arcs and D = 132 demands, where each original
(undirected) demand d has been split into two oppositely directed demands d′, d′′ linking the

same nodes as d with h(d′) = h(d′′) = h(d)
2

. The link module M is assumed to be equal to
1 Mbps, and the cost of one module on each link to 1 (i.e., ξ(e) = 1, e ∈ E).
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The reference set of failure states S for the polska study was obtained as described in
Section 2. We analysed the weather states recorded over a one-year period (from August
16, 2014, to August 15, 2015) available at www.worldweatheronline.com. For the sake of
simplicity only the weather conditions observed in the 12 metropolitan areas connected by
the network were taken into account, assuming that the link connecting two given areas is
affected by the worse of the weather condition in the two areas. The observed conditions were
translated into the multiple partial link failure states corresponding to all hourly periods in
the considered one-year time horizon, which gives 365× 24 = 8760 “hourly” states in total.
In this set of hourly states (denoted with S̃) there are 60.77% states with no affected links

at all (these are the nominal states). It also happens that in the majority of states in S̃ the
4-QAM modulation and coding scheme is applied on each affected link instead of 16-QAM
(i.e., the MCS used on a link in good weather conditions). This reduces the nominal capacity

of the affected links by 25% (link failure ratio 0.25) – there are 39.15% of such states in S̃.
In the remaining 0.08% of the hourly states, the MCS of some affected links is changed
from 16-QAM to QSPK which reduces the nominal capacity by 50% (link failure ratio 0.5).
Finally, there is a very small number of hourly states with a few links affected in 100% (link
failure ratio 1 – total loss of communication). In terms of the average hourly state there are
89.3% of non-affected links, 10.7% of links with the failure rate 0.25, 0.017% links with the
failure rate 0.5, and only 0.003% of links totally failed (failure ratio 1). Finally, we observed
that out of all the 8760 hourly states there are only 159 states that are mutually different –
these states constitute the reference failure set S for polska.

In the reported numerical experiments we first solve (using Algorithm 2) the instances
of problem P(K) (1) for all K-sets (K = 0, 1, . . . , 18) assuming the failure ratio β(e) = 0.25
for all 18 links when they fail. After that, for each K, we calculate the volume of traffic that
cannot be carried in the hourly states in the reference failure states list S̃ that are outside
the set of states S(K), i.e., in the hourly states outside the set of states induced by the
considered K-set assumed for robust optimization.

7.1.2. Algorithm efficiency

Below we present the first set of results computed for network polska by means of Algo-
rithm 2, the cut generation-based optimization algorithm for K-sets described in Section 4.4.
As already mentioned, we consider the linear relaxation of problem P(K) that assumes con-
tinuous link capacities y and hence the algorithm is limited to Phase 1. The results include
the minimum cost for P(K) (Figure 1, and the number of Benders’ cuts (8) generated to reach
the optimal robust solution together with the total computation time in seconds (Figure 2).

Figure 1 shows that the cost of the network becomes stable (and equal to 14 128 cost
units) already for K = 9. This means that the additional capacity required to protect the
traffic for all possible 9 (or less) simultaneous link failures (with the failure ratio 0.25) is
already sufficient for all more severe simultaneous failures of K links where K > 9. In
fact this additional capacity is equal to exactly 25% of the capacity required for unprotected
network (case K = 0, with the cost equal to 10 596). This is not surprising since the network
protected for the simultaneous failure of all 18 links with the failure ratio 0.25 (case K = 18)
is obtained from the unprotected network by simply increasing the capacity of each link by
25%.

Concerning the time needed to obtain optimal solutions through the proposed cutting-
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Figure 1: network polska – cost for different K-sets obtained with Algorithm 2 for continuous link
capacities case (Phase 1).

Figure 2: network polska – computation time and number of cuts achieved with Algorithm 2 for continuous
link capacities case (Phase 1).

plane algorithm, we note that the computation time of problem P(K) for all K is reasonable.
However, we may expect that for large networks the algorithm, in its current form, can
exhibit excessive computation times. Thus, inclusion of additional valid inequalities (like
those proposed in Section 6.2) could become important for speeding up the algorithm.

The upper graph shown in Figure 2 shows that there is no particular relationship between
the number of the generated Benders’ cuts (determined by the appropriate number left to
the vertical axis) and the value of parameter K. The time required by Algorithm 2 to
optimize the network (shown by the lower graph and determined by the numbers left to the
vertical axis interpreted as seconds), however, does reveal such a relationship: the solution
time is larger for intermediate values of K than for the values of K close to 1 or 18. This
is because the separation time, i.e., the time spent in testing, which constitutes majority
of time required by Phase 1 of Algorithm 2, is lower where K becomes closer to 0 or 18
as there are less combinations of failing links to be considered in the separation procedure.
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This phenomenon was also observed in [7] and the references therein.
To end this section, we mention that instead of using Phase 1 of Algorithm 2, for K = 0

the linear relaxation of problem (1) can be solved directly, just by allocating the whole
demand volume h(d) for each d ∈ D to its shortest (with respect to the costs ξ(e), e ∈ E)
path. Note that the so obtained optimal link capacity vector y∗ will specify an optimal
solution also for the case K = |E| if the individual link capacity y∗e for each link e ∈ E is
divided by 1 − β(e) (provided all β(e) < 1). Moreover, the optimal demand routing x∗ for
K = 0 is optimal for K = |E| as well. The computational time required by the so described
(shortest path allocation) approach is negligible.

7.1.3. Robustness with respect to the hourly states

Table 2 reports, for each K, the results of testing the robustness of the optimal link
capacity vector y∗ = (ye, e ∈ E) obtained for P(K) against all (hourly) states in the set S̃
of all 8760 hourly states. Certainly, formulation of P(K) assures that the optimal capacity
vector is sufficient to carry all the traffic demands h(d), d ∈ D, in each state in S(K), i.e.,
in each state induced by U(K). Yet, for the states in the reference failure set S (recall that
there are 159 states in S) outside S(K))) this is not guaranteed. Hence, for each such state
s ∈ S \ S(K) we have computed the volume of traffic that cannot be satisfied in this state,
using a linear programming formulation similar to (2). In the formulation, link capacities are
set to c(e) :=

(
1 − β(e, s)

)
y∗e , e ∈ E , and the routing is optimized in order to minimize the

total traffic loss, i.e.,
∑

d∈D zd, where 0 ≤ zd ≤ h(d), and h(d)− zd is the actual total traffic
carried for demand d is the considered state. In Table 2 column “average traffic carried [%]”
is the average percentage of total traffic carried (with respect to the total traffic demand)

over all of the 8760 states in S̃, and “not covered states [%]” is the percentage of the states

in S̃ for which some part of the offered traffic is not realized.

K
average carried not covered

traffic [%] states [%]

0 97.36 39.23

1 98.86 26.06

2 99.64 9.41

3 99.88 3.08

4 99.96 1.26

5 99.99 0.19

6 99.99 0.21

7 99.99 0.09

8 99.99 0.24

9 99.99 0.09

10 99.99 0.08

11 99.99 0.08

· · · · · · · · ·
18 99.99 0.08

Table 2: network polska – coverage of the states outside S(K).

The first important observation is that, already for the network dimensioned for K = 1, it
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is possible to guarantee robustness for almost 74% of the hourly states (i.e., only about 26%

of the states in S̃ experience carried traffic degradation) with the percentage of carried traffic
equal to 98.86%. With increasing K, the percentage of the states with no traffic degradation
continues to increase until K = 5, the case for which our computations reveal the second
interesting fact: the network dimensioned for K = 5 is already robust against all the states
in S(18), i.e., for the states with all E = 18 links or less affected with a failure ratio equal
to 0.25 – this effect is clearly seen in Table 2. This means that taking into account all

(
18
5

)
states with exactly 5 links affected with the failure ratio 0.25 makes the network robust to
all multiple partial link failure states with β(e) ≡ 0.25. This “saturation effect”, for which
an intermediate factor of robustness may already offer full protection against all deviations
in the input data can be observed also in other (telecommunication) applications of robust
optimization (see for example [7] and its list of references). A similar discussion can be found
in [32] in the context of demand uncertainty.

Table 2 reveals that any K is not sufficient to cover all the states in S̃ and at least
0.08% of hourly states cannot be fully covered when the failure ratio in S is assumed to be
0.25. This is due to the existence of two “nasty” states in the reference failure set S that
include several links affected with failure ratio 0.50 and even links whose entire capacity is
lost. For those states the traffic matrix cannot be realized even for large values of K. As
a consequence, protection for these two peculiar states, corresponding to about the 0.08%
of all states, can never be granted, even imposing protection against the state with all links
failing with failure ratio 0.25. Nevertheless, Table 2 gives some evidence that considering
K-sets for network dimensioning instead of all the states in the reference failure set S can
be effective in terms of the capability of traffic handling in the states outside those induced
by the K-set. This is important, as the list of all possible states is in general not known or
difficult to retrieve from available historical data.

We mention here that in Section 2 of the conference version of this paper (i.e., in [31]),
a reasonable ad-hoc method for estimating the proper value of K to be used in network
dimensioning is described. By the proper value of K we mean the minimum K that ensures
the maximum achievable coverage (as K = 7 in Table 2). The method works for both
the directed and undirected cases (see Section 6.1), but not for the bi-directional links case
assumed in the above discussed study, and, for that matter, in the study presented below.

7.2. Study of Paris Metropolitan Area Network

In this section we present results of applying our robust optimization approach to a
realistic FSO network instance. We call this instance PMAN (Paris Metropolitan Area
network) since it was created using the real data for the Paris metropolitan area (summarized
in Appendix A). However, although all the data used to design the PMAN instance are real,
the instance itself is not real, and has been elaborated only for the purpose of this paper. This
time, as we consider a realistic network instance, we consider the MIP version of problem
P(S) with modular links (i.e., integer y). Because of that the optimization process involves
both phases of Algorithm 2.

7.2.1. Experiment layout

In the PMAN case study we have considered the FSO transport system equipment pro-
vided by LightPointe Company [17], and more precisely the LightPointe’s AireLink 80 10Gig
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Figure 3: Paris Metropolitan Area Network.

system. The system requires one radio at each side of the FSO link and achieves 10 Gbps full
duplex data transmission rate, which implies the link capacity module M equal to 10 Gbps
(in each direction). As the considered system allows for the maximum distance of 15 km
between two antennas linked by a light beam under clear weather conditions, the 15 km link
range is assumed as well. As for polska, the cost of one (10 Gbps) module on each link is
equal to 1 (i.e., ξ(e) = 1, e ∈ E). This means that the cost of the network defined in (1a)
expresses the total number of capacity modules (i.e., FSO systems) installed in the network.

The topology of PMAN is depicted in Figure 3. The network is composed of V = 12
(core) nodes and covers an area of around 250 km2. Two nodes (Paris1 and Paris2) are
located in the inner Paris area, and the remaining 10 nodes represent autonomous cities
around it. The set of links is composed of all possible links whose end nodes are within 15
km in the line of sight (the distances between node/cities are given in Table A.4), resulting
in E = 21 links (and A = 42 arcs) in total.

The traffic matrix for PMAN includes all D = V (V − 1) = 132 directed traffic demands
(expressed in [Gbps]) and is given in Table A.6 in Appendix A. The traffic matrix was
calculated using formula (A.1) discussed in Appendix A.

We considered the weather conditions observed during all hours in a one year period, this
time from January 1, 2016 until December 31, 2016 available at www.worldweatheronline.com.
As for polska, the observed conditions were translated into the corresponding failure states.
In effect, we obtained the set of all 366 × 24 = 8784 hourly failure states (2016 was a leap-

year) – this full set of hourly states will be denoted by S̃. It happens that among these
8784 states, there are 1253 (14.26%) of the so called disconnected states. Each such state
contains a set of links with failure ratio equal to 1 (i.e., totally failing) that is a cut that splits
the network into separate (connected) components so that some of the demands cannot be
realized at all.

Besides, in the study we will consider a subset of S̃, namely the set S̃ ′ of all 8784−1253 =
7531 connected states obtained by deleting the disconnected states from S̃. Among the 7531
connected hourly states in the reduced set S̃ ′, 68.46% are nominal states with no degraded
links. As for polska, the majority of the remaining states are characterized only by the 16-
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QAM to 4-QAM change in MCS that reduces the nominal capacity of the affected links by
25% (link failure ratio 0.25) – there are 20.95% of such states in S̃ ′. In the remaining 10.59%
of states there are links degraded by the failure ratio 0.5 and/or 1.

As far as the average connected hourly state in S̃ ′ is concerned, there are 94.7% of non-
affected links, 4.3% of links with the failure ratio 0.25, 0.5% of links with the failure ratio
0.5, and 0.5% of totally failed links (failure ratio 1). Finally, we observed that out of all the
7531 connected hourly states there are only 206 states that are mutually different – these
states constitute the reference failure set S for PMAN.

7.2.2. Algorithm efficiency

Table 3 presents numerical results illustrating the efficiency of Algorithm 2 for PMAN.
The results are analogous to those for polska – the main difference is that for PMAN the
modular links are considered, while for polska the link capacities were assumed to be con-
tinuous. This is reflected in Table 3 where the group of three columns under the common
name “Phase 1” describe the optimal solutions (for the K-sets with K = 0, 1, . . . , 21) of the
linear relaxation of the considered MIP problem (1), obtained by means of Phase 1 of Algo-
rithm 2. The column “Phase 1+2” shown in the Table, in turn, describes the computational
time for modular solutions for PMAN obtained through applying Phase 2 after Phase 1 in
Algorithm 2.

The solutions of the linear relaxation of P(K) obtained with Phase 1 behave similarly as
the solutions for polska. The cost becomes stable already for K ≥ 6, and the computation
time, after initial increase and achieving maximum for K = 11, starts to decrease (with some
exceptions).

As far as the results for the modular links case are concerned, we first note that for
K = 0 (only the nominal state considered) the number of additional cuts (added in Phase 2)
and the computation time become substantial. This is implied by a particular nature of the
polyhedron of all feasible y vectors, different than that of the corresponding polyhedra for
K ≥ 1. In the modular case the behavior of the solutions for K ≥ 1 is basically similar to
that of the linear relaxation assumed in Phase 1. In this case the cost stabilizes at K = 3
while the maximum computation time is observed for K = 17.

We have also optimized the modular case for K = 0 and K = 1 directly, by applying the
CPLEX MIP solver to formulation (1) with an explicit list of states. Clearly, for K = 0 such
a list contains only the nominal state while for K = 1 it contains all single link degradation
states with only one link degraded at a time (with the failure ratio 0.25). In the first case it
took only 5 seconds to reach the optimal solution with C∗ = 32 while in the second case it
took as much as 1313 seconds reach the optimal solution with C∗ = 35. This illustrates the
fact that for K ≥ 1 the cut-based method of Algorithm 2 is superior to the direct approach.

Finally, let us note that most of the algorithm’s execution time (roughly 90%) has been
spent in the cut generation subproblem, i.e., in the feasibility test solved in Step 2 of Algo-
rithm 2. This confirms the remark at the beginning of Section 6.2 stating that extra valid
inequalities are worth considering to speed-up the convergence of the algorithm.

7.2.3. Robustness with respect to the hourly states

Figures 4 and 5 show to what extent the network with modular links dimensioned for
the consecutive K-sets (with the number of modules given in column 5 of Table 3) is able
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K
Phase 1 Phase 1+2

C∗ no. of cuts time [s] C∗ no. of cuts time [s]

0 25.2 92 13.0 32 2213 1398.1

1 30.5 101 20.3 35 106 21.9

2 32.2 116 23.6 36 140 28.7

3 33.1 143 35.0 37 143 36.5

4 33.4 133 31.0 37 135 31.5

5 33.5 134 31.0 37 135 32.0

6 33.6 148 35.0 37 150 35.4

7 33.6 147 36.0 37 148 36.6

8 33.6 153 37.0 37 157 38.8

9 33.6 154 37.0 37 159 39.0

10 33.6 147 34.0 37 163 37.0

11 33.6 166 41.0 37 185 45.0

12 33.6 152 35.0 37 172 39.0

13 33.6 156 31.0 37 262 54.0

14 33.6 172 34.0 37 248 47.1

15 33.6 174 31.2 37 256 48.0

16 33.6 150 26.0 37 242 42.0

17 33.6 168 29.0 37 315 62.0

18 33.6 171 28.0 37 260 43.0

19 33.6 170 27.0 37 257 45.0

20 33.6 174 27.0 37 251 42.0

21 33.6 167 24.2 37 236 36.5

Table 3: PMAN – results of robust optimization.

Figure 4: PMAN – states that are not covered with Algorithm 2.
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Figure 5: PMAN – results of robust optimization obtained with Algorithm 2.

to cover all 8784 hourly states (labelled with “all states”, i.e., the states in S̃), and for all

connected hourly states (labeled with “connected states”, i.e., the states in S̃ ′). The figures
for “average carried traffic [%]” and “not covered states [%]” were obtained in the same way
as for polska (see Section 4.3). The figures reveal that the coverage for the connected states
case is very good already for K = 0 (this is due to links’ modularity since, typically, not all
modules are fully utilized), and becomes stable for K ≥ 5. These results are quite promising,
as we may expect that the network dimensioned for a K-set even with a small value of K
will cover, to a reasonable extent, also the states that were not observed in the historical
data or are difficult to extract from such data.

Figure 6: PMAN – link capacity.
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7.2.4. An exact solution

For PMAN we have also computed the exact solution covering the whole states in the
reference failure set S (with 206 distinct states). We have achieved that by solving the
MIP formulation (1) of P(S) directly, and not using Algorithm 1. Such an optimal solution,
obtained in 407 seconds, has the minimum cost equal 145 (recall that the assumed module
costs ξ(e) = 1, e ∈ E , imply that this cost is equal to the total number of modules installed
on the links). This is a large difference as compared to the cost equal to 37 obtained for
the K-sets with K ≥ 3 that cover 99.60% of traffic and 19.75% of states. In fact, this
is mainly due to the large amount of traffic traversing the link between Paris1 and Paris2
that is relatively often affected, sometimes totally. To restore the traffic lost on this link, a
substantial additional (protection) capacity is necessary not only on this link but also on the
routes around it. This effect is shown in Figure 6, where the pair of figures (one in brackets)
next to a given link specifies its capacity expressed as the number of 10 Gbps modules. The
first figure (not in brackets) is the link capacity when all links are the FSO links, while the
second (in brackets) is the link capacity when Paris1-Paris2 is a fiber link and the remaining
links are FSO links.

The above result shows that building a 100% robust FSO network can be very costly. A
natural remedium for this issue (considered for example in [14]) would be to use a terrestrial
fiber technology for some selected (bottleneck) links instead of the wireless FSO technology
since the fiber links are not sensitive to weather conditions and thus can be assumed to
be never degraded in our model (failure ratio always equal to 0). For example, assuming
that the Paris1-Paris2 link is realized on a fiber (and the rest 20 links are FSO links), the
optimum solution of P(S) requires 56 modules instead of 145, that is, as much as 91 modules
less than required in the pure FSO network.

8. Concluding remarks and future work

In the paper we have presented a robust optimization approach to modular dimensioning
of FSO networks taking into account degradation of link capacities due to weather conditions.
Central to the approach is a cut-generation algorithm (Algorithm 2) for minimizing the cost
of links for a network robust to all link failure states (where different link losses different
portions of their nominal capacity) described by a given K-set (uncertainty polytope). In
order to optimize a realistic network, we first analyze the weather data and produce a
representative set of its link failure states (called the reference failure set). Then we dimension
the network (using Algorithm 2) assuming uncertainty K-sets for several values of parameter
K and check to what extent the states in reference failure set are covered by the K-set based
solution. Using a realistic FSO network instance (based on the Paris metropolitan area data)
we have shown that our approach is effective.

As suggested in the paper, the following extensions/enhancements of the presented ap-
proach are worth considering.

• Extending the K-sets by the multi failure rate case (see Section 6.3) to improve the
coverage of the real states.

• Enhancing the optimization procedure by using valid inequalities (see Section 6.2) to
speed up the algorithm convergence.
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• Developing a heuristic algorithm for (suboptimal) rounding off the continuous link
capacity solution to a modular solution. This will speed up the optimization process as
Algorithm 2 will be applied only to the linear relaxation of the main problem (through
Phase 1 of Algorithm 2).

• Adding fiber (non-failing) links to the optimization model, and analyzing the increase
in cost efficiency of such obtained hybrid FSO/fiber networks (an initial study along
these lines is presented in [33]).

• Applying the proposed approach to a realistic protection mechanism called Flow Thin-
ning described in [13].

These improvements will be subject of our research in the near future (some of them are
already being elaborated).
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Appendix A. Paris Metropolitan Area network – data used in the study

The Paris Metropolitan Area network (PMAN) example was prepared on the basis of
publicly available data. The description of the PMAN is summarized below.

cities (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) Paris1 – 10.0 8.8 10.0 10.2 8.2 9.0 12.4 13.2 16.0 11.6 18.9

(2) Paris2 10.0 – 8.8 15.0 15.2 13.2 16.3 22.4 8.2 8.0 6.6 9.0

(3) Saint Denis 8.8 8.8 – 8.1 7.7 8.7 12.1 22.4 16.7 18.3 10.2 10.7

(4) Argenteuil 10.0 15.0 8.1 – 2.8 5.9 6.9 18.4 20.7 23.6 17.0 18.5

(5) Colombes 10.2 15.2 7.7 2.8 – 3.6 4.8 16.2 18.1 21.2 15.2 18.0

(6) Courbevoie 8.2 13.2 8.7 5.9 3.6 – 3.6 13.9 15.6 19.0 14.1 18.3

(7) Nanterre 9.0 16.3 12.1 6.9 4.8 3.6 – 11.5 17.8 21.6 17.5 21.9

(8) Versailles 12.4 22.5 22.4 18.4 16.2 13.9 11.5 – 19.5 23.9 23.9 30.9

(9) Vitry-Sur-Seine 13.2 8.2 16.7 20.7 18.1 15.6 17.9 19.5 – 4.4 9.1 18.1

(10) Creteil 16.0 8.0 18.3 23.6 21.2 19.0 21.6 23.9 4.4 – 8.9 17.2

(11) Montreuil 11.6 6.6 10.2 17.0 15.2 14.1 17.5 23.9 9.1 8.9 – 9.1

(12) Aulnay-Sous-Bois 18.9 9.0 10.4 18.5 18.0 18.3 21.9 30.9 18.1 17.2 9.1 –

Table A.4: Distances between cities [km].

Table A.4 gives the line-of-sight distance (measured on the map) between all the pairs of
the 12 cities composing PMAN. Clearly, the matrix is symmetric and its entries imply the
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set of 21 potential (undirected) links of PAM that is depicted in Figure 3: a link between a
pair of cities can be provided if the distance between its end nodes does not exceed 15 km.

cities population number of DL traffic per UL traffic per aggregated DL aggregated UL

Ile-de-France 2016 families family [Mbps] family [Mbps] traffic [Gbps] traffic [Gbps]

Paris1 1 099 921 274 980.25 28.71 21.65 7893.31 5954.70

Paris2 1 099 921 274 980.25 28.71 21.65 7893.31 5954.70

Saint-Denis 116 302 29 075.50 19.14 10.23 556.42 297.36

Argenteuil 107 408 26 852.00 11.71 4.75 314.46 127.55

Colombes 88 257 22 064.25 30.60 25.04 675.14 522.58

Courbevoie 88 776 22 194.00 30.60 25.04 879.11 555.83

Nanterre 92 607 23 151.75 30.60 25.04 708.42 579.81

Versailles 83 879 20 974.25 30.50 13.16 639.78 275.98

Vitry-Sur-Seine 92 791 23 197.75 32.50 13.16 753.53 305.24

Creteil 90 282 22 570.50 32.50 13.16 733.16 296.98

Montreuil 104 963 26 240.75 19.14 10.23 502.17 268.36

Aulnay-Sous-Bois 82 513 20 628.25 19.14 10.23 394.76 210.97

Table A.5: Demographic data and traffic estimates.

The next table (Table A.5) contains the data necessary to prepare the traffic matrix
for PMAN. The second column gives the population in the areas served by each node
(http://population.city/france). Assuming that the average family consists of 4 persons (ac-
tually, according to [34], the real figure is 3.85), we calculated the number of families in each
area (column 3). Next, we took the estimations of the average rate of the traffic downloaded
(DL, column 4) and uploaded (UL, column 4) from/to the Internet per family in each area
(using the data available at [35]), and finally computed the aggregated DL (column 6) and
UL (column 7) traffic rate from/to the Internet per the whole areas. In the calculations we
considered only the residential traffic, as for instance VoIP and peer-to-peer traffic, assuming
that (i) the considered traffic is equal to 10% of the whole generated traffic, and (ii) only
10% of population is served by this network.

Using the data from Table A.5, we calculated the (directed) traffic matrix T = [T (i, j)]12i,j=1

for PMAN applying the following formula for all directed pairs (i, j), i, j = 1, 2, . . . , 12, i 6= j:

T (i, j) = UL(i) · P (j)∑12
k=1 P (k)− P (i)

+DL(j) · P (i)∑12
k=1 P (k)− P (j)

. (A.1)

In the formula, P (k), DL(i) and UL(i) denote the entries in columns 2, 6 and 7, respectively,
of Table A.5. The formula is based on the assumption that the (directed) traffic demand
from city i to city j is estimated as the sum of a fraction of the upload (UL) traffic generated
at city i (this fraction is proportional to the share of the population of the area j in the
total population of PMAN outside the area of i), and a fraction of the download (DL) traffic
received at city j (this fraction is proportional to the share of the population of the area of
i in the total population of PMAN outside the area of j).
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cities (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) Paris1 – 74.38 5.40 4.26 4.99 5.02 5.24 4.74 5.41 5.26 4.87 3.82

(2) Paris2 74.38 – 5.40 4.26 4.99 5.02 5.24 4.74 5.41 5.26 4.87 3.82

(3) Saint-Denis 5.56 5.56 – 0.23 0.34 0.35 0.36 0.33 0.38 0.37 0.29 0.23

(4) Argenteuil 4.60 4.60 0.25 – 0.27 0.28 0.29 0.26 0.30 0.30 0.22 0.01

(5) Colombes 5.39 5.39 0.37 0.29 – 0.36 0.37 0.34 0.39 0.37 0.34 0.26

(6) Courbevoie 5.42 5.42 0.37 0.29 0.36 – 0.37 0.34 0.39 0.38 0.34 0.26

(7) Nanterre 5.66 5.66 0.39 0.30 0.37 0.37 – 0.34 0.40 0.39 0.35 0.28

(8) Versailles 4.22 4.22 0.26 0.18 0.26 0.27 0.28 – 0.29 0.28 0.23 0.18

(9) Vitry-Sur-Seine 4.68 0.13 0.29 0.20 0.29 0.29 0.31 0.28 – 0.31 0.26 0.20

(10) Creteil 4.55 4.55 0.28 0.20 0.28 0.29 0.30 0.27 0.31 – 0.25 0.20

(11) Montreuil 5.02 5.02 0.30 0.20 0.31 0.31 0.33 0.29 0.34 0.33 – 0.21

(12) Aulnay-Sous-Bois 3.94 3.94 0.23 0.16 0.24 0.24 0.26 0.23 0.27 0.26 0.21 –

Table A.6: Traffic matrix [Gbps].
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