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subjects and/or during previous recording sessions in the 
learning process of current BCI user. However, these 
approaches are challenged by the non-stationarity of EEG 
signals recorded from different subjects and even during 
different sessions of the same subject (called inter-subjects 
and inter-sessions variability, respectively). Ensemble 
methods have been shown to be one of the most promising 
techniques for alleviating the problem of inter-subjects and 
inter-sessions variability as they allow modeling different 
brain activity patterns simultaneously [1-3]. Fazli et al [1] 
used an ensemble strategy in which a sparsification 
technique is applied in the classifiers combination step in 
order to find brain activity patterns that are common across 
all BCI users and “robust” to non-stationarity. Although 
this approach allowed reducing considerably calibration 
time for able-bodied users, the assumption of common 
underlying brain activity pattern may be very strong for 
disabled users as shown in [6]. As the physical properties 
of the sensors and the neurophysiological state of the user 
may change within the same recording session, Tu and 
Sun [2] proposed and “adaptive” ensemble framework in 
which classifiers’ weights are dynamically estimated  after 
receiving each feature vector during the feedback session 
of current BCI user. The weight of each classifier is 
proportional to its performance in classifying trials in the 
neighborhood of the received feature vector. Another 
dynamically weighted ensemble approach was proposed 
by Liyanage et al [3] for inter-sessions classification. Base 
classifiers are learned using clustered data of a previous 
recording session and classifiers’ weights are estimated for 
each feature vector in the current session according to its 
distance to clusters’ centers in each class. The two 
previous approaches are based on data independence 
assumption and do not take into consideration the fact that 
time-contingent feature vectors undergo the same sources 
of non-stationarity.  

In this paper, we propose a new ensemble framework 
for inter-subjects classification in EEG-based BCIs in 
which we address the following issues: 

 Reducing calibration time in BCIs using data
recorded from different users.

 Managing inter-subjects variability of EEG
signals through an accuracy-weighted
ensemble strategy.

 Tracking EEG signals non-stationarity within
the same session using a new unsupervised
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Abstract— Learning from other subjects and/or sessions 

led to considerable reduction of calibration time in EEG-

based BCIs. However, such learning scheme is not 

straightforward because of the non-stationary nature of 

EEG signals. In this paper, we propose an adaptive 

accuracy-weighted ensemble (AAWE) approach that allows 

tracking non-stationarity in EEG signals and effectively 

learning from other subjects. It consists of an ensemble of 

classifiers, each of which is trained using data recorded from 

one BCI user. Classifiers’ weights are initialized according 

to their accuracy in classifying calibration data of current 

BCI user. These weights are updated using ensemble 

decision during feedback phase, when there is no 

information about true class labels. The effectiveness of our 

approach is demonstrated through an empirical comparison 

with other state of the art classifiers combination strategies. 

Keywords: Brain-computer interfaces (BCIs), 

Electroencephalography (EEG), non-stationarity, transfer 

learning, ensemble methods. 

I. INTRODUCTION

Brain-computer interfaces (BCIs) are communication 
and control technologies that enable their users to interact 
with external environment without using the peripheral 
neuromuscular system, by directly monitoring electrical 
and/or hemodynamic activity of the brain. 
Electroencephalography (EEG) is the most widely used 
technique in BCIs because of its high temporal resolution 
and low cost. Nevertheless, EEG signals present both a 
very low spatial resolution and a poor signal-to-noise ratio 
which makes brain activity patterns decoding very 
difficult. Thus, a time consuming calibration phase is 
necessary before every use of a BCI. During this phase, 
users are instructed to perform repeatedly predefined 
cognitive tasks in specified time periods (called trials) in 
order to collect enough labeled data used to build a robust 
classification model. This model will be used to classify 
new trials in a feedback phase during which users interact 
with the application at free will (label information is not 
provided). 

Because long calibration phase is a limitation to the 
use of BCI technology in realistic interaction settings, 
many machine learning approaches have been attempted 
in order to build out-of-the-box classification models 
that can achieve good performance using a small 
calibration set. Among them, approaches based on 
transfer learning have attracted much attention during 
the last years [1-8]. They consist of incorporating data 
recorded from different 



 classifiers’ weights update strategy based on
ensemble decision.

II. NOTATIONS

In this work, we used Common Spatial Patterns (CSP) 
algorithm for feature extraction [9], but our approach 
applies to other feature extraction techniques for EEG 
classification. Due to space limitation, details of this 
algorithm are omitted.  

Denote a multichannel EEG measurement of one trial 
as a t n matrix  , where t is the number of samples per 

trial and n the number of electrodes. Let  m n be a 
filter bank learned from previous labeled trials using CSP 
algorithm, where m is the number of most discriminative 
spatial filters from each class in binary classification. The 
logarithmic variance feature vector of trial   is calculated 
as follows: 

 log  
diag(  )

trace(  )
(1) 

Where    and    are the transposes of matrices   and  , 
diag returns the diagonal elements of the square matrix and 
trace returns the sum of these elements. 

Let h
 
 h

 
   h

 
 and            be the 

classification models and the filter banks learned using 
EEG signals recorded from   BCI users that previously 

performed the same cognitive tasks. Let h
   

 and      be 
the classification model and filter bank learned using 
calibration set of current user. The labeled logarithmic 
variance feature vectors of trials recorded during 
calibration phase of current BCI user filtered using filter 
bank of subject k are denoted 
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k y

 
)  ( l

k y
l
)}  k  , where l is the size of 

calibration set. For simplicity of notation, we replace  i
k by 

 i for the rest of the paper. 

III. METHODS

In this section we describe our framework and show 
how it can deal with non-stationarity in EEG signals. Our 
approach is based on accuracy-weighted ensemble method 
which has been shown to be an efficient way for mining 
concept-drifting data streams [10]. We extend this method 
to transfer learning and propose a new classifiers’ weights 
update strategy for dealing with data drifts within the same 
session without having any information about true class 
labels. 

A. Accuracy-weighted ensemble

Given a trial  and its true class label y, the classifier 

h
k
  k       outputs the value hy

k( )       ], which is an

estimation of the conditional class probability p(y  ). 

Classification error of classifier h
k
 for trial   is then

-hy
k
   . Since our goal is to efficiently combine data from

different BCI users in order to reduce the size of 
calibration set of current user, the weight of each base 
learner should be proportional to its accuracy in classifying 
data from current user. Given the mean squared error of 

the base learner h
k
  k   , on calibration data of current 

user: 

k

 Lk 
∑ hyi

k ( i)

i yi  L
k

(2) 

Its weight can be expressed as follows: 

wk ma r k (3) 

Where r is the mean squared error of a random 
classifier which is calculated as follows: 

r ∑ p y  p(y) 

y

(4) 

For two classes classification with equal class priors, 
r  . 

Classifiers with accuracy less or equal than random 
classifier will be assigned weight   and the weights of 
other classifiers will be inversely proportional to their error 
in classifying calibration data of current user. 

The classifier h
   

 learned using calibration set of 
current user is weighted in the same way by performing 
leave one trial out cross-validation. Including this classifier 
in the ensemble allows avoiding “negative transfer” in case 
of experimented BCI users. 

B. Updating classifiers’ weights using ensemble

decision

A classification model that performs well in classifying
trials of calibration set may not achieve good classification 
performance in classifying trials of feedback set and 
conversely as data drifts may occur. Drifts are generally 
gradual and may cause a rotation or shift in the 
classification decision boundary [11]. Thus, updating base 
classifiers’ weights during feedback phase is necessary for 
maintaining good classification accuracy. Given a new 
labeled trial   i  yi , classifiers’ weights can be updated as

follows: 

wk i  ma r k i 
(5) 

Where, 

k(i)

i
 [(i  ) k(i  ) hyi

k ( i) ]

(6) 

Yet, in realistic interaction settings, BCI user 
modulates his brain activity patterns at free will and the 
classification model does not have any information about 
class labels of EEG signals recorded during feedback 
phase. Since ensemble decision is generally better than 



each base classifier’s decision  provided that minimal 
performance and diversity conditions are met [12], we 
suggest using this decision to gradually update classifiers’ 
weights after receiving every new feature vector during 
feedback phase. So, eq. (6) becomes: 

k(i)

i
 [(i  ) k(i  ) hei

k ( i) ]

(7) 

Where ensemble’s decision ei is the following: 

ei argma 
yi
 ∑wk i hyi

k
i

k 

(8) 

C. Controlling update rate using a tradeoff factor

The classifiers’ weights update strategy presented
above may not be fast enough to track data drifts during 
feedback phase. Thus, we may put more weight on the 
second term of equation (7) than the first term. This can be 
performed using a tradeoff factor   as follows: 

k(i)
i

[(i  ) k(i  )  (i  )  hei
k ( i) 

 
]

(9) 

When   -
i- 

, the classifiers’ weights are not updated. 

When    , the update rate is slow. As 
 comes close to  , the update rate increases. 

The update rate in equation (9) depends on the number 
of trials already classified and its value at the beginning of 
online phase is greater than its value at the end of it. This 
is important for BCI application as data shift between 
calibration and online phases is more important than data 
shift during online phase [11]. 

IV. EVALUATION

In this section, our framework is evaluated using the 
publicly available data set 2A in BCI competition IV, 
provided by the Graz group [13]. 

A. EEG data set

The data set consists of EEG signals recorded using 22
Ag/AgCl electrodes from 9 subjects. Subjects were asked 
to perform four different motor imagery tasks: left hand, 
right hand, both feet and tongue movement imagery. For 
each subject, a training and a testing set were collected. 
Both sets comprise 72 trials of duration 7 s from each 
class. EEG measurements were band-pass filtered using a 
5

th
 order Butterworth filter in the frequency band 8-30 Hz. 

Logarithmic variance features were extracted from the 
time segment 3-5 s after the beginning of each trial. For 

spatial filtering, we used the three most discriminative 
CSP filters from each class (m = 3). 

B. Results

In order to assess classification performance of our
adaptive accuracy weighted ensemble (AAWE) 
framework, we compared it to three different approaches 
named as follows: 

 AWE: Accuracy weighted ensemble without

updating classifiers’ weights during feedback

phase.

 DWEN: Dynamically weighted ensemble method

in which classifiers’ weights are updated for each

trial in feedback phase according to their

accuracy in classifying feature vectors in its

neighborhood [2].

 DWEC: Dynamically weighted ensemble method

in which classifiers’ weights are updated for each

trial in feedback phase according to its distance to

the center of each class [3].
Note that the comparison targets only the classifiers 

weighting strategies used in [2] and [3]. Features 
extraction and classifiers training steps are the same for all 
approaches. Linear Discriminant Analysis (LDA) was used 
as a base learner in all experiments. 

Table. I illustrates average classification accuracy for each 
approach when the size of the calibration set is relatively 
small (10 and 20 trials). Evaluation was performed offline 
using leave one subject out cross-validation. In each 
iteration, training sets of eight subjects and the first N trials 
(N=10, 20) of test set of the ninth subject were used to 
learn spatial filters and classifiers. The rest of trials in the 
test set of the ninth subject were used to update classifiers’ 
weights in each approach. The last 30% of the test set was 
used for calculating classification accuracy in order to 
assess the performance of our approach in tracking EEG 
signals non-stationarity within the same session. The 
parameters used for calculating the neighborhood of each 
trial and adjusting the update rate in the DWEN and 
AAWE approaches, respectively, were varied gradually 
and the values giving best results are retained. In online 
settings, these parameters should be fixed beforehand. For 
the DWEC approach, the objective function allowing 
estimation of classifiers’ weights according to the distance 
of each trial to the center of each class was optimized for 
each subject’s dataset separately.  

Classification performance of our AAWE approach 
demonstrates its effectiveness in tracking EEG signals 
non-stationarity compared to other methods. However, the 
choice of the parameter   giving best results is an 
important issue that is worth investigating in the future. In 
most cases, the trial-based classifiers weighting method 
used in DWEN failed in maintaining good classification 
accuracy as it is very sensitive to outliers. Even though the 
DWEC method has been shown to be effective for learning 
from a previous session [3], it performs poorly in inter-
subjects classification as EEG signals recorded from 
different subjects are much more variable than signals 
recorded during different sessions of the same subject. 



TABLE I. AVERAGE CLASSIFICATION ACCURACY OF THE ENSEMBLE LEARNING MODEL USING DIFFERENT CLASSIFIERS 

WEIGHTING STRATEGIES 

Size of calibration set = 10 trials Size of calibration set = 20 trials 

Left hand 

vs. Right 

hand 

Left 

hand 

vs. Feet 

Left 

hand  

vs. 

Tongue 

Right 

hand 

vs. Feet 

Right 

hand vs. 

Tongue 

Feet vs. 

Tongue 

Left hand 

vs. Right 

hand 

Left 

hand 

vs. Feet 

Left  

hand vs. 

Tongue 

Right 

hand vs. 

Feet 

Right 

hand vs. 

Tongue 

Feet vs. 

Tongue 

DWEC 0.64 

(±0.15) 

0.66 

(±0.17) 

0.63 

(±0.13) 

0.69 

(±0.15) 

0.63 

(±0.14) 

0.56 

(±0.10) 

0.66 

(±0.17) 

0.69 

(±0.16) 

0.65 

(±0.16) 

0.69 

(±0.14) 

0.66 

(±0.15) 

0.60 

(±0.16) 

DWEN 0.69 

(±0.15) 

0.69 

(±0.17) 

0.70 

(±0.15) 

0.65 

(±0.15) 

0.66 

(±0.16) 

0.57 

(±0.12) 

0.68 

(±0.16) 

0.69 

(±0.17) 

0.70 

(±0.15) 

0.66 

(±0.15) 

0.67 

(± 0.16) 

0.57 

(±0.13) 

AWE 0.66 

(±0.17) 

0.66 

(±0.11) 

0.74 

(±0.15) 

0.71 

(±0.09) 

0.71 

(±0.16) 

0.62 

(±0.10) 

0.68 

(±0.17) 

0.75 

(±0.18) 

0.76 

(±0.14) 

0.77 

(±0.13) 

0.75 

(±0.18) 

0.67 

(±0.10) 

AAWE 0.69 
(±0.18) 

0.71 

(±0.15) 

0.78 

(±0.17) 

0.74 

(±0.13) 

0.74 

(±0.17) 

0.63 

(±0.10) 

0.72 

(±0.16) 

0.78 

(±0.19) 

0.77 

(±0.16) 

0.78 

(±0.13) 

0.79 

(±0.16) 

0.69 

(±0.08) 

V. CONCLUSION

In this paper, we proposed a novel subject transfer 
framework for EEG classification. We used an accuracy-
weighted ensemble method for aggregating data from 
different users and a classifiers’ weights update strategy 
based on ensemble’s decision  This update strategy is 
useful in realistic interaction settings when we do not have 
any information about true class labels. Moreover, it is 
different from state of the art classifiers aggregation 
strategies as it is not based on data independence 
assumption. Empirical evaluation showed that our 
approach allows reducing the effect of non-stationarity in 
EEG signals recorded from different subjects and during 
feedback phase of the same subject on classification 
accuracy.  

In future work, we will try to find heuristics for fixing 
the parameter   controlling the update rate of our AAWE 
approach  This is may be based on the BCI user’s capacity 
in modulating his sensorimotor rhythms and the type of the 
motor imagery task. 
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