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Maxima and minima of the displacement components for the
Lamb modes

Farid Chati,a) Fernand Léon, Dominique Décultot, and Gérard Maze
Laboratoire Ondes et Milieux Complexes, LOMC FRE CNRS 3102, Université du Havre, Place Robert

Schuman, BP 4006, Le Havre 76610, France

This paper revisits the vanishing of the transverse component of the particle displacement vector in
free surfaces of an isotropic homogeneous plate, for both symmetric and antisymmetric Lamb

waves. Drawing on well-known analytical expressions from Viktorov’s book [(1967) Rayleigh and
Lamb Waves: Physical Theory Applications, Chap. II, pp. 67–121], two distinct frequency-thickness
product expressions, in cases where this vanishing occurs, are derived: one for the symmetric

modes and another for the antisymmetric modes. At these frequency-thickness products, phase and
group velocities have appreciable values which are discussed herein. It appears that these velocities
depend on the transverse bulk wave velocity only. This is the specific condition of the Lamé modes.

Moreover, theoretical and experimental investigations of displacements in the surface of a plate in
air have been carried out. The theoretical part shows that the normal and transverse displacements

have, respectively, a local maximum and a local minimum in the vicinity of these frequency-thick-
ness products. The experimental part corroborates the presence of the local maximum of the S0 Lamb

mode for various materials.

I. INTRODUCTION

Pilarsky et al. have demonstrated that the normal com-

ponent of the particle displacement vector in free surfaces of

a plate, for nonzero-order symmetric Lamb waves, vanishes

when the phase velocity attains the velocity of the bulk lon-

gitudinal waves.1 These authors have also shown that the

group velocity is independent of the mode order. These fea-

tures bear some significant practical importance in the non-

destructive testing (NDT) of the fluid filled pipes. Indeed,

energy leakage into the fluid can be substantially reduced

due to the vanishing of the normal surface displacement.

Certain authors like Hay et al. and Lowe et al. have exten-

sively harnessed this specificity in their works devoted to

pipe inspection.2–4 In a recent paper,5 Royer et al. have

investigated the variation of dispersion curves of Lamb

modes as a function of the Poisson ratio m. They show that

branches of curves for phase velocities higher than CT

ffiffiffi

2
p

(where CT is the transverse bulk wave velocity) are very sen-

sitive to the Poisson ratio. Conversely, in the case where the

phase velocity is lower than CT

ffiffiffi

2
p

, only a weak dependence

on this ratio is observed.

In this paper we show that the transverse component of

the particle displacement vector in free surfaces of a plate

for both symmetric and antisymmetric Lamb modes can also

vanish. Analytic expressions of the frequency-thickness

products, fse (for the symmetric modes) and fae (for the anti-

symmetric modes), are determined when the transverse com-

ponent is nil. This specific condition is the one of the Lamé

modes described in the Graff’s book.6 Just as in the works

by Pilarsky et al., particular attention is paid herein on the

group velocities and their expressions are written.

Further, theoretical and experimental investigations of

the normal component of displacement in the surface of a

plate in air have been carried out. The aim of these

additional investigations is to demonstrate that the normal

displacement in the surface reaches a maximum for specific

values of frequency-thickness products fse and fae. This phe-

nomenon is of particular interest for the NDT achieved by

means of a setup using a laser interferometer. This measure-

ment method may be applied to estimate the transverse

velocity, from the observation of the normal component in

the surface of the plate.

II. THEORETICAL ANALYSIS: LAMÉ MODES IN A

PLATE IN VACUUM

This section recalls the particular features of the Lamé

modes described in the Graff’s book.6 Using Viktorov’s

notation,7 expressions of the transverse components of the

displacement of antisymmetric and symmetric Lamb waves

can be written as,

Us ¼ D
k2s þ s2s
� �

sh ssdð Þ
2 qs sh qsdð Þ ch qszð Þ � ss ch sszð Þ

� �

eiksx; (1)

Ua ¼ C
k2a þ s2a
� �

ch sadð Þ
2 qa ch qadð Þ sh qazð Þ � sa sh sazð Þ

� �

eikax; (2)

where

q2s;a ¼ k2s;a � k2L; (3)

s2s;a ¼ k2s;a � k2T ; (4)
a)Author to whom correspondence should be addressed. Electronic mail:
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and d is the half thickness of the plate. kL and kT are, respec-

tively, the longitudinal and transverse wavenumbers. C and

D are the constants. The harmonic time dependence term

e�ixt is omitted in the equations.

The transverse component of the displacement in free

surfaces of an isotropic homogeneous plate vanishes when

the phase velocity of Lamb waves reaches the value

Cph ¼ CT

ffiffiffi

2
p

; (5)

where CT is the celerity of the bulk transverse waves,

lim
ks;a!kT=

ffiffi

2
p Us;aðzÞ ¼ 0; for z ¼ 6d : (6)

For this particular phase velocity, the Lamb modes are called

the Lamé modes.

To prove the validity of expression in Eq. (6), it is nec-

essary to determine the two frequency-thickness products fse

and fae at which the pth antisymmetric and the pth symmet-

ric modes have phase velocity equal to CT

ffiffiffi

2
p

(e ¼ 2 d, e is

the thickness of the plate). To this end, the characteristic

equations Xs¼ 0 and Xa¼ 0, associated with these modes,

are considered.7

The obtained frequency-thickness products fse and fae

are expressed as follows:

ðfseÞP ¼ ð2pþ 1ÞCT
ffiffiffi

2
p ; for p ¼ 0; 1; 2; 3; :::; (7)

ðfaeÞP ¼ pCT

ffiffiffi

2
p

; for p ¼ 1; 2; 3; :::: (8)

Order p¼ 0 is excluded from expression in Eq. (8) because,

at zero frequency, no mode with a phase velocity equal to

CT

ffiffiffi

2
p

exists.

Substituting Eq. (7) into Eq. (1) and Eq. (8) into Eq. (2),

the limits of displacement of transverse components Us and Ua

when the phase velocity tends toward CT

ffiffiffi

2
p

may be written as,

lim
ks;a!kT=

ffiffi

2
p UsðzÞ¼D

kT
ffiffiffi

2
p cos

2pþ1ð Þp
2d

z

� �

ei kx�p=2ð Þ; (9)

lim
ks;a!kT=

ffiffi

2
p UaðzÞ ¼ C

kT
ffiffiffi

2
p sin

pp

d
z

� �

eikx: (10)

Therefore, at the surface of a plate (i.e., when z ¼ 6d), these
two components become nil.

Group velocities can be found from the following

implicit form,1,8

Cgs;a ¼ � @Xs;a=@k

@Xs;a=@x
: (11)

As regards symmetric modes, the relation for the group ve-

locity found in the limit case where Cph ! CT

ffiffiffi

2
p

and for fse

products given by Eq. (7), is expressed as follows:

lim
k!kT=

ffiffi

2
p

fe!ðfseÞp

Cgs ¼
CT
ffiffiffi

2
p 2� k2T qS d thðqSdÞ

1� k2T qS d thðqSdÞ

� �

(12)

and, for the antisymmetric modes, the relation in the same

limit case for fae products given by Eq. (8), is expressed as

follows:

lim
k!kT=

ffiffi

2
p

fe!ðfaeÞp

Cga ¼
CT
ffiffiffi

2
p 2� k2T qa d cothðqadÞ

1� k2T qa d cothðqadÞ

� �

(13)

III. THEORETICAL AND EXPERIMENTAL ANALYSES:

A PLATE IN AIR

In this section, we assume isotropic and homogeneous

plates of thickness e placed in air. Two plates made of differ-

ent materials are considered: Duraluminum and polymethyl

methacrylate (PMMA). The standard physical parameters

used in our computations are, 9–11

�Duraluminum: e¼ 5mm;q¼ 2765 kg=m3;CL¼ 6440m=s;

CT ¼ 3113m=s:

�PMMA: e¼ 4:2mm; q¼ 1180 kg=m3;CL¼ 2690m=s;

CT ¼ 1340m=s:

�Air: q¼ 1:293 kg=m3;CL¼ 331:45m=s:

For these two materials, we pay particular attention on the

investigation of the first two Lamb modes which propagate

along the plate in air, i.e. the A1 mode and the S0 mode. Con-

trary to the case of a plate in vacuum, it is possible to calcu-

late the absolute displacements of these waves in the interface

of a plate placed in a fluid, for example in air. These displace-

ments are expressed by the following relations:

Un ¼
@u�

s;a

@x
�
@w�

s;a

@z
; (14)

UT ¼
@u�

s;a

@x
þ
@w�

s;a

@z
; (15)

where the normal displacement component Un and the trans-

verse displacement component UT are deduced from the sca-

lar potentials u�
s;a and the vector potentials w�

s;a defined by

Izbicki et al.12 Moreover, the frequency-thickness products

of these two Lamb modes for a plate placed in vacuum are

very close to those of a plate placed in air because of the low

loading of this fluid.12 Thus, analytical expressions in Eqs.

(7) and (8) are applied to determine fe products for which

the transverse motions of the Lamb modes are nil in the fre-

quency range of 0–12 MHz mm. From these results, the elas-

tic theory is applied to calculate transverse and normal

displacements in the interface of the plate placed in air, in

the vicinity of these fe products.

The experimental setup is presented in Fig. 1. Measure-

ments are made on rectangular plates of 25 mm length, 20

mm width. The thicknesses of the duraluminum and the

PMMA plates are, respectively, 5 and 4.2 mm. These plates

are, in turn, placed vertically and fixed onto a piezoelectric

transducer. The transducer excites a section of one of the

edges of the plate to generate the S0 Lamb mode. In order to
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ensure proper ultrasound coupling, a Metalscan gel layer is

applied on the transducer=plate contact surface. The setup is

rendered vertically mobile by means of a motion mecha-

nism, which allows the measuring of the normal displace-

ment at various vertical positions in the plate surface. The

excitation of the S0 mode is achieved by using the broadband

piezoelectric transducer Panametrics 401 with a central fre-

quency of 500 kHz (see Fig. 1). The transducer is itself

excited by a broadband short pulse delivered from a pulse

generator. The detection of the signal is achieved using a

laser interferometer (BMI heterodyne probe SH140) to mea-

sure the normal displacement in the surface of the plate.

Measurements are made at a series of equally spaced posi-

tions along the plate with a step interval of 0.1 mm over a

length of 50 mm. The recorded signals are averaged out and

displayed on a Lecroy digital oscilloscope (Fig. 1). There-

after, the signal obtained from these recordings is transmitted

and saved in a computer via the IEEE bus, for further numer-

ical processing. This computer also serves as a driving and

controlling tool for the movements of the plate.

IV. RESULTS AND DISCUSSION

This section presents some distinctive features of the

symmetric and antisymmetric Lamb modes when phase ve-

locity attains CT

ffiffiffi

2
p

. This particular condition of mode

propagating in the free isotropic plate is the one of the

Lamé modes. The studied characteristics are the fre-

quency-thickness product, the group velocity, and the

amplitudes of displacement in the surface of the duralumi-

num plate.

Figure 2 presents a typical plot of phase velocity

dispersions of the Lamb modes as a function of the fre-

quency-thickness product in the range of 0–12 MHz mm.

The symmetric modes are labeled as S0, S1, S2 and the

antisymmetric modes are labeled as A1, A2. The fre-

quency-thickness products are labeled as ðfseÞ0, ðfaeÞ1,
ðfseÞ1, ðfaeÞ2, ðfseÞ2 which correspond to values where the

mode phase velocity is equal to CT

ffiffiffi

2
p

. The interval

between two successive frequency-thickness products is

equal to CT=
ffiffiffi

2
p

. This first particularity is easily verified

by computing the difference between Eqs. (7) and (8) as

illustrated in Sec. II.

Figures 3 and 4 represent, respectively, the dispersion

curves of phase and group velocities of the S0 and A1 Lamb

modes for the frequency-thickness products ðfseÞ0 and ðfaeÞ1
for a duraluminum plate. The two figures show that the

group velocity of these two modes is very close to CT=
ffiffiffi

2
p

.

This second feature is generalized to any other mode order

by using the two dispersion group relations presented in Eqs.

(12) and (13), for fe products given by Eqs. (7) and (8).

Indeed, it appears, clearly, that the group velocities Cga and

Cgs in the expressions of Eqs. (12) and (13) tend toward

CT=
ffiffiffi

2
p

as the mode order rises. As regards the lowest orders

such as the modes S0 and A1, this remains true insofar as the

thickness of the plate is not too big. In the case of the studied

plate of thickness 5 mm, the absolute relative error of

FIG. 1. (Color online) Experimental setup.

FIG. 2. Dispersion curves of the

phase velocity of Lamb modes in a

duraluminum plate of thickness

5 mm.
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velocity between Cgs0 (group velocity of S0) and CT=
ffiffiffi

2
p

is

less than 7� 10�5% and the error between Cga1(group ve-

locity of A1) and CT=
ffiffiffi

2
p

is less than 9� 10�6%. We deduce

therefrom that the group velocity becomes practically inde-

pendent of the mode order. The phase-velocity � group-ve-

locity product is then close to the square of the transverse

velocity. Moreover, as it is pointed out by Pagneux13 and

Zernov et al.,14 the S0 Lamé mode is a necessary condition

for the existence of the edge resonance. Indeed these authors

have shown that this trapped mode (edge resonance) is due

to a decoupling between the S0 Lamb mode and the higher

order evanescent modes.

In order to illustrate the third and last feature, the calcu-

lations of the normal displacement component Un and the

transverse displacement component UT have been realized

for a duraluminum plate in air. Both Un and UT are normal-

ized by the local maximum of Un in the considered fre-

quency window. Figures 5(a) and 5(b) are, respectively, the

plots of Un and UT for the S0 Lamb mode in the surface of

the plate. These plots clearly show that component Un has a

local maximum and the component UT has a local minimum

in the vicinity of a particular frequency-thickness product

ðfseÞ0 (i.e., when ðfseÞ0 ¼ CT=
ffiffiffi

2
p

). The same phenomena are

observed in Figs. 6(a) and 6(b) for the A1 Lamb mode but,

this time, in the vicinity of the frequency-thickness product

ðfaeÞ1 (i.e., when ðfaeÞ1 ¼ CT

ffiffiffi

2
p

). We also note that trans-

verse displacement components of modes S0 and A1 are very

weak though not nil at, respectively, ðfseÞ0 and ðfaeÞ1
because the plate is air loaded. Therefore, the search for

these minimum and maximum values could have a signifi-

cant practical meaning, making it possible to obtain an esti-

mation of the transverse velocity of a material. Indeed, the

associated frequency-thickness products being dependent

only on the transverse velocity CT , the knowledge of these

values enables us to estimate the value of CT .

The measurement method described in details in Sec. III

is used to obtain the normal displacement in the surface of

the plate. Measured time signals allow us to obtain a repre-

sentation of the wavenumber k as a function of frequency

f (dispersion curve), after performing a 2D Fourier trans-

form15,16 on the signal. Figure 7 shows such presentation for

the S0 mode. This figure provides amplitude shading presen-

tation in which the lighter the shading the higher the ampli-

tude. The S0 mode at the frequency ðfsÞ0 ¼ 454:7 kHz and

wavenumber k¼ 667.3 m�1 (Cph¼ 4281.4 m=s) dominates

the normal displacement in the frequency range of 300–700

kHz. From the expression in Eq. (5), we deduce the value of

transverse velocity of the bulk wave, which is equal to 3028

FIG. 3. (Color online) Dispersion

curves of the group and phase veloc-

ities of S0 mode in a duraluminum

plate of thickness 5 mm.

FIG. 4. Dispersion curves of the

group and phase velocities of A1

mode in a duraluminum plate of

thickness 5 mm.
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m=s. The same experimental work has been achieved for a

PMMA plate. The main results are presented in Table I.

In the case of duraluminum, the estimated value of CT

differs slightly from the standard parameter CT (see Table1):

the transverse velocity error is less than 3%. This can partly

be explained by the non-uniformity of the plate thickness

and partly by the type of duraluminum used experimentally

which is different from the standard one. For PMMA, the

estimated value of CT is also close to theoretical results: The

transverse velocity error is less than 3%.

V. CONCLUSION

The vanishing of the transverse displacement compo-

nents of symmetric and antisymmetric Lamb waves in a free

plate has been revisited. This occurs when the phase veloc-

ities are equal to CT

ffiffiffi

2
p

(CT is the velocity of bulk transverse

waves). Thus, two analytical expressions of the frequency-

thickness product are given: One for the symmetric waves

(fse)p and another for antisymmetric waves ( fae)p (index p is

the mode order). Then, two formulations of the group veloc-

ity have been established when the phase velocity tends

toward CT

ffiffiffi

2
p

and the frequency-thickness product toward

(fse)p or ( fae)p. From the results obtained, it was noted that

two distinctive features for the symmetric or antisymmetric

Lamb waves stand out clearly when the phase velocity is

equal to CT

ffiffiffi

2
p

: (i) the interval between two successive fre-

quency-thickness products is always equal to CT=
ffiffiffi

2
p

and (ii)

their group velocities tend toward the limit CT=
ffiffiffi

2
p

.

FIG. 5. (a) Normal displacement component of the S0 mode in the surface

of a duraluminum plate of thickness 5 mm. (b) Transverse displacement

component of the S0 mode in the surface of a duraluminum plate of thick-

ness 5 mm.

FIG. 6. (a) Normal displacement component of the A1 mode in the surface

of a duraluminum plate of thickness 5 mm. (b) Transverse displacement

component of the A1 mode in the surface of a duraluminum plate of thick-

ness 5 mm.

FIG. 7. Modulus of the space-time Fourier transform of experimental time

signals of the S0 mode in the surface of the duraluminum plate of thickness

5 mm. White dashed line: theoretical trajectory of the S0 mode.
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Moreover, an additional theoretical study of absolute

normal displacements of S0 and A1 waves in the surface of

an air loaded duraluminum plate has been carried out. This

shows that the normal displacements have a local maximum

in the vicinity of their respective frequency-thickness prod-

ucts ðfseÞ0 ¼ CT=
ffiffiffi

2
p

and ðfaeÞ1 ¼ CT

ffiffiffi

2
p

. This happens

when their absolute transverse displacements have a local

minimum. An experimental investigation has allowed us to

corroborate this third feature for the S0 wave. This has been

achieved for both duraluminum and PMMA plates. The ve-

locity of the bulk waves CT , of each of these materials, has

been estimated with a good experimental accuracy.
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