
HAL Id: hal-01933794
https://hal.science/hal-01933794

Submitted on 24 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Domain-oriented Verification Management
Vincent Leilde, Vincent Ribaud, Ciprian Teodorov, Philippe Dhaussy

To cite this version:
Vincent Leilde, Vincent Ribaud, Ciprian Teodorov, Philippe Dhaussy. Domain-oriented Verification
Management. 8th International Conference on Model and Data Engineering (MEDI 2018), Oct 2018,
Marrakesh, Morocco. pp.30-39. �hal-01933794�

https://hal.science/hal-01933794
https://hal.archives-ouvertes.fr


Domain-oriented Verification Management

Vincent Leildé2, Vincent Ribaud1, Ciprian Teodorov2, and Philippe Dhaussy2

1 Lab-STICC, team MOCS, Université de Bretagne Occidentale, Avenue le Gorgeu,
Brest, France Vincent.Ribaud@univ-brest.fr,

2 Lab-STICC, team MOCS, ENSTA-Bretagne, rue François Verny, Brest, France
firstname.lastname@ensta-bretagne.fr

Abstract. V. Basili stated twenty years ago that a software organization
that manages quality should have a corporate infrastructure that links
together and transcends the single projects by capitalizing on successes
and learning from failures. For critical systems design, the verification
tasks play a crucial role; when an unexpected situation is detected, the
engineer analyzes the cause, performing a diagnosis activity. To improve
the quality of the design, diagnosis information have to be managed
through a well-defined method and with a suitable system. In this pa-
per we present how a Verification Organizing System together with a
problem-oriented method could achieve these issues. The key aspect of
the approach is to follow a step-wise building of the solution, reusing
known problems that are relevant for the system under study.

Keywords: Organizing System, Diagnosis, Problem Oriented Method

1 Introduction

D. Bjorner defines software engineering as a triptych: from descriptions of the
application domain we construct prescriptions of the requirements; and from pre-
scriptions of the requirements we design the software, i.e. construct specifications
of software [7]. Our area of interest is software formal verification, especially with
a model-checking approach. We start the model-checking process with a model
of the system under consideration and a formal characterization of the property
to be checked, i.e. two legs of the triptych : design and requirements. Then we
run the model checker to check the validity of the property in the system model.
When property is violated, the model checker provides us with a counterexample
(a witness trace) that triggers a diagnosis activity to analyze the trace and to
outline the error causes. Consequently, the system model is corrected and a new
process cycle - verification, diagnosis, and correction - is repeated. The third
leg is a domain-oriented verification defined as a process by which information
used in verifying software systems is identified, captured, and organized with the
purpose of making it reusable when modeling and verifying new systems.

Our research work is focused on methods and tools intended to ease the veri-
fication process, especially the diagnosis activities. Generally speaking, research
addressing model-checking and diagnosis issues [2, 4, 6, 14, 19] are faced with the



2 Lecture Notes in Computer Science: Authors’ Instructions

same difficulties. First, diagnosing the cause of abnormalities suffers from too
detailed observations. It is hard, for instance, to localize the relevant parts in a
detailed source-level trace when we look for the reasons a verification run failed
[13]. Some techniques focus on linking low level information with more abstract
information, like model-based diagnosis [29], or case-based reasoning [1]. Second,
these techniques require a set of data that is not always available. In addition
to the verification steps, the entire verification should be planned, administered,
and organized. This is called verification organization by C. Baier and J.-P. Ka-
toen [3]. During the engineering process, heterogeneous artifacts are produced,
including requirements, system models, properties, runs, or diagnoses. As stated
by T. C. Ruys [30], they are poorly managed and controlled. As a result, the
expertise is poorly acquired by the verification engineers, and cannot be used for
the above techniques. Third, verification at the early stages of the engineering
process prevents expensive defects from occurring in the final product. A soft-
ware organization that manages quality should have a corporate infrastructure
that links together and transcends the single projects by capitalizing on successes
and learning from failures [5]. These tasks require to manage past diagnosis ex-
periences (gathering a set of heterogeneous artifacts) and to correlate discovered
abnormalities with experiences. This can be achieved with a knowledge based
system together with a well-defined method.

Briefly stated, our approach aims to answer the issues above with a general
diagnosis ontology [25], a Verification Organizing System [24], and a domain-
oriented method, the latter being the subject of this paper. Some relevant parts
of the ontology will be presented in section 3.1. The organizing system - an
intentionally arranged collection of resources and the interactions they support
[12] - makes easier the management of verification objects and supports reason-
ing interactions that facilitates diagnosis decisions; some features related to the
method are drafted in section 5.1.

The method we propose in this paper relies on the idea of performing round
trips between problem and solution spaces for improving the verification process.
It should help the engineer to bring closer high-level information and abnormal-
ities observations. It focuses on a progressive constitution of a knowledge base,
containing both problems and solutions, that can be reused. Solutions are pack-
aging formal designs and verification runs, and problems are formalized with a
set of properties together with a structure of various solutions.

Section 2 overviews background and related work. In section 3, we present the
proposed method, its steps and a straightforward example. Section 4 shows the
application of the method on the mutual exclusion problem. Section 5 discusses
the knowledge base and its services, and section 6 concludes this study.

2 Background and Related Work

A. Newell and H. A. Simon introduced in [27] the problem-space hypothesis: the
fundamental organization unit of all human goal-oriented activity is the prob-
lem space. M. Jackson introduced the concept of problem frame for presenting,



Lecture Notes in Computer Science: Authors’ Instructions 3

classifying and understanding software development problems. Problem frames
structure the analysis of the world in which the problem is located - the prob-
lem domain - and describe what is there and what effects one would like a
system located therein to achieve [16]. A problem frame is defined in terms of
its context and the characteristics of its domains, interfaces and requirements
[20]. The problem frame approach allows engineers to build domain expertise
and let practitioners gain experience from this knowledge base. POSE (Prob-
lem Oriented Software Engineering) [17] is an extension and generalization of
problem frames. It is a representation and step-wise transformation of software
problems to progress towards the solution. Software architecture [8], as well as
development framework and design patterns [11] have same goals of knowledge
construction, share and reuse. This kind of knowledge is generally attributed
to the solution space. Compelling arguments justify an early understanding of
stakeholders’ requirements (focus on the problem). Equally compelling argu-
ments justify an early construction of a suitable software-system architecture
(focus on the solution).

Life-cycle model evolved from waterfall models to spiral models. Fine-grained
spiral models are used by agile methods. The cornerstone of these processes is
that developers craft a system’s requirements and its architecture concurrently,
and interleave their development [31]. Researchers from the Open University
proposed an adaptation of the spiral life-cycle model, called the Twin Peaks
Model to emphasize the equal status given to requirements and architecture [16].
The proposed model of software development is an iterative process during which
problem structures and solution structures are detailed and enriched. In this
context, the Open University team sees the use of architectural support as aiding
the focus on the essential design requirements of the problem by allowing design
concerns to be treated more abstractly and to be combined with behavioural
requirements [16]. They extended problem frames towards this end.

In case of inadequate or unknown solution, problem-oriented approaches facil-
itate diagnosis. A well-known artificial intelligence approach, CBR (Case Based
Reasoning), reduces the diagnosis effort by remembering a similar situation and
by reusing information and knowledge of that situation. It proposes a method
in four steps, retrieve, reuse, refine and retain. To some extent, the method we
propose in this paper borrows the Twin Peaks idea of performing round trips
between problem and solution spaces for leveraging diagnoses.

3 Method

The method focuses on a progressive understanding of the problem. First, this
should help the designer to find rapidly a solution to his problem, by decompos-
ing the problem in smaller subproblems, and reusing existing solutions. Second,
it should help the verifier to understand the root causes of abnormalities for
a selected solution, by feeding diagnosis task with relevant information. This
section describes formalization of problems, and the different steps of the flow.



4 Lecture Notes in Computer Science: Authors’ Instructions

3.1 Problem Formalization

According to V. Venkatasubramanian [32], Abnormal Event Management, a key
component of supervisory control, involves the timely detection of an abnormal
event, diagnosing its causal origins and then taking appropriate supervisory con-
trol decisions and actions to bring the process back to a normal, safe, operating
state. Generally speaking, we have three main tasks; fault detection, diagnosis,
and correction. Let see the tasks in a model-checking approach. Fault detection
establishes that a system run raises an abnormal event: the exhaustive explo-
ration encounters a state that violates the property under consideration, the
model checker provides a counterexample, an execution path that leads from
the initial system state to the violating state. Many researchers [4, 10, 13, 9] di-
vide the diagnosis in two main tasks: isolation (localization) and causal analysis.
Isolation extracts the subset of model parts that needs to be corrected. Causal
analysis associates causes to the observed abnormalities. These are generally
burden tasks, particularly due to a huge amount of unrelated information the
engineer needs to understand and correlate. One example, known as the semantic
gap, is the discrepancy between the formalisms used during design and low-level
traces obtained during verification.

Reasoning on problem cases afford the advantage of raising the level of ab-
straction to a non technical level.

Fig. 1. Problem conceptual model

A conceptual model of the domain is given in figure 1. A problem is reified
under a problem case. A problem case is composed of subproblem cases, that are
made of propositional objects. Propositional objects are descriptions about the



Lecture Notes in Computer Science: Authors’ Instructions 5

system components, such as processes, states, runs, traces or properties. Some
propositional objects may be defined as checkpoints, key elements to be observed
during the diagnosis activity. A propositional object is linked to other proposi-
tional objects by means of associations of different kinds: causal, nature, evolu-
tion. In the same way, problem cases are connected together with associations,
through hooks exposing connection points. A set of associations between problem
cases is an hypothesis of combination. This hypothesis may causes abnormalities,
for instance when a problem case property is violated, and thus reveals an issue.
The issue organizes results in a diagnosis. Finally problem cases may be reused
as solutions for further designs.

We find analogous concepts in the problem frame approach, a problem case
is similar to a domain, and propositional objects are closed to phenomena.

3.2 Illustration

To illustrate how the conceptual model is used, let us consider the following
example. Suppose a board game with one board and two players. The board asks
an infinite number of questions to each player, in a non deterministic manner.
A player gives either a right answer, that increases its score by one point, or a
wrong answer, and no point is awarded. The match ends when a player reaches
3 points. The behavior of the solution is presented in figure 2.

Fig. 2. Initial problem, first design

Transitions between states bear the Event-Condition-Action semantics repre-

sented as follow Si
{Event}[Condition]Action−−−−−−−−−−−−−−−−−→ Sj. Si and Sj are states, arrows stand

for transitions, labeled with events that causes the transition to be triggered.
A condition is a boolean expression, and an action represents some variable
assignments or events sending. When an event occurs, the guard condition is
evaluated and the transition is taken only if the condition is true, performing
the action.

The model is made of three processes, player one, player two and a board,
and two variables, score one (s1) and score two (s2). Players share the same
behavior. They wait for a question from the board (event p1 is a question from
the board to player one, and event p2 is a question from the board to player



6 Lecture Notes in Computer Science: Authors’ Instructions

two). Each player replies to the board. The response can be right (event r1 or
r2) or wrong (event w1 or w2). When the board is in the idle state (Bi), it asks
a question, either to player one or player two (respectively by sending events p1
or p2), if and only if none of the players have a score equals to 3 (c1 condition
is false). If a question is asked to player one, the board goes in state BP1, and if
a question is asked to player two, the board goes in state BP2. In these states,
the board waits for a response, either a right response (event r1 or r2) and in
that case the score is incremented, or a wrong response (event w1 or w2). When
one of the players reaches a score of 3, the board goes in state EP1 or EP2, and
the game is finished. Note that all the processes components (transitions, event
or states) are represented by observations.

Fig. 3. Simple problem, second design

This model is not fair because in some case, the board may ask more questions
to one player rather the other. To enable fairness, one can modify the design
intuitively, or reuse a shared experience, represented as a problem case. Turn
mechanism consists in memorizing the current entity that is authorized to do
something. The authorized entity changes alternatively, thus, turn is a possible
mechanism for fairness. As depicted in figure 3, a turn problem case contains
a variable turn, representing the current turn memorized, and a mechanism to
change the turn.

To combine turn with the current design, one relies on turn connection points
called hooks. The turn problem case provides two hooks, one for changing the
turn, and one for retrieving the turn variable. Combination can be achieved at the
expense of updating the design and defining hypotheses of connection between
the system design and turn problem case. Each connection between hooks are
association with different semantics (causal, nature...).

The combination is a causal set of actions invoked from the Bi state. The turn
change is invoked, then, a new turn value is retrieved, indicating the recipient



Lecture Notes in Computer Science: Authors’ Instructions 7

for the next question. Since each question causes the change of the turn, fairness
property is held.

This example presented how a problem case is defined, and how it can be
combined with known problem cases to produce a new solution. In certain cases,
when problem cases cannot be matched, combination through composition is
impossible, and other mechanisms may be used. In the following section, we
present the method and the various combinations mechanisms.

3.3 Method Steps

The step-wise method is presented by the activity diagram in figure 4. The
method is reiterated until a satisfactory solution is achieved.

Fig. 4. Method steps

(1) The problem is formulated as a set of properties and constraints (archi-
tectural, technical choices), according to the conceptual model of figure 1. For
instance, ”at the end of the game, each player has played the same number of
times”. (2) The problem is decomposed into subproblems, either known problems
- called problem cases - selected from a knowledge base, or unknown situations.
For instance, ”a turn mechanism is used”. (3) When the need for a concrete view
occurs, we move towards the solution space. The potential solution elements are
organized. For instance, ”the turn problem case is introduced into the current
solution”. (4) We consider how to combine the selected problem cases together.
This solution may be either composed(5) with other problem cases, applied as a
pattern(6), or integrated(7) 3. (8) At this point, we built a part of the expected

3 Each kind of combination is represented with a particular arrow shape.



8 Lecture Notes in Computer Science: Authors’ Instructions

solution; hence we are able to start a verification cycle. When abnormalities are
observed, it triggers a diagnosis process. Verification results are tracked in the
knowledge base. (9) Diagnosis reasoning process is performed, problem cases are
used to enhance low-level observations, and the whole system provides the user
with inference capabilities. The design is corrected, and the verification endeavor
repeated. In some cases, the selected problem cases does not suit, hence we have
to backtrack and rework the problem combination, and it might be useful to
keep track of this failed attempt.

This step-wide method is repeated several times while useful components can
be combined. The engineer is left with a reduced problem for which no known
solution exist and where a classical design and verification activity has to be
done.

The method performs roundtrips between two parts, the problem space, that
consists in the problem elaboration, and the solution space, that consists in
design and verifying the solution. While the problem elaboration produces spec-
ification to the solution design, the resulting solution produces expanded speci-
fications (from design choices) to the problem space. This is similar to the Twin
Peak proposal [16], a software iterative development process that focuses on the
combination of problem structures and solutions structures.

The method applicability is illustrated in the next section onto a mutual
exclusion problem design.

4 Method Application: Alice and Bob Share a Yard

We borrow our example from an invited talk given by Leslie Lamport [21] about
two neighbors, Alice and Bob. Alice and Bob share a yard, but also have dogs,
and naturally they want to let the dogs use the yard. The problem is that these
dogs don’t like each other, and they fight, so only one dog at a time can be in the
yard. In the rest of the article we will talk only about Alice and Bob nor their
pets. To demonstrate how our method can be applied, we build this example
from some initial requirements, and from a minimal set of domain knowledge.

4.1 Domain Description

We suppose that a knowledge base as been defined from previous experiences.
In particular, it contains the following problems extracted from [22][23]. For
improving the readability, the i-th property is named Pi and each state (named
Si) in a process (named PRi) is noted PRi@Si.

A concurrent system problem is composed of asynchronous processes, noted
PRi. A basic property is that there be no deadlock; the set of processes must
ensure the property noted PDeadlock.

In the mutual exclusion problem, each process of the collection, alternately
executes a critical section noted PRi@CS and a noncritical section noted PRi@NCS.
Two processes cannot execute their critical sections concurrently. A process



Lecture Notes in Computer Science: Authors’ Instructions 9

structure is composed of the following states: - noncritical (PRi@NCSi); - try-
ing (PRi@Ti); - critical (PRi@CSi); - exit (PRi@Ei). Both processes in figure
5 conform to the structure.
Mutual exclusion problem must ensure the following properties: (1) PMutex
defined : ”For any pair of distinct processes PRi and PRj, no pair of opera-
tion executions PRi@CSi and PRi@CSj are concurrent”. Equivalent in LTL
as ¬�PRi@CS ∧ PRj@CS. (2) PNolockout (starvation free): In every execu-
tion, if a process is in PRi@Ti, then later there is a configuration where the
same process is in PRi@CS. Because the mutual exclusion is a concurrent sys-
tem problem, it must ensure PDeadlock. If there is a deadlock, it means that
”one or more processes are trying to enter PRi@CS, but no process ever does”.
There is also the possibility that a deadlock occurs because all the processes are
stuck in their PRi@Ti statements.

4.2 First Solution

Problem Formalization The initial requirement are ”Alice and Bob pets can
reach the yard”, and ”Alice and Bob pets must not be together in the yard”.
The requirements are formalized as P1 : �(Alice@Trying → ♦Alice@Y ard),
P2 : �(Bob@Trying → ♦Bob@Y ard), P3 : �¬(Alice@Y ard ∧Bob@Y ard). In the
rest of the example, we omit P1 and P2.

Problem Decomposition Following the method, we decompose our prob-
lem and we look for known subproblems. The P3 formula structure is similar to
the abstract formula of mutual exclusion, PMutex : �¬(PRi@CS ∧ PRj@CS),
considering that PRi is Alice, PRj is Bob and CS is the Yard. We make the as-
sumption that they address the same problem, and thus new properties emerge
from this assumption, PDeadlock and PNoLockout, described as ¬�♦(Alice@CS∨
Bob@CS).

Design and Pattern Application The design is illustrated in figure 5. There
are two processes Alice and Bob, and a shared variable Y ard. Both processes
use the mutual exclusion structure, thus we apply this pattern.

Each process (Alice and Bob) conforms to the structure presented in section
4.1. The behavior is the following: Alice tries to access the yard (Alice@Trying);
then Alice goes into the yard (Alice@Y ard), the Yard corresponds to the CS ;
and finally exit the yard(Alice@Exit). The same goes for Bob.

Verification and Diagnosis Verification can be done using several techniques
such as static analysis, theorem proving, or model checking. The later is a formal
technique that, given a formal model of the system and a set of properties,
explores all possible system states in a brute-force manner [3]. If abnormalities
are detected in the design, counter examples are produced, i.e a trace from the
initial state to an unexpected situation. Then diagnosis is triggered based on the



10 Lecture Notes in Computer Science: Authors’ Instructions

Fig. 5. Automata for Alice and Bob 1

observations of such traces. We use a model checker to check exhaustively the
properties for this model.

PMutex is violated, indicating that Alice and Bob can be together in the
yard at the same time. Since the structure of mutual exclusion problem is applied
to Alice and Bob, each element of Alice and Bob can be understood from the
point of view of mutual exclusion problem.

4.3 Second Solution - Turns

Problem Decomposition At this point, we need a mechanism to ensure the
access to the critical section. Browsing the knowledge base, we can choose to pick
the ”turn” problem case. From the specification point of view, turn is defined
by a (turn) variable, and two properties, PChange: after a process has finished
its execution turn must be changed; PTurn: a process cannot be in execution
if it is not its turn.

Design and Solution Integration The turn case is used to alternate the yard
access. The design is presented with the automata in figure 6. The turn mecha-
nism has to be combined with Alice and Bob structure (NCS → Tr → CS → Ex).
We suppose that the combination is complex enough to require an ad hoc inte-
gration. The process that had the last access is stored, using the turn integer
variable. A process checks the value of the turn variable in PRi@Trying state-
ment. If the value is equal to its personal turn, it is authorized to access the
yard. Then, PRi@Exit statement sets the turn variable to the other process.

Verification and Diagnosis A new run is performed, the initial requirement
PMutex is verified, but PNoLockout is violated.

Integration implies that the concepts of an integrated problem are widespread
into the solution. Thus, parts of the problem are difficult to observe. According
to the description of PNoLockout, ”In every execution, if some processor is in



Lecture Notes in Computer Science: Authors’ Instructions 11

Fig. 6. Automata for Alice and Bob using Turn

the entry section in a configuration, then there is a later configuration in which
that same processor is in the critical section”. By analogy Bob is continuously in
Bob@Trying state, and cannot pursue in the yard. Thus Bob has not the turn
anymore, because Alice is never in Alice@Trying.

4.4 Problem Reformulation

Turn approach is formalized and stored in the knowledge base as follows. Turn
is defined by a (turn) variable, followed by the properties: PChange: after
PRi@Exit, turn must be equals to 1 and After PRj@Exit, turn must be equals
to 0; PTurn: PRi cannot be in the PRi@CS if turn is not equals to 0 and PRj
cannot be in the PRj@CS if turn is not equals to 1.

4.5 Using Flags

Problem Decomposition The turn problem case is interesting if we not con-
sider the PNoLockout property. Another idea consists in sharing the intention
of Alice and Bob to access the yard. This intention can be captured using two
flags, one for Alice and one for Bob. A raised flag means that the person wants
to go in the yard, and reciprocally, a lowered flag means the person doesn’t want
to.

Design of a new Solution The new solution is based on an array named
flag of two booleans. The first boolean indicates if Alice want to access to the
Alice@Y ard or not. The second boolean indicates if Bob want to access to the
Bob@Y ard or not. Alice can access to the Y ard if and only if Bob hasn’t raised
his flag. The same goes for Bob. When Alice or Bob are in the yard, he/she
raises the flag. Finally the flag is lowered in the Exit state. The design is
illustrated in figure 7.



12 Lecture Notes in Computer Science: Authors’ Instructions

Fig. 7. Automata for Alice and Bob using Flag

Verification and Diagnosis A new run is performed, and as a result, a dead-
lock occurs.

Suppose that Alice and Bob are interrupted in their Trying section. At this
point each have claimed for entering in the yard but is not yet sure if the Yard
is in use. Then each of them sees the flag of the other one and wait. Each is
waiting indefinitely for the other, a deadlock has occurred.

4.6 Flag Problem Formulation

We formulate the new approach using flags. It contains an array of two boolean
called flags, and a set of following properties: (1) PRaise, PRi raises its flag
in PRi@CS state, and PRj raises its flag in PRj@CS state; (2) PLower, PRi
lower its flag in PRi@Exit state and PRj lower its flag in PRj@Exit state;
(3) PWait, PRi cannot access PRi@CS if flag of PRj is raised, and PRj
cannot access PRj@CS if flag of PRi is true.

4.7 Taking Turns and Raising Flags

Problem Formulation Now, we decide to design a solution that solves all
the problems mentioned above. We know that the property PMutex is fulfilled
either with a turn or a flag. But the first solution violates PNolockout property,
and the second violates PDeadlock property. We try to combine these problem
cases together to fulfill all properties.

Design and Solution Integration Flag problem supposes that a flag raised
by a process indicates its intention to enter in the critical section. Turn prob-
lem supposes a priority to enter in the critical section. We combine these two
mechanisms; entering to the critical section is granted for PRi if PRj does not



Lecture Notes in Computer Science: Authors’ Instructions 13

want to enter the critical section, or if PRj has given up priority to PRi by
setting turn to PRi. The design is given in figure 8. For readability sake, only
the automaton of Alice is depicted.

Fig. 8. Automata for Alice and Bob using Flags and Turns

Verification and Problem Reformulation It turns out that the whole set
of properties are verified, thus the solution is acceptable. Finally, we formulate
our problem of Alice and Bob sharing a yard, as a combination of Concurrent
Process, Mutual Exclusion, Turn and Flag problem cases.

5 Tool Support

This approach applies when problems and known solutions are available. It sup-
poses to combine the method with appropriated tooling for creating, storing,
querying and retrieving problem cases.

5.1 A Verification Organizing System

In a previous article [24], we presented the Verification Organizing System (VOS)
”an Organizing System is an intentionally arranged collection of resources and
the interactions they support [12].” The VOS is a three-layered infrastructure
made of a storage tier, a knowledge tier, and an access tier.

The storage tier is characterized by a variety of sources, heterogeneous with
respect to several dimensions concerning form and content properties. It is
based on a Software Configuration Management (SCM) system that controls
versioned artifacts produced. It includes no exhaustively verification endeavors
(run, traces), properties or models, andproblem cases.



14 Lecture Notes in Computer Science: Authors’ Instructions

The knowledge tier, a logic-based, knowledge-rich level, plays the central role
of a shared language to connect people to people, people to information, and
information to information, represented as an ontology. It allows for knowledge
creation, query and inference.

The access tier is used for diagnosis tools interoperability. Heterogeneous
tools can interoperate by the underlying mechanism of model federation [15].

These tools can be classified in three categories, model-based, process-history-
based and interaction-based. Model-based tools assumes that a model of the
system is available [29] allowing to localize the subset of system’s constituents
generating abnormalities. Process history-based tools relies on the availability
of large amount of historical process data, and thus, can be used for extract-
ing knowledge [26], or reasoning [1]. Interaction-based tools allow for observing,
controlling, understanding and altering the system execution. Examples includes
omniscient debuggers [28], or visualization tools [18].

5.2 Knowledge and Inference

Figure 9 illustrates the various artifacts produced at each step of the method.
Problems (1) are progressively decomposed into other problem cases (2). Given
the problem case structure, the organizing system can be used for querying and
retrieving problems cases that are the most relevant. This may be achieved, for
instance, according to three tasks, search, initially match, and select [1]. Combin-
ing problem cases (4) is achieved with a certain level of automation. Composition
(5) is the most automated way. Problem cases are on the shelf solutions con-
nected through well defined connection points. For pattern application (6), the
degree of freedom lies in the rules of application between the problem pattern
and the given solution. Integration (7) is a completely ad-hoc combination. (8)
It shows how the previous combination techniques may affect the diagnosis task.
Errors are represented with black stars. Composition mainly results in connec-
tions errors, pattern application mainly generates errors in the rules of pattern
application, and integration may produce widespread errors. Finally, a solution
is kept in the organizing system. It involves the selection of relevant information
from the new problem case to keep.

6 Conclusion

Designing a solution for a given problem, and diagnosing possible faults in the
proposed solution, are tedious tasks. It is mainly due to poorly understood prob-
lem, and poorly managed information, that results in a lack of diagnosis support
and solution reuse. Our hypothesis is that a method is required for analyzing the
current problem, storing relevant information, and reusing known solutions as
much as possible. When a new solution is designed, for which abnormalities are
observed, problem cases enhance the initial observations with more intelligible
information. This work paves the way to the elaboration of problem-centered
diagnosis tools, proposing adapted views and relevant checkpoints fostering the
diagnosis activity.



Lecture Notes in Computer Science: Authors’ Instructions 15

Fig. 9. Artifacts produced

References

1. Agnar, A., Enric, P.: Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AI Communications (1), 39–59 (1994)

2. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Automated support for diagnosis
and repair. Communications of the ACM 58(2), 65–72 (2015)

3. Baier, C., Katoen, J.P.: Principles of model checking. The MIT Press, Cambridge,
Mass (2008)

4. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: ACM SIGPLAN Notices. vol. 38, pp. 97–105. ACM
(2003)

5. Basili, V.R., Caldiera, G.: Improve software quality by reusing knowledge and
experience. MIT Sloan Management Review 37(1), 55 (1995)

6. Bertoli, P., Bozzano, M., Cimatti, A.: A symbolic model checking framework for
safety analysis, diagnosis, and synthesis. In: International Workshop on Model
Checking and Artificial Intelligence. pp. 1–18. Springer (2006)

7. Bjrner, D.: Software Engineering 3. Texts in Theoretical Computer Science An
EATC Series, Springer-Verlag, Berlin/Heidelberg (2006)

8. Buschmann, F. (ed.): Pattern-oriented software architecture: a system of patterns.
Wiley, Chichester ; New York (1996)

9. Clarke, E.M., Kurshan, R.P., Veith, H.: The localization reduction and
counterexample-guided abstraction refinement. In: Time for verification, pp. 61–71.
Springer (2010)

10. Cleve, H., Zeller, A.: Locating causes of program failures. p. 342. ACM Press (2005)
11. Gamma, E. (ed.): Design patterns: elements of reusable object-oriented software.

Addison-Wesley professional computing series, Addison-Wesley, Reading, Mass
(1995)

12. Glushko, R.J.: . Foundations for Organizing Systems. The Discipline of Organizing,
edited by Robert J Glushko (2012)

13. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Model
Checking Software, pp. 121–136. Springer (2003)

14. Gromov, M., Willemse, T.A.: Testing and model-checking techniques for diagnosis.
In: Testing of Software and Communicating Systems, pp. 138–154. Springer (2007)



16 Lecture Notes in Computer Science: Authors’ Instructions

15. Guychard, C., Guerin, S., Koudri, A., Beugnard, A., Dagnat, F.: Conceptual in-
teroperability through Models Federation. In: Semantic Information Federation
Community Workshop (2013)

16. Hall, J., Jackson, M., Laney, R., Nuseibeh, B., Rapanotti, L.: Relating software
requirements and architectures using problem frames. pp. 137–144. IEEE Comput.
Soc (2002)

17. Hall, J.G., Rapanotti, L., Jackson, M.: Problem Oriented Software Engineering: A
design-theoretic framework for software engineering. pp. 15–24. IEEE (Sep 2007)

18. Hamou-Lhadj, A., Lethbridge, T.C.: A survey of trace exploration tools and tech-
niques. In: Proceedings of the 2004 conference of the Centre for Advanced Studies
on Collaborative research. pp. 42–55. IBM Press (2004)

19. Holzmann, G.J.: The Theory and Practice of A Formal Method: NewCoRe. In:
IFIP Congress (1). pp. 35–44 (1994)

20. Jackson, M.: Problem frames: analysing and structuring software development
problems. Addison-Wesley [u.a.], Harlow (2001), oCLC: 247895444

21. Lamport, L.: Solved problems, unsolved problems and non-problems in concur-
rency. ACM SIGOPS Operating Systems Review 19(4), 34–44 (Oct 1985)

22. Lamport, L.: The mutual exclusion problem: part Ia theory of interprocess com-
munication. Journal of the ACM (JACM) 33(2), 313–326 (1986)

23. Lamport, L.: The mutual exclusion problem: partIIstatement and solutions. Jour-
nal of the ACM (JACM) 33(2), 327–348 (1986)

24. Leilde, V., Ribaud, V., Dhaussy, P.: An Organizing System to Perform and Enable
Verification and Diagnosis Activities. In: International Conference on Intelligent
Data Engineering and Automated Learning. pp. 576–587. Springer (2016)

25. Leilde, V., Ribaud, V., Teodorov, C., Dhaussy, P.: A diagnosis framework for criti-
cal systems verification. In: 15th International Conference on Software Engineering
and Formal Methods, SEFM 2017. pp. Short–Papers. Springer (2017)

26. Liu, Y., Xu, C., Cheung, S.: AFChecker: Effective model checking for context-aware
adaptive applications. Journal of Systems and Software 86(3), 854–867 (Mar 2013)

27. Newell, A., Simon, H.A., et al.: Human problem solving, vol. 104. Prentice-Hall
Englewood Cliffs, NJ (1972)

28. Pothier, G., Tanter, ., Piquer, J.: Scalable omniscient debugging. ACM SIGPLAN
Notices 42(10), 535–552 (2007)

29. Reiter, R.: A theory of diagnosis from first principles. Artificial intelligence 32(1),
57–95 (1987)

30. Ruys, T.C., Brinksma, E.: Managing the verification trajectory. International Jour-
nal on Software Tools for Technology Transfer (STTT) 4(2), 246–259 (Feb 2003)

31. Swartout, W., Balzer, R.: On the inevitable intertwining of specification and im-
plementation. Commun. ACM 25(7), 438–440 (Jul 1982)

32. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N.: A review of process fault
detection and diagnosis. Computers & Chemical Engineering 27(3), 313–326 (Mar
2003)


