
HAL Id: hal-01933792
https://hal.science/hal-01933792v1

Submitted on 24 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Problem-Oriented Approach to Critical System
Design and Diagnosis Support

Vincent Leilde, Vincent Ribaud, Ciprian Teodorov, Philippe Dhaussy

To cite this version:
Vincent Leilde, Vincent Ribaud, Ciprian Teodorov, Philippe Dhaussy. A Problem-Oriented Approach
to Critical System Design and Diagnosis Support. 1st International Workshop on Modeling, Verifi-
cation and Testing of Dependable Critical Systems (DETECT 2018), Oct 2018, Marrakesh, Morocco.
�hal-01933792�

https://hal.science/hal-01933792v1
https://hal.archives-ouvertes.fr


A Problem-Oriented Approach to Critical
System Design and Diagnosis Support

Vincent Leildé2, Vincent Ribaud1, Ciprian Teodorov2, and Philippe Dhaussy2

1 Lab-STICC, team MOCS, Université de Bretagne Occidentale, Avenue le Gorgeu,
Brest, France Vincent.Ribaud@univ-brest.fr,

2 Lab-STICC, team MOCS, ENSTA-Bretagne, rue François Verny, Brest, France
firstname.lastname@ensta-bretagne.fr

Abstract. For critical software applications, dependability and safety
are required features that should respect security principles. To cope
with these constraints, the design activity should use new methods that
foster knowledge sharing and reuse, in particular security problems and
their solutions. In this paper, we present a problem-oriented method that
follows a step-wise building of the solution. Problems are reused using
various mechanisms, and a solution is conceived, verified and diagnosed.
We illustrate the approach on the problem of building a secure SCADA
architecture.

Keywords: Problem Oriented Method, Diagnosis, Security Patterns

1 Introduction

Critical software systems are pervading our daily lives and sustaining in many
different domains (transportation, avionics, health-care or information manage-
ment). To improve their dependability and safety, regardless their complexity,
critical software design should be carried out with respect to security principles.

Over time, knowledge about security has been captured into patterns, a pack-
aged solution to a recurrent problem in a specific context [7]. A security pattern
is a reusable solution for a recurring security problem. It is used to analyze,
construct and evaluate secure systems [6]. It provides detailed guidelines about
the application of an architectural solution for a particular problem of security.
Several research work address security issues using security patterns, and we
exploit as a case study the approach set by F. Obeid [14]. The author secures
SCADA systems through the composition of the SCADA architecture with se-
curity patterns. Safety and security requirements of the composition are then
validated through model-checking.

Our research work is focused on methods and tools intended to ease this ver-
ification activity, especially the diagnosis activities. Briefly stated, our approach
aims to answer diagnosis issues with a general diagnosis ontology [12], a man-
agement system to perform and enable verification and diagnosis activities [11],
and a domain-oriented method [13].



2 Lecture Notes in Computer Science: Authors’ Instructions

Verification at the early stages of the engineering process prevents expen-
sive defects from occurring in the final product. A software organization that
manages quality should have a corporate infrastructure that links together and
transcends single projects by capitalizing on successes and learning from failures
[3]. These tasks require to manage past diagnosis experiences (gathering a set
of heterogeneous artifacts) and to correlate discovered abnormalities with expe-
riences. This can be achieved with a knowledge based system together with a
well-defined method. This paper we present how our method and tools support
the application of security patterns as set in the case study mentioned above.

To some extent, the method we use in this paper borrows the Twin Peaks idea
of performing round trips between problem and solution spaces for improving
the verification process [9]. It should help the engineer to bring closer high-
level information and abnormalities observations. It focuses on a progressive
constitution of a knowledge base, containing both problems and solutions, that
can be reused. Solutions are packaging formal designs and verification runs, and
problems are formalized with a set of properties together with a structure of
various solutions.

Section 2 overviews the method. In section 3, we shows the application of
the method to secure an application using security patterns. Section 4 discusses
how problem cases is a support to design and diagnosis, and section 5 concludes
this study.

2 Overview of the Method

The method focuses on a progressive understanding of the problem. First, this
should help the designer to find rapidly a solution to his problem, by decomposing
the problem in smaller subproblems, and reusing existing solutions. Second, it
should help the verifier to understand the root causes of abnormalities for a
selected solution, by providing diagnosis task with relevant information. This
section describes the process used to formalize problems and the different steps
of the process flow.

The step-wise method is presented by the activity diagram in figure 1. The
method is reiterated until a satisfactory solution is achieved.

To illustrate the method, let us consider the following example. Suppose a
board game with one board and two players. The board asks an infinite number
of questions to each player, in a non deterministic manner. If the player has a
right answer, it increases its score by one point, otherwise no point is awarded.
The match ends when a player reaches 3 points. This model is not fair because
in some case, the board can ask more questions to one player rather the other.

(1) The problem is formulated as a set of properties and constraints (archi-
tectural, technical choices). The structure of formulated problem conforms to
the conceptual model of figure 5 and is presented in section 4.1. For instance,
”at the end of the game, each player has played the same number of times”. (2)
The problem is decomposed into subproblems, either known problems - called
problem cases - selected from a knowledge base, or unknown situations. For in-



Lecture Notes in Computer Science: Authors’ Instructions 3

Fig. 1: Method steps

stance, we may decide that ”a turn mechanism is used”. (3) When the need
for a concrete view occurs, we move towards the solution space. The potential
solution elements are organized. For instance, we may decide that ”the turn
problem case is introduced into the current solution”. (4) We consider how to
combine the selected problem cases together. This solution may be either com-
posed (5) with other problem cases, applied as a pattern (6), or problem cases
may be merged (7) 3. (8) At this point, we built a part of the expected solution;
hence we are able to start a verification cycle. When abnormalities are observed,
it triggers a diagnosis process. Verification results are stored in the knowledge
base. (9) Diagnosis process is performed, problem cases can be used to enhance
this process. The design is corrected, and the verification endeavor repeated. In
some cases, the selected problem cases do not suit, hence we have to backtrack
and rework the problem combination, and it might be useful to keep track of
this failed attempt.

This step-wide method is repeated several times while useful components can
be combined. The engineer is left with a reduced problem for which no known
solutions exist and where a classical design and verification activity has to be
achieved.

The method space is divided in two parts, the problem space, related to
the problem elaboration, and the solution space, related to design and verifying
the solution. Whereas the problem elaboration produces specification to the
solution design, the resulting solution produces expanded specifications (from
design choices) to the problem space. This is similar to the Twin Peak model

3 Each kind of combination is represented with a particular arrow shape.



4 Lecture Notes in Computer Science: Authors’ Instructions

[9], a software iterative development process that focuses on the combination of
problem structures and solution structures.

The method applicability is illustrated in the next section onto a critical
system design. Let see now how to use the method on the securized SCADA
case study.

3 Application

We reuse a case study extracted from the work of [14]. The approach aims at
securing architectures by applying security patterns together with a security
policy. The approach has been demonstrated on several kinds of architectures.

3.1 Problem Formalization

The figure 2 represents an unsecured architecture composed of four entities, a
global controller (GC ), two local controllers (LC1 and LC2 ), and a communi-
cation network (NETWORK ) that links together GC, LC1 and LC2. The local
controller LC1 owns the resource RES1, while the local controller LC2 owns
the resource RES2. Some READ and WRITE operations for accessing a re-
source are granted for an entity according to its role. Different roles are ADMIN
(READ and WRITE access to RES1 and RES2 ), GCOWNER (READ access
to RES1 and RES2 ), LC1OWNER (READ and WRITE access to LC1 ) and
LC2OWNER (READ and WRITE access to LC2 ).

This architecture can be seen at a higher abstraction level, as a set of NET
and ACCESS components. A NET is an abstraction of a NETWORK entity
that forwards messages to other components. An ACCESS component is an ab-
straction of LC1, LC2 and GC entities protect access to resources. An ACCESS
component behaves as depicted in figure 2.

In this figure, the transitions between states bear the Event-Condition-Action

expression represented as Si
{Event}[Condition]Action−−−−−−−−−−−−−−−−−→ Sj. Si and Sj are states,

the arrows stand for transitions, labeled with events that cause the transitions
to be triggered. A condition is a boolean expression, and an action represents
some variable assignments or events sending. When an event occurs, the guard
condition is evaluated and the transition is fired only if the condition is true,
performing the action.

Each ACCESS component begins with an Idle state, where it waits for a
request (req). If a request is received and if the request is addressed to the com-
ponent (req.target==id), the resource is accessed (Access) and the component
replies (sending). When the request is not for the component (req.target!=id),
the component forwards the request to other connected components through the
network. In our case, when the environment ENV wants to access to the archi-
tecture, it sends a message to GC together with an indication about the target
(either RES1 or RES2 ), and the corresponding operation (READ or WRITE ).
GC receives requests from the environment(ENV ). GC forwards the request to
LC1 or LC2 through the NETWORK. LC1 or LC2 receives and processes the
request from the NETWORK, and replies.



Lecture Notes in Computer Science: Authors’ Instructions 5

The architecture: a global controller(GC),
a network, and local controllers(LC1, LC2).

The behavior of GC, LC1 and LC2.

Fig. 2: Description of the application extracted from [14]

To guarantee integrity and confidentiality constraints regarding LC1 and
LC2, security mechanisms are applied. These security mechanisms must ensure:
-PRT1Init, when a component sends a request that respects the access rights for
accessing a resource, the access must be realized. -PRT2Init, any resource access
must respect the access rights.

3.2 Domain Description

We suppose that a knowledge base has been built from previous experiences.
The base contains a set of problem cases structured by security patterns. The
author [14] defines a security pattern with a list of properties, its name, its
functionalities and a description of the problem it is intended to solve, a static
and a dynamic structure of the solution, formal properties and some examples
of use.

The authorization (AUTH ) pattern implements security measures for a re-
source (read, write, execution). AUTH pattern ensures that a resource access by
an entity Ent, for an operation OpRes is granted. When an access is authorized,
the access is realized, otherwise counter-measures are triggered.

The structure of this problem case is depicted in figure 3. Function has-
Right (e: Ent, opRes: OpRes):Boolean returns true if the entity e can perform
the opRes.oper operation on the opRes.res resource (or said differently, if the
resource is not protected for this operation or if the entity has an explicit per-
mission).



6 Lecture Notes in Computer Science: Authors’ Instructions

Fig. 3: Authorization Pattern Structure

In addition, the pattern is described with two formal properties. PRTAuth1,
when an access request respects the access rights, the resource access is finally
realized. PRTAuth2, a resource access must respect access rights.

PRTAuth1 : ∀c ∈ Auth,∀e ∈ Ent,∀opRes ∈ OpRes,
[evtV erify(c, AccReq(e, opRes)) ∧ right(c, e, opRes)⇒ ♦evtAccess(c, e, opRes)]

PRTAuth2 : ∀c ∈ Auth,∀e ∈ Ent,∀opRes ∈ OpRes,
[evtAccess(c, e, opRes)⇒ right(c, e, opRes)].

3.3 Problem Decomposition

Following our method, the problem is decomposed into smaller subproblems,
so that a global solution emerges from a combination of smaller solutions. The
structure of the two initial properties PRT1Init and PRT2Init, that have to be
fulfilled, is similar to the structure of PRTAuth1 and PRTAuth2. The AUTH
problem case is retrieved for reused.

3.4 Solution Design

Then the solution is realized by combining the initial problem with the AUTH
problem case. The combination strategy can be a composition of self-contained
and separated components, an application of patterns, or a specialization of a
problem case and its solutions.

Because the AUTH problem case is structured as a pattern, the most appro-
priate combination mechanism is the pattern application. It is realized in two
steps, first, verification of the initial conditions, and second, the application of
transformations. At the first step, some hypotheses have to be fulfilled. For in-
stance one must identify an Access state in the design, where the authorization
mechanism has to be introduced. In the case study, the following hypotheses
must be respected: - Hypothesis 1, the reception of a message is carried out by
reading the input fifo. This happen in a transition from the Idle state to the
Receive state; Hypothesis 2, the sending of a message is carried out by a write
into the output fifo, along a transition from the Sending state to the Idle state;



Lecture Notes in Computer Science: Authors’ Instructions 7

- Hypothesis 3, each transition to the Compute state has a source Receive state;
- Hypothesis 4, the Access state has only one source state, Compute.

If these hypotheses are respected, the second step produces a solution ac-
cording to the pattern definition, as depicted by figure 4. The transformation
rules are not presented in the article, but can be found in [14].

The architecture is secured using the authorization pattern.

This finite state machine represents the secured behavior of LC1 and LC2.

Fig. 4: Description of the secured application

3.5 Solution Verification and Diagnosis

Verification can be done using several techniques such as static analysis, theorem
proving, or model checking. The later is a formal technique that, given a formal
model of the system and a set of properties, explores all possible system states
in a brute-force manner [1]. If abnormalities are detected in the design, counter
examples are produced, i.e a trace from the initial state to an unexpected situ-
ation. Then diagnosis is triggered based on the observations of such traces. We
use a model checker to check exhaustively the properties for this model. The
verification validates a solution for the problem, but note that other solutions
may also exists for this problem.



8 Lecture Notes in Computer Science: Authors’ Instructions

3.6 Iterating Through Problem and Solution Spaces

Assume that a new security policy is required for the same architecture, some
counter-measures must be triggered in case of a security violation. According
to the method, existing problem cases can be retrieved. The checkpoint pattern
(CHP) allows to apply specific regulations, and defines properties that are closed
to the new security constraints. The pattern is retrieved, and applied by taking
into account the (AUTH ) solution found previously, thus AUTH is now a part
of the problem.

The CHP problem case has been applied, and the solution verified. The
resulting solution gathers two solutions, the checkpoint solution and the au-
thorization solution. It can be retained in a knowledge base as a new reusable
component named for instance SECACCESS.

We suppose that the architecture must evolves because a new local controller
LC3 is required. The new problem can rapidly be solved if one reuse the SE-
CACCESS component.

4 System Design and Diagnosis Support

In this section we will present the conceptual model that sustains the approach
applied on the case study, as well as tools we built [11]. The model has two parts,
the former related to the reuse of verified designs 4.1, and the latter related to
diagnosis management and support 4.2. Problem cases are the links between
both parts.

4.1 Problem cases for System Design

Decomposing a complex problem into smaller problems that are more manage-
able and easier to solve, is a natural way to reduce the design complexity. When
past experiences are available, this method can be improved by analogical rea-
soning, i.e. reusing past known problems. At the same time, it raises the issue
of the way to capture different problems.

A problem is reified as a problem case. A conceptual model is provided as
an illustration (figure 5). A problem case is either atomic or a combination
of subproblem cases. An atomic problem case is made of problem elements. A
problem case can be of different kinds, a component, a pattern, or a solution.
Each problem case gathers a set of problem elements that depends on its kind.
For example, states, ports and functions are all problem elements.

Some concepts are analogous to the problem frame approach [10], a problem
case is similar to a domain, and problem elements are closed to phenomena.

To be reused, problem cases are combined together. Combination can be of
different natures, for instance composition, application and specification inheri-
tance. Composition, is the most easy way for reusing a problem case, as it only
requires few adaptations. When the component is too generic, the counterpart
is a lack of efficiency. Besides, the application of a pattern generally requires



Lecture Notes in Computer Science: Authors’ Instructions 9

Fig. 5: Problem conceptual model

manual implementations. A pattern is a well-defined guidance for a recurring
problem, but the solution must be adapted to the context. With specification
inheritance, only specifications are reused, and the solution must be fully imple-
mented. Thus, problem cases impact the amount of reuse.

4.2 Diagnosis Support

Many researchers [2, 5, 8, 4] divide the diagnosis in two main tasks: isolation (lo-
calization) and causal analysis. Isolation extracts the subset of elements, part
of models, that needs to be corrected. Causal analysis associates causes to the
observed abnormalities. These tasks are burden, particularly due to the huge
amount of unrelated information the engineer needs to understand and corre-
late.The semantics gap is an example that is a discrepancy between the for-
malisms used during design and low-level traces obtained during verification.
Reasoning on problems afford the advantage of raising the level of abstraction
to a non technical level.

In [12], we proposed a formalization of diagnosis. Based on the formaliza-
tion, a diagnosis can be captured together with problem cases, allowing design
or model causes inference (figure 5). Diagnosis is made of (diagnosis elements),
either propositional objects or associations. Propositional objects are descriptions
about the problem parts (states, traces, properties, problem cases ...). Some de-
scriptions are symptoms of errors (counter-examples). A propositional object is
linked to other propositional objects by means of various natures of associations
(causal, nature, evolution). A diagnosis may be curative if it aims to find the
cause of an error. In our method, a cause can be a model cause or a design
cause. A model cause happens when the selected problem is valid (for instance



10 Lecture Notes in Computer Science: Authors’ Instructions

the AUTH pattern is the good choice), but its implementation is not valid (for
instance the AUTH pattern is badly implemented). It locates the cause in the
application of the pattern. Conversely, a design cause happens when the com-
bination of the problem is valid (for instance the AUTH pattern is correctly
implemented), and the combined problem case is not appropriated, or incom-
plete.

5 Conclusion

Designing a solution for a given security problem, and diagnosing possible faults
in the proposed solution, are tedious tasks. It is mainly due to poorly understood
problem, and poorly managed information, that results in a lack of diagnosis
support and solution reuse. Our hypothesis is that a method is required for
analyzing the current problem, storing relevant information, and reusing known
solutions as much as possible. This work paves the way to the elaboration of a
verification management tool.

References

1. Baier, C., Katoen, J.P.: Principles of model checking. The MIT Press, Cambridge,
Mass (2008)

2. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: ACM SIGPLAN Notices. vol. 38. ACM (2003)

3. Basili, V.R., Caldiera, G.: Improve software quality by reusing knowledge and
experience. MIT Sloan Management Review 37(1), 55 (1995)

4. Clarke, E.M., Kurshan, R.P., Veith, H.: The localization reduction and
counterexample-guided abstraction refinement. In: Time for verification. Springer
(2010)

5. Cleve, H., Zeller, A.: Locating causes of program failures. p. 342. ACM Press (2005)
6. Fernandez, E.B., Larrondo-Petrie, M.M.: Designing Secure SCADA Systems Using

Security Patterns. pp. 1–8. IEEE (2010)
7. Gamma, E. (ed.): Design patterns: elements of reusable object-oriented software.

Addison-Wesley professional computing series, Addison-Wesley, Reading, Mass
(1995)

8. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Model
Checking Software, pp. 121–136. Springer (2003)

9. Hall, J., Jackson, M., Laney, R., Nuseibeh, B., Rapanotti, L.: Relating software
requirements and architectures using problem frames. IEEE Comput. Soc (2002)

10. Jackson, M.: Problem frames: analysing and structuring software development
problems. Addison-Wesley [u.a.], Harlow (2001), oCLC: 247895444

11. Leilde, V., Ribaud, V., Dhaussy, P.: An Organizing System to Perform and Enable
Verification and Diagnosis Activities. In: IDEAL. pp. 576–587. Springer (2016)

12. Leilde, V., Ribaud, V., Teodorov, C., Dhaussy, P.: A diagnosis framework for criti-
cal systems verification. In: 15th International Conference on Software Engineering
and Formal Methods, SEFM 2017. pp. Short–Papers. Springer (2017)

13. Leilde, V., Ribaud, V., Teodorov, C., Dhaussy, P.: Domain-oriented Verification
Management. SUBMITTED TO : 8th International Conference on Model and Data
Engineering (MEDI 2018) (Oct 2018)



Lecture Notes in Computer Science: Authors’ Instructions 11

14. Obeid, F.: Validation Formelle d Implantation de Patrons de Securite. Ph.D. thesis,
ENSTA-Bretagne (2018)


