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ABSTRACT
Static deflection and large amplitude vibrations of a rubber

plate are analyzed. Both the geometrical and physical (material)

nonlinearities are taken into account. The properties of the plate

hyperelastic material are described by the Neo-Hookean law. A

method for building a local model, which approximates the plate

behavior around a deformed configuration, is proposed. This

local model takes the form of a system of ordinary differential

equations with quadratic and cubic nonlinearities. The results

obtained with the help of this local model are compared to the

solution of the exact model, and are found to be accurate. The

difference between the model retaining both physical and geo-

metrical non-inearities and a model with only geometrical non-

linearities is also analyzed. It is found that influence of physi-

cally induced nonlinearities at moderate strains is significant.

INTRODUCTION
Structural elements of materials with nonlinear stress-strain

relationship are widely used in engineering. From a practical

point of view the most important classes of such materials are

rubbers and biomaterials. Such elements can be subject to high

dynamic loads, which leads to their significant deformations. In

such problems not only geometrical nonlinearity (the nonlinear-

ity of strain-displacements relations), but also physical or mate-

∗Address all correspondence to this author.

rial nonlinearity (nonlinearity of stress-strain relations) should be

taken into account.

Stress-strain relations for rubbers and biomaterials are de-

scribed by hyperelastic models [1]. However, due to the com-

plicated nature of the proposed models, very few studies on dy-

namics of shell and plate structures made of hyperelastic ma-

terials are reported. Reviews of static and dynamic problems

can be found in [2, 3]. A majority of research studies on the

dynamics of hyperelastic thin-walled structures deals with sim-

ple geometries (spherical and circular cylindrical shells, circular

membranes) and assume the same simple shape of the deformed

structure [4–12].

Only a few works use more advanced approach. Goncalves

et al. [3, 13] investigated linear and nonlinear free and forced vi-

brations of pre-stretched annular hyperelastic membranes. The

membrane material is assumed to be incompressible, homoge-

neous, isotropic, and described by Neo-Hookean constitutive

law. The in-plane displacements are neglected while the trans-

verse displacement field is approximated by a series of natural

modes. In both studies it is found that a single degree-of-freedom

model correctly predicts large vibrations. It is shown that (i)

a lightly stretched membrane displays a highly nonlinear hard-

ening response, (ii) the nonlinearity decreases as the stretching

ratio increases, and (iii) the response becomes essentially linear

for a deformed radius of at least twice the initial value. In ref-

erence [3], a comparison is conducted for different hyperelastic



models such as the Mooney-Rivlin, Yeoh, Ogden and Arruda-

Boyce models. The results show that the membrane exhibits

the same nonlinear frequency-amplitude behaviour for all tested

models, with just a slight difference for the Ogden model.

In a majority of the existing works a incompressible Neo-

Hookean law is employed to describe the nonlinear elastic be-

havior of rubber: accordinlgy, this model is considered in the

present paper which also extends hyperelastic plate finite ampli-

tude bending vibrations to commonly ignored in-plane displace-

ments. Also, the majority of papers use pre-assumed shape of de-

formation for the structure, and this is a significant simplification.

Due to the internal resonances, higher modes can be involved in

vibrations, making deformed plate or shell configuration quite

complicated [14]. The present study is an attempt to overcome

the above-mentioned restriction. The deformation of a rubber

rectangular plate under static pressure is investigated and subse-

quent free and forced large-amplitude vibrations around the cor-

responding static equilibrium are analyzed. The displacements

are approximated by truncated series of linear eigenmodes and

the convergence of these series is explored. The comparison with

only geometrically nonlinear model is carried out. A method for

building a local model, which approximates the plate behavior

around a deformed configuration, is proposed. This local model

takes the form of a system of ordinary differential equations with

quadratic and cubic nonlinearities.

LAGRANGE EQUATIONS
The Lagrange equations are used in order to describe the

dynamic behavior of plate:

∂

∂ t

( ∂L

∂ q̇i

)

−
∂L

∂qi

= Qi, (1)

where L = T −Π is the Lagrange’s functional; Π =
∫∫∫

V W∂V is

the potential energy of elastic deformation; W is the strain energy

density; Qi are the generalized forces; V is the volume of the

plate; T is the kinetic energy of the plate, which is given by [14]:

T =
1

2
ρh

∫∫

S
(u̇2 + v̇2 + ẇ2)∂S, (2)

where S is the surface of the middle plane of the plate; ρ is the

density of the plate material, h is the thickness of the plate and

u, v, w are the displacements along the axes of the rectangular

coordinate system x, y, z, respectively.

GEOMETRICALLY NONLINEAR STRAIN-
DISPLACEMENT RELATIONSHIPS

The geometrical nonlinearity is described by using the

von Kármán nonlinear plate theory [14]. Therefore, the strain-

displacement relationships are given by:

ε1 =
∂u

∂x
+

1

2

(∂w

∂x

)2

− z
∂ 2w

∂x2
; (3)

ε2 =
∂v

∂y
+

1

2

(∂w

∂y

)2

− z
∂ 2w

∂y2
; (4)

ε12 =
∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y
−2z

∂ 2w

∂x∂y
, (5)

where ε1, ε2, and ε12 are the components of the Lagrange strain

tensor for thin plates. The displacements are expanded into trun-

cated series:

w(x,y, t) =
NW

∑
i=1

qi(t)Wi(x,y); (6)

u(x,y, t) =
NU

∑
i=1

qi+NW
(t)Ui(x,y); (7)

v(x,y, t) =
NV

∑
i=1

qi+NW+NU
(t)Vi(x,y), (8)

where Wi, Ui, Vi are the admissible functions that satisfy the

homogeneous boundary conditions (i.e. the geometric con-

straints) of the problem. A good choice of admissible func-

tions are the eigenmodes of linear vibrations, which are a com-

plete set. The total number of degrees of freedom is given by

N = NW +NU +NV .

PHYSICAL RELATIONS

Strain energy density

Static and dynamic deflection of a thin rubber plate is con-

sidered. The nonlinear elasticity of natural rubber is described

by Neo-Hookean constitutive law. The strain energy density for

Neo-Hookean law has the following form [1]:

W =
E

4(1+ν)
(Ī1−3)+

E

6(1−2ν)
(J−1)2, (9)

where Ī1 = I1J−
2
3 ; I1 is the first invariant of the right Cauchy-

Green deformation tensor C; J is the square root of the third

invariant of the right Cauchy-Green deformation tensor; E,ν are

the Young’s modulus and Poisson’s ratio of plate material, re-

spectively.

The results obtained with Neo-Hookean strain energy den-

sity (9) are compared to those obtained by using the linear strain

energy density (i.e. linear elasticity). For thin plates, the linear
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strain energy density has the following expression [14]:

W =
E

4(1+ν)

( 2

1−ν
(ε2

1 + ε2
2 +2νε1ε2)+ ε2

12

)

. (10)

In this physically linear case, spatial and temporal components

of the solution can be uncoupled and the Lagrange equations are

simple ordinary differential equations with quadratic and cubic

nonlinearities [14]

q̈n +2ζnΩnq̇n +
N

∑
i=1

kniqi +
N

∑
i, j=1

kni jqiq j+

N

∑
i, j,l=1

kni jlqiq jql = Qn, n = 1, . . . ,N,

(11)

where Ωn is the natural frequency of mode n; ζn is the corre-

sponding damping ratio; kni, kni j, kni jl are known coefficients,

that result from integration in space and Qn are the generalized

forces, obtained by differentiation of the virtual work R done by

external forces

Qn =
∂R

∂qn

. (12)

Equations of type (11) are well known and there are several

techniques for their numerical solution [14].

Invariants of the Cauchy-Green deformation tensor

In order to derive the expressions of the right Cauchy-Green

deformation tensor C invariants in terms of displacements, the

Lagrange strain tensor is introduced:

E =
1

2





2ε1 ε12 0

ε12 2ε2 0

0 0 2ε3



 . (13)

Expressions of ε1, ε2, and ε12 (but not ε3) are given by equa-

tion (3), (4), and (5), respectivly. The right Cauchy-Green defor-

mation tensor C is then defined as follows [15]:

C = 2E+ I =





2ε1 +1 ε12 0

ε12 2ε2 +1 0

0 0 2ε3 +1



 (14)

and its invariants are easily expressed in terms of the Lagrange

strain tensor components:

I1 = Tr(C) = 2(ε1 + ε2 + ε3)+3; (15)

J2 = |C|= (2ε3 +1)((2ε1 +1)(2ε2 +1)− ε2
12); (16)

Ī1 = I1J−
2
3 =

2(ε1 + ε2 + ε3)+3

3

√

(2ε3 +1)((2ε1 +1)(2ε2 +1)− ε2
12)

. (17)

Transverse normal strain

The expression of the transverse normal strain ε3 with re-

spect to the plate displacements u, v, and w has to be determined

to later be inserted into equations (15)-(17). Here the approach

based on the incompressibility condition of the plate material is

employed.

The incompressibility condition gives J = 1 [1]. Hence,

from equation (16), we obtain

ε3 =
1

2((2ε1 +1)(2ε2 +1)− ε2
12)
−

1

2
. (18)

Since the Poisson ratio is ν = 0.5 for an incompressible mate-

rial, the corresponding Neo-Hookean strain energy density (9)

for thin plates becomes:

W =
E

3

(

ε1 + ε2 +
1

2((2ε1 +1)(2ε2 +1)− ε2
12)
−

1

2

)

. (19)

After series expansion of equation (19) in the strain components

the terms of strain powers up to the second coincide with those of

expression for physically linear strain energy density (10). That

is, for small strains, both theories give the same results, which

means that these theories are consistent.

LOCAL EXPANSION OF THE NEO-HOOKEAN STRAIN
ENERGY DENSITY

Expression (19) is not a polynomial in strains, which essen-

tially complicates the investigation of the plate behavior. Com-

puters can obtain solutions of nonlinear systems, resulting from

non-polynomial potential energy, but only for low-dimensional

models.

In order to simplify the analysis, we introduce a transforma-

tion of expression (19). In particular, we want to obtain govern-

ing equations in the form of ordinary differential equations with

nonlinearities of order not higher than three. Such model will be

able to describe the behavior of the plate only locally, around a

certain configuration.

We assume that we know a certain deformed configuration,

identified by the set of values for generalized coordinates q(0) =

3



{qi
(0)}i=1,...,N around which a new deformed configuration q =

{qi}i=1,...,N is calculated:

q = q(0)+αq(1), (20)

where α ≪ 1 is a small parameter. The strain components can

be expressed as:

ε1 = ε
(0)
1 +αε

(1)
1 ;ε2 = ε

(0)
2 +αε

(1)
2 ;ε12 = ε

(0)
12 +αε

(1)
12 . (21)

In the expressions (21) all α-dependent terms are included

in αε
(1)
i . Note that ε

(0)
1 , ε

(0)
2 , ε

(0)
12 do not depend on the unknown

generalized coordinates q(1).

We expand equation (19) into a series in the small parameter

α , keeping terms up to the second power:

W
(

q(0)
)

=
E

3

(

[

ε
(0)
1 + ε

(0)
2 +

1

2Ξ
−

1

2

]

+α

(

ε
(1)
1 + ε

(1)
2 +

κ

Ξ2

)

+

α2

(

4κ2− (4ε
(1)
1 ε

(1)
2 − (ε

(1)
12 )2)Ξ

2Ξ3

)

)

,

(22)

where

Ξ =
(

2ε
(0)
1 +1

)(

2ε
(0)
2 +1

)

−
(

ε
(0)
12

)2

;

κ = ε
(1)
1 + ε

(1)
2 +2ε

(0)
1 ε

(1)
2 +2ε

(0)
2 ε

(1)
1 − ε

(0)
12 ε

(1)
12 .

(23)

Note that the small parameter α is only formal. In the sequel, the

additional deflection q(1) is assumed to be small with respect to

q(0).

The expression in square brackets in (22) does not depend on

the generalized coordinates and vanish during differentiation. All

denominators in (22) do not depend on the unknown generalized

coordinates q(1) and equation (22) is thus polynomial in qi
(1).

Once the spatial and temporal parts are separated, the Lagrange

equations (11) take the following form:

q̈
(1)
n +2ζnΩnq̇

(1)
n +

N

∑
i=1

kni(q
(0))q

(1)
i +

N

∑
i, j=1

kni j(q
(0))q

(1)
i q

(1)
j +

N

∑
i, j,l=1

kni jl(q
(0))q

(1)
i q

(1)
j q

(1)
l = Qn

(24)

for n = 1, . . . ,N. These equations represent the local model,

which describes the behavior of the plate around the deformed

configuration q(0).

Now we describe the steps used to solve a static problem.

We assume that a static load is indicated by the single-value pa-

rameter P. We start from a certain known deformed configuration

q(0).

Step 1. For a given static configuration q(0), static counterpart

of (24) where q̈(1) = q̇(1) = 0 through the strain energy den-

sity (22) is built. At this stage, a total of N+1 unknowns (N

generalized coordinates in q(1) plus the applied load P) are

identified.

Step 2. By choice the first generalized coordinate is enforced

to be q1
(1) = H with H ≪ q1

(0). The number of equations

equals the number of unknowns.

Step 3. The system of equations is solved using the Newton-

Raphson method and generalized coordinates qi
(1), i =

2, . . . ,N as well as the applied force P are determined.

Step 4. The static configuration is updated through q(0) ←
q(0)+q(1) before going back to Step 1 of the next iteration.

The iterations continue until a desired deflection is reached.

EXACT LOW-DIMENSIONAL MODELS WITH BOTH MA-
TERIAL AND GEOMETRIC NONLINEARITIES

Here we describe the approach that allows to check the ac-

curacy of the approximate numerical solution obtained with the

4-step procedure previously described. This approach consists

in the numerical solution of the Lagrange equations (1) in the

static case with strain energy density (19). Since the latter is a

smooth function in the generalized coordinates, integration and

differentiation commute:

∂

∂q

(

∫∫∫

V
W∂V

)

=
∫∫∫

V

∂W

∂q
∂V = Q. (25)

For a prescribed pressure P, the current numerical solution q is

substituted into (25). Accordingly, ∂W
∂qi

becomes a function of

the spatial coordinates only and it is possible to perform numer-

ical three-dimensional integration of equation (25). We apply

the Newton-Raphson method to solve this system. The solution

obtained with the present approach is named the exact solution

hereinafter.

NUMERICAL EXAMPLE

Static analysis

As an example, a simply supported rectangular rubber plate

illustrated in Fig. 1 is considered. It is defined on the following

domain:

V = {x ∈ [0;a], y ∈ [0;b], z ∈ [−h/2;h/2]}; (26)
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with the following geometrical parameters a = 0.1 m, b =
0.12 m, h = 0.0005 m, and material characteristics ν = 0.5,

E = 107 Pa, ρ = 1100 kg/m3. The associated stress-strain di-

a

b

hh

τ

τ

n

n

x

y

z

FIGURE 1: PLATE AND COORDINATE SYSTEM.

agram for uniaxial tension and compression is shown in Fig. 2.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.5

0

0.5

1
·107

ε11

σ
1

1
(P

a)

FIGURE 2: THE STRESS-STRAIN DIAGRAM FOR UNI-

AXIAL TENSION; CAUCHY STRESS: NEO-HOOKEAN

LAW; HOOKES LAW.

The plate is simply supported with immovable edges, giving

the following boundary conditions [14]:

w
∣

∣

∂S
= M

∣

∣

∂S
= u
∣

∣

∂S
= v
∣

∣

∂S
= 0, (27)

where ∂S denotes the boundary of the plate. The bending mo-

ment per unit length M [14] reads:

M =−D
(∂ 2w

∂n2
+ν

∂ 2w

∂τ2

)

; (28)

where n and τ are the outer normal and tangent directions to ∂S,

respectively. The corresponding linear eigenmodes are simple

sine functions [14]:

w(x,y, t) = ∑
n,m∈N

wn,m(t)sin
(nπx

a

)

sin
(mπy

b

)

; (29)

u(x,y, t) = ∑
n,m∈N

un,m(t)sin
(nπx

a

)

sin
(mπy

b

)

; (30)

v(x,y, t) = ∑
n,m∈N

vn,m(t)sin
(nπx

a

)

sin
(mπy

b

)

. (31)

Static and dynamic deflections under uniformly distributed con-

stant pressure P are now investigated. Due to symmetry consid-

erations on the geometry of the plate and the distribution of the

external load, only the odd bending modes are non-zero if no

internal resonances are activated:

w(x,y, t) =

∑
n,m∈N

w2n+1,2m+1(t)sin
( (2n+1)πx

a

)

sin
( (2m+1)πy

b

)

.
(32)

Respective in-plane modes participating in the solution have the

form [14]:

u(x,y, t) = ∑
n,m∈N

u2n,2m+1(t)sin
(2nπx

a

)

sin
( (2m+1)πy

b

)

;

v(x,y, t) = ∑
n,m∈N

v2n+1,2m(t)sin
( (2n+1)πx

a

)

sin
(2mπy

b

)

.

(33)

The problem is also appropriately scaled as detailed below:

τ = Ω1t;

qi =
w2n+1,2m+1

h
, i = 1, . . . ,NW ;

qi =
u2n,2m+1

h
, i = NW +1, . . . ,NW +NU ;

qi =
v2n+1,2m

h
, i = NW +NU +1, . . . ,N,

(34)

where Ω1 is the circular frequency of the first natural mode of

the deformed plate. In the expresions (34) the two-indices gener-

alized coordinates w2n+1,2m+1,u2n,2m+1,v2n+1,2m are replaced by

single-index coordinates qi. For each particular problem, differ-

ent terms have to be considered in the expansions (32) and (33)

in order to have good accuracy.

Geometrically nonlinear bending. First, attention is

paid to the strain energy density (10), where geometrical non-

linearities only are considered. The results are obtained for an
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increasing number of generalized coordinates in (32) and (33).

In Fig. 3 the central deflection of the plate with respect to the

Size Participating eigenmodes

3 DOFs w1,1, u2,1, v1,2

12 DOFs wi, j, i, j = 1,3; ui, j, v j,i, i = 2, 4; j = 1, 3

27 DOFs wi, j, i, j = 1,3,5; ui, j, v j,i, i = 2,4,6; j = 1, 3,5

34 DOFs wi, j, i, j = 1,3,5,7; ui, j, v j,i, i = 2,4,6; j = 1, 3,5

TABLE 1: EIGENMODES USED FOR MODELS WITH DIF-

FERENT NUMBERS OF DOFS.

applied pressure is depicted. For each curve, participating eigen-

modes are listed in Table 1.

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0

−2.5

−2

−1.5

−1

−0.5

0
·105

3 DOFs

12 DOFs

27 DOFs

34 DOFs

w
(

a
2
, b

2

)

/h

P
(P

a)

FIGURE 3: DEFLECTION-PRESSURE CURVES FOR MOD-

ELS WITH ONLY GEOMETRICAL NONLINEARITY.

The convergence is such that approximations approach the

solution from alternating sides. The solution of the 27 DOFs

system is between the solutions of the 3 DOFs and the 12 DOFs

models, but closer to the 12 DOFs solution; the solution of the 34

DOFs system is between the solution of the 12 DOFs and the 27

DOFs systems, but closer to the 27 DOFs solution. The maximal

difference between results of 12 and 34 DOFs models for a given

pressure in the range of deflections [0,100h] is 2.2%. So the

12 DOFs system gives results that are close enough to those of

high-DOFs systems. In the following study we use the 12 DOFs

system.

Physically and geometrically nonlinear bending.
Exact model. The results for systems with 3, 12, 27 and 34

DOFs with both types of nonlinearities are obtained by the local

model method and the strain energy density (9) is used. Also,

the exact solutions are found for the 3 and 12 DOF systems. The

participating modes in this subsection and in the remainder of the

paper are the ones listed in Table 1.

The comparison of deflection-pressure curves for the model

with only geometrical nonlinearity and exact solution for the 12

DOFs systems is shown in Fig. 4. We can see that the differ-

ence within a range of deflection up to 30h is small. Only a 6%

maximal difference for a given pressure is observed in this range.

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0
−8

−6

−4

−2

0
·104

12 DOFs Geometrical nonlinearity

12 DOFs Physical&Geometrical
nonlinearities

w
(

a
2
, b

2

)

/h

P
(P

a)

FIGURE 4: COMPARISON OF THE EXACT DEFLECTION-

PRESSURE CURVES FOR THE MODEL WITH ONLY GEO-

METRICAL AND BOTH GEOMETRICAL AND PHYSICAL

NONLINEARITIES; 12 DOFS.

Local model. As displayed in Fig. 4, for deflections up to 30h,

the model with only geometrical nonlinearity satisfactorily ap-

proximates the solution involving both nonlinearities. Therefore

numerical iterations to obtain deflection curves are started at de-

formation of 30h in Fig. 5 and only exact solutions are shown for

smaller deflection.

Fig. 5 compares the corresponding results with both nonlin-

earities and an increasing number of DOFs to the available exact

solutions. It is shown that the local model provides a sufficiently

good approximation of the underlying plate behavior. Again, the

12 DOF model stands as a convincing compromise between pre-

diction capabilities and computational cost. The maximal differ-

ence in deflection in the range of deflection [0,100h] is 2% with

respect to the 34 DOF model.
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−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0
−8

−6

−4
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0
·104

3 DOFs

12 DOFs

27 DOFs

34 DOFs

w
(

a
2
, b

2

)

/h

P
(P

a)

FIGURE 5: DEFLECTION-PRESSURE CURVES FOR

MODELS WITH PHYSICAL AND GEOMETRICAL

NONLINEARITIES: , OBTAINED WITH LO-

CAL MODELS; 3 DOFS EXACT SOLUTION; 12 DOFS

EXACT SOLUTION.

Dynamic analysis

Since at small strains the effect of physical nonlinearities can

be neglected, we study the free and forced vibrations around a

pre-loaded state. We chose as the initial deformed configuration

the one with principal generalized coordinate w1,1 = 80h. The

comparison with the exact static solution shows that local model

around this deformed configuration is accurate for deflection up

to 10h, so we limit our dynamical analysis to this amplitude.

For vibration analysis the 12 DOFs model is used.

Free and forced vibrations. The harmonic balance

method [16] is applied to obtain periodic solutions of the sys-

tem of type (11) through a Fourier expansion of the generalized

coordinates:

qi(τ) = Ai,0 +
Nh

∑
j=1

Ai, j cos( jΩτ), i = 1, . . . ,12, (35)

where Ω is the non-dimensional frequency, normalized with re-

spect to Ω1. Harmonics Ai, j are determined from the system of

nonlinear algebraic equations, that results from balancing of co-

efficients associated to the same harmonics in equations (11) af-

ter substituting equation (35). A convergence analysis shows that

Nh = 8 in (35) is the sufficient number of harmonics for a good

approximation of the solution.

Fig. 6 displays the backbone curves for free vibrations with

frequencies close to the first eigenfrequency of the pre-loaded

plate. Non-dimesional frequencies, normalized with respect to

the natural frequency Ω1 of the deflected plate are shown in ab-

scissa.
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FIGURE 6: FREQUENCY RESPONSES AND BACKBONE

CURVES FOR PRINCIPAL BENDING MODE w1,1: STA-

BLE MOTIONS; UNSTABLE MOTIONS; QUASI-

PERIODIC MOTIONS; TR, NEIMARK-SACKER BIFURCA-

TION. Pd = 26.5 Pa, ζ = 0.001.

The analysis of linearized system (11) shows that the first

eigenfrequency of the deformed plate is equal to 2302.12 rad/s

which is 86.626 times greater than first eigenfrequency of the

initial flat plate.

Stable and unstable orbits are shown by solid and dashed

lines, respectively. Stability analysis is based on calculation of

frequency multipliers [16, 17].

It is well-known that the frequency-deflection relationship

for simply supported flat plates is highly nonlinear [18–20].

However, the deformed plate under analysis exhibits very weak

nonlinearity (the difference between frequency of vibrations with

amplitude 10h and linear eigenfrequency is only 0.8%), but the

behavior of plate is not that of a simple linear oscillations. There

is an internal resonance 2:1 with in-plane mode v1,2 (softening

branch in Fig. 6), which can be observed from the linear modal

responses analysis. Interaction with in-plane modes is observed

in both backbone curves, shown in Fig. 6. This effect of weaken

nonlinearity in stretched membranes is reported in [3,13]. For the

study of forced vibrations the AUTO software [21] is employed.

In Fig. 6 the forced vibration response to dynamic pressure ex-

citation Pd = 26.5 Pa, with damping ratio ζn = ζ = 0.001, is

shown. The response presents two peaks, the first one being as-

sociated to the 2:1 internal resonance, and two Neimark-Sacker

bifurcations at Ω = 0.998 and Ω = 1.000. The forced vibra-

tion response in the frequency range between the two Neimark-

Sacker bifurcations is quasi-periodic, i.e. it presents amplitude

modulations.

In order to verify the harmonic balance solution, the exact

system of equations:

∂

∂ t

(∂T

∂ q̇

)

+
∫∫∫

V

∂W

∂q
∂V = Q. (36)
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is numerically integrated through the Runge-Kutta time-

marching technique for free vibrations response. Prescribed ini-

tial displacements are obtained from the truncated Fourier se-

ries (35) at τ = 0. Initial velocities are zero.

CONCLUSIONS

A method for the analysis of large-amplitude vibrations of

plates, taking into account physical and geometrical nonlineari-

ties, is proposed. This method transforms the Lagrange equations

in space and time into a system of ordinary differential equations

in time only. This facilitates the investigation of the vibrations

around a deformed configuration taking into account both physi-

cal and geometrical nonlinearities.

The method is tested on a thin rectangular rubber plate. The

problems of static bending under pressure and free and forced

vibrations near deformed configuration are studied. Both static

and dynamic results, obtained by the present method, show good

agreement with exact solutions.

While at small strains the influence of material nonlinearity

is weak, at finite strains the effect of material nonlinearity is very

significant. The deflection under given pressure is essentially

underestimated by the model without material nonlinearity.

Differently from the case of oscillations near undeformed

plate configuration, which shows strong amplitude-frequency de-

pendence, the vibration frequency response around deformed

plate configuration is close to linear. However, some nonlinear

effects like bifurcations and internal resonances are present in the

system.

REFERENCES
[1] Ogden, R., 1997. Non-Linear Elastic Deformations. Dover

Publications, New York.

[2] Fu, Y. B., and Ogden, R. W., 2001. Nonlinear Elastic-

ity: Theory and applications. Cambridge University Press,

Cambridge.

[3] Goncalves, P. B., Soares, R. M., and Pamplona, D., 2009.

“Nonlinear vibrations of a radially stretched circular hyper-

elastic membrane”. Journal of Sound and Vibration, 327(1-

2), pp. 231–248.

[4] Knowles, J. K., 1960. “Large amplitude oscillations of a

tube of incompressible elastic material”. Quarterly of Ap-

plied Mathematics, 18, pp. 71–77.

[5] Knowles, J. K., 1962. “On a class of oscillations in the

finite-deformation theory of elasticity”. Journal of Applied

Mechanics, 29(2), pp. 283–286.

[6] Akkas, N., 1978. “On the dynamic snap-out instability

of inflated non-linear spherical membranes”. International

Journal of Non-Linear Mechanics, 13(3), pp. 177–183.

[7] Verron, E., Khayat, R. E., Derdouri, A., and Peseux, B.,

1999. “Dynamic inflation of hyperelastic spherical mem-

branes”. Journal of Rheology, 43(5), pp. 1083–1097.

[8] Akyuz, U., and Ertepinar, A., 1998. “Stability and asym-

metric vibrations of pressurized compressible hyperelastic

cylindrical shells”. International Journal of Non-Linear

Mechanics, 34(3), pp. 391–404.

[9] Ju, Y., and Niu, D., 2012. “On a class of differential equa-

tions of motion of hyperelastic spherical membranes”. Ap-

plied Mathematical Sciences, 6(81-84), pp. 4133–4136.

[10] Ren, J.-S., 2008. “Dynamical response of hyper-elastic

cylindrical shells under periodic load”. Applied Mathemat-

ics and Mechanics (English Edition), 29, pp. 1319–1327.

[11] Yuan, X., Zhang, R., and Zhang, H., 2008. “Controllability

conditions of finite oscillations of hyper-elastic cylindrical

tubes composed of a class of ogden material models”. Com-

puters, Materials and Continua, 7, pp. 155–166.

[12] Yuan, X.-G., Zhang, H.-W., Ren, J.-S., and Zhu, Z.-Y.,

2010. “Some qualitative properties of incompressible hy-

perelastic spherical membranes under dynamic loads”. Ap-

plied Mathematics and Mechanics (English Edition), 31,

pp. 903–910.

[13] Soares, R. M., and Goncalves, P. B., 2012. “Nonlinear vi-

brations and instabilities of a stretched hyperelastic annular

membrane”. International Journal of Solids and Structures,

49(3-4), pp. 514–526.

[14] Amabili, M., 2008. Nonlinear vibrations and stability of

shells and plates. Cambridge University Press, New York.

[15] Bower, A., 2010. Applied mechanics of solids. CRC Press.

Taylor and Francis Group, Boca Raton.

[16] Parker, T. S., and Chua, L. O., 1989. Practical numeri-

cal algorithms for chaotic systems. Springer-Verlag, New

York.

[17] Yakubovich, V., and Starzhinskii, V., 1975. Linear differen-

tial equations with periodic coefficients. Wiley, New York.

[18] Amabili, M., 2003. “Theory and experiments for large-

amplitude vibrations of empty and fluid-filled circular

cylindrical shells with imperfections”. Journal of Sound

and Vibration, 262(4), pp. 921 – 975.

[19] Amabili, M., 2004. “Nonlinear vibrations of rectangu-

lar plates with different boundary conditions: theory and

experiments”. Computers and Structures, 82(31-32),

pp. 2587 – 2605.

[20] Breslavsky, I. D., 2012. “Stress distribution over plates vi-

brating at large amplitudes”. Journal of Sound and Vibra-

tion, 331(12), pp. 2901–2910.

[21] Doedel, E. J., Champneys, A. R., Fairgrieve, T. F.,

Kuznetsov, Y. A., Sandstede, B., and Wang, X., 1998.

AUTO 97: Continuation and Bifurcation Software for Or-

dinary Differential Equations (with HomCont). Concordia

University, Montreal.

8


