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Optimal decay and asymptotic behavior of solutions to a
non-local perturbed KdV equation

Manuel Fernando Cortez *f, Oscar Jarrin 8

November 23, 2018

Abstract
We consider the KdV equation with an additional non-local perturbation term given in terms of the Hilbert transform.
We find the asymptotic expansion when |2| — 400 of solutions to this equation corresponding to initial conditions which

decays as Moreover, we prove that this spatially-decaying is optimal even if the initial datais a fast-decay

1+ [z]?
funcion.
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1 Introduction

In this article we consider the following Cauchy’s problem for a non-local perturbed KdV equation

{ Opu + udyu + O3u + n(Hopu + HO2u) =0, 1 >0, on ]0,+oo[xR, W

u(0,-) = ug.

where the function u : [0, +00[xR — R is the solution, uy : R — R is the initial data and # is the Hilbert
transform defined as follows: for ¢ € S(R),

H(p)(x) = pv. s / P =) g, (2)

Equation (), also called the Ostrovsky, Stepanyams and Tsimring equation (OST-equation), was derived by
Ostrovsky et al. in [12] [13] to describe the radiational instability of long non-linear waves in a stratified flow
caused by internal wave radiation from a shear layer. It deserves remark that when = 0 we obtain the well-
know KdV equation. The parameter n > 0 represents the importance of amplification and damping relative
to dispersion. Indeed, the fourth term in equation (Il) represents amplification, which is responsible for the
radiational instability of the negative energy wave, while the fifth term in equation () denotes damping (see
[11] for more details). Both of these two terms are described by the non-local integrals represented by the
Hilbert transform (2J).

One rewrites Equation (Il in the equivalent Duhamel formulation (see [1]):

u(t, z) = Ky(t,-) * up(z) — % /0 Kyt —r,-)* 0y (u?) (1, ) (z)dr, (3)
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where the kernel K (¢, x) is given by
K,(t,x) = F! (eagi’*tfnt(\s\?*f\s\))) (2), (4)
and where F~1 denotes the inverse Fourier transform.

Well-posedness results for the Cauchy problem (B]) was extensively studied in the framework of Sobolev spaces.
The first work of this problem was carry out by B. Alvarez Samaniego in his PhD thesis [I]. The author
proved a local well-posedness in H*(R) for s > %, using properties of the semi-group associated with the linear
problem. He also obtained a global solution in H® for s > 1, making use of the standard energy estimates. This
result was improved by several authors: X. Carvajal & M. Scialon proved in their article [5] that the Cauchy’s
problem (3) is locally well-posedness (LWP) in H*(R) for s > 0 and global well-posedness (GWP) in L?(R).
After, X. Zhao & S. Cui proved in [I4] the LWP of problem () in H*(R) for s > —3 and GWP for s > 0.
Finally, in recent works A. Esfahani and H. Wang [8] 9] showed that the Cauchy problem (3)) is LWP in H*(R)

for s > —% and moreover, it is shown that H =% is the critical Sobolev space for the LWP.

On the other hand, since equation (I]) is a nonlinear dissipative equation, it is natural to ask for existence
of solitary waves. Numerical studies done in [6] by B.F. Feng and T. Kawahara show that for every n > 0 there

exists a family of solitary waves which experimentally decay as when |z| — 400. This numerical decay

1+ |x|?
of solitary waves suggests the theoretical study of the decay in Spaciall \|/ariable of solutions u of equation (I]) and,
in this setting, B. Alvarez Samaniego showed in the last part of his PhD thesis (Theorem 5.2 of [1]) that if the
initial data ug verifies ug € H*(R) N L?(1 + | - |?,dz) then there exists u € C([0,00[, H*(R) N L*(1 + | - |, dx))
a unique solution of equation (Il). This result is intrinsically related to the nature of the functional spaces
above in which the Fourier Transform plays a very important role: kernel K, (¢, x) given in () associated with
the equation is explicitly defined in frequency variable. Furthermore, remark that this spatially-decaying of
solution is studied in the setting of the weighted-L? space and therefore it’s a weighted average decay.

The first purpose of this paper is to obtain a pointwise decay in spacial variable of solution u(t,z). More

precisely, we prove that if the initial data ug € H*(R), with 3 < s < 2, verifies |ug(z) then there

< ¢
<
exist a unique global in time solution u(¢,z) of the integral equation (B]) which fulfills the same decay of the
initial data ug. Moreover, we show that the solution u(¢,x) of the integral equation (B]) is smooth enough and
then this solution verifies the differential equation (I]) in the classical sense.

Theorem 1 Let 3 < s < 2 and let ug € H*(R) be an initial data such that |ug(z) Then, the

B

14 jx?
equation (Il) possesses a unique solution u € C(]0,+o0[,C*(R)) arising from ug, such that for all time t > 0
there exists a constant C = C(t,n,ug,u) > 0, such that for all x € R the solution u(t,x) verifies:

(5)

Remark 1 Estimate ([{) is valid only in the setting of the perturbed KAV equation (1) when the parameter n
18 strictly positive.

Indeed, with respect to the parameter n the constant C' > 0 behaves like the following expression (see formula

1 1 2

(B9) for all the details): — <1 + <— + 2) > + 1, and this expression is not controlled when n —s 0.
n3 n

Recall that in the case n = 0, the equation [I] becomes the KdV equation. In this framework T. Kato [10]

showed the following persistence problem: if ug € H*™(R) N L?(|z|*™, dx) where m € N is strictly positive,
then the Cauchy problem for the KdV equation is globally well-posed in C([0, +oo[; H?>™(R) N L?(|x|*™ dz))



and then the solution of the KdV equations decays at infinity as fast as the initial data.

Getting back to the perturbed KdV equation (IJ), a natural question raises: is the spatial decay given in
formula (Bl) optimal? Concerning this question, B Alvarez Samaniego shown in [2] that the solution cannot

have a weight average decay faster than and in this case we fave a lost of persistence in the spacial

1+ |z
decay. This suggest that the optimal decay rate in spatial variable of solution u(¢,z) must be of the order
—— with 2 < s < 4.

1+ |z®

The second purpose of this paper is to study the optimal spatially-decaying for the solution u(¢,x) of equation
). We start by studying some decay propietes of the kerner K, (¢, z) and in Proposition [Z1] we show that this

kernel has an optimal decay rate of the order . After, in the following theorem we prove that if the

1+ |z|?

initial data ug decays a little faster than 5, then the solution u(t, ) associated to ug has the asymptotic

1
1+ |z
profile given ([6]) and we can observe that the behavior of solution (¢, x) in spatial variable is actually the same
behavior of the kernel K, (t,x). Thus, the decay in spatial variable given in estimate () is optimal.

C

Theorem 2 Let 3 < s < 2 and let ug € H*(R) be an initial data such for e > 0 we have |ug(z)| < TP
x

Then, the solution u(t,z) of equation (1) given by Theorem [ has the following

d c
— < —
and ‘ xuo(x) 15 [

asymptotic development when |x| is large enough:

u(tyz) = K, (t, ) ( /[R uo(y)dy> + /0 Kyt —7.2) ( /R u(r, y)ayu(T,y)dy> dr + o (#) , (6)

where the kernel K, (t,z) is given in ().

Remark 2 It should be emphasized that even if the initial data is compact supported function then, the arising

1
solution u cant not decay faster than ———.
1+ |z
Let us point out that our approach to study these spatially-decaying properties given in Theorems [l and 2l are
inspired by L. Brandolese [4] and it’s technically different with respect to previous works on equation (I since
here we study the kernel K, (t,x) in spatial variable and not in frequency variable.

Finally it is worth to remark that this approach permits to study the equation (1) in other functional spaces
which, to the best of our knowledge, have not been considered before. More precisely in annex we prove that
the properties in spacial variable of kernel K, (t,x) allow us to prove that the integral equation (3) is LWP in
the framework of Lebesgue spaces.

This article is organized as follows: in Section Pl we study the optimal decay in spatial variable of the ker-
nel K, (t,z). Section Blis devoted to prove Theorem [l and in the last Section @ we prove Theorem 21

2 kernel estimates

In this section we study the properties decay in spacial variable of the kernel K, (¢, z) which will be useful in
the next sections.

Proposition 2.1 Let K, (t,xz) be the kernel defined in expression (f]).



1) There exists a constant ¢, > 0, given in formula (I6) and which only depends of n > 0, such that for all
ot 1
e
timet >0 h K,(t,2)| <c¢p——s.
ime we have |K,(t,z)| < ¢, T

1
2) Moreover, the kernel K,(t,z) cannot decay at infinity faster than THQ
x
Proof.
1) First we will estimate the quantity |K,(¢,z)|, and then we will estimate the quantity ||| K, (¢, z)|.

We write
|G ()| < ([ K ()| e < (|Ky ()l (7)

and then we must study the term ||I/(\n(t, )||z1. By expression (@) we have I/(\n(t, ¢) = (€ t=nt(EF~1EN) and
then we can write

1Bt Y = / 1% | IE 1D | g — / e~ =I€D) ge
R R
_ / e—mHE—IED ge 4+ / e—mHIEP 1D g

€l<v2 €1>v2
In order to estimate the integral I7, remark that if |¢] < v/2 then we have —(|£|? — [£]) < |¢] and thus we
can write

L < / e"tmdg < ceV2t < ce’m,

le1<v2

Now, in order to estimate the integral Iy, remark that if || > /2 then we have —(|¢]> — [¢]) < LIPS

2
thus we write .
3 o0
I g/ e M dg g/ e dg < —S o
€1>v2 0 (nt)s

With these estimates, we get back to identity (8) and we write

o 2nt t 1 1 3nt 1 3nt
IRyt s < et 4 S <o IEL  £2 L (gt o)
(nt)3 (nt)3 (nt)3 (nt)3
hence, getting back to estimate (7)) we can write
eBnt
Ky () < O (10)
(nt)s

Now we will estimate the quantity |z|?|K,(t,z)|. Always by expression (@), for z # 0 we write

K,(tz) = F! (e(i£3—nt(|£|3—|£|))) (m):/62“9666(1'53—nt(|£|3—|£|))d§

R
_ / 2t o8 —nt(IEP—IED) g 4 / 2t (iE* =€ IeD) g
£<0 £>0
— / 62wiz§6it§3_nt(_§3+§)d£+/ eQnimfeitg?:_nt(ga_g)dg
£<0 £>0
1

_ / Qi RiT i€ —nH(—€+E) g |
£<0

5 / 2mize2 e TME ) ge - (11)
T £>0

2mix

4



In the last identity, remark that O¢(e*™%¢) = 27mize®™**¢ and then we can write

1. / iz e?™ivE e (—E 4 ge 4 / I mrige2miTE e —nt(€* =€) g¢
2mix Je<o 2T Jeso
= 1 35(627T’i$§)eit§3_nt(—§3+§)d§ + : 65(6271-1'1;5)el‘té'?)_nt(éﬁ_&-)dé_.
2mix Je<o 2miz Jeso

Now, integrating by parts each term above and since lim =+ — gand lim " E ) =
{—r—o00 §—r4o00

then we have

1‘ (95(e%imf)eitfg—nt(—£3+§)d£ + ag(627rix§)eit§3—nt(§3—§)d£
2mix £<0 2mix £>0
_ 11 / 2mizg g (eit§3—nt(—§3+§)> ge— 1 / 2TiE (eit§3—nt(§3—§)) de
2miz  2mix Jeoq ¢ 2miz  2mix Jesg
= - 1. / ™ (eit£3—nt(—£3+£)> dg — L/ 28 <eit§3—7zt(§3—§)> d¢ = (a).
2mix Jeco 2mix Jeso
Then following the same computation done in identity (I and since Jg(e*™%¢) = 27ize?™ ¢ then we
write
1 ; L¢3 3 1 : e 3
- p) 2mizé p) ( €% —nt(—¢ +§)> de — ) 2mixé p) ( wE3—nt (€ —f)) d
(@ (2miz)? Jeco (e ) \ @ § 2miz)? Jeso qe )0 (e £

= —m /é DT EHO) Bt — pt(=367 + 1))dg
<
i L PR ) aing? — 1)
>
= 5L + Iy, (12)

where we will estimate both expressions I1 and Is. For expression [, remark that we have

lim (e -+ (3it¢2 — nt(—3¢2 4+ 1)) = 0,

{—>—00

and then, by integration by parts we can write

_ v 2mizt HES = (—E34€) (37462 _ pi(—3€2
L = (2m>2< nt /§<Oe B¢ <(et M—E40) (344¢2 — pt(—3¢ +1))) d§>
_ nt 1 omize B —t(—E34E)\ (2ire2 o il 2
T (2mix)? T (2miz)? /§<oe 23 ((e ! )(3it€” — nt(—3¢" + 1))) ds . (13)

/

=1,

Now, for expression I given in (I2)), remark that we have

lim (e M€+ (3112 — n(3¢2 — 1)) = 0,

§—+o0
and then, always by integration by parts we write

L = — 1 <—77t . / eQm‘a}fag <(6it§3—nt(—§3+§))(3it£2 _ 77t(352 — 1))) d£>
£>0

(2miz)?
nt 1

_ iz W3 —mt(—E34+E)\ (aspe2 2
= Gria)? + iz /§>Oe O¢ <(e m )(3it&” — nt(3¢ 1))) dg.

=1



Thus, with identities (I3]) and (I3]) at hand, we get back to identity (I2)) and we write
2nt 2

L+ =
1 (2mix)? + (2mix)?

(Ia + Ib)a

and then, getting back to identity (IIl) we have

2nt 2 nt c
I, + 1) <c—= + =1, + Ipl. 14
(2mix)? (2772'36)2( ot ho)) < ‘22 * x2| ot 1l (14)

()] =

We still need to estimate the term |I, + I| above and for this we have the following technical lemma,
which we will in prove later in the appendix.

Lemma 2.1 There exist a numerical constant ¢ > 0, which does not depend of n > 0, such that for all

1 2
t > 0 we have |1, + Ip| §c<—+2> et
n

With this estimate, we get back to equation (I4]) and we get

¢ 1 2 eant 1 2t 1 2 eant 1 2 eant 1
|K,(t2)] < cn—2+c<—+2> —2§c<—+2> 77—2+c<—+2> —2§c<—+2> —2—|—c<—+2>
x n T n x n x n

hence we can write

1
]w\QlKn(t,x)] <C (— +2
n

\_/
[N}
3y

S
3

=
—~
—_
ot
~—~

Thus, with estimates (I0) and (I5]) we can write

3nt 1 2 Ant 3nt 1 2 4nt
K,y (t, )] + || Ky(t2)] < C—+C <— +2> £ <ot 40 <— +2> (nt)s -2
n

IN
—~~ ('b
2|y

+

Q
7N
I |~

+

)
~_

[\
=y
wl=|

IN

Q
~/

—

+
N
I |~

+

)
~_

[\
N~
=Y

wl=|

1
3
C 1 %\ et
< = 1+<—+2> ‘<.
73 n t3
C 1 2
p=— 1+ (=+2 > 0, (16)
" 775 n

and then we can write the desired estimate.

We will suppose that there exists ¢ > 0 and M > 0 such that for all |z| > M we have |K,(t,z)| S RS
x

and then we will arrive to a contradiction. Indeed, if we suppose this estimate then we can prove that the
function zK,(t, z) belongs to the space L'(R): we write

/ |e K, (t, @) |de = / |x K, (t, )| dw + / |z Ky (t, x)|de = I + 1.
R || <M |z|>M

In order to estimate the term Iy, recall that by point 1) of Proposition 2.1 we have: for all ¢ > 0,
K,(t,-) € L*(R). Thus, we have

L <M [ Ko (8, @) |de < M, (¢, -) [ 1 < +o0.
|lz|<M



Now, we estimate the term I and since we have |K, (¢, z) for all |z| > M, then we can write

<L
~ e

1 dx
I, < / || —5—=dz < / ——dr < +o00.
wjsm |zPTE > ar 2]

Thus, the function z K, (¢, ) belongs to the space L'(R) and then by the properties of the Fourier trans-
form we get that 8§E7(t, ¢) is a continuous function. Moreover, recall that we have K,(t,-) € L*(R) and
then I/(\(t €) is also a continuous function and thus, for all time ¢ > 0 we have I/(\( -) € CY(R) but this
fact is not possible. Indeed, by identity (@) we have K, n(t,€) = i€’te _"tmge"ﬂgl but observe that the term
™€l is not differentiable at origin and then K, 5(t,+) cannot belongs to the space C!(R). [

3 Proof of Theorem [

Let % < s <2 fix and let ug € H*(R) be the initial data and suppose that this functions verifies

c

luo(z)| < T+ P (17)

We start by studying the existence of a local in time solution u of integral equation (3]).

3.1 Local in time existence

Let T > 0 and consider the functional space Yy = {u € S'([0,T] xR) : sup t%H(l + - Pult, e < —|—oo}
0<t<T

and then define the Banach space
FT:YTHC([O’TLHS(R))’ (18)

doted with the norm
1
I+ ler = sup ¢3[[(L+ |- 1))@ + sup |- [l w)- (19)
t€[0,T t€[0,T]
Remark that this norm is composed of two terms: the first term in the right side in (I9) will allows us to study

the decay in spacial variable of the solution u. In this term we can observe a weight in time variable t5 where
the reason to add this weight is purely technical and it allows us to carry out the estimates which we shall
need later. On the other hand, the second term in the right side in (I9) will allows us to study the regularity
of solution u and this will be done later in Section B.3]

Theorem 3.1 There exists a time Ty > 0 small enough and a function u € Fr, which is the unique solution
of the integral equation (3).

Proof. We write

ey = |t Yoo [ Kalt =) 5 0.0 i

Fr

<nmﬁ»*mwﬁﬂ54kmww»*mmmaw7 , (20)

Fr

and we will estimate each term in the right side.



Proposition 3.1 There exist a constant Cy, > 0 given in formula (30), which only depends of n > 0, such
that we have:

1y (2, ) * wollpy < Cry €™ (I(1+ - [Pyuollzoe + lluol =) - (21)

Proof. By the definition of the quantity || - ||z, given in equation (I9) we write

1
1Ky (8, ) % uollpy = sup 5 [[(L+ |- ) Ey(t, ) *uollp= + sup [[Ky(t, ) * uol|ms, (22)
te[0,T] te[0,T]

and we start by estimate the first term in the right side. For all x € R we write

L+ [y
Kyt s @] < [ It = lllds < [ 1Kt =)l

Ky (t,7— )
11+ Pl / s Wy, (23

K, (
We need to study the term / ‘72)
1+ |yl

luo(y)|dy

IN

dy and for this remark that by point 1) of Proposition 21l we have

snt 1
the estimate |K,(t,z —y)| < cnel 5, and then we can write
ts 14]z—yl
Ky (t,x —y)| | c,edm dy
[ ey < Y (24
1+\y! t3 Jr (U +[z =y +[yl)

where the last term in the right side verifies

dy 1
<ec . 25
/Ru ey P) = TP (25)

Indeed, for z € R fix we write

dy B dy dy
L arEhaeem - /|— TP e /|_ i —pare %

then, for the first term in the right side, since |y| < |i2| then we have |z —y| > |z| — |y| > @ and thus we can
write

dy 1 dy 1 dy c
2 7y S 2 7 S 2 2 = :
ikl (U4 |z —yP) A+ [y[?) = 1+ [z]? Jjy<lal 1+\y! Lt faf? Jp 1+ |yl? — 1+ J2|

Now, for the second term in the right side in (26, since |y| > 121 then we have

/ dy < 1 / dy < 1 / dy < c
szl A+ lz—yP) A+ y?) — T+ [zl Syt T+ —y? ~ 1+ 2P Jp 14z —y* ~ 1+ |z

With these estimates we get the estimate given in (25) and then, getting back to equation (24]) we can write

/|K cpe® 1
y < .
1+|y|2 T otn Lz

5nt 1
Now we get back to (23) and we have |K,(t,-) * uo(z)| < |[(1+ |- |*)uo|| L %THQ
t3 z
Thus, the first term in the right side in (22)) is estimated as follows:
1
sup #3[(1+ |- [*)Ky(t, ) % wolloe < cpe™ (1 + |- *)uol| e (27)

te[0,7



We study now the second term in the right side in (22)) and we will prove the following estimate

sup ||K (¢, -) * uol s < ce®™ |ug|are, (28)
t€[0,T]

where ¢ > 0 is a numerical constant which does not depend of 7 > 0. This estimate relies on the following
technical estimate given in Lemma 2.2, (page 10) of [I]: let s; € R, ¢ € H*'(R) and let s3 > 0. Then, for all

t > 0 we have
5nt

[
| Ky (t, <) * @l gsrso < c——sg Dl e1 . (29)
(nt)?

In this estimate we set ¢ = up € H*(R), s; = s and sy = 0; and then, for all 0 <t < T we get

1y (¢, ) % uoll e < ce®™[luo ||+ < ce®™" ||uo]| =,
hence we have the estimate (28). Now, by estimates (27) and (28) we set the constant Cy, > 0 as
Cipy=cy+ec, (30)

where ¢, > 0 is the constant given in formula (I€), and then we have the estimate given in (2I]). Proposition
[B.1lis proven. |

We study now the second term in the right side in equation (20]).

Proposition 3.2 There exists a constant Ca, > 0 given in formula ({{1]), which depends only of n > 0, such
for all u € Fpr we have

H / Ho( ) # 0y (u?)(r,)dr || < Coy ™ max (T3, T2)|ul| ] - (31)
Fr
Proof. By definition of the norm || - ||, given in (I9) we write
1 [t 9 1
= | Ky(t—r7,-) %0, (u”)(r,-)dr = sup 3 ||(1+]-] K ) % Oy (u?) (7, -)dr
2 0 Fr te[0,7 Lo
+ sup /K Vw0 (r, Ydr| (32)
te[0,7 Hs
and we will estimate each term in the right side.
For the first term in (32)), for all ¢ € [0,7] we have
t
1
t3 (1+]-| ( / K, (t—7,-) * 0z(u )(T,-)dT) Sté/ (1—}-\-]2)§Kn(t—r,-)*Bx(u2)(7',-) dr,
L>® 0 L>®
and now we need to prove the following estimate:
! ) edn(t—T)
[+ B3 =79 0u) 00| < el e (33)
Lo (t—7)373

Indeed, we will study first the quantity 2K, (t — 7,-) * 0,(u?)(,-)(z). Remark that we have 19,(u?) = ud,u
and then for all z € R we write

%Kn(t —T,") * 6m(u2)(7', )()

IN

[y (8 = 7, -) * (u(T, ) Bpu(T, ) ()]

= /IKn(t—T,fﬂ—y)IIU(T,y)IlayU(T,y)Idy- (34)
R

9



5n(t—T) 1
Now, recall that by point 1) of Proposition LIl we have |K,(t — 7,2 —y)| < ¢, ¢ - 5, and then
(t—r7)3 1+ |z —y|

in the last term above we can write

ePn(t=7) [u(T,y)||0yu(T, u)|
K,(t—71,2—y)||lulr,y)||0,u(r,y)|dy < c / d 35
JAE Dl oyt iy < ey [ FRRBEES
i |0yu(T, )
S T, Loo/ . ;
Sormy U RERITSY K cenmreraray
M- Pyt Yl o, ) i (30)
< gp— + - U\T, *)||Loe ||OxU\T, - Loo/ )
= G o (L P T 7 oP
(®)
where we have to study the terms (a) and (b). For term (a) we have
c
(a) < —zllullprllullp- (37)
T

Indeed, recall first that we have the inclusion H*~}(R) C L>°(R) (since s > 2 then we have s —1 > 1) and
then we can write

18y (T, ree < elldeulT, | s < clfulr, ) ||as- (38)

Thus we have
& 1
(@) < NI+ Pulr, Mz llum, e < — (T3||(1 + 1 Pulr, ')||L°°) (lu(r, ),
T3
and by definition of the norm || - ||, given in (I9) we can write the estimate given in (7).

For term (b) in (B0, recall that this was already estimated in (25]).

Then, in estimate ([B6), by estimates ([B7) and (25]) we have
edn(t—7) 1

(t— 7')%7'% L+ |z

/R (Ko (t = 7,2 = y)l[u(r, y)[|0yu(T, y)ldy < ¢y z [l pp lull 7,

and now, we get back to estimate (34]) and we write

517(t T) 1
1

(t—r)3rs L+|z \2‘

Fmﬁ—n»*mm%m0W><

2 = Cn

|ull oy [lull 7
hence we get the estimate (33)).

Once we dispose of this estimate, for all ¢ € [0, 7], we can write

¢ t
d
/ dr < et | [ 0T ulley e,
0 o0 0 (t—7)573

(141 P Ealt = 7 = 0uu) (7, )

ol

t

t
dr 1 1
< eothe ([ ) b ol < e TH (T) full, ol
0 (t—7)373
2
< o THlulep el

and then we have

T 2
< ey € T3 ull pp |u] - (39)
Lo

sup t%
t€[0,T

1+ (/K ) 8y (u )(T,-)d7>
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We study now the second term in identity (B2]). For all ¢ € [0,T] we write

/Ha (=7, )% u2(7',-))HHsdT§/ VK (=7, ) % u2(r, )l gosa -
0

Ou(u?) (7

< [t =) 02 e
Hs

Then, in estimate (Z9) we set now ¢ = (u?)(7,-), s1 = s and sy = 1; and then we have

657](t—7’)

t t
/ 1Kyt — 7,) () e dr < / R (r, ) e,
0 0o (n(t—1))2

where, by the product laws in Sobolev spaces and moreover, by definition of the norm || - ||z, given in (I9), we
have
t 5n(t—7) L e5n(n(t—r))
e e
| et laedr < [ S futr i
0 (n(t—7))> 0 (t—7)
5nT t d snT
e T e 1
< e | sup |lu(r, )l | | sup flu(7,)lEs / v < c—T2|ul gy |lull -
n2  \r€0,7] 7€[0,T] 0 (t—7)2 72
Thus we get the estimate
snT
sup / Kyt = 7,) # 0 (u?)(7, )dr || < e=—T% |[ullmy [u] (40)
t€[0,T] Hs nz

Finally, by estimates (39) and (40) we set the constant Cy, > 0 as

02777 =cy+ s (41)

3
ol=| O

where ¢, > 0 is always the constant given in formula (I6]), and the estimate (3I]) follows. Proposition in
NOwW proven. |

Once we have the estimates given in Proposition B.I] and in Proposition B.2] we fix the time Ty > 0 small
enough and by the Picard contraction principle we get a solution u € Fp;, of the integral equation (3]).
Now we prove the uniqueness of this solution v € Fr,. Let uj,us € Fr, be two solutions of the equation

@) (associated to the same initial data up). We define v = u; — uy and we will prove that v = 0. Indeed, recall
first that v(0,-) = 0 and then v verifies the following integral equation

= ——/ Kyt —71,) % (0 (ui(r, ) — ui(r,"))) dr.
Since v = uy — up then we write u?(r, ) — ui(7,-) = v(7, Jui (7, ) + uz(7, -)v(r,-), and thus we have
1 t
(1) = =5 | Kolt =7 x @u(o(r Jur () + ua(r. Yol ) dr.
0
In this expression we take the norm || - [[p, given in (I9) and by Proposition 3.2l we have

2 1
ol i, < Commax(Tg, T ol (11t + sy, ) - (42)
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From this estimate, the identity v = 0 is deduced as follows: let 0 < T* < Ty be the maximal time such that
v = 0 on the interval [0, T*[. We will prove that T* = Tj and by contradiction let us suppose 7% < Ty. Then,
let Ty €]T™,Tp[ and for the interval in time |7, T1[ consider the space Fiy, _7+) defined in (I8) and endowed
with the norm || - [|rz, _., given in (IJ). By estimate ([@2) we can write

2 1
1oll i, ey < Commax (T = T, (T = T ) ol e, (ltllg, ey + 2, o )

and taking Ty — 7™ > 0 small enough then we have [|v||r, _5., =0 and thus we have v = 0 in the interval in
time |7, T1[ which is a contraction with the definition of time 7. Then we have T* = T'. Theorem [3.1]is now
proven. |

3.2 Global in time existence and decay in spacial variable

In this section we prove first that the local in time solution u € Fr, of the integral equation (B]) is extended to
the whole interval in time |0, +oo[. Then we prove the decay in spacial variable given in formula (H).

Theorem 3.2 Let Ty > 0 be the time given in Theorem [Tl Let the Banach space (Fr,|| - ||Fy,) given by
formulas (I8) and (I3) and let u € Fr, the solution of the integral equation (3) constructed in Theorem [l
Then, we have:

1) uw e C([0,4o00[, H*(R)).

2) Moreover, for all time t > 0 there exists a constant C' = C(t,n,ug,u) > 0, which depends of t > 0, n >0
the initial data ug and the solution u, such that for all x € R the solution u(t,x) verifies the estimate ().

Proof.

1) Since ug € H*(R) then by Theorem 2 of the article [14] there exists a function v € C([0, +o0[, H*(R))
which is the unique solution of integral equation (B]). But, by definition of the Banach space Fpr we have
the inclusion Fr C C([0,T], H*(R)) and then the solution u € Fr belongs to the space C([0,T], H*(R)).
Thus, by uniqueness of solution v we have u = v on the interval of time [0, 7] and then

sup |u(t,-)[[gs = sup |o(t, )|z
t€[0,T] t€[0,T]

In this identity we can see that, since v € C(]0, +oo[, H*(R)) then the quantity sup |u(t,-)| s does not
te[0,T)

explode in a finite time and thus the solution u is extended to the whole interval of time [0, 4+o00[. Thus

we have u € C([0, 400, H*(R)).

2) In order to prove the property decay of solution u € C([0,4o00[, H*(R)) given in estimate (], we will prove

that the quantity sup t3 (14| [P)ult, )|z is well-defined for all time T > 0.
t€[0,T]

Let T > 0. For all ¢t € [0,T] we write

B+ Pt e < 5[0+ \)(Kn@,-)*uo—% / Kn<t—r,->a$<u2><n->d7> .
<t H Lo ) (B (8 ) % o) HLoo
2 Ndr
+3 (14| < /K Or (u )(T,)d)Loo
< I1 + Iy, (43)

12



where we will study the terms I; and Iy above. For term Iy, by Proposition B we have
L < 5[+ |- PRy (1) ol e < Cry |1+ |- [Puol| o,
where we set the constant
Co(T,1,u0) = Cry € (L + |- PJuol|r= > 0, (44)

and then we write
Iy < &(T, n,uo). (45)
We study now the I in the right side in formula ([@3]). We write

1+ (/K By (u )(T,-)d7>

< /;;H(HI ) Kol = 7) % 0e(u?) (7, )

(a)

IN
w\»—‘

I

Lo

ol

dr, (46)
LOO

and we will estimate the term (a). Indeed, the first thing to do is to study the quantity

St = 7.) % 0, ()7, ) ()

)

‘ 1

and by estimates (84 and (B3] we have

ednt=" ]uTy ||0yu(T, u)|

1+ |z —yl?

‘%Kn(t_ﬂ') *836(”2)(7—7 )(.%') = dy’ (47)

)
T
3

t—T

where the constant ¢, > 0 is given in (If), and then we write

n(t=7) \uTyHauTu)] ednT lu(T, y)||0yu(T, u)|
t—T 1""35_3/‘2 75—’7'% 1"“95_3/‘2
e 75 (1 + y[2)u(r, )18, u(r, u)|
< ¢ — 5 d
RS TSE S i ) [ P
et 1 9 dy
< ¢ 73 |[(1+ |- |F)ulr, )| 1 Opu(T, - Loo/ , 48
v e (0 1Pl ) | ey
¢ (a.2)

where we still need to estimate the terms (a.1) and (a.1). For the term (a.1), always since s > 3 then we
have s — 1 > 1 and thus we can write (a.1) < du(r, )|/ gs—1 < |[u(7,")||mr=. Now, by point 1) of Theorem
B2l we have u € C([0,+oo[, H*(R) and then we get (a.1) < sup ||lu(7,-)||gs. Thus, we set the quantity

T7€[0,7T
¢ (T,u) = sup |u(r,-)||lgs >0, (49)
T7€[0,7T
and we can write
(a.1) < &€ (T,u). (50)
1
On the other hand, recall that term (a.2) was estimated in formula ([25]) by (a.2) < CTHQ.
x

13



In this way, we substitute estimates (B0) and (25) in terms (a.1) and (a.2) respectively given in formula
([#8)) and we get

e 2Vl - NN dy
cn(t_T)%T%( 10+ 1- Bputr i) (osatr M) | i
edn T 1 9 1
< ey (I | Pl ) €T 0 . (51)

hen, by formulas {@T), (@8) and (&I we get the following estimate

ed (t—7)
'%Kn(t—f,-) % 8, (1) (7, ) () ! (141 |2)u(7,')HL<>°¢1(T,U)—1 +1|$|2’

o
n(t—T)%T%

and by this estimate, for term (a) given in right side of estimate (@) we can write

6577T 1
(@) = @+ P)Ey(t = 7) % 0 (u?)(r, )| < ey (731 + [ Pulr, )|~ ) €1(T, )
(t—7)373
Pt u 1

Now, we get back to estimate (@) and we have

t
1 .
L < cntéef’"Te:l(T,u)/ — (P I+ 1 Pl ) dr
0 (t—7)373
t
1
< o T§(65’7T¢1(T,U))/ —— (7] Phutr, i ) dr.
0 (t—r7)s73

At this point, with the constant ¢, > 0 given in (I6) and the constant €;(7,u) given in ([@J]), we set the
constant

Co(T,m,u) = ¢ T3 (77 €4 (T, ) > 0, (52)
and then we write
t 1 1 9
I < ¢2(T,?7,U)/ —1 T (73\\(1 + | )U(Tr)HLoo) dr. (53)
0 (t—7)373

With estimates ([@5]) and (B3]) we get back to estimate ([@3]) and then for all ¢ € [0,T] we can write

1

t—T)%T%

ECL+ 1 Pult, iz < Con, T, uo) + Ca(n, T, u) /0 : (P31 1 Py, iz ) dr. (54)

Now, in order to prove that quantity t3 (1 + |- *)ult, )||r= does not explode in a finite time we will use
the following Gronwall’s type inequality. For a proof of this result see Lemma 7.1.2 of the book [7].

Lemma 3.1 Let 8 > 0 and v > 0 such that f+~v > 1. Let g : [0,T] — [0,+00[ a function. If the
function g verifies:

1) g € Lj,([0,77),

loc

2) t7"lge L} ([0,T)]), and

loc

3) there exits two constants a > 0 and b > 0 such that for almost all t € [0,T] we have
t
ot) <a+b [ (e gt (55)
0
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then:

a) There exists a continuous and increasing function © : [0, +oo[— [0, +oo[ defined by

+o0

o) => et (56)

k=0

where 0 = B+~ —1 > 0 and where, for the Gamma function I'(-) the coefficients ¢, > 0 are given by
the recurrence formula:

Ck+1 _ F(kO' + 1)
Ck I'(ko+p+7)

co=1, and for k>1.

b) For all time t € [0,T] we have
g(t) < aO(bs t). (57)

In this lemma we set 8 = % and v = % (where we have 8 4+ > 1) and we set the function ¢(t) =

t3 (1 + - *)ult,)||L which verifies the points 1), 2) and 3) above. Indeed, since t3 1+ P)ult, )| e
then this functions verifies the points 1) and 2) (with v — 1 = %) On the other hand, if for the constant
Co(T,n,up) > 0 given in (@) and for the constant €5(T,n,u) > 0 given in (BA)we set the parameters
a = C(T,n,up) > 0, b = €(T,n,u) > 0, and moreover, if we set the parameters f — 1 = —% and
v —1 = —1 then we can see that the point 3) is verified by estimate (54)). Moreover, remark that where
sinceﬁ:§and7:§thenwehaveazﬁ—i—y—l:%andthus%:?).

Then, by estimate (57]) of Lemma B for all time ¢ € [0, 7] we have: for bo = (Co(T,m,u))® >0,
1 1 1
(1 + |- [P)ult, ) < €o(T, 7, u0)@ (b; t) < & (T, n, uo)© (53 T) : (58)

Finally, we set the constant

Co(T, 1, 10)© (bi T)
1
3

C= >0, (59)
t
and then we have the estimate given in formula (B). Theorem is now proven. |

3.3 Regularity

In order to finish this proof of Theorem [I] we will prove now that the solution u of equation is smooth enough
is spatial variable.

Proposition 3.3 Let 2 < s < 2 and let u € C([0,+oc[, H*(R)) be the solution of the integral equation (3)
given by point 1) of Theorem [3.2. Then we have u € C(]0, +o00[,C*>(R)).

Proof. Recall that by hypothesis on the initial ug given in (17) we have ug € H* for % < s < 2 and then by
Theorem 1 of the article [I4] the solution u € C([0, +oo[, H*(R)) verifies

ueC ([0,+ocf, () H*R) | . (60)
a>0

With this information we easily deduce the property u € C(]0,4+o00[,C>(R)). Indeed, we will prove that for all
k € N the function 07 u(t, ) is a Holder continuous function on R. Let n € N fix. Then, for % <51 < % we set
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a =n+ s and by (60) we have 97 u(t,-) € H**(R).

On the other hand recall that we have the identification H Sl(R) B§12(R) (where B3%(R) denotes a Besov
space [3]) and moreover we have the inclusion B3 (R) C B2 : (R) C Bibo2 : (R).

Then we have 97u(t,-) € Bas 2( ), but, since 1 < s; < 2 then we have 0 < s; — 3 < 1 and thus 0%u(t,-) is a

8— Holder continuous functlon with 8 = 51 — % |

Theorem [ is now proven. [ |

4 Proof of Theorem

Let % < s < 2fix, let up € H%(R) be the initial data and suppose that this function verifies the following decay

properties: for € > 0,
c

d

= g
dx 14 |z?
Let u € C(]0,+00[,C*®(R)) be the solution of equation (1) associated with the initial data ug above and

given by Theorem[Il In order to prove the asymptotic development of u(t, z) given in formula (@), we write the
solution u(t, z) as the integral formulation given in (3] and will study each term in the right side of equation (B]).

and up(x) (61)

c
luo(z)] < W

For the first term in the right side of ([B)): K, (t,-) * ug(x), we will prove that this term verifies the follow-
ing asymptotic development when |z| — +o0:

K, (1) *uo(z) = K, (t,2) (/Ruo(y)dy> +o <#> . (62)

Indeed, for all ¢ > 0 and = € R we write:

Kolto)sle) = [ Kofte = wuntody = [ Kyt = walndy + Ko (to) ([ i)

K (1) ( [ o)
= ) [wot)dn) + [ Kotto = ot~ Kott.2) ([ uotohay )

(a) (0)

Now, in expression (a) and expression (b) above, first we cut each integral in two parts:

fomw=s [ 0w+ [ o (63)

and then we arrange the terms in order to write

(a) +(b) = / < (It x —y) — Ky(t, @) uo(y)dy + / Ky (t,x — y)uo(y)dy

ly|> 12!
K (t,2) ( /. uo(y)dy>
ly|>5
= L+1+ 13, (64)
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and now, in order to prove identity (62)) we must prove that
1
L+L+I3=o0 <W> ,  when |z| — 4o0. (65)
x

In order to study the term I; in identity (64]) we need the following technical result.

Lemma 4.1 Lett > 0 and let K, (t,-) be the kernel given in (). Then, K,(t,-) € C(R) we have and moreover,
there exists a constant C, > 0, which only depends of n > 0, such that we have:

6nt
1) for all x # 0, |(9K(tx)|<Cn| EL
0, K o, 1
O —
9 0.1, < O

The proof of this lemma follows essentially the same lines of the proof of point 1) of Proposition 2.1l and then
we will postpone this proof for the appendix. Thus, since K, (t,-) € C'(R) then by Taylor expansion of first
order for 0 = a(x —y) + (1 — a)r = = — ay and some « €]0, 1] we can write:

K, (t,x —y) — Ky(t,x) = —y0, K, (t,0), (66)
and then we have
I < /|<z [ Koy (s @ — y) — Koy (t, )| [uo(y)ldy < /|<z YOz Iy (¢, 0) | uo(y)|dy. (67)
Y>35 Y=+

We estimate now the last term in the right side. Recall first that by point 1) of Lemma [A1] we can write

Ot
|0, Ky (t,0)] < Cy but since we have § = z — ay (with « €]0, 1]) then we can write |0| > |z| —aly| > |z|— |y|

"1oP
and moreover, since we have |y| < ‘ then we write |z| — |y| > \:v\ and thus we get 0| > @ Then we have

e6nt

and getting back to estimate (67) we get
oOnt
[ ool <, [ i< €5 [l (9)
yi<lel |23 )< Lzl ||
where, since the initial data wug verifies |ug(y)| < Tc‘zﬁ (with & > 0) then the last term in right side
Y

1
converges. Thus, by estimates (67) and (G9) we have I < (Cy €| | - |uol| 1) EE and then
x

1
L=o0 <W> ,  when |z| — 4o0. (70)
T
Now, for term I5 in identity (64]) we write
B[ Vo= o)l ()
yl>5

and in order to study this terms we have the following estimates: remark that by point 1 of Proposition 2.1] we
have
ednt 1

K, (t,x — <cp—F—""-—7,
’ n( y)\_ nt% 1+\x—y\2

(72)
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hence we get
5nt

e
B (8 ) < T (73)
3
On the other hand, always since the initial data ug verifies |ug(y)| < TCPJFE and moreover, since in term I
)
we have |y| > @ then, for || > 0 large enough we get
c c c
luo(y)| < 11 [y[2+e < g2+ < [z 2+ (74)
With estimates (73]) and (74]) at hand, we get back to formula (1)) and we write
c c c ot
K (y, 2 — y)|[uo(y)|dy < 5 |Kn(t,z —y)ldy < = 1K)l < o (on—— )
ly|> 12l || lyl> L2l || || t3
and by this estimate and estimate (7I]) we have:
1
Iy=o0 ) when |z| — +o0. (75)

We study now the term I3 in identity (64). By estimate (2] and for |x| > 0 large enough we can write

65nt
fgngn@,x)\(/l ot >\dy><cnt FE </| ot >\dy>, (76)

but, recall that since we have |ug(y)| < TCPJFE then we get up € L'(R) and thus we have

)

i ([ oidy | =0
|z|—>4o00 \ Jjy|> 2l
Then we can write
1
Is=o <W> ,  when |z| — 4o0. (77)
x

Finally, by estimates (0)), (75 and (7)) we get estimate (G5]).

1 t
Now, for the second term in the right side in the integral equation (3)): 3 / Kyt —7,-) % 0x(u?) (7, ) (z)dT, we
0

will prove the following asymptotic development: when |z| — 400 we have

/ Kot = 7.) % 0, (1) (, ) (w)dr — /Ot K, (t—7,2) </R u(T,y)ayu(T,y)dy> dr + o (, 1‘2> (78)

Indeed, for all x € R we write

/K ) % Oz (u )( Nx)dr = /Knn T,) * (wOgu(T,-)) (x)dr
= //K — 7,2 — y)u(T,y)0yu(r,y)dy dr, (79)

(©)
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then, in order to study term (c), following the same computations done in formulas (63]), (63) and (64]) we write

() = K(t—r1) ( /R u(T,y)ayu(T,y)dy> dr

+ j ‘<m (Kn(t - T,T — y) - Kn(t — T,x)) (u('r, y)ayU(’T, y)) dy dr

+ /| " Ky(t—1,2 —y) (u(r,y)0yu(r,y)) dy dr — K, (t — 7, ) </| u(T, y)dyu(r, y)dy) dr,
Y>35 Y

|z
>3

and getting back to identity ([79) we have the identity:

%/Ot Kyt —7,-) % 0p(u?)(r, ) (x)dr = /Ot K, (t—7,7) </R u(r, y)ayu(T,y)dy> dr

—|-/0 / <l (Ky(t—1,2 —y) — Ky(t — 7,2)) (u(r,y)0yu(t,y)) dy dr
yl<l3l

N~

Ia
t
s [ Kalt = 7= ) )yt ) dydr
0 Jyl>%
Iy

_/ Kyt —7,x) (/ ol u(T,y)ayu(T,y)dy> dr. (80)
0 lyl>15"

I

Thus, in order to prove the asymptotic development given in (78]), we must prove the following estimate:
1
IL+L+1.=o0 e ) when |z| — +o0. (81)
x

For term I, by estimates (G0) and (G8) we can write

t
o [ Ve ) = Kyt =)l )y ) dyde
yI<z
t eBn(t—7) ebnt it
< [ (e [ltrnourwlir)ar <, [ [ wllurmo,uealagar, 52

where, in order to estimate the last term in the right side we have the following technical result.

d
Lemma 4.2 Since the initial data ug verifies d—uo(az) then there exists a constant 0 < C* =
x

«_°
14 |x?
C*(t,n,up,u) < 400, which depends of t > 0, n > 0, the initial data uy and the solution wu, such that for all
time T € [0,t] and for all y € R we have

C*

lu(7, y)Oyu(r, y)| £ . (83)
731+ [yl!)
Proof. The first thing to do is to prove that the function 9,u(r,y) verifies the following estimate:
C*
|0yu(T,y)| < ;71 (84)
T3(1 4 [yl?)
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where C'f > 0 is a constant which does not depend of the variable y. For this write the solution u as the integral
equation (3)), then we derive respect to the spacial variable y in each side of this identity (8] and we have

Oyulrs) = Ko(r) + Ouo)) = 5 [ 0F(r = €.) #0,(2)(C ) = T+ T

and now we must study the terms I; and Is above.

In order to study term I, recall that by the second estimate in formula (GI)) the initial data wg verifies
c

Oyuo(y)| < 75

! 1+ [y]”

by this estimate we can write

and then, in estimate (27) we can substitute the function g by the function d,u¢ and thus

e |1 + | - [*0yuoll L~ e 1+ - [20yuoll =

ILi| < |K,(7,-) * (Oyu <ec <
|1|—| 77( ) (yO)(y)| 777_% 1+|y|2 777_% 1_|_|y|2

(85)
We study now term Is and for this we write

i< |3 [ - e raicoma < [ [ ase Cy—ww (¢ )| dzdl, (56)
(b)

where we still need to study terms (a) and (b). For term (a) recall that by point 2) of Lemma [ we have

87— Gy 2 < O 7
T—Cy—2z) < .
v "(T—g)§1+\y—zl3
On the other hand, for term (b) we have the following estimates
1+ |2))[u(¢, 2])|0u(C, 2 Cél—i- 212)|u(¢, 2])|0u(C, 2
DG = 2, MOl ) - 2L EEIC NOEE) _ pCHL e sl 5)
+12] L+ 2P)
L 1
< | sup G+ PulC )iz ) | sup [10:u(C, )l | s (83)
0<c<t 0<¢<t ¢3(1+|2?)

but, by the quantity ||u||r, (where the norm || - ||, is given in formula (I9])) we can write

1
sup C3[(1+ |- [P)u(¢, )z~ < [lullm,,
0<¢<t

and moreover, by estimate ([B8) we can write sup |[[0,u(¢, )|z~ < ||u|/F,, and thus, getting back to estimate
o<¢<t

([BY) we get

u2 z u 2 I E—
102 (u”) (¢, 2) <] ||Ft§%(1+|z|2) (89)

Once we dispose of estimates (87) and (89)), we get back to estimate (86]) and then we write

L] < / / o : a1 . dz d¢
ul|y, —— | dz
2= 1+|y 23 F’fg%(lﬂz‘z)
t d¢ dz
< C 6nT 2 / (/ >
< Cpe’|ull g, < o ((r— C)§)6%> g (14 |y —zP) (1 +12[2)
dz dz 1
< CeGnT</ >§066nr</ )SCGGUT
! R (1+ [y —2*)(1+[2[?) ! r (L+ [y —2*)(1+[2?) T4y
< CnT%GGWTI; < Cyt3ebm : ! (90)
73(1+[y[?) T3(1+ |yl?)



By estimates (85]) and (@0) we set the constant C as C] = max <cne5’7t\|(1 + |- 1*)8yuol| Lo, Cnt%e%t) > 0, and

then we can write estimate (83).

Q:O(ta n, uO)8 <b% t)
(L Jyf?)

C* as C* = max <€0(t,77,u0)@ (bi t) ,Cf) > 0 and then by estimate above and estimate (83]) we get the

desired estimate (83)). [

Finally, recall that by estimate (B8] we can write |u(7,y)| < thus, we set the constant

Thus, getting back to estimate (82]), for |z| > 0 large enough we can write

e[ ([T 1l (O 5)
w // ey o <O <C </ _2> </1+\ r4dy>>§0" .
RT3 1+\y[ T 0 T3 R Y z

and the we have

1
I,=o|—5 |, when |z] — 4o0.
|z

We study now the term I, in formula (80)). By estimate (83]) have have

I, < / / n(t =72 —y)| |lu(r,y)0yu(r,y) |dyd7'</ / t—7x—y)|207dyd7',
ly \>‘x‘ v |>‘“ T3(1+ |yl*)

but, since in term I, above we have |y| > ‘x‘ then we can write and thus we get

1+Iyl4_W

Ky(t—1,2—y)|——""—"— ¢ n(t — 7,2 —y)|dydr
z 4)
y|>‘x 73 (1 + |y*) y|>‘“

< on / ¢ = 7, ) o,

where, by estimate (73]) we write

C* t e n(t—r) C* .2
- < s
[ vt =< | (C”u_ﬂé)dT o (™)

C*
Then, for |z| > 0 large enough we have I, < Tl <cne5ntt%> and thus we can write
x

1
Iy=o0 (W) ,  when |z| — +o00. (91)
x

We study term I, in equation (80). By estimates (72]) and (83]) we have

N

t
I. < | Ky (t — 7, )] </ lu(T,y)0yu(T, y)\dy> dr
0 ly|>15
t 5n(t—T) 1 *
/ Cy ‘ ; 5 / zcidy dr
0 (t—7)3 1+ |z >l 73 (1 + [y[4)
t e5nt 1 / C*
y—————— dy | dr = (a),
/o ("(t—ﬂé W) < > 75 (14 [yI2)(1 + [y)?) )

IN

IN



but, remark that term I, above we have |y| > %l then we can write and thus we get

&
N SN
L4 [yl* = |z

t 657]t 1 Cc*
(a) < / T3 / 3 dy | dr
o \ "(t—7)3 Il =15 73 |2 (1 4 [y[?)
5nt vk t 5t vk t 5nt vk
cpe 4C’ / 1 : / i dy dTgcne 4C / d7’1 : Scne 4C"
[z* Jo \(t—7)3 R 73 (1 + |y|?) |z| 0 (t—7)573 |z
c eSntc*
Thus, for |z| > 0 large enough we have I. < % and then
x
1
I.=o <W> ,  when |z| — +o0. (92)
Finally, by estimates ([@II), (OI]) and ([@2)) we can write estimate (8I]) and Theorem [2]is now proven. [

5 Appendix

Proof of Lemma [2.7]
Recall that the term I, in (I3]) is given as

— Tiré ite3—nt(—£34€) . _ B B
I, = /£<0€2 ({95 <(et nt + )(3Zt§2 nt( 3§2+1))> dg—/

£<0

= /g<062m£ 02 (e@'t@*n“*é‘“’%)) dé = / ¥ OFK (L, €) de.

£<0

627ri:1:£a5 <8£(eit§3fnt(f£3+£))) d¢

On the other hand, by Lemma 5.1 in [I], we have: for all £ # 0,

2 7> 7> 2 2 2 2 : 7>
ORI (1,€) = Ryt €)1 (3i€7 — m sign(§)(3¢? — 1))+ 6€(i —  sign(€)) K, (¢, €),
and then we have

(93)

LY (R)

L < [[08Ryt) < el ) 2| Ryt )1+ |-

+o(L+m) ¢ Byt )1+ )|

L*(]—00,0() LY(R)

In order to study the term in the right side we have the following estimates: for m > —1, by estimate (@) and
denoting by I' the ordinary gamma function we have

|a+ By, < [|Rae| | + e Baeo|)
3nt
< o +/ |£|metn(|£|3|£||)d£+/ g™ e milel® ge
(nt)s  Jigl<2 j|>2
3nt m+2 T (mtl
S C ¢ - + 2— 6277t Mmil)
(s m+1 (nt)"s)
e3nt 1
< Cm— +Cn—mgr- (94)
(nt)3 (nt) s
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With this estimate (setting first m = 4 and then m = 1) we get back to (@3] and we write

3nt 1 3nt 1
L] < c(1+77)2t2<e -+ é)+a(1+n)t<e -+ 2)
(nt)s  (nt)> (nt)s  (nt)3
1+ 2 3nt 1 1+ 3nt 1
< C( 277) (nt)Q ( € R + - +C( 77) (7775) e T + 5
1 (nt)s  (nt)s " (nt)s  (nt)s
(1+n)? 3 3t 1 (L+n) 2 3t 1
< Yl Y
S (036 + (¥ ) + e (3™ + ()%
1+ n)? 1
S C( +277) (2647]t) + ( +T’) (2 47]t)
n n
< () )
n n
< (5 ) (5 e
n n
1 2
< ¢ (— + 2> ed. (95)
n
The term I, in (I3)) is treated following the same computations done for term I, above. |
Proof of Lemma [4.1]

1) Remark first that since K, (t,z) = F (e(z‘§3t—nt(|§|3—\§\))) (z) and 0, K, (t,x) = F ! <(2772'{)e(ifat_"t“fp_'gl))> (x),

and moreover since the functions (&’ =€ ~EN) ang (2ﬂi§)e(i53t*”t(|§|3*‘5‘)) belong to the space L!(R)
then by the properties of the inverse Fourier transform we have that K, (¢, ) and 0, K, (t, ) are continuous
functions and thus K, (t,-) € C}(R).

Now, we write

1

2mix

0. I, (t,x) = /]R (2mi€) e P I (1, €)d =

1
2mix

| (emig) i)y )
£<0

/ (2mi€) (2miz) ™ E K, (t, €)dE,
£>0

and since 35(62””5 ) = 2mize?™*¢ then we write

1
2mix
1

_ 00 (27 (20 ) HE M€ E) g
Dz Joo @) mig)e St e e

/ (zmg)(zm)e%ﬂﬁfk}(t,5)d5+L, (2mi€) (2miz) > K, (¢, £)d¢
£<0 2mix £>0

Oe (€277 ) (2mi€ ) e —ME =) e,
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then, we integrate by parts and we get

LT 2
2mix Jeco Oele )@mie) K (t §)dé + 2mix Jeso

— g [ em Ry e+ g [ (@ em) R, (1)
£<0 £>0

e (2708 (2mi€ ) KK, (¢, €)dE

2mix 2mx

1
2mx

_ l 2mixé 7 27rza:§ )
([ e me o [ @R 0

l 2mizg 72 2mizé 2 >
+x </§<0 e £0: K, (t,&)dE + /§>0 e £0: K, (t,€)dE

2mix

/ €28 (2mi€) D K (1, €)dE + / T (2mi€) O I (1, ) d
£<0 >0

1
In order to study the term /; remark that we have I} = — K, (¢,x) and then, by estimate (&) we get
x

57725
’11’ <C7]’ ‘37 (97)
We study now the term Iy above. Remark that the have 852(62“”’{) = —4n?22e?™*¢ and then we write
1 ) — ) —~
L = —F—— </ (_47Tx2)627rzz§£a K (t,f)d£ +/ (—4m2)e2’”$5£8 K (t,g)df)
(—4m22?)x £<0 S £>0 S
1 2 (2mixg i 2 2mizé 7
— - TTLL K t d TTLT K t d

_47-(-2.%.3 ( £<0 af (6 )565 77( ’5) 5 + £>0 85 (6 )565 17( ’5) 5 )

then, integrating by parts the last expression we can write

b= g | [ (0RR 00 + Ry 0)) e+ |

2,3
—4mex £>0

27 (021 (1,€) + 0P (1,9)) |

=(I2)a =(I2)p
(98)

and now we will prove the following estimate
|(I2)a] + |(I2)s] < Cye™. (99)

Indeed, for term (I3), we write |(I2)y] < cHBgI/(;(t, M1 g-oo,0p + c|]§3§’l/(\n(t, £t =os,0p, but recall that
by estimates ([@3]) and (@) we have Hf(;(t, Mt g=oo,0p < C,e*™ and then we can write

(I2)a] < Cpe™ + c||E0E Ky (t, )l 11 —co0p < Cne™™ + cll€R Ky (t, ) 111 —o000)) (100)
Now, we study the term ch@?.[f(Z(t, M z1g=oc,0p- By Lemma 5.1 in [I], we have: for all £ # 0,

DR, (1,€) = K, (t,€)(3i€% — nsign(€) (3¢ — 1))°
I (,€) (3663 (n — 1) — 72insign(€)€® + 12 sign(€)¢ — 120%¢€)
+6t2 1, (¢, €) (€ (i — nsign(€)))(3i€? — nsign(€) (362 — 1)) + 6tK, (¢, €)(i — nsign(€)),
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then we can write
03Ky (1, )] < Cot® (1 + €[ By (8, )| + Cut*(1+ € Ky (8, €)] + Ct| Koy (8, €)1,
and thus we get
€103 (£, €)] < Cut* (1 + €[ E (8, )] + Copt? (1 + [ Koy (1, )] + Cot (1 + €1 [ Ky (£, ).

With this estimate we can write

IN

IEOZ K (t, ) pr gy < ent® (L + €]V E (t, ) 21wy
et ][ (14 €Ky (t, )|t gy + Cotl(1+ €D Ko () 11 )
= (a)v

and then, by estimate ([94]) (setting first m = 7 then m = 4 and finally m = 1) we have

€02 (£, )| 1 o000

(@)

IN

C,t3 <e2“7 F3 4 t’(§)> + cyt? <e2“7 T L t*@) + eyt <e2“7 F3 4 t’(§)>

< Gy e,

and this we can write Hgag’l/(\n(t, Mrrg=se0p < C,e”™. With this estimate we get back to estimate (I00)
and we write |(I2)q] < C,e®".

The term ([3)p is estimated following the same computations done for the term (I3), above and the
we have estimate (99]).

Finally, with estimate ([@9) we get back to estimate (O8)) and we write

5nt

e
2| < Cy

FEk (101)

and thus, by estimates (7)) and (I0T]) we get back to estimate (@8] and we can write the desired estimate:

65nt
|02 Kt | < CnW.
We write
|00y (2, )| < /R/R\(27Ti§)€2m§Kn(t7§)\d§ <+ [ENKn(E, )l (102)
and by estimate (94]) (with m = 1) we have
— 1 1 C 1 C
1+ €DK (¢, )l < Cy ( + 5+ —2> = =2 (HeM 415 + 1) < L. (103)
t3 t3 t3 t3
Then we can write
Cn snt o Cn_ont
0Ky (L, 2)] < — e < — e
t3 t3
65nt
Finally, by this estimate and estimate proven in point 1) above: |0, K¢ 4| < an, we can write: |0, K, (t,x)] <
x
6nt 1
e
ot 1 m
T3 1+ |3
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6 Annex: the local well-posedness in Lebesgue spaces

We start by remarking that the kernel K, (¢, -) given in (]) and its derivative 0, K,(t, -) belong to the space LP(R)

5nt 1
for 1 < p < 4o00. Indeed, by point 1) of Proposition 1] we have, for all time ¢ > 0, |K,(t,z)| < CneTm
t3 €
5nt 1
and then for 1 < p < +oo0 we get || Ky (t,-)|r < cne—1 T hence, for the sake of simplicity we will
t3 e
write
65nt
1K ()l e < en—- (104)
ts3
et 1
In the same way, recall that by point 2) of LemmalTlwe have, for all time t > 0, |0, K, (t,z)| < C,]—QTH?’,
t3 T
hence, for 1 < p < 400 we obtain
6nt
e
102 K (E, )| zr < Cp—5~ (105)

3
Estimates (I04) and (I05]) will allow us to study the existence of mild solutions for the Cauchy problem () in
the framework of Lebesgue spaces when the initial data ug is small enough. It is worth to remark here that
the following theorem is just a first study in the setting of Lebesgue spaces and we think that this result could
be improved in further investigations.

Theorem 6.1 Let 1 < p < +oo and let ug € LP(R) be an initial data. Let T > 0. Then, there exists
d = (T) > 0 such that if ||ugl|rr < 0 then the integral equation (3) possesses at least a solution local in time

solution u € L*(]0,T[, LP(R)) which verifies sup t3 llu(t,)||rr < +o00.
0<t<T

Proof. Let T > 0 fix and consider the Banach space L*°(]0,T'[, LP(R)) with the norm sup t3 |- |lpp. We write
0<t<T

/0 Kyt —s,-) * 0y (u*(s,-))ds

)

sup t%Hu(t,-)HLp < sup t%HKn(t, -) *ugl|e + sup t3
0<t<T 0<t<T 0<t<T Lp

and we will estimate each terms in the right side.

For the first term in the right side above, by estimate (104]) we can write

e5nt

1 1 1
sup t3 || K, (¢, ) xuo|r < sup €3 K,(t, )|z lluollre < sup t3 <c,7 ; ) [uol|rr < cye™™ |uol|re.  (106)
0<t<T 0<t<T 0<t<T ts

Now, the second term in the right side above is estimated as follows: first for all time ¢ €]0,7T] and for

1 < g < 400 which verifies 1 + % = % + 2. we write

and then, by estimate (I05]) we get

IN

/Kn(t—s)*ax(uQ(s,-))ds /HKn(t—s)*Bx(uQ(s,-))HLpdsS/ 100 Ky (t = 5,) % u2(s, )| Lods
0 0 0

Lp

IN

t
[ 0Kt = sl ) s,
0

/tnaK(t oo lu(s, ) pds < / N s, s < € G"T/t L s, 2
. — s, u®(s,-)|| pds < — | [|u* (s, )| ds < Ce ——u(s, - s
o o o Lt o \ "(t—s) L T o (= s)3 L
6nT t _2 _2 (1 2
< Cpe (t—s)"3s 3<33Hu(s,-)HLp> ds
0
6nT 1 2 t _2 _2
< CRe’ | sup €5 ||ult, )|l (t—s) 35 3ds |,
o<t<T 0
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t
but, the last expression (also known as the Beta function) verifies / (t— s)*gsfgds < ct™3 and then we can
0

write

2
SCne6"T< sup té||u(t,-)\|Lp> 3.
o<t<Ty

/0 Ky (t — s) % 0y (u’(s,-))ds

Lp

Once we have this estimate we write

t 2
sup t3 / Ky(t — 8) % 0y (u?(s,-))ds < sup t3 Ce®rt < sup t%Hu(t, )HLp> 3
0<t<T 0 Lp 0<t<T 0<t<Tp
2
1
< Oyt < sup 3 [ju(t, )HLP) . (107)
0<t<T
1
Now, with estimates (I06]) and (I07) we set the quantity ¢ as 6 = 1o O ol 0 and if the initial data verifies
cnChe
|luo||z» < ¢ then the result follows from the Picard contraction principle. |
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