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Optimal decay and asymptotic behavior of solutions to a

non-local perturbed KdV equation

Manuel Fernando Cortez ∗,†, Oscar Jarŕın ‡ ,§

November 23, 2018

Abstract

We consider the KdV equation with an additional non-local perturbation term given in terms of the Hilbert transform.

We find the asymptotic expansion when |x| → +∞ of solutions to this equation corresponding to initial conditions which

decays as
1

1 + |x|2 . Moreover, we prove that this spatially-decaying is optimal even if the initial datais a fast-decay

funcion.
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1 Introduction

In this article we consider the following Cauchy’s problem for a non-local perturbed KdV equation
{

∂tu+ u∂xu+ ∂3
xu+ η(H∂xu+H∂3

xu) = 0, η > 0, on ]0,+∞[×R,

u(0, ·) = u0.
(1)

where the function u : [0,+∞[×R → R is the solution, u0 : R → R is the initial data and H is the Hilbert
transform defined as follows: for ϕ ∈ S(R),

H(ϕ)(x) = p.v.
1

π

∫

R

ϕ(x− y)

y
dy. (2)

Equation (1), also called the Ostrovsky, Stepanyams and Tsimring equation (OST-equation), was derived by
Ostrovsky et al. in [12, 13] to describe the radiational instability of long non-linear waves in a stratified flow
caused by internal wave radiation from a shear layer. It deserves remark that when η = 0 we obtain the well-
know KdV equation. The parameter η > 0 represents the importance of amplification and damping relative
to dispersion. Indeed, the fourth term in equation (1) represents amplification, which is responsible for the
radiational instability of the negative energy wave, while the fifth term in equation (1) denotes damping (see
[11] for more details). Both of these two terms are described by the non-local integrals represented by the
Hilbert transform (2).

One rewrites Equation (1) in the equivalent Duhamel formulation (see [1]):

u(t, x) = Kη(t, ·) ∗ u0(x)−
1

2

∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)(x)dτ, (3)
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where the kernel Kη(t, x) is given by

Kη(t, x) = F−1
(
e(iξ

3t−ηt(|ξ|3−|ξ|))
)
(x), (4)

and where F−1 denotes the inverse Fourier transform.

Well-posedness results for the Cauchy problem (3) was extensively studied in the framework of Sobolev spaces.
The first work of this problem was carry out by B. Alvarez Samaniego in his PhD thesis [1]. The author
proved a local well-posedness in Hs(R) for s > 1

2 , using properties of the semi-group associated with the linear
problem. He also obtained a global solution in Hs for s ≥ 1, making use of the standard energy estimates. This
result was improved by several authors: X. Carvajal & M. Scialon proved in their article [5] that the Cauchy’s
problem (3) is locally well-posedness (LWP) in Hs(R) for s ≥ 0 and global well-posedness (GWP) in L2(R).
After, X. Zhao & S. Cui proved in [14] the LWP of problem (1) in Hs(R) for s > −3

4 and GWP for s ≥ 0.
Finally, in recent works A. Esfahani and H. Wang [8, 9] showed that the Cauchy problem (3) is LWP in Hs(R)

for s ≥ −3
2 and moreover, it is shown that H− 3

2 is the critical Sobolev space for the LWP.

On the other hand, since equation (1) is a nonlinear dissipative equation, it is natural to ask for existence
of solitary waves. Numerical studies done in [6] by B.F. Feng and T. Kawahara show that for every η > 0 there

exists a family of solitary waves which experimentally decay as
1

1 + |x|2 when |x| → +∞. This numerical decay

of solitary waves suggests the theoretical study of the decay in spacial variable of solutions u of equation (1) and,
in this setting, B. Alvarez Samaniego showed in the last part of his PhD thesis (Theorem 5.2 of [1]) that if the
initial data u0 verifies u0 ∈ H2(R) ∩ L2(1 + | · |2, dx) then there exists u ∈ C([0,∞[,H2(R) ∩ L2(1 + | · |2, dx))
a unique solution of equation (1). This result is intrinsically related to the nature of the functional spaces
above in which the Fourier Transform plays a very important role: kernel Kη(t, x) given in (4) associated with
the equation is explicitly defined in frequency variable. Furthermore, remark that this spatially-decaying of
solution is studied in the setting of the weighted-L2 space and therefore it’s a weighted average decay.

The first purpose of this paper is to obtain a pointwise decay in spacial variable of solution u(t, x). More

precisely, we prove that if the initial data u0 ∈ Hs(R), with 3
2 < s ≤ 2, verifies |u0(x)| ≤

c

1 + |x|2 , then there

exist a unique global in time solution u(t, x) of the integral equation (3) which fulfills the same decay of the
initial data u0. Moreover, we show that the solution u(t, x) of the integral equation (3) is smooth enough and
then this solution verifies the differential equation (1) in the classical sense.

Theorem 1 Let 3
2 < s ≤ 2 and let u0 ∈ Hs(R) be an initial data such that |u0(x)| ≤

c

1 + |x|2 . Then, the

equation (1) possesses a unique solution u ∈ C(]0,+∞[, C∞(R)) arising from u0, such that for all time t > 0
there exists a constant C = C(t, η, u0, u) > 0, such that for all x ∈ R the solution u(t, x) verifies:

|u(t, x)| ≤ C

1 + |x|2 . (5)

Remark 1 Estimate (5) is valid only in the setting of the perturbed KdV equation (1) when the parameter η

is strictly positive.

Indeed, with respect to the parameter η the constant C > 0 behaves like the following expression (see formula

(59) for all the details):
1

η
1
3

(
1 +

(
1

η
+ 2

)2
)

+ 1, and this expression is not controlled when η −→ 0+.

Recall that in the case η = 0, the equation 1 becomes the KdV equation. In this framework T. Kato [10]
showed the following persistence problem: if u0 ∈ H2m(R) ∩ L2(|x|2m, dx) where m ∈ N is strictly positive,
then the Cauchy problem for the KdV equation is globally well-posed in C([0,+∞[;H2m(R) ∩ L2(|x|2m dx))
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and then the solution of the KdV equations decays at infinity as fast as the initial data.

Getting back to the perturbed KdV equation (1), a natural question raises: is the spatial decay given in
formula (5) optimal? Concerning this question, B Alvarez Samaniego shown in [2] that the solution cannot

have a weight average decay faster than
1

1 + |x|4 and in this case we fave a lost of persistence in the spacial

decay. This suggest that the optimal decay rate in spatial variable of solution u(t, x) must be of the order
1

1 + |x|s with 2 ≤ s < 4.

The second purpose of this paper is to study the optimal spatially-decaying for the solution u(t, x) of equation
(1). We start by studying some decay propietes of the kerner Kη(t, x) and in Proposition 2.1 we show that this

kernel has an optimal decay rate of the order
1

1 + |x|2 . After, in the following theorem we prove that if the

initial data u0 decays a little faster than
1

1 + |x|2 , then the solution u(t, x) associated to u0 has the asymptotic

profile given (6) and we can observe that the behavior of solution u(t, x) in spatial variable is actually the same
behavior of the kernel Kη(t, x). Thus, the decay in spatial variable given in estimate (5) is optimal.

Theorem 2 Let 3
2 < s ≤ 2 and let u0 ∈ Hs(R) be an initial data such for ε > 0 we have |u0(x)| ≤

c

1 + |x|2+ε

and

∣∣∣∣
d

dx
u0(x)

∣∣∣∣ ≤
c

1 + |x|2 . Then, the solution u(t, x) of equation (1) given by Theorem 1 has the following

asymptotic development when |x| is large enough:

u(t, x) = Kη(t, x)

(∫

R

u0(y)dy

)
+

∫ t

0
Kη(t− τ, x)

(∫

R

u(τ, y)∂yu(τ, y)dy

)
dτ + o

(
1

|x|2
)
, (6)

where the kernel Kη(t, x) is given in (4).

Remark 2 It should be emphasized that even if the initial data is compact supported function then, the arising

solution u cant not decay faster than
1

1 + |x|2 .

Let us point out that our approach to study these spatially-decaying properties given in Theorems 1 and 2 are
inspired by L. Brandolese [4] and it’s technically different with respect to previous works on equation (1) since
here we study the kernel Kη(t, x) in spatial variable and not in frequency variable.

Finally it is worth to remark that this approach permits to study the equation (1) in other functional spaces
which, to the best of our knowledge, have not been considered before. More precisely in annex we prove that
the properties in spacial variable of kernel Kη(t, x) allow us to prove that the integral equation (3) is LWP in
the framework of Lebesgue spaces.

This article is organized as follows: in Section 2 we study the optimal decay in spatial variable of the ker-
nel Kη(t, x). Section 3 is devoted to prove Theorem 1 and in the last Section 4 we prove Theorem 2.

2 kernel estimates

In this section we study the properties decay in spacial variable of the kernel Kη(t, x) which will be useful in
the next sections.

Proposition 2.1 Let Kη(t, x) be the kernel defined in expression (4).

3



1) There exists a constant cη > 0, given in formula (16) and which only depends of η > 0, such that for all

time t > 0 we have |Kη(t, x)| ≤ cη
e5ηt

t
1
3

1

1 + |x|2 .

2) Moreover, the kernel Kη(t, x) cannot decay at infinity faster than
1

1 + |x|2 .

Proof.

1) First we will estimate the quantity |Kη(t, x)|, and then we will estimate the quantity |x|2|Kη(t, x)|.

We write

|Kη(t, x)| ≤ ‖Kη(t, ·)‖L∞ ≤ ‖K̂η(t, ·)‖L1 , (7)

and then we must study the term ‖K̂η(t, ·)‖L1 . By expression (4) we have K̂η(t, ξ) = e(iξ
3t−ηt(|ξ|3−|ξ|)) and

then we can write

‖K̂η(t, ·)‖L1 =

∫

R

|eiξ3t||e−ηt(|ξ|3−|ξ|)|dξ =

∫

R

e−ηt(|ξ|3−|ξ|)dξ

=

∫

|ξ|≤
√
2
e−ηt(|ξ|3−|ξ|)dξ +

∫

|ξ|>
√
2
e−ηt(|ξ|3−|ξ|)dξ

= I1 + I2. (8)

In order to estimate the integral I1, remark that if |ξ| ≤
√
2 then we have −(|ξ|3 − |ξ|) ≤ |ξ| and thus we

can write

I1 ≤
∫

|ξ|≤
√
2
eηt|ξ|dξ ≤ c e

√
2ηt ≤ c e2ηt.

Now, in order to estimate the integral I2, remark that if |ξ| >
√
2 then we have −(|ξ|3 − |ξ|) < − |ξ|3

2 and
thus we write

I2 ≤
∫

|ξ|>
√
2
e−ηt |ξ|

3

2 dξ ≤
∫ +∞

0
e−ηt |ξ|

3

2 dξ ≤ c

(ηt)
1
3

.

With these estimates, we get back to identity (8) and we write

‖K̂η(t, ·)‖L1 ≤ c e2ηt +
c

(ηt)
1
3

≤ c
e2ηt(ηt)

1
3 + 1

(ηt)
1
3

≤ c
e3ηt + 1

(ηt)
1
3

≤ C
e3ηt

(ηt)
1
3

, (9)

hence, getting back to estimate (7) we can write

|Kη(t, x)| ≤ C
e3ηt

(ηt)
1
3

. (10)

Now we will estimate the quantity |x|2|Kη(t, x)|. Always by expression (4), for x 6= 0 we write

Kη(t, x) = F−1
(
e(iξ

3−ηt(|ξ|3−|ξ|))
)
(x) =

∫

R

e2πixξe(iξ
3−ηt(|ξ|3−|ξ|))dξ

=

∫

ξ<0
e2πixξe(iξ

3−ηt(|ξ|3−|ξ|))dξ +
∫

ξ>0
e2πixξe(iξ

3−ηt(|ξ|3−|ξ|))dξ

=

∫

ξ<0
e2πixξeitξ

3−ηt(−ξ3+ξ)dξ +

∫

ξ>0
e2πixξeitξ

3−ηt(ξ3−ξ)dξ

=
1

2πix

∫

ξ<0
2πixe2πixξeitξ

3−ηt(−ξ3+ξ)dξ +
1

2πix

∫

ξ>0
2πixe2πixξeitξ

3−ηt(ξ3−ξ)dξ. (11)

4



In the last identity, remark that ∂ξ(e
2πixξ) = 2πixe2πixξ and then we can write

1

2πix

∫

ξ<0
2πixe2πixξeitξ

3−ηt(−ξ3+ξ)dξ +
1

2πix

∫

ξ>0
2πixe2πixξeitξ

3−ηt(ξ3−ξ)dξ

=
1

2πix

∫

ξ<0
∂ξ(e

2πixξ)eitξ
3−ηt(−ξ3+ξ)dξ +

1

2πix

∫

ξ>0
∂ξ(e

2πixξ)eitξ
3−ηt(ξ3−ξ)dξ.

Now, integrating by parts each term above and since lim
ξ−→−∞

eitξ
3−ηt(−ξ3+ξ) = 0 and lim

ξ−→+∞
eitξ

3−ηt(ξ3−ξ) = 0

then we have

1

2πix

∫

ξ<0
∂ξ(e

2πixξ)eitξ
3−ηt(−ξ3+ξ)dξ +

1

2πix

∫

ξ>0
∂ξ(e

2πixξ)eitξ
3−ηt(ξ3−ξ)dξ

=
1

2πix
− 1

2πix

∫

ξ<0
e2πixξ∂ξ

(
eitξ

3−ηt(−ξ3+ξ)
)
dξ − 1

2πix
− 1

2πix

∫

ξ>0
e2πixξ∂ξ

(
eitξ

3−ηt(ξ3−ξ)
)
dξ

= − 1

2πix

∫

ξ<0
e2πixξ∂ξ

(
eitξ

3−ηt(−ξ3+ξ)
)
dξ − 1

2πix

∫

ξ>0
e2πixξ∂ξ

(
eitξ

3−ηt(ξ3−ξ)
)
dξ = (a).

Then following the same computation done in identity (11) and since ∂ξ(e
2πixξ) = 2πixe2πixξ then we

write

(a) = − 1

(2πix)2

∫

ξ<0
∂ξ(e

2πixξ)∂ξ

(
eitξ

3−ηt(−ξ3+ξ)
)
dξ − 1

(2πix)2

∫

ξ>0
∂ξ(e

2πixξ)∂ξ

(
eitξ

3−ηt(ξ3−ξ)
)
dξ

= − 1

(2πix)2

∫

ξ<0
∂ξ(e

2πixξ)(eitξ
3−ηt(−ξ3+ξ))(3itξ2 − ηt(−3ξ2 + 1))dξ

− 1

(2πix)2

∫

ξ>0
∂ξ(e

2πixξ)(eitξ
3−ηt(−ξ3+ξ))(3itξ2 − ηt(3ξ2 − 1))dξ.

= I1 + I2, (12)

where we will estimate both expressions I1 and I2. For expression I1, remark that we have

lim
ξ−→−∞

(eitξ
3−ηt(−ξ3+ξ))(3itξ2 − ηt(−3ξ2 + 1)) = 0,

and then, by integration by parts we can write

I1 = − 1

(2πix)2

(
−ηt−

∫

ξ<0
e2πixξ∂ξ

(
(eitξ

3−ηt(−ξ3+ξ))(3itξ2 − ηt(−3ξ2 + 1))
)
dξ

)

=
ηt

(2πix)2
+

1

(2πix)2

∫

ξ<0
e2πixξ∂ξ

(
(eitξ

3−ηt(−ξ3+ξ))(3itξ2 − ηt(−3ξ2 + 1))
)
dξ

︸ ︷︷ ︸
= Ia

. (13)

Now, for expression I2 given in (12), remark that we have

lim
ξ−→+∞

(eitξ
3−ηt(−ξ3+ξ))(3itξ2 − ηt(3ξ2 − 1)) = 0,

and then, always by integration by parts we write

I2 = − 1

(2πix)2

(
−ηt−

∫

ξ>0
e2πixξ∂ξ

(
(eitξ

3−ηt(−ξ3+ξ))(3itξ2 − ηt(3ξ2 − 1))
)
dξ

)

=
ηt

(2πix)2
+

1

(2πix)2

∫

ξ>0
e2πixξ∂ξ

(
(eitξ

3−ηt(−ξ3+ξ))(3itξ2 − ηt(3ξ2 − 1))
)
dξ.

︸ ︷︷ ︸
= Ib

5



Thus, with identities (13) and (13) at hand, we get back to identity (12) and we write

I1 + I2 =
2ηt

(2πix)2
+

2

(2πix)2
(Ia + Ib),

and then, getting back to identity (11) we have

|Kη(t, x)| =
∣∣∣∣

2ηt

(2πix)2
+

2

(2πix)2
(Ia + Ib)

∣∣∣∣ ≤ c
ηt

x2
+

c

x2
|Ia + Ib|. (14)

We still need to estimate the term |Ia + Ib| above and for this we have the following technical lemma,
which we will in prove later in the appendix.

Lemma 2.1 There exist a numerical constant c > 0, which does not depend of η > 0, such that for all

t > 0 we have |Ia + Ib| ≤ c

(
1

η
+ 2

)2

e4ηt.

With this estimate, we get back to equation (14) and we get

|Kη(t, x)| ≤ c
ηt

x2
+ c

(
1

η
+ 2

)2
e4ηt

x2
≤ c

(
1

η
+ 2

)2
ηt

x2
+ c

(
1

η
+ 2

)2
e4ηt

x2
≤ c

(
1

η
+ 2

)2
e4ηt

x2
+ c

(
1

η
+ 2

)2
e4ηt

x2

≤ C

(
1

η
+ 2

)2
e4ηt

x2
,

hence we can write

|x|2|Kη(t, x)| ≤ C

(
1

η
+ 2

)2

e4ηt. (15)

Thus, with estimates (10) and (15) we can write

|Kη(t, x)|+ |x|2|Kη(t, x)| ≤ C
e3ηt

(ηt)
1
3

+ C

(
1

η
+ 2

)2
e4ηt

x2
≤ C

e3ηt

(ηt)
1
3

+ C

(
1

η
+ 2

)2

(ηt)
1
3
e4ηt

(ηt)
1
3

≤ e5ηt

(ηt)
1
3

+ C

(
1

η
+ 2

)2
e5ηt

(ηt)
1
3

≤ C

(
1 +

(
1

η
+ 2

)2
)

e5ηt

(ηt)
1
3

≤ C

η
1
3

(
1 +

(
1

η
+ 2

)2
)

e5ηt

t
1
3

.

Finally, from now on we set the constant

cη =
C

η
1
3

(
1 +

(
1

η
+ 2

)2
)

> 0, (16)

and then we can write the desired estimate.

2) We will suppose that there exists ε > 0 and M > 0 such that for all |x| > M we have |Kη(t, x)| .
1

|x|2+ε

and then we will arrive to a contradiction. Indeed, if we suppose this estimate then we can prove that the
function xKη(t, x) belongs to the space L1(R): we write

∫

R

|xKη(t, x)|dx =

∫

|x|≤M
|xKη(t, x)|dx +

∫

|x|>M
|xKη(t, x)|dx = I1 + I2.

In order to estimate the term I1, recall that by point 1) of Proposition 2.1 we have: for all t > 0,
Kη(t, ·) ∈ L1(R). Thus, we have

I1 ≤ M

∫

|x|≤M
|Kη(t, x)|dx ≤ M‖Kη(t, ·)‖L1 < +∞.

6



Now, we estimate the term I2 and since we have |Kη(t, x)| .
1

|x|2+ε
, for all |x| > M , then we can write

I2 .

∫

|x|>M
|x| 1

|x|2+ε
dx .

∫

|x|>M

dx

|x|1+ε
dx < +∞.

Thus, the function xKη(t, x) belongs to the space L1(R) and then by the properties of the Fourier trans-

form we get that ∂ξK̂η(t, ξ) is a continuous function. Moreover, recall that we have Kη(t, ·) ∈ L1(R) and

then K̂η(t, ξ) is also a continuous function and thus, for all time t > 0 we have K̂η(t, ·) ∈ C1(R) but this

fact is not possible. Indeed, by identity (4) we have K̂η(t, ξ) = eiξ
3te−ηt|ξ|3eηt|ξ|, but observe that the term

eηt|ξ| is not differentiable at origin and then K̂η(t, ·) cannot belongs to the space C1(R). �

3 Proof of Theorem 1

Let 3
2 < s ≤ 2 fix and let u0 ∈ Hs(R) be the initial data and suppose that this functions verifies

|u0(x)| ≤
c

1 + |x|2 . (17)

We start by studying the existence of a local in time solution u of integral equation (3).

3.1 Local in time existence

Let T > 0 and consider the functional space YT =

{
u ∈ S ′

([0, T ] × R) : sup
0≤t≤T

t
1
3‖(1 + | · |2)u(t, ·)‖L∞ < +∞

}

and then define the Banach space

FT = YT ∩ C ([0, T ],Hs(R)) , (18)

doted with the norm

‖ · ‖FT
= sup

t∈[0,T ]
t
1
3 ‖(1 + | · |2)(·)‖L∞(R) + sup

t∈[0,T ]
‖ · ‖Hs(R). (19)

Remark that this norm is composed of two terms: the first term in the right side in (19) will allows us to study

the decay in spacial variable of the solution u. In this term we can observe a weight in time variable t
1
3 where

the reason to add this weight is purely technical and it allows us to carry out the estimates which we shall
need later. On the other hand, the second term in the right side in (19) will allows us to study the regularity
of solution u and this will be done later in Section 3.3.

Theorem 3.1 There exists a time T0 > 0 small enough and a function u ∈ FT0 which is the unique solution
of the integral equation (3).

Proof. We write

‖u‖FT
=

∥∥∥∥Kη(t, ·) ∗ u0 −
1

2

∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)dτ

∥∥∥∥
FT

≤ ‖Kη(t, ·) ∗ u0‖FT
+

∥∥∥∥
1

2

∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)dτ

∥∥∥∥
FT

, (20)

and we will estimate each term in the right side.

7



Proposition 3.1 There exist a constant C1,η > 0 given in formula (30), which only depends of η > 0, such
that we have:

‖Kη(t, ·) ∗ u0‖FT
≤ C1,η e

5ηT
(
‖(1 + | · |2)u0‖L∞ + ‖u0‖Hs

)
. (21)

Proof. By the definition of the quantity ‖ · ‖FT
given in equation (19) we write

‖Kη(t, ·) ∗ u0‖FT
= sup

t∈[0,T ]
t
1
3 ‖(1 + | · |2)Kη(t, ·) ∗ u0‖L∞ + sup

t∈[0,T ]
‖Kη(t, ·) ∗ u0‖Hs , (22)

and we start by estimate the first term in the right side. For all x ∈ R we write

|Kη(t, ·) ∗ u0(x)| ≤
∫

R

|Kη(t, x− y)||u0(y)|dy ≤
∫

R

|Kη(t, x− y)|1 + |y|2
1 + |y|2 |u0(y)|dy

≤ ‖(1 + | · |2)u0‖L∞

∫

R

|Kη(t, x− y)

1 + |y|2 dy. (23)

We need to study the term

∫

R

|Kη(t, x− y)

1 + |y|2 dy and for this remark that by point 1) of Proposition 2.1 we have

the estimate |Kη(t, x− y)| ≤ cηe
5ηt

t
1
3

1

1 + |x− y|2 , and then we can write

∫

R

|Kη(t, x− y)|
1 + |y|2 dy ≤ cηe

5ηt

t
1
3

∫

R

dy

(1 + |x− y|2)(1 + |y|2) , (24)

where the last term in the right side verifies
∫

R

dy

(1 + |x− y|2)(1 + |y|2) ≤ c
1

1 + |x|2 . (25)

Indeed, for x ∈ R fix we write
∫

R

dy

(1 + |x− y|2)(1 + |y|2) =

∫

|y|≤ |x|
2

dy

(1 + |x− y|2)(1 + |y|2) +
∫

|y|> |x|
2

dy

(1 + |x− y|2)(1 + |y|2) , (26)

then, for the first term in the right side, since |y| ≤ |x|
2 then we have |x− y| ≥ |x| − |y| ≥ |x|

2 and thus we can
write ∫

|y|≤ |x|
2

dy

(1 + |x− y|2)(1 + |y|2) ≤ 1

1 + |x|2
∫

|y|≤ |x|
2

dy

1 + |y|2 ≤ 1

1 + |x|2
∫

R

dy

1 + |y|2 ≤ c

1 + |x| .

Now, for the second term in the right side in (26), since |y| > |x|
2 then we have

∫

|y|> |x|
2

dy

(1 + |x− y|2)(1 + |y|2) ≤ 1

1 + |x|2
∫

|y|> |x|
2

dy

1 + |x− y|2 ≤ 1

1 + |x|2
∫

R

dy

1 + |x− y|2 ≤ c

1 + |x|2 .

With these estimates we get the estimate given in (25) and then, getting back to equation (24) we can write

∫

R

|Kη(t, x− y)

1 + |y|2 dy ≤ cηe
5ηt

t
1
3

1

1 + |x|2 .

Now we get back to (23) and we have |Kη(t, ·) ∗ u0(x)| ≤ ‖(1 + | · |2)u0‖L∞
cηe

5ηt

t
1
3

1

1 + |x|2 .

Thus, the first term in the right side in (22) is estimated as follows:

sup
t∈[0,T ]

t
1
3 ‖(1 + | · |2)Kη(t, ·) ∗ u0‖L∞ ≤ cηe

5ηT ‖(1 + | · |2)u0‖L∞ . (27)
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We study now the second term in the right side in (22) and we will prove the following estimate

sup
t∈[0,T ]

‖Kη(t, ·) ∗ u0‖Hs ≤ ce5ηT ‖u0‖Hs , (28)

where c > 0 is a numerical constant which does not depend of η > 0. This estimate relies on the following
technical estimate given in Lemma 2.2, (page 10) of [1]: let s1 ∈ R, φ ∈ Hs1(R) and let s2 ≥ 0. Then, for all
t > 0 we have

‖Kη(t, ·) ∗ φ‖Hs1+s2 ≤ c
e5ηt

(ηt)
s2
2

‖φ‖Hs1 . (29)

In this estimate we set φ = u0 ∈ Hs(R), s1 = s and s2 = 0; and then, for all 0 ≤ t ≤ T we get

‖Kη(t, ·) ∗ u0‖Hs ≤ ce5ηt‖u0‖Hs ≤ ce5ηT ‖u0‖Hs ,

hence we have the estimate (28). Now, by estimates (27) and (28) we set the constant C1,η > 0 as

C1,η = cη + c, (30)

where cη > 0 is the constant given in formula (16), and then we have the estimate given in (21). Proposition
3.1 is proven. �

We study now the second term in the right side in equation (20).

Proposition 3.2 There exists a constant C2,η > 0 given in formula (41), which depends only of η > 0, such
for all u ∈ FT we have

∥∥∥∥
1

2

∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)dτ

∥∥∥∥
FT

≤ C2,η e
5ηT max(T

2
3 , T

1
2 )‖u‖FT

‖u‖FT
. (31)

Proof. By definition of the norm ‖ · ‖FT
given in (19) we write

∥∥∥∥
1

2

∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)dτ

∥∥∥∥
FT

= sup
t∈[0,T ]

t
1
3

∥∥∥∥(1 + | · |2)
(
1

2

∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)dτ

)∥∥∥∥
L∞

+ sup
t∈[0,T ]

∥∥∥∥
1

2

∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)dτ

∥∥∥∥
Hs

, (32)

and we will estimate each term in the right side.

For the first term in (32), for all t ∈ [0, T ] we have

t
1
3

∥∥∥∥(1 + | · |2)
(
1

2

∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)dτ

)∥∥∥∥
L∞

≤ t
1
3

∫ t

0

∥∥∥∥(1 + | · |2)1
2
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)

∥∥∥∥
L∞

dτ,

and now we need to prove the following estimate:

∥∥∥∥(1 + | · |2)1
2
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)

∥∥∥∥
L∞

≤ cη
e5η(t−τ)

(t− τ)
1
3 τ

1
3

‖u‖FT
‖u‖FT

. (33)

Indeed, we will study first the quantity 1
2Kη(t − τ, ·) ∗ ∂x(u2)(τ, ·)(x). Remark that we have 1

2∂x(u
2) = u∂xu

and then for all x ∈ R we write
∣∣∣∣
1

2
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)(x)

∣∣∣∣ ≤ |Kη(t− τ, ·) ∗ (u(τ, ·)∂xu(τ, ·)) (x)|

≤
∫

R

|Kη(t− τ, x− y)||u(τ, y)||∂yu(τ, y)|dy. (34)
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Now, recall that by point 1) of Proposition 2.1 we have |Kη(t− τ, x− y)| ≤ cη
e5η(t−τ)

(t− τ)
1
3

1

1 + |x− y|2 , and then

in the last term above we can write
∫

R

|Kη(t− τ, x− y)||u(τ, y)||∂yu(τ, y)|dy ≤ cη
e5η(t−τ)

(t− τ)
1
3

∫

R

|u(τ, y)||∂yu(τ, u)|
1 + |x− y|2 dy (35)

≤ cη
e5η(t−τ)

(t− τ)
1
3

‖(1 + | · |2)u(τ, ·)‖L∞

∫

R

|∂yu(τ, y|)
(1 + |y|2)(1 + |x− y|2)dy

≤ cη
e5η(t−τ)

(t− τ)
1
3

‖(1 + | · |2)u(τ, ·)‖L∞‖∂xu(τ, ·)‖L∞︸ ︷︷ ︸
(a)

∫

R

dy

(1 + |y|2)(1 + |x− y|2︸ ︷︷ ︸
(b)

, (36)

where we have to study the terms (a) and (b). For term (a) we have

(a) ≤ c

τ
1
3

‖u‖FT
‖u‖FT

. (37)

Indeed, recall first that we have the inclusion Hs−1(R) ⊂ L∞(R) (since s > 3
2 then we have s − 1 > 1

2) and
then we can write

‖∂yu(τ, ·)‖L∞ ≤ c‖∂xu(τ, ·)‖Hs−1 ≤ c‖u(τ, ·)‖Hs . (38)

Thus we have

(a) ≤ ‖(1 + | · |2)u(τ, ·)‖L∞‖u(τ, ·)‖Hs ≤ c

τ
1
3

(
τ

1
3‖(1 + | · |2)u(τ, ·)‖L∞

)
(‖u(τ, ·)‖Hs ) ,

and by definition of the norm ‖ · ‖FT
given in (19) we can write the estimate given in (37).

For term (b) in (36), recall that this was already estimated in (25).

Then, in estimate (36), by estimates (37) and (25) we have

∫

R

|Kη(t− τ, x− y)||u(τ, y)||∂yu(τ, y)|dy ≤ cη
e5η(t−τ)

(t− τ)
1
3 τ

1
3

1

1 + |x|2 ‖u‖FT
‖u‖FT

,

and now, we get back to estimate (34) and we write
∣∣∣∣
1

2
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)(x)

∣∣∣∣ ≤ cη
e5η(t−τ)

(t− τ)
1
3 τ

1
3

1

1 + |x|2 ‖u‖FT
‖u‖FT

,

hence we get the estimate (33).

Once we dispose of this estimate, for all t ∈ [0, T ], we can write

t
1
3

∫ t

0

∥∥∥∥(1 + | · |2)1
2
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)

∥∥∥∥
L∞

dτ ≤ cη t
1
3

(∫ t

0
e5η(t−τ) dτ

(t− τ)
1
3 τ

1
3

)
‖u‖FT

‖u‖FT

≤ cη t
1
3 e5ηT

(∫ t

0

dτ

(t− τ)
1
3 τ

1
3

)
‖u‖FT

‖u‖FT
≤ cη T

1
3 e5η

(
T

1
3

)
‖u‖FT

‖u‖FT

≤ cη e
5ηT T

2
3‖u‖FT

‖u‖FT
,

and then we have

sup
t∈[0,T ]

t
1
3

∥∥∥∥(1 + | · |2)
(
1

2

∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)dτ

)∥∥∥∥
L∞

≤ cη e
5ηT T

2
3‖u‖FT

‖u‖FT
. (39)
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We study now the second term in identity (32). For all t ∈ [0, T ] we write

∥∥∥∥
∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)dτ

∥∥∥∥
Hs

≤
∫ t

0
‖Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)‖Hsdτ

≤
∫ t

0
‖∂x(Kη(t− τ, ·) ∗ u2(τ, ·))‖Hsdτ ≤

∫ t

0
‖Kη(t− τ, ·) ∗ u2(τ, ·)‖Hs+1dτ.

Then, in estimate (29) we set now φ = (u2)(τ, ·), s1 = s and s2 = 1; and then we have

∫ t

0
‖Kη(t− τ, ·) ∗ u2(τ, ·)‖Hs+1dτ ≤

∫ t

0
c

e5η(t−τ)

(η(t− τ))
1
2

‖u2(τ, ·)‖Hsdτ,

where, by the product laws in Sobolev spaces and moreover, by definition of the norm ‖ · ‖FT
given in (19), we

have

∫ t

0
c

e5η(t−τ)

(η(t − τ))
1
2

‖u2(τ, ·)‖Hsdτ ≤
∫ t

0
c
e5η(η(t−τ))

(t− τ)
1
2

‖u(τ, ·)‖2Hsdτ

≤ c
e5ηT

η
1
2

(
sup

τ∈[0,T ]
‖u(τ, ·)‖Hs

)(
sup

τ∈[0,T ]
‖u(τ, ·)‖Hs

)∫ t

0

dτ

(t− τ)
1
2

≤ c
e5ηT

η
1
2

T
1
2 ‖u‖FT

‖u‖FT
.

Thus we get the estimate

sup
t∈[0,T ]

∥∥∥∥
1

2

∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)dτ

∥∥∥∥
Hs

≤ c
e5ηT

η
1
2

T
1
2 ‖u‖FT

‖u‖FT
. (40)

Finally, by estimates (39) and (40) we set the constant C2,η > 0 as

C2,η = cη +
c

η
1
2

, (41)

where cη > 0 is always the constant given in formula (16), and the estimate (31) follows. Proposition 3.2 in
now proven. �

Once we have the estimates given in Proposition 3.1 and in Proposition 3.2, we fix the time T0 > 0 small
enough and by the Picard contraction principle we get a solution u ∈ FT0 of the integral equation (3).

Now we prove the uniqueness of this solution u ∈ FT0 . Let u1, u2 ∈ FT0 be two solutions of the equation
(3) (associated to the same initial data u0). We define v = u1 −u2 and we will prove that v = 0. Indeed, recall
first that v(0, ·) = 0 and then v verifies the following integral equation

v(t, ·) = −1

2

∫ t

0
Kη(t− τ, ·) ∗

(
∂x(u

2
1(τ, ·) − u21(τ, ·))

)
dτ.

Since v = u1 − u2 then we write u21(τ, ·)− u21(τ, ·) = v(τ, ·)u1(τ, ·) + u2(τ, ·)v(τ, ·), and thus we have

v(t, ·) = −1

2

∫ t

0
Kη(t− τ, ·) ∗ (∂x(v(τ, ·)u1(τ, ·) + u2(τ, ·)v(τ, ·))) dτ.

In this expression we take the norm ‖ · ‖FT0
given in (19) and by Proposition 3.2 we have

‖v‖FT0
≤ C2,η max(T

2
3
0 , T

1
2
0 )‖v‖FT0

(
‖u1‖FT0

+ ‖u2‖FT0

)
. (42)
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From this estimate, the identity v = 0 is deduced as follows: let 0 ≤ T ∗ ≤ T0 be the maximal time such that
v = 0 on the interval [0, T ∗[. We will prove that T ∗ = T0 and by contradiction let us suppose T ∗ < T0. Then,
let T1 ∈]T ∗, T0[ and for the interval in time ]T ∗, T1[ consider the space F(T1−T ∗) defined in (18) and endowed
with the norm ‖ · ‖F(T1−T∗)

given in (19). By estimate (42) we can write

‖v‖F(T1−T∗)
≤ C2,η max

(
(T1 − T ∗)

2
3 , (T1 − T ∗)

1
2

)
‖v‖F(T1−T∗)

(
‖u1‖F(T1−T∗)

+ ‖u2‖F(T1−T∗)

)
,

and taking T1 − T ∗ > 0 small enough then we have ‖v‖F(T1−T∗)
= 0 and thus we have v = 0 in the interval in

time ]T ∗, T1[ which is a contraction with the definition of time T ∗. Then we have T ∗ = T . Theorem 3.1 is now
proven. �

3.2 Global in time existence and decay in spacial variable

In this section we prove first that the local in time solution u ∈ FT0 of the integral equation (3) is extended to
the whole interval in time ]0,+∞[. Then we prove the decay in spacial variable given in formula (5).

Theorem 3.2 Let T0 > 0 be the time given in Theorem 3.1. Let the Banach space (FT0 , ‖ · ‖FT0
) given by

formulas (18) and (19) and let u ∈ FT0 the solution of the integral equation (3) constructed in Theorem 3.1.
Then, we have:

1) u ∈ C([0,+∞[,Hs(R)).

2) Moreover, for all time t > 0 there exists a constant C = C(t, η, u0, u) > 0, which depends of t > 0, η > 0
the initial data u0 and the solution u, such that for all x ∈ R the solution u(t, x) verifies the estimate (5).

Proof.

1) Since u0 ∈ Hs(R) then by Theorem 2 of the article [14] there exists a function v ∈ C([0,+∞[,Hs(R))
which is the unique solution of integral equation (3). But, by definition of the Banach space FT we have
the inclusion FT ⊂ C([0, T ],Hs(R)) and then the solution u ∈ FT belongs to the space C([0, T ],Hs(R)).
Thus, by uniqueness of solution v we have u = v on the interval of time [0, T ] and then

sup
t∈[0,T ]

‖u(t, ·)‖Hs = sup
t∈[0,T ]

‖v(t, ·)‖Hs .

In this identity we can see that, since v ∈ C([0,+∞[,Hs(R)) then the quantity sup
t∈[0,T ]

‖u(t, ·)‖Hs does not

explode in a finite time and thus the solution u is extended to the whole interval of time [0,+∞[. Thus
we have u ∈ C([0,+∞[,Hs(R)).

2) In order to prove the property decay of solution u ∈ C([0,+∞[,Hs(R)) given in estimate (5), we will prove

that the quantity sup
t∈[0,T ]

t
1
3 ‖(1 + | · |2)u(t, ·)‖L∞ is well-defined for all time T > 0.

Let T > 0. For all t ∈ [0, T ] we write

t
1
3 ‖(1 + | · |2)u(t, ·)‖L∞ ≤ t

1
3

∥∥∥∥(1 + | · |2)
(
Kη(t, ·) ∗ u0 −

1

2

∫ t

0
Kη(t− τ, ·)∂x(u2)(τ, ·)dτ

)∥∥∥∥
L∞

≤ t
1
3

∥∥(1 + | · |2) (Kη(t, ·) ∗ u0)
∥∥
L∞

+t
1
3

∥∥∥∥(1 + | · |2)
(
1

2

∫ t

0
Kη(t− τ, ·)∂x(u2)(τ, ·)dτ

)∥∥∥∥
L∞

≤ I1 + I2, (43)
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where we will study the terms I1 and I2 above. For term I1, by Proposition 3.1 we have

I1 ≤ t
1
3‖(1 + | · |2)Kη(t, ·) ∗ u0‖L∞ ≤ C1,η e

5ηT ‖(1 + | · |2)u0‖L∞ ,

where we set the constant

C0(T, η, u0) = C1,η e
5ηT ‖(1 + | · |2)u0‖L∞ > 0, (44)

and then we write

I1 ≤ C0(T, η, u0). (45)

We study now the I2 in the right side in formula (43). We write

I2 ≤ t
1
3

∥∥∥∥(1 + | · |2)
(∫ t

0
Kη(t− τ, ·)∂x(u2)(τ, ·)dτ

)∥∥∥∥
L∞

≤ t
1
3

∫ t

0

1

2

∥∥∥∥(1 + | · |2)1
2
Kη(t− τ) ∗ ∂x(u2)(τ, ·)

∥∥∥∥
L∞︸ ︷︷ ︸

(a)

dτ, (46)

and we will estimate the term (a). Indeed, the first thing to do is to study the quantity

∣∣∣∣
1

2
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)(x)

∣∣∣∣,

and by estimates (34) and (35) we have

∣∣∣∣
1

2
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)(x)

∣∣∣∣ ≤ cη
e5η(t−τ)

(t− τ)
1
3

∫

R

|u(τ, y)||∂yu(τ, u)|
1 + |x− y|2 dy, (47)

where the constant cη > 0 is given in (16), and then we write

cη
e5η(t−τ)

(t− τ)
1
3

∫

R

|u(τ, y)||∂yu(τ, u)|
1 + |x− y|2 dy ≤ cη

e5ηT

(t− τ)
1
3

∫

R

|u(τ, y)||∂yu(τ, u)|
1 + |x− y|2 dy

≤ cη
e5ηT

(t− τ)
1
3 τ

1
3

∫

R

τ
1
3 (1 + |y|2)|u(τ, y)||∂yu(τ, u)|
(1 + |y|2)(1 + |x− y|2) dy

≤ cη
e5ηT

(t− τ)
1
3 τ

1
3

(
τ

1
3 ‖(1 + | · |2)u(τ, ·)‖L∞

)
(‖∂xu(τ, ·)‖L∞)︸ ︷︷ ︸

(a.1)

∫

R

dy

(1 + |y|2)(1 + |x− y|2)︸ ︷︷ ︸
(a.2)

, (48)

where we still need to estimate the terms (a.1) and (a.1). For the term (a.1), always since s > 3
2 then we

have s− 1 > 1
2 and thus we can write (a.1) ≤ ∂xu(τ, ·)‖Hs−1 ≤ ‖u(τ, ·)‖Hs . Now, by point 1) of Theorem

3.2 we have u ∈ C([0,+∞[,Hs(R) and then we get (a.1) ≤ sup
τ∈[0,T ]

‖u(τ, ·)‖Hs . Thus, we set the quantity

C1(T, u) = sup
τ∈[0,T ]

‖u(τ, ·)‖Hs > 0, (49)

and we can write

(a.1) ≤ C1(T, u). (50)

On the other hand, recall that term (a.2) was estimated in formula (25) by (a.2) ≤ c
1

1 + |x|2 .
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In this way, we substitute estimates (50) and (25) in terms (a.1) and (a.2) respectively given in formula
(48) and we get

cη
e5ηT

(t− τ)
1
3 τ

1
3

(
τ

1
3 ‖(1 + | · |2)u(τ, ·)‖L∞

)
(‖∂xu(τ, ·)‖L∞)

∫

R

dy

(1 + |y|2)(1 + |x− y|2)

≤ cη
e5ηT

(t− τ)
1
3 τ

1
3

(
τ

1
3 ‖(1 + | · |2)u(τ, ·)‖L∞

)
C1(T, u)

1

1 + |x|2 . (51)

hen, by formulas (47), (48) and (51) we get the following estimate

∣∣∣∣
1

2
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)(x)

∣∣∣∣ cη
e5η(t−τ)

(t− τ)
1
3 τ

1
3

‖(1 + | · |2)u(τ, ·)‖L∞C1(T, u)
1

1 + |x|2 ,

and by this estimate, for term (a) given in right side of estimate (46) we can write

(a) = ‖(1 + | · |2)Kη(t− τ) ∗ ∂x(u2)(τ, ·)‖L∞ ≤ cη
e5ηT

(t− τ)
1
3 τ

1
3

(
τ

1
3‖(1 + | · |2)u(τ, ·)‖L∞

)
C1(T, u)

≤ cη
e5ηTC1(T, u)

(t− τ)
1
3 τ

1
3

(
τ

1
3‖(1 + | · |2)u(τ, ·)‖L∞

)
.

Now, we get back to estimate (46) and we have

I2 ≤ cη t
1
3 e5ηTC1(T, u)

∫ t

0

1

(t− τ)
1
3 τ

1
3

(
τ

1
3‖(1 + | · |2)u(τ, ·)‖L∞

)
dτ

≤ cη T
1
3 (e5ηTC1(T, u))

∫ t

0

1

(t− τ)
1
3 τ

1
3

(
τ

1
3 ‖(1 + | · |2)u(τ, ·)‖L∞

)
dτ.

At this point, with the constant cη > 0 given in (16) and the constant C1(T, u) given in (49), we set the
constant

C2(T, η, u) = cη T
1
3 (e5ηTC1(T, u)) > 0, (52)

and then we write

I2 ≤ C2(T, η, u)

∫ t

0

1

(t− τ)
1
3 τ

1
3

(
τ

1
3‖(1 + | · |2)u(τ, ·)‖L∞

)
dτ. (53)

With estimates (45) and (53) we get back to estimate (43) and then for all t ∈ [0, T ] we can write

t
1
3 ‖(1 + | · |2)u(t, ·)‖L∞ ≤ C0(η, T, u0) + C2(η, T, u)

∫ t

0

1

(t− τ)
1
3 τ

1
3

(
τ

1
3 ‖(1 + | · |2)u(τ, ·)‖L∞

)
dτ. (54)

Now, in order to prove that quantity t
1
3 ‖(1 + | · |2)u(t, ·)‖L∞ does not explode in a finite time we will use

the following Grönwall’s type inequality. For a proof of this result see Lemma 7.1.2 of the book [7].

Lemma 3.1 Let β > 0 and γ > 0 such that β + γ > 1. Let g : [0, T ] −→ [0,+∞[ a function. If the
function g verifies:

1) g ∈ L1
loc([0, T ]),

2) tγ−1g ∈ L1
loc([0, T ]), and

3) there exits two constants a ≥ 0 and b ≥ 0 such that for almost all t ∈ [0, T ] we have

g(t) ≤ a+ b

∫ t

0
(t− τ)β−1τγ−1g(τ)dτ, (55)
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then:

a) There exists a continuous and increasing function Θ : [0,+∞[−→ [0,+∞[ defined by

Θ(t) =
+∞∑

k=0

ck t
σk, (56)

where σ = β + γ − 1 > 0 and where, for the Gamma function Γ(·) the coefficients ck > 0 are given by
the recurrence formula:

c0 = 1, and
ck+1

ck
=

Γ(kσ + 1)

Γ(kσ + β + γ)
, for k ≥ 1.

b) For all time t ∈ [0, T ] we have

g(t) ≤ aΘ(b
1
σ t). (57)

In this lemma we set β = 2
3 and γ = 2

3 (where we have β + γ > 1) and we set the function g(t) =

t
1
3 ‖(1 + | · |2)u(t, ·)‖L∞ which verifies the points 1), 2) and 3) above. Indeed, since t

1
3 ‖(1 + | · |2)u(t, ·)‖L∞

then this functions verifies the points 1) and 2) (with γ − 1 = 1
3). On the other hand, if for the constant

C0(T, η, u0) > 0 given in (44) and for the constant C2(T, η, u) > 0 given in (52)we set the parameters
a = C0(T, η, u0) > 0, b = C2(T, η, u) > 0, and moreover, if we set the parameters β − 1 = −1

3 and
γ − 1 = −1

3 then we can see that the point 3) is verified by estimate (54). Moreover, remark that where
since β = 2

3 and γ = 2
3 then we have σ = β + γ − 1 = 1

3 and thus 1
σ = 3.

Then, by estimate (57) of Lemma 3.1, for all time t ∈ [0, T ] we have: for b
1
σ = (C2(T, η, u))

3 > 0,

t
1
3 ‖(1 + | · |2)u(t, ·)‖L∞ ≤ C0(T, η, u0)Θ

(
b

1
σ t
)
≤ C0(T, η, u0)Θ

(
b

1
σ T
)
, (58)

Finally, we set the constant

C =
C0(T, η, u0)Θ

(
b

1
σ T
)

t
1
3

> 0, (59)

and then we have the estimate given in formula (5). Theorem 3.2 is now proven. �

3.3 Regularity

In order to finish this proof of Theorem 1 we will prove now that the solution u of equation is smooth enough
is spatial variable.

Proposition 3.3 Let 3
2 < s ≤ 2 and let u ∈ C([0,+∞[,Hs(R)) be the solution of the integral equation (3)

given by point 1) of Theorem 3.2. Then we have u ∈ C(]0,+∞[, C∞(R)).

Proof. Recall that by hypothesis on the initial u0 given in (17) we have u0 ∈ Hs for 3
2 < s ≤ 2 and then by

Theorem 1 of the article [14] the solution u ∈ C([0,+∞[,Hs(R)) verifies

u ∈ C


[0,+∞[,

⋂

α≥0

Hα(R)


 . (60)

With this information we easily deduce the property u ∈ C(]0,+∞[, C∞(R)). Indeed, we will prove that for all
k ∈ N the function ∂n

xu(t, ·) is a Hölder continuous function on R. Let n ∈ N fix. Then, for 1
2 < s1 <

3
2 we set
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α = n+ s1 and by (60) we have ∂n
xu(t, ·) ∈ Hs1(R).

On the other hand recall that we have the identification Hs1(R) = Bs1
2,2(R) (where Bs1

2,2(R) denotes a Besov

space [3]) and moreover we have the inclusion Bs1
2,2(R) ⊂ B

s1− 1
2∞,∞ (R) ⊂ Ḃ

s1− 1
2∞,∞ (R).

Then we have ∂n
xu(t, ·) ∈ Ḃ

s1− 1
2∞,∞ (R), but, since 1

2 < s1 <
3
2 then we have 0 < s1 − 1

2 < 1 and thus ∂n
xu(t, ·) is a

β− Hölder continuous function with β = s1 − 1
2 . �

Theorem 1 is now proven. �

4 Proof of Theorem 2

Let 3
2 < s ≤ 2 fix, let u0 ∈ Hs(R) be the initial data and suppose that this function verifies the following decay

properties: for ε > 0,

|u0(x)| ≤
c

1 + |x|2+ε
and

∣∣∣∣
d

dx
u0(x)

∣∣∣∣ ≤
c

1 + |x|2 . (61)

Let u ∈ C([0,+∞[, C∞(R)) be the solution of equation (1) associated with the initial data u0 above and
given by Theorem 1. In order to prove the asymptotic development of u(t, x) given in formula (6), we write the
solution u(t, x) as the integral formulation given in (3) and will study each term in the right side of equation (3).

For the first term in the right side of (3): Kη(t, ·) ∗ u0(x), we will prove that this term verifies the follow-
ing asymptotic development when |x| −→ +∞:

Kη(t, ·) ∗ u0(x) = Kη(t, x)

(∫

R

u0(y)dy

)
+ o

(
1

|x|2
)
. (62)

Indeed, for all t > 0 and x ∈ R we write:

Kη(t, ·) ∗ u0(x) =

∫

R

Kη(t, x− y)u0(y)dy =

∫

R

Kη(t, x− y)u0(y)dy +Kη(t, x)

(∫

R

u0(y)dy

)

−Kη(t, x)

(∫

R

u0(y)dy

)

= Kη(t, x)

(∫

R

u0(y)dy

)
+

∫

R

Kη(t, x− y)u0(y)dy

︸ ︷︷ ︸
(a)

−Kη(t, x)

(∫

R

u0(y)dy

)

︸ ︷︷ ︸
(b)

.

Now, in expression (a) and expression (b) above, first we cut each integral in two parts:
∫

R
(·)dy = +

∫

|y|< |x|
2

(·)dy +

∫

|y|> |x|
2

(·)dy, (63)

and then we arrange the terms in order to write

(a) + (b) =

∫

|y|< |x|
2

(Kη(t, x− y)−Kη(t, x)) u0(y)dy +

∫

|y|> |x|
2

Kη(t, x− y)u0(y)dy

−Kη(t, x)

(∫

|y|> |x|
2

u0(y)dy

)

= I1 + I2 + I3, (64)
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and now, in order to prove identity (62) we must prove that

I1 + I2 + I3 = o

(
1

|x|2
)
, when |x| −→ +∞. (65)

In order to study the term I1 in identity (64) we need the following technical result.

Lemma 4.1 Let t > 0 and let Kη(t, ·) be the kernel given in (4). Then, Kη(t, ·) ∈ C1(R) we have and moreover,
there exists a constant Cη > 0, which only depends of η > 0, such that we have:

1) for all x 6= 0, |∂xKη(t, x)| ≤ Cη
e6ηt

|x|3 .

2) |∂xKη(t, x)| ≤ Cη
e6ηt

t
2
3

1

1 + |x|3 .

The proof of this lemma follows essentially the same lines of the proof of point 1) of Proposition 2.1 and then
we will postpone this proof for the appendix. Thus, since Kη(t, ·) ∈ C1(R) then by Taylor expansion of first
order for θ = α(x− y) + (1− α)x = x− αy and some α ∈]0, 1[ we can write:

Kη(t, x− y)−Kη(t, x) = −y∂xKη(t, θ), (66)

and then we have

I1 ≤
∫

|y|≤ |x|
2

|Kη(t, x− y)−Kη(t, x)| |u0(y)|dy ≤
∫

|y|≤ |x|
2

|y∂xKη(t, θ)||u0(y)|dy. (67)

We estimate now the last term in the right side. Recall first that by point 1) of Lemma 4.1 we can write

|∂xKη(t, θ)| ≤ Cη
e6ηt

|θ|3 , but since we have θ = x−αy (with α ∈]0, 1[) then we can write |θ| ≥ |x|−α|y| ≥ |x|−|y|

and moreover, since we have |y| < |x|
2 then we write |x| − |y| ≥ |x|

2 and thus we get |θ| ≥ |x|
2 . Then we have

|∂xKη(t, θ)| ≤ Cη
e6ηt

|x|3 , (68)

and getting back to estimate (67) we get

∫

|y|≤ |x|
2

|y∂xKη(t, θ)||u0(y)|dy ≤ Cη
e6ηt

|x|3
∫

|y|< |x|
2

|y||u0(y)|dy ≤ Cη
e6ηt

|x|3
∫

R

|y||u0(y)|dy, (69)

where, since the initial data u0 verifies |u0(y)| ≤
c

1 + |y|2+ε
(with ε > 0) then the last term in right side

converges. Thus, by estimates (67) and (69) we have I1 ≤
(
Cη e

6ηt‖ | · |u0‖L1

) 1

|x|3 , and then

I1 = o

(
1

|x|2
)
, when |x| −→ +∞. (70)

Now, for term I2 in identity (64) we write

I2 ≤
∫

|y|> |x|
2

|Kη(y, x− y)||u0(y)|dy (71)

and in order to study this terms we have the following estimates: remark that by point 1 of Proposition 2.1 we
have

|Kη(t, x− y)| ≤ cη
e5ηt

t
1
3

1

1 + |x− y|2 , (72)
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hence we get

‖Kη(t, ·)‖L1 ≤ cη
e5ηt

t
1
3

. (73)

On the other hand, always since the initial data u0 verifies |u0(y)| ≤
c

1 + |y|2+ε
and moreover, since in term I2

we have |y| > |x|
2 then, for |x| > 0 large enough we get

|u0(y)| ≤
c

1 + |y|2+ε
≤ c

|y|2+ε
≤ c

|x|2+ε
. (74)

With estimates (73) and (74) at hand, we get back to formula (71) and we write

∫

|y|> |x|
2

|Kη(y, x− y)||u0(y)|dy ≤ c

|x|2+ε

∫

|y|> |x|
2

|Kη(t, x− y)|dy ≤ c

|x|2+ε
‖Kη(t, ·)‖L1 ≤ c

|x|2+ε

(
cη

e5ηt

t
1
3

)
,

and by this estimate and estimate (71) we have:

I2 = o

(
1

|x|2
)
, when |x| −→ +∞. (75)

We study now the term I3 in identity (64). By estimate (72) and for |x| > 0 large enough we can write

I3 ≤ |Kη(t, x)|
(∫

|y|> |x|
2

|u0(y)|dy
)

≤ cη
e5ηt

t
1
3

1

|x|2

(∫

|y|> |x|
2

|u0(y)|dy
)
, (76)

but, recall that since we have |u0(y)| ≤
c

1 + |y|2+ε
then we get u0 ∈ L1(R) and thus we have

lim
|x|−→+∞

(∫

|y|> |x|
2

|u0(y)|dy
)

= 0.

Then we can write

I3 = o

(
1

|x|2
)
, when |x| −→ +∞. (77)

Finally, by estimates (70), (75) and (77) we get estimate (65).

Now, for the second term in the right side in the integral equation (3):
1

2

∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)(x)dτ , we

will prove the following asymptotic development: when |x| −→ +∞ we have

1

2

∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)(x)dτ =

∫ t

0
Kη(t− τ, x)

(∫

R

u(τ, y)∂yu(τ, y)dy

)
dτ + o

(
1

|x|2
)
. (78)

Indeed, for all x ∈ R we write

1

2

∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)(x)dτ =

∫ t

0
Kηη (t− τ, ·) ∗ (u∂xu(τ, ·)) (x)dτ

=

∫ t

0

∫

R

Kη(t− τ, x− y)u(τ, y)∂yu(τ, y)dy

︸ ︷︷ ︸
(c)

dτ, (79)
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then, in order to study term (c), following the same computations done in formulas (63), (63) and (64) we write

(c) = Kη(t− τ, x)

(∫

R

u(τ, y)∂yu(τ, y)dy

)
dτ

+

∫

|y|< |x|
2

(Kη(t− τ, x− y)−Kη(t− τ, x)) (u(τ, y)∂yu(τ, y)) dy dτ

+

∫

|y|> |x|
2

Kη(t− τ, x− y) (u(τ, y)∂yu(τ, y)) dy dτ −Kη(t− τ, x)

(∫

|y|> |x|
2

u(τ, y)∂yu(τ, y)dy

)
dτ,

and getting back to identity (79) we have the identity:

1

2

∫ t

0
Kη(t− τ, ·) ∗ ∂x(u2)(τ, ·)(x)dτ =

∫ t

0
Kη(t− τ, x)

(∫

R

u(τ, y)∂yu(τ, y)dy

)
dτ

+

∫ t

0

∫

|y|< |x|
2

(Kη(t− τ, x− y)−Kη(t− τ, x)) (u(τ, y)∂yu(τ, y)) dy dτ

︸ ︷︷ ︸
Ia

+

∫ t

0

∫

|y|> |x|
2

Kη(t− τ, x− y) (u(τ, y)∂yu(τ, y)) dy dτ

︸ ︷︷ ︸
Ib

−
∫ t

0
Kη(t− τ, x)

(∫

|y|> |x|
2

u(τ, y)∂yu(τ, y)dy

)
dτ

︸ ︷︷ ︸
Ic

. (80)

Thus, in order to prove the asymptotic development given in (78), we must prove the following estimate:

Ia + Ib + Ic = o

(
1

|x|2
)
, when |x| −→ +∞. (81)

For term Ia, by estimates (66) and (68) we can write

Ia ≤
∫ t

0

∫

|y|< |x|
2

|Kη(t− τ, x− y)−Kη(t− τ, x)| |y| |u(τ, y)∂yu(τ, y)| dy dτ

≤
∫ t

0

(
Cη

e6η(t−τ)

|x|3
∫

R

|y| |u(τ, y)∂yu(τ, y)| dy
)
dτ ≤ Cη

e6ηt

|x|3
∫ t

0

∫

R

|y| |u(τ, y)∂yu(τ, y)| dy dτ, (82)

where, in order to estimate the last term in the right side we have the following technical result.

Lemma 4.2 Since the initial data u0 verifies

∣∣∣∣
d

dx
u0(x)

∣∣∣∣ ≤
c

1 + |x|2 then there exists a constant 0 < C∗ =

C∗(t, η, u0, u) < +∞, which depends of t > 0, η > 0, the initial data u0 and the solution u, such that for all
time τ ∈ [0, t] and for all y ∈ R we have

|u(τ, y)∂yu(τ, y)| ≤
C∗

τ
2
3 (1 + |y|4)

. (83)

Proof. The first thing to do is to prove that the function ∂yu(τ, y) verifies the following estimate:

|∂yu(τ, y)| ≤
C∗
1

τ
1
3 (1 + |y|2)

, (84)
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where C∗
1 > 0 is a constant which does not depend of the variable y. For this write the solution u as the integral

equation (3), then we derive respect to the spacial variable y in each side of this identity (3) and we have

∂yu(τ, y) = Kη(τ, ·) ∗ (∂yu0)(y)−
1

2

∫ τ

0
(∂yKη(τ − ζ, ·)) ∗ ∂y(u2)(ζ, ·)(y)dζ = I1 + I2,

and now we must study the terms I1 and I2 above.

In order to study term I1, recall that by the second estimate in formula (61) the initial data u0 verifies

|∂yu0(y)| ≤
c

1 + |y|2 and then, in estimate (27) we can substitute the function u0 by the function ∂yu0 and thus

by this estimate we can write

|I1| ≤ |Kη(τ, ·) ∗ (∂yu0)(y)| ≤ cη
e5ητ

τ
1
3

‖1 + | · |2∂yu0‖L∞

1 + |y|2 ≤ cη
e5ηt

τ
1
3

‖1 + | · |2∂yu0‖L∞

1 + |y|2 (85)

We study now term I2 and for this we write

|I2| ≤
∣∣∣∣
1

2

∫ τ

0
(∂yKη(τ − ζ, ·)) ∗ ∂y(u2)(ζ, ·)(y)dζ

∣∣∣∣ ≤
∫ τ

0

∫

R

|∂yKη(τ − ζ, y − z)|︸ ︷︷ ︸
(a)

∣∣∂z(u2)(ζ, z)
∣∣

︸ ︷︷ ︸
(b)

dz dζ, (86)

where we still need to study terms (a) and (b). For term (a) recall that by point 2) of Lemma 4.1 we have

|∂yKη(τ − ζ, y − z)| ≤ Cη
e6η(τ−ζ)

(τ − ζ)
2
3

1

1 + |y − z|3 . (87)

On the other hand, for term (b) we have the following estimates

|∂z(u2)(ζ, z)| = 2|u(ζ, z)||∂zu(ζ, z)| = 2
(1 + |z|2)|u(ζ, z|)|∂zu(ζ, z)|

1 + |z|2 = 2
ζ

1
3 (1 + |z|2)|u(ζ, z|)|∂zu(ζ, z)|

ζ
1
3 (1 + |z|2)

≤
(

sup
0<ζ<t

ζ
1
3 ‖(1 + | · |2)u(ζ, ·)‖L∞

)(
sup

0<ζ<t
‖∂zu(ζ, ·)‖L∞

)
1

ζ
1
3 (1 + |z|2)

, (88)

but, by the quantity ‖u‖Ft (where the norm ‖ · ‖Ft is given in formula (19)) we can write

sup
0<ζ<t

ζ
1
3 ‖(1 + | · |2)u(ζ, ·)‖L∞ ≤ ‖u‖Ft ,

and moreover, by estimate (38) we can write sup
0<ζ<t

‖∂zu(ζ, ·)‖L∞ ≤ ‖u‖Ft , and thus, getting back to estimate

(88) we get

|∂z(u2)(ζ, z)| ≤ ‖u‖2Ft

1

ζ
1
3 (1 + |z|2)

. (89)

Once we dispose of estimates (87) and (89), we get back to estimate (86) and then we write

|I2| ≤
∫ t

0

∫

R

(
Cη

e6η(τ−ζ)

(τ − ζ)
2
3

1

1 + |y − z|3

)(
‖u‖2Ft

1

ζ
1
3 (1 + |z|2)

)
dz dζ

≤ Cηe
6ητ‖u‖2Ft

(∫ t

0

dζ

((τ − ζ)
2
3 )ζ

1
3

)(∫

R

dz

(1 + |y − z|3)(1 + |z|2)

)

≤ Cηe
6ητ

(∫

R

dz

(1 + |y − z|3)(1 + |z|2)

)
≤ Cηe

6ητ

(∫

R

dz

(1 + |y − z|2)(1 + |z|2)

)
≤ Cηe

6ητ 1

1 + |y|2

≤ Cητ
1
3 e6ητ

1

τ
1
3 (1 + |y|2)

≤ Cηt
1
3 e6ηt

1

τ
1
3 (1 + |y|2)

. (90)
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By estimates (85) and (90) we set the constant C∗
1 as C∗

1 = max
(
cηe

5ηt‖(1 + | · |2)∂yu0‖L∞ , Cηt
1
3 e6ηt

)
> 0, and

then we can write estimate (83).

Finally, recall that by estimate (58) we can write |u(τ, y)| ≤
C0(t, η, u0)Θ

(
b

1
σ t
)

τ
1
3 (1 + |y|2)

, thus, we set the constant

C∗ as C∗ = max
(
C0(t, η, u0)Θ

(
b

1
σ t
)
, C∗

1

)
> 0 and then by estimate above and estimate (83) we get the

desired estimate (83). �

Thus, getting back to estimate (82), for |x| > 0 large enough we can write

Ia ≤ Cη
e6ηt

|x|3

(∫ t

0

∫

R

C∗

τ
2
3 (1 + |y|4)

dy dτ

)
≤ Cη

e6ηt

|x|3
(
C∗
(∫ t

0

dτ

τ
2
3

)(∫

R

|y|
1 + |y|4dy

))
≤ Cη

e6ηt(C∗ t
1
3 )

|x|3 ,

and the we have

Ia = o

(
1

|x|2
)
, when |x| −→ +∞.

We study now the term Ib in formula (80). By estimate (83) have have

Ib ≤
∫ t

0

∫

|y|> |x|
2

|Kη(t− τ, x− y)| |u(τ, y)∂yu(τ, y)| dy dτ ≤
∫ t

0

∫

|y|> |x|
2

|Kη(t− τ, x− y)| C∗

τ
2
3 (1 + |y|4)

dydτ,

but, since in term Ib above we have |y| > |x|
4 then we can write

1

1 + |y|4 ≤ c

|x|4 and thus we get

∫ t

0

∫

|y|> |x|
2

|Kη(t− τ, x− y)| C∗

τ
2
3 (1 + |y|4)

dydτ ≤ C∗

|x|4
∫ t

0

∫

|y|> |x|
4

|Kη(t− τ, x− y)|dydτ

≤ C∗

|x|4
∫ t

0
‖Kη(t− τ, ·)‖L1dτ,

where, by estimate (73) we write

C∗

|x|4
∫ t

0
‖Kη(t− τ, ·)‖L1dτ ≤ C∗

|x|4
∫ t

0

(
cη

e5η(t−τ)

(t− τ)
1
3

)
dτ ≤ C∗

|x|4
(
cηe

5ηtt
2
3

)
.

Then, for |x| > 0 large enough we have Ib ≤
C∗

|x|4
(
cηe

5ηtt
2
3

)
and thus we can write

Ib = o

(
1

|x|2
)
, when |x| −→ +∞. (91)

We study term Ic in equation (80). By estimates (72) and (83) we have

Ic ≤
∫ t

0
|Kη(t− τ, x)|

(∫

|y|> |x|
2

|u(τ, y)∂yu(τ, y)|dy
)
dτ

≤
∫ t

0

(
cη

e5η(t−τ)

(t− τ)
1
3

1

1 + |x|2

)(∫

|y|> |x|
2

C∗

τ
2
3 (1 + |y|4)

dy

)
dτ

≤
∫ t

0

(
cη

e5ηt

(t− τ)
1
3

1

|x|2

)(∫

|y|> |x|
2

C∗

τ
2
3 (1 + |y|2)(1 + |y|2)

dy

)
dτ = (a),
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but, remark that term Ib above we have |y| > |x|
4 then we can write

1

1 + |y|2 ≤ c

|x|2 and thus we get

(a) ≤
∫ t

0

(
cη

e5ηt

(t− τ)
1
3

1

|x|2

)(∫

|y|> |x|
2

C∗

τ
2
3 |x|2(1 + |y|2)

dy

)
dτ

≤ cηe
5ηtC∗

|x|4
∫ t

0

(
1

(t− τ)
1
3

)(∫

R

dy

τ
2
3 (1 + |y|2)

)
dτ ≤ cηe

5ηtC∗

|x|4

(∫ t

0

dτ

(t− τ)
1
3 τ

2
3

)
≤ cηe

5ηtC∗

|x|4 .

Thus, for |x| > 0 large enough we have Ic ≤
cηe

5ηtC∗

|x|4 and then

Ic = o

(
1

|x|2
)
, when |x| −→ +∞. (92)

Finally, by estimates (91), (91) and (92) we can write estimate (81) and Theorem 2 is now proven. �

5 Appendix

Proof of Lemma 2.1

Recall that the term Ia in (13) is given as

Ia =

∫

ξ<0
e2πixξ∂ξ

(
(eitξ

3−ηt(−ξ3+ξ))(3itξ2 − ηt(−3ξ2 + 1))
)
dξ =

∫

ξ<0
e2πixξ∂ξ

(
∂ξ(e

itξ3−ηt(−ξ3+ξ))
)
dξ

=

∫

ξ<0
e2πixξ ∂2

ξ

(
eitξ

3−ηt(−ξ3+ξ)
)
dξ =

∫

ξ<0
e2πixξ ∂2

ξ K̂η(t, ξ) dξ.

On the other hand, by Lemma 5.1 in [1], we have: for all ξ 6= 0,

∂2
ξ K̂η(t, ξ) = K̂η(t, ξ)t

2
(
3iξ2 − η sign(ξ)(3ξ2 − 1)

)2
+ 6tξ(i− η sign(ξ))K̂η(t, ξ),

and then we have

|Ia| ≤
∥∥∥∂2

ξ K̂η(t, ·)
∥∥∥
L1(]−∞,0[)

≤ c(1 + η)2 t2
∥∥∥K̂η(t, ·)(1 + |·|4)

∥∥∥
L1(R)

+ c(1 + η) t
∥∥∥K̂η(t, ·)(1 + |·|)

∥∥∥
L1(R)

.(93)

In order to study the term in the right side we have the following estimates: for m > −1, by estimate (9) and
denoting by Γ the ordinary gamma function we have

∥∥∥(1 + |·|m)K̂η(t, ·)
∥∥∥
L1

≤
∥∥∥K̂η(t, ·)

∥∥∥
L1

+
∥∥∥|ξ|m K̂η(t, ·)

∥∥∥
L1

≤ C
e3ηt

(ηt)
1
3

+

∫

|ξ|≤2
|ξ|m e−tη(|ξ|3−|ξ‖) dξ +

∫

|ξ|≥2
|ξ|m e−tη 3

4
|ξ|3 dξ

≤ C
e3ηt

(ηt)
1
3

+
2m+2

m+ 1
e2ηt +

cmΓ(m+1
3 )

(ηt)(
m+1

3
)

≤ Cm
e3ηt

(ηt)
1
3

+ Cm
1

(ηt)
m+1

3

. (94)
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With this estimate (setting first m = 4 and then m = 1) we get back to (93) and we write

|Ia| ≤ c(1 + η)2t2

(
e3ηt

(ηt)
1
3

+
1

(ηt)
5
3

)
+ c(1 + η)t

(
e3ηt

(ηt)
1
3

+
1

(ηt)
2
3

)

≤ c
(1 + η)2

η2
(ηt)2

(
e3ηt

(ηt)
1
3

+
1

(ηt)
5
3

)
+ c

(1 + η)

η
(ηt)

(
e3ηt

(ηt)
1
3

+
1

(ηt)
2
3

)

≤ c
(1 + η)2

η2

(
(ηt)

5
3 e3ηt + (ηt)

1
3

)
+ c

(1 + η)

η

(
(ηt)

2
2 e3ηt + (ηt)

1
3

)

≤ c
(1 + η)2

η2

(
2e4ηt

)
+ c

(1 + η)

η

(
2e4ηt

)

≤ c

(
1 + η

η

)((
1 + η

η

)
+ 1

)
e4ηt

≤ c

((
1 + η

η

)
+ 1

)((
1 + η

η

)
+ 1

)
e4ηt

≤ c

(
1

η
+ 2

)2

e4ηt. (95)

The term Ib in (13) is treated following the same computations done for term Ia above. �

Proof of Lemma 4.1

1) Remark first that sinceKη(t, x) = F−1
(
e(iξ

3t−ηt(|ξ|3−|ξ|))
)
(x) and ∂xKη(t, x) = F−1

(
(2πiξ)e(iξ

3t−ηt(|ξ|3−|ξ|))
)
(x),

and moreover since the functions e(iξ
3t−ηt(|ξ|3−|ξ|)) and (2πiξ)e(iξ

3t−ηt(|ξ|3−|ξ|)) belong to the space L1(R)
then by the properties of the inverse Fourier transform we have that Kη(t, x) and ∂xKη(t, x) are continuous
functions and thus Kη(t, ·) ∈ C1(R).

Now, we write

∂xKη(t, x) =

∫

R

(2πiξ)e2πixξK̂η(t, ξ)dξ =
1

2πix

∫

ξ<0
(2πiξ)(2πix)e2πixξK̂η(t, ξ)dξ

+
1

2πix

∫

ξ>0
(2πiξ)(2πix)e2πixξK̂η(t, ξ)dξ,

and since ∂ξ(e
2πixξ) = 2πixe2πixξ then we write

1

2πix

∫

ξ<0
(2πiξ)(2πix)e2πixξK̂η(t, ξ)dξ +

1

2πix

∫

ξ>0
(2πiξ)(2πix)e2πixξK̂η(t, ξ)dξ

=
1

2πix

∫

ξ<0
∂ξ(e

2πixξ)(2πiξ)eitξ
3−ηt(−ξ3+ξ)dξ +

1

2πix

∫

ξ>0
∂ξ(e

2πixξ)(2πiξ)eitξ
3−ηt(ξ3−ξ)dξ,
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then, we integrate by parts and we get

1

2πix

∫

ξ<0
∂ξ(e

2πixξ)(2πiξ)K̂η(t, ξ)dξ +
1

2πix

∫

ξ>0
∂ξ(e

2πixξ)(2πiξ)K̂η(t, ξ)dξ

=
1

2πix

∫

ξ<0
e2πixξ(2πi)K̂η(t, ξ)dξ +

1

2πix

∫

ξ>0
(e2πixξ)(2πi)K̂η(t, ξ)dξ

+
1

2πix

∫

ξ<0
e2πixξ(2πiξ)∂ξK̂η(t, ξ)dξ +

1

2πix

∫

ξ>0
e2πixξ(2πiξ)∂ξK̂η(t, ξ)dξ

=
1

x

(∫

ξ<0
e2πixξK̂η(t, ξ)dξ +

∫

ξ>0
(e2πixξ)K̂η(t, ξ)dξ

)

+
1

x

(∫

ξ<0
e2πixξξ∂ξK̂η(t, ξ)dξ +

∫

ξ>0
e2πixξξ∂ξK̂η(t, ξ)dξ

)

= I1 + I2. (96)

In order to study the term I1 remark that we have I1 =
1

x
Kη(t, x) and then, by estimate (15) we get

|I1| ≤ Cη
e5ηt

|x|3 , (97)

We study now the term I2 above. Remark that the have ∂2
ξ (e

2πixξ) = −4π2x2e2πixξ and then we write

I2 =
1

(−4π2x2)x

(∫

ξ<0
(−4πx2)e2πixξξ∂ξK̂η(t, ξ)dξ +

∫

ξ>0
(−4πx2)e2πixξξ∂ξK̂η(t, ξ)dξ

)

=
1

−4π2x3

(∫

ξ<0
∂2
ξ (e

2πixξ)ξ∂ξK̂η(t, ξ)dξ +

∫

ξ>0
∂2
ξ (e

2πixξ)ξ∂ξK̂η(t, ξ)dξ

)
,

then, integrating by parts the last expression we can write

I2 =
1

−4π2x3




∫

ξ<0
e2πixξ

(
2∂2

ξ K̂η(t, ξ) + ξ∂3
ξ K̂η(t, ξ)

)
dξ

︸ ︷︷ ︸
=(I2)a

+

∫

ξ>0
e2πixξ

(
2∂2

ξ K̂η(t, ξ) + ξ∂3
ξ K̂η(t, ξ)

)
dξ

︸ ︷︷ ︸
=(I2)b




,

(98)
and now we will prove the following estimate

|(I2)a|+ |(I2)b| ≤ Cηe
5ηt. (99)

Indeed, for term (I2)a we write |(I2)a| ≤ c‖∂2
ξ K̂η(t, ·)‖L1(]−∞,0[) + c‖ξ∂3

ξ K̂η(t, ·)‖L1(]−∞,0[), but recall that

by estimates (93) and (95) we have ‖K̂η(t, ·)‖L1(]−∞,0[) ≤ Cηe
4ηt and then we can write

|(I2)a| ≤ Cηe
4ηt + c‖ξ∂3

ξ K̂η(t, ·)‖L1(]−∞,0[) ≤ Cηe
5ηt + c‖ξ∂3

ξ K̂η(t, ·)‖L1(]−∞,0[) (100)

Now, we study the term c‖ξ∂3
ξ .K̂η(t, ·)‖L1(]−∞,0[). By Lemma 5.1 in [1], we have: for all ξ 6= 0,

∂3
ηK̂η(t, ξ) = t3K̂η(t, ξ)(3iξ

2 − ηsign(ξ)(3ξ2 − 1))3

+t2K̂η(t, ξ)(36ξ
3(η2 − 1)− 72 i η sign(ξ)ξ3 + 12 i η sign(ξ)ξ − 12η2ξ)

+6t2K̂η(t, ξ)(ξ(i − η sign(ξ)))(3iξ2 − η sign(ξ)(3ξ2 − 1)) + 6tK̂η(t, ξ)(i − η sign(ξ)),
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then we can write

|∂3
ηK̂η(t, ξ)| ≤ Cηt

3(1 + |ξ|6)|K̂η(t, ξ)|+ Cηt
2(1 + |ξ|3)|K̂η(t, ξ)|+ Cηt|K̂η(t, ξ)|,

and thus we get

|ξ||∂3
ηK̂η(t, ξ)| ≤ Cηt

3(1 + |ξ|7)|K̂η(t, ξ)| + Cηt
2(1 + |ξ|4)|K̂η(t, ξ)| + Cηt(1 + |ξ|)|K̂η(t, ξ)|.

With this estimate we can write

‖ξ∂3
ξ K̂η(t, ·)‖L1(]−∞,0[) ≤ ‖ξ∂3

ξ K̂η(t, ·)‖L1(R) ≤ cηt
3‖(1 + |ξ|7)K̂η(t, ·)‖L1(R)

+cηt
2‖(1 + |ξ|4)K̂η(t, ·)‖L1(R) + Cηt‖(1 + |ξ|)K̂η(t, ·)‖L1(R)

= (a),

and then, by estimate (94) (setting first m = 7 then m = 4 and finally m = 1) we have

(a) ≤ Cηt
3
(
e2tη + t−1/3 + t−( 8

3
)
)
+ cηt

2
(
e2tη + t−1/3 + t−( 5

3
)
)
+ cηt

(
e2tη + t−1/3 + t−( 2

3
)
)

≤ Cηe
5ηt,

and this we can write ‖ξ∂3
ξ K̂η(t, ·)‖L1(]−∞,0[) ≤ Cηe

5ηt. With this estimate we get back to estimate (100)

and we write |(I2)a| ≤ Cηe
5ηt.

The term (I2)b is estimated following the same computations done for the term (I2)a above and the
we have estimate (99).

Finally, with estimate (99) we get back to estimate (98) and we write

|I2| ≤ Cη
e5ηt

|x|3 , (101)

and thus, by estimates (97) and (101) we get back to estimate (96) and we can write the desired estimate:

|∂xKt,x| ≤ Cη
e5ηt

|x|3 .

2) We write

|∂xKη(t, x)| ≤
∫

R

∫

R

|(2πiξ)e2πixξK̂η(t, ξ)|dξ ≤ ‖(1 + |ξ|)K̂η(t, ·)‖L1 , (102)

and by estimate (94) (with m = 1) we have

‖(1 + |ξ|)K̂η(t, ·)‖L1 ≤ Cη

(
e2ηt +

1

t
1
3

+
1

t
2
3

)
=

Cη

t
2
3

(
t
2
3 e2ηt + t

1
3 + 1

)
≤ Cη

t
2
3

e5ηt. (103)

Then we can write

|∂xKη(t, x)| ≤
Cη

t
2
3

e5ηt ≤ Cη

t
2
3

e6ηt.

Finally, by this estimate and estimate proven in point 1) above: |∂xKt,x| ≤ Cη
e5ηt

|x|3 , we can write: |∂xKη(t, x)| ≤

Cη
e6ηt

t
2
3

1

1 + |x|3 . �
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6 Annex: the local well-posedness in Lebesgue spaces

We start by remarking that the kernelKη(t, ·) given in (4) and its derivative ∂xKη(t, ·) belong to the space Lp(R)

for 1 ≤ p ≤ +∞. Indeed, by point 1) of Proposition 2.1 we have, for all time t > 0, |Kη(t, x)| ≤ cη
e5ηt

t
1
3

1

1 + |x|2

and then for 1 ≤ p ≤ +∞ we get ‖Kη(t, ·)‖Lp ≤ cη
e5ηt

t
1
3

∥∥∥∥
1

1 + | · |2
∥∥∥∥
Lp

, hence, for the sake of simplicity we will

write

‖Kη(t, ·)‖Lp ≤ cη
e5ηt

t
1
3

. (104)

In the same way, recall that by point 2) of Lemma 4.1 we have, for all time t > 0, |∂xKη(t, x)| ≤ Cη
e6ηt

t
2
3

1

1 + |x|3 ,
hence, for 1 ≤ p ≤ +∞ we obtain

‖∂xKη(t, ·)‖Lp ≤ Cη
e6ηt

t
2
3

. (105)

Estimates (104) and (105) will allow us to study the existence of mild solutions for the Cauchy problem (1) in
the framework of Lebesgue spaces when the initial data u0 is small enough. It is worth to remark here that
the following theorem is just a first study in the setting of Lebesgue spaces and we think that this result could
be improved in further investigations.

Theorem 6.1 Let 1 ≤ p ≤ +∞ and let u0 ∈ Lp(R) be an initial data. Let T > 0. Then, there exists
δ = δ(T ) > 0 such that if ‖u0‖Lp < δ then the integral equation (3) possesses at least a solution local in time

solution u ∈ L∞(]0, T [, Lp(R)) which verifies sup
0≤t≤T

t
1
3 ‖u(t, ·)‖Lp < +∞.

Proof. Let T > 0 fix and consider the Banach space L∞(]0, T [, Lp(R)) with the norm sup
0<t<T

t
1
3 ‖ · ‖Lp

x
. We write

sup
0<t<T

t
1
3‖u(t, ·)‖Lp ≤ sup

0<t<T
t
1
3 ‖Kη(t, ·) ∗ u0‖Lp + sup

0<t<T
t
1
3

∥∥∥∥
∫ t

0
Kη(t− s, ·) ∗ ∂x(u2(s, ·))ds

∥∥∥∥
Lp

,

and we will estimate each terms in the right side.

For the first term in the right side above, by estimate (104) we can write

sup
0<t<T

t
1
3 ‖Kη(t, ·) ∗ u0‖Lp ≤ sup

0<t<T
t
1
3 ‖Kη(t, ·)‖L1‖u0‖Lp ≤ sup

0<t<T
t
1
3

(
cη

e5ηt

t
1
3

)
‖u0‖Lp ≤ cηe

5ηT ‖u0‖Lp . (106)

Now, the second term in the right side above is estimated as follows: first for all time t ∈]0, T [ and for
1 ≤ q ≤ +∞ which verifies 1 + 1

p = 1
q +

2
p , we write

∥∥∥∥
∫ t

0
Kη(t− s) ∗ ∂x(u2(s, ·))ds

∥∥∥∥
Lp

≤
∫ t

0
‖Kη(t− s) ∗ ∂x(u2(s, ·))‖Lpds ≤

∫ t

0
‖∂xKη(t− s, ·) ∗ u2(s, ·)‖Lpds

≤
∫ t

0
‖∂xKη(t− s, ·)‖Lq‖u2(s, ·)‖

L
p
2
ds,

and then, by estimate (105) we get

∫ t

0
‖∂xKη(t− s, ·)‖Lq‖u2(s, ·)‖

L
p
2
ds ≤

∫ t

0

(
Cη

e6η(t−s)

(t− s)
2
3

)
‖u2(s, ·)‖

L
p
2
ds ≤ Cηe

6ηT

∫ t

0

1

(t− s)
2
3

‖u(s, ·)‖2Lpds

≤ Cηe
6ηT

∫ t

0
(t− s)−

2
3 s−

2
3

(
s

1
3 ‖u(s, ·)‖Lp

)2
ds

≤ Cηe
6ηT

(
sup

0<t<T
t
1
3 ‖u(t, ·)‖Lp

)2(∫ t

0
(t− s)−

2
3 s−

2
3 ds

)
,
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but, the last expression (also known as the Beta function) verifies

∫ t

0
(t− s)−

2
3 s−

2
3 ds ≤ ct−

1
3 and then we can

write ∥∥∥∥
∫ t

0
Kη(t− s) ∗ ∂x(u2(s, ·))ds

∥∥∥∥
Lp

≤ Cηe
6ηT

(
sup

0<t<T0

t
1
3 ‖u(t, ·)‖Lp

)2

t−
1
3 .

Once we have this estimate we write

sup
0<t<T

t
1
3

∥∥∥∥
∫ t

0
Kη(t− s) ∗ ∂x(u2(s, ·))ds

∥∥∥∥
Lp

≤ sup
0<t<T

t
1
3

(
Cηe

6ηT

(
sup

0<t<T0

t
1
3 ‖u(t, ·)‖Lp

)2

t−
1
3

)

≤ Cηe
6ηT

(
sup

0<t<T
t
1
3 ‖u(t, ·)‖Lp

)2

. (107)

Now, with estimates (106) and (107) we set the quantity δ as δ =
1

4cηCηe11ηT
> 0 and if the initial data verifies

‖u0‖Lp < δ then the result follows from the Picard contraction principle. �
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