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Inverse Perspective Mapping Roll Angle Estimation for Motorcycles

Pierre-Marie Damon1,2, Hicham Hadj-Abdelkader1, Hichem Arioui1 and Kamal Youcef-Toumi2

Abstract— This paper presents an image-based approach to
estimate the motorcycle roll angle. The algorithm estimates
directly the absolute roll to the road plane by means of a basic
monocular camera. This means that the estimated roll angle is
not affected by the road bank which is often a problem for vehi-
cle observation and control purposes. For each captured image,
the algorithm uses a numeric roll loop based on some simple
knowledge of the road geometry. For each iteration, a bird-
eye-view of the road is generated with the inverse perspective
mapping technique. Then, a road marker filter associated with
the well-known clothoid model are used respectively to track the
road separation lanes and approximate them with mathematical
functions. Finally, the algorithm computes two distinct areas
between the two-road separation lanes. Its performances are
tested by means of the motorcycle simulator BikeSim. This
approach is very promising since it does not require any vehicle
or tire model and is free of restrictive assumptions on the
dynamics.

I. INTRODUCTION
Road accidents have always been a major concern all

around the world. To overcome this issue automotive en-
gineers never ceased to innovate about vehicle safety while
improving driving experience and comfort. In this context,
car makers began to equip P4WV with the well-known
Advanced Driver Assistance Systems (ADAS). Among the
most popular ADAS, we can cite: the Anti-lock Braking
System (ABS), the Electronic Stability Program (ESP) or
the Electronic Stability Control (ESC), etc.

Nevertheless, Powered Two-Wheeled Vehicles (P2WV)
industry did not follow the same trend. Nowadays, the lack
of Advanced Rider Assistance Systems (ARAS) makes the
P2WV the most deadly means of transportation. Several
arguments can explain the difficulties that motorcycle makers
have in developping ARAS. First of all, the technical and
economical reasons, P2WV are supposed to be cheaper
and more compact than other motor vehicle. Moreover,
motorcycle motion is very complex because of the lateral
dynamics making the P2WV modeling highly complicated.
The second reason is the rider acceptance [1]. Indeed, few
ARAS already exist on the market but their success is very
contested. Hence, the big challenge for P2WV researchers is
to develop new ARAS that assist the riders during critical
situations without interfering with their feelings.

This paper is organized as follows. Section 2 presents the
motivations and defines the problem. The inverse perspective
mapping technique, the road marker filtering and the fitting
step are addressed in section 3. Whereas in section 4,
we will discuss the algorithm performing the roll angle
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estimation. Then in section 5, simulations carried out with
the advanced motorcycle simulator ”BikeSim” are discussed.
Finally, concluding remarks are summarized in section 6.

II. MOTIVATION AND PROBLEM STATEMENT

In the context of ARAS development, the observers and
estimators turn out to be essential tools. Indeed, they allow to
replace some costly sensors or even estimate unmeasurable
dynamics like the tire’s forces. When investigating the lateral
P2WV dynamics, it appears that one of the most important
risk indicator is the roll angle. That is why, for the research
community, the first big challenge was to address the esti-
mation of the P2WV lean angle.

In 2008, precursor work was published about this topic
in [2]. Then, in a chronological order, it was investigated
in [3], [4], [5] and more recently in [6], [7], [8], [9]. In
all of these works, authors proposed various observation
techniques but all of them used a model-based design. Note
that, in addition to several restrictive assumptions on the
dynamics, they require a complex process to identify the
model parameters.

In [10], the author was the only one to propose an alterna-
tive to this model-based design by introducing a video-based
roll angle estimator for the P2WV. The technique requires
a learning step to correlate the orientation statistics in the
image and the actual roll angle. Then, the roll estimation is
deduced from gradient orientation histograms by correlating
the current image with the learned data. Then, in [11], the
same author proposed to compare his video-based results
with the Inertial Measurement Unit (IMU) measures. On the
same topic, some works have addressed P4WV orientation
estimation. We can cite [12], where the author introduced an
algorithm to simultaneously estimate the vehicle roll, yaw
and pitch angles with a monocular camera. Nevertheless,
this technique works for a small roll range and consequently,
cannot be used for motorcycle estimation purposes.

Most of the proposed solutions cited above require a multi-
sensor instrumentation to perform the roll angle estimation.
They require a steering encoder, a speedometer, a gyroscope,
etc. which make these solutions still expensive and more
prone to mechanical failures. In addition, they are model-
based which means the observers are synthesized using a
model of the P2WV. This design involves advanced robust-
ness studies taking into account the modeling assumptions
(linear approximations, etc.) and the uncertainties (rider
weight, inertia, etc.). Most of the time, the results have
shown that the performances remind acceptable in a small
range around the nominal case used for the design. As cited
above, in [10], [11], the author has proposed a vision-based



approach that does not use a P2WV model or, even, any
heavy instrumentation. Nevertheless, the proposed approach
is fairly binding because it requires a learning step and the
performances are degraded in the case where the current
situation does not directly correspond to one ever learned.

This paper introduces a new original solution to estimate
the P2WV roll angle by means of a simple monocular
camera without the use of any other sensors. It is capable of
estimating the absolute roll angle without any information
about the previous sample or the initial condition. The al-
gorithm computes an approximate Bird-Eye-View (BEV) of
the road by means of the Inverse Perspective Mapping (IPM)
technique. Then, it uses the knowledge of road geometry to
recover the absolute roll between the vehicle and the road.
Unlike the solution proposed in [10], [11], the algorithm does
not require any initialization step or any data base.

III. INVERSE PERSPECTIVE MAPPING AND LANE
DETECTION AND FITTING

A. Inverse perspective mapping

Let us consider a conventional camera attached to the
frame Fc. Its intrinsic parameters are given by the calibration
matrix K, whereas its extrinsic ones are given by the rotation
matrix R ∈ SO(3) and the translation vector t ∈ R3 with
respect to the world frame Fw. For the sake of simplicity,
the camera distortions are not considered in this study.
Nevertheless, one can note that distortion parameters can be
obtained after camera calibration. Let P be a 3D point of
coordinates P = (X Y Z)

> in the world frame Fw . The
image formation of the 3D point P is obtained through its
projection into the 2D point p of homogeneous coordinates
p = (u v 1)

> in the image plane Fi. The projection equation
is given by:

p ∝ K (R P + t) (1)

where ∝ denotes the equality up to scale and K is the camera
calibration matrix. Its expression is given in [13].

The IPM warps p into a new point p′ of homogeneous
coordinates p′ = (u′ v′ 1)

> in the BEV image I ′. The
wrapping function is given by:

p′ ∝ G p (2)

where G is the collineation matrix ensuring the IPM trans-
formation from I to I ′. G can be expressed in terms of the
intrinsic matrix K and the Euclidean homography matrix
H ∈ SL(3) related to a planar viewed object. Note that H
depends on the rotation matrix R and the translation vector
t corresponding to the rigid transformation between the real
camera pose providing the image I and the virtual one where
I ′ is generated.

In the context of this work, the real camera is rigidly fixed
on the P2WV main body and not affected by the steering
motion. We assume that the camera pitch, roll angles and
its height above the ground level are denoted respectively
by µ, φ and hc as depicted in Figure 2 in [13]. Let us
assume that φ and hc are measured since we know the

camera mounting height zc and hc = zc cos(φ). In addition,
we shall assume the pitch angle constant when dealing with
the estimator synthesis. It will be considered as equal to
the known mounting tilt angle of the camera µ = µ0. The
relative yaw angle between the vehicle and the road trajectory
can not be measured since, in our case, the road map is not
available. Nevertheless, they are supposed to be very close
since the rider follows the road. However, in case of over
or under-steering regarding the road curvature, it results in a
BEV image rotation around its virtual optical axis (Z-axis)
which is perpendicular to the ground and does not impact the
algorithm derived in the next section. Finally, the rotation
matrix R is given by R = RcRφRµ with Rc being the
fixed rotation matrix to align the camera Z-axis with the
longitudinal X-axis of the vehicle coordinate system. Rφ

and Rµ are the rotation matrices associated to the roll and
pitch angles respectively. Their expressions are given in [13].

Let Fv be a 3D frame attached to the P2WV whose
origin is the projection of the optical center on the road
plane defined by Z = 0 (illustration is given in [13]). Fv
is oriented such that X is parallel to the vehicle longitudinal
axis and Z points upward. In addition, let us assume that
all the points belonging to the road lie on the same plane
XY of Fv . In this case, the aim of the IPM is to generate
a top-view of this plane by projecting back all the points
from the captured 2D image I to the plane XY of the 3D
frame Fv . Finally, the BEV is obtained by cropping the top-
view of the plane according to the desired Region Of Interest
(ROI). Note that this transformation is none other than the
homography relationship.

Under the assumptions given above, the IPM transforma-
tion based on the collineation matrix G depends only on
angles φ and µ, the camera calibration matrix K, the camera
height hc, the desired resolution of the output image and the
ROI. The latter is defined by its top-left and the bottom-right
points of coordinates (Xmax, Ymax) and (Xmin, Ymin) in the
3D vehicle frame Fv .

The collineation matrix G can be easily identified in two
steps. If we use the assumptions Z = 0 and t = (0 0 − hc)>
in equation (1), we obtain:

p ∝ K M pw (3)

where M = (r1 r2 − hcr3) with ri the column i of the
rotation matrix R. pw is a point of homogeneous coordinates
pw = (X Y 1)

> lying on the plane Z = 0 in the frame Fv .
Whereas p = (u v 1)

> is its projection into the image I .
The relation between pw and p′ is obtained by cropping

the top-view regarding the desired ROI and output BEV
resolution. If the output resolution is (n′ ×m′), then :

p′ = S pw (4)

with S =

 0 −m′ 1
∆Y m′ Ymax

∆Y

−n′ 1
∆X 0 n′Xmax

∆X
0 0 1

, ∆X =

Xmax −Xmin and ∆Y = Ymax − Ymin.
Finally, from the equations (2), (3) and (4) it comes:

G =
(
K M S−1

)−1
(5)



In other words, the BEV image I ′ is obtained by warping
each point in I ′ onto I using the inverse mapping G−1 and
then the image intensity is computed by interpolating the
local pixels intensities in the origin image I . An example of
BEV image is shown in Figure 1.

B. Road Lane detection and fitting

In the race for new ADAS, the road marker detection
has been widely addressed in the past years. In this work,
we used the method recently proposed in [13]. It is based
on the intensity gradient between the road separation lane
markers and their surroundings. It allows the detection of
both straight and curved separation lanes and requires few
computing resources. Moreover, this method turns out to be
a very appropriate solution to detect the separation lanes
in a BEV image since it takes into account the line width,
denoted w, as a filtering parameter. Note that the properties
(width, length, etc.) are precisely defined in the road design
specifications. Then the filtered image is thresholded and re-
filtered to respectively keep only the lane objects in a new
binary image and remove the small blobs. Once the binary
image of the separation lane markers I ′′ is obtained, one
aims to separate the lanes (left, center and right in our case).
To that end, a sliding window algorithm is used to track each
separation lane independently in I ′′.

When investigating the road design literature, it appears
that the well-known clothoid model was largely adopted to
design roads [14]. The clothoid-based design ensures smooth
transitions between straight and curved lines helping drivers
to track the road markers and avoiding abrupt changes in
steering direction. It is defined such that the length of the
curve l from the curve origin must be proportional to the
curvature. Hence, the following expression was introduced
in the literature by [14]:

C(l) = C0 + C1l (6)

where C0 and C1 are respectively the initial curvature and
its rate along the curve. Note that this model is only valid
for horizontal curves when the road is planar. As in [13], if
we consider the heading angle between the road tangent and
the vehicle X-axis is small (less than 10◦), equation (6) can
be approximated in the Cartesian coordinate system with a
third order polynomial expression:

y(x) ≈ a0 + a1x+ a2x
2 + a3x

3 (7)

with ai the coefficients of the polynomial function. To get
the expressions of the coefficients ai as a function of the
road geometry parameters and the vehicle relative position,
the reader can refer to [13].

IV. ROLL ANGLE ESTIMATION

This section discusses the technique to estimate the vehicle
roll angle from the camera images. Note that in this work we
used the algorithm for motorcycle estimation purpose but it
can be utilized for other vehicles without any restriction. Let
us remind that the roll angle is one of the most crucial risk
indicator when studying vehicle lateral safety. Our method

is capable of estimating the absolute roll angle to the road
without any influence of the bank angle. Note that the
estimation of the road bank have motivated several works as
in [15] because this is a crucial parameter when estimating
the tire’s forces. For that purpose, our estimator can be
coupled with an IMU allowing directly to get the bank angle
after computing a simple difference between the measured
roll and the estimated one.

In a world where the autonomous vehicle is making its
own place, it is obvious the infrastructure will be improved to
facilitate the guidance of this new generation of vehicle. The
design of this car is highly complex and requires advanced
computer vision algorithms which detect the environment
and especially the road. In this context, ones of the most
important markers are the separation lanes. Hence, we can
imagine, in a near future, the horizontal road signalization
will be improved on many roads. The algorithm presented
below is thought in this context since it requires at least 3
distinct separation lanes. These road markers can be dashed
or solid but they must be as parallel as possible which is the
case most of the time.

To derive the estimator we will assume the camera pitch
angle is known since we will consider it as equal to the
mounting tilt angle. In addition, its dynamics is not taken
into account. It is consistent because pitch motions mainly
occur when accelerating or braking hard which never happen
when the P2WV is leaned. Furthermore, according to the
road design specifications, the road slope vary slowly to
avoid abrupt changes. It allows one to consider that the
road is planar in the ROI of the BEV. However, there is
no assumption about the road bank.

The proposed roll angle estimator is based on the prior
knowledge of the road separation lane geometric properties
in the BEV. Indeed, in a perfect top-view of the road we
know that the markers delimiting the road are supposed to be
parallel. In addition, the road track widths are supposed to be
equal meaning the markers are equidistant. According to this
finding, the algorithm performs a numerical loop increasing
the roll angle of δφ at each iteration until the lanes appear as
parallel and equidistant in the BEV. The process is illustrated
in Figure 1.

For a captured image Ii, the algorithm generates a first
BEV with the IPM technique using the previous estimated
value of the roll angle denoted φ̂i−1. We use the previous
roll estimation to initialize the estimator in order to save
computation time. Note that, even if we consider the previous
estimation in the current loop, the estimated roll is not
relative to the previous sample. Because of the incorrect
roll angle, the obtained BEV image is deformed and does
not correspond to the ideal top-view. Then, the algorithm
looks for the solution in a predefined roll range denoted
∆φ. This method does not require any knowledge of the
sign of the roll motion. In the case where the previous roll
is not taken into account ∆φ must include all the feasible
roll angles. Usually, it leads to ∆φ = [−50◦, 50◦]. However,
to accelerate the algorithm the range can be reduced with
regards to the camera recording speed and centered around
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Fig. 1: Roll angle estimation method

the previous estimated roll angle φ̂i−1. According to our
best knowledge, in severe riding situations where the roll
dynamics is highly excited, the roll rate rarely exceed |φ̇| <
60◦.s−1. If we consider a basic camera recording at 30 fps,
it means, in extreme scenarios, the roll can not change more
than 2 degrees between two consecutive images. It leads to
∆φ = [−2◦ + s∆φ, 2

◦ + s∆φ] with s∆φ a safety coefficient
which makes the range a bit larger to take into account the
roll estimation uncertainties.

Although the estimator algorithm is intuitive, the stop
condition needs to be wisely chosen. Instead of comparing
the coefficients ai of each lane given in (7) until detecting
equidistant and parallel lanes, the stop condition is defined
as an area comparison. After obtaining the third order
polynomial functions for the 3 separation lanes, we can
compute the areas between the center-left and the center-
right lanes like in Figure 1. Note that we have selected
a ratio of the BEV image to reduce the uncertainties due
to the dashed center lane approximations. This area stop
condition is more robust against the pitch errors. Indeed,
even if the pitch motion is neglected, in real situation small
motions happen. For an iteration j, if the difference of these
two areas (represented in red and magenta in Figure 1) is
inferior to a given threshold, then we stop the iteration loop
φ̂i = φij . With φij denoting the roll angle for the image
i at the loop iteration j. Otherwise, the algorithm performs
another loop with the new value of the roll angle given by
φij+1

= φij + δφ.
Another illustration of the problem is to consider that the

IPM generates a virtual camera whose optical axis is not
exactly perpendicular to the road plane. The aims of the
algorithm is to rotate this virtual camera until we see the
road separation lanes appearing as parallel and equidistant
meaning the virtual camera axis is perpendicular to the road.

Finally, for a captured image Ii the algorithm can be
summarized by the following steps:

1) Compute the BEV with φij as roll angle. For the first
iteration, φi0 = φ̂i−1 −∆φ/2.

2) Filter and track the 3 road separation lanes.
3) Fit the road markers with third order polynomial

functions and compute the right and left areas.
4) Compute the difference between the two areas. Is the

result inferior to the threshold? Yes, φ̂i = φij and exit
the loop. No, φij+1

= φij + δφ and go back to step 1
with updating φij .

Note that the performances of the algorithm are highly
dependent of the settings. It depends directly on the size
of the roll range ∆φ and the roll loop resolution δφ. The
larger the roll range is, the longer the computation time is.
This observation is also true for small roll resolution δφ.
Moreover, a smaller δφ leads to a more accurate estimation.
It requires finding a compromise depending of the algorithm
application.

V. BIKESIM SIMULATION RESULTS

This section validates the proposed algorithm on various
scenarios using the advanced motorcycle simulator BikeSim.

The camera was virtually installed in front of the P2WV
at a height zc = 1.10 m and mechanically titled by an angle
µ0 = 12◦. The ROI is chosen large enough to capture the
left, center and right lanes with Ymax = −Ymin = 15 m. In
addition, Xmax = 20 m and Xmin = 5 m to respectively
capture more than one piece of the center dashed lane and to
avoid blind spot consideration. The camera recording speed
is set at 30 fps whereas, its resolution to (640x480) and its
pixelic focal lengths are adjusted such that fu = fv = 380
pixels. Note that this kind of camera is largely widespread.
Nevertheless, in the section discussing the results we will
compare the results with a higher camera resolution at
(1080x720). To facilitate the filtering and fitting steps, we
will assume that the BEV image I ′ is of size (m× n) since
the original image I is of size (n×m).

The proposed algorithm was tested under several different
scenarios and two of them are presented below. In these two
scenarios, we assume the two-lane road to be planar and the
three separation lanes (right, center and left) are structured
and detectable.

A. Scenic road

A constant speed scenic road simulation at 100 km/h
is presented first. This scenario simulates an extra-urban
road which is composed of straight lines, circular turns and
clothoids to ensure smooth connections (see Figure 2). This
kind of scenario is particularly interesting in the development
of ARAS since it is one of the most deadly. This is because
of the high ratio between road curvature and speed limits.
Indeed, urban roads can have more aggressive turns but the
speed limit is slower although on a highway the speed limit
is faster but the curve radius are very large. In addition, with
its large roll angles as illustrated in Figure 2, this simulation
tests the algorithm during an aggressive riding scenario.

Figure 2.a and 2.b depicts the vehicle trajectory along the
scenic road scenario and the corresponding motorcycle roll,
yaw and pitch angles. We can observe the pitch angle, in
orange, is almost constant as discussed in the assumptions.



Whereas Figures 2.c presents the estimated roll angle, in red,
and the actual ones, in blue. One can remark some estimation
errors especially for the large roll angles. This could be ex-
plained by the lane detection uncertainties, the road clothoid
model approximation combined with the numeric resolution
δφ.
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Fig. 2: Scenic road scenario at 100 km/h

Moreover, this finding confirms that the estimation un-
certainties depend on the roll angle. In practice, when the
camera is significantly leaned, some captured objects are
represented with more or less pixels in the image (see the
captured image in Figure 1). It depends where these objects
are located with respect to the camera position. Note that
the estimation performances are discussed in detail in the
next section but this first figure gives a first idea about the
observer capabilities.

B. Double lane change

The Double Lane Change (DLC) is a well-known scenario
in the development of ADAS since it is an obstacle avoidance
maneuver. In addition to test the proposed algorithm on an
emergency riding scenario, the DLC allows to test a very
specific case too. Indeed, the road is straight whereas the
vehicle has a large lateral deviation which is a rare case
where the vehicle trajectory significantly differs from the
road route. Like for the scenic road the riding speed is
assumed constant at 100 km/h.

Figure 3.a depicts the P2WV trajectory during the DLC,
the vehicle is initially in a straight trajectory and suddenly
crosses the center lane to avoid an obstacle before going back
to its initial lateral position. Whereas Figure 3.b shows that
even if the road shape is straight, a DLC maneuver with a
P2WV highly excites the lateral dynamics. As for the scenic
road, Figures 3.c presents the roll estimation results. One
can observe again estimation errors which are more visible

because of the time scale and the specific DLC trajectory.
Indeed, the road clothoid model given in (7) is valid for
small heading angle.
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Fig. 3: Double lane change scenario at 100 km/h

Whereas, the DLC scenario involves significant vehicle
heading deviation with respect to the straight road trajectory
(see Figure 3). As previously, the lane detection and the road
model uncertainties combined with the numeric resolution
contribute to these errors. Nevertheless, even if the DLC
is near the limit of the clothoid model, the estimation
performances are largely acceptable.

C. Result discussion

This subsection discussed the above results and presents
a Root-Mean-Square Error (RMSE) study which is a well-
known technique to contrast the estimation errors. For more
information about the RMSE expression please refer to [13].
For both simulations, the roll resolution and the range are
set such that δφ = 0.5◦ and ∆φ = 6◦. Figures 2.c and
3.c demonstrates all the potential of the proposed method.
The results can be compared to what a low cost IMU could
measure. Nevertheless, we can see a slight estimation error
when the roll angle is large due to lane detection approxima-
tions. Even with this slight error our method is more effective
than most of the model-based estimators proposed in the
literature. Indeed, these last are often designed for a nominal
case with linear assumptions and because of uncertainties the
estimation can be degraded [9].

In Table I, the RMSE is computed for both camera res-
olutions ((640x480) and (1080x720)) for the DLC scenario.
Moreover, the parameter τ denotes the computation time
performance as the ratio between the total estimation time
and the simulation time at a recording speed of 30 fps. The
simulation was carried out on macOS with a 3.1 GHz Intel



Core i7 CPU. Of course deploying the algorithm on a real-
time OS with optimized image processing toolboxes could
give much better performances but this first study gives a
first idea about the algorithm speed.

Camera Resolution

(640x480) (1080x720)

δφ = 0.1◦
RMSE [ ] 1.77e−1 0.91e−1

τ [%] 621.1 934.5

δφ = 0.5◦
RMSE [ ] 7.97e−1 5.81e−1

τ [%] 334.8 503.4

δφ = 1◦
RMSE [ ] 8.25e−1 6.99e−1

τ [%] 182.1 310.5

TABLE I: RMSE RESULTS FOR THE DLC

This table endorses some intuitive observations. If we
increase the camera resolution the estimation performances
are undoubtedly better. It comes from the noise reduction
during the filtering and approximating step of the road
lanes. Moreover, as expected the estimation accuracy directly
depends on the numeric resolution of the roll loop. Nev-
ertheless, the time performance analysis demonstrates that
increase the resolution or decrease the numeric resolution
have serious consequences on the computation time making
this algorithm far from being a real time solution.

Although this solution show a strong capability of estimat-
ing the roll without any vehicle or tire model the algorithm
needs to be improved to be real time. Indeed, even for a low
image resolution at (640x480) and a large roll step δφ = 1◦ it
takes about 1.8 times more than the time required to simulate
the scenario. Nevertheless, in term of time performances, the
algorithm could be optimized by defining the roll resolution
δφ as a function of the areas difference. It means, if the
difference is important δφ is increased, whereas if it is small,
we know we are near the solution, we reduce δφ.

VI. CONCLUSION

This paper introduced a vision-based algorithm to estimate
the absolute P2WV roll angle to the road using only a basic
monocular camera. Note that it is illustrated on motorcycle
estimation but there is no restriction to generalize the solution
for other kind of vehicle. The roll angle is one of the most
important risk indicator for lateral P2WV safety purposes.
Its estimation has been largely addressed in the literature
with model-based approaches and heavy instrumentation.
Nevertheless, these solutions work well under restrictive
assumptions around nominal cases. The method discussed
in this paper, only depends on the camera parameters and is
insensitive to other parameters such that the rider weight.

The algorithm is based on prior knowledge of the road
markers. For each captured image, the algorithm creates a
virtual camera which is rotated until the road markers appear
parallel and equidistant in the virtual image. It performs
an IPM transformation using the previous estimated roll.

Finally, we get an approximate BEV where the road lanes
are filtered and tracked. Then, a fitting step allows to ap-
proximate the lanes with third order polynomial functions
and to compute two distinct areas between the left-center
and right-center lanes. Then, this two areas are compared to
detect if the lanes are parallel and equidistant. If the image
does not conform to the requirements the roll angle defining
the position of the virtual camera is increased by the roll
resolution δφ. The loop is repeated until the area difference
is inferior to a defined threshold. The solution was tested
on various test scenarios including a scenic road and a DLC
with two camera resolutions. Furthermore, a RMSE study
on DLC scenario was discussed in order to compare the
performances in terms of accuracy and computing time for
two camera resolutions.

The results discussed in this paper are very promising
and open a real alternative to model-based approaches to
estimating the P2WV roll angle. The next step will deal with
algorithm optimization to perform real time estimation and
validate the approach on experimental data.
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