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Powered Two-Wheeled Vehicles Steering Behavior Study: Vision-Based
Approach

Pierre-Marie Damon1,2, Hicham Hadj-Abdelkader1, Hichem Arioui1 and Kamal Youcef-Toumi2

Abstract— This paper presents a vision-based approach to
prevent dangerous steering situations when riding a motorcycle
in turns. The proposed algorithm is capable of detecting under,
neutral or over-steering behavior using only a conventional
camera and an inertial measurement unit. The inverse per-
spective mapping technique is used to reconstruct a bird-eye-
view of the road image. Then, filters are applied to keep
only the road markers which are, afterwards, approximated
with the well-known clothoid model. This allows the prediction
of the road geometry such as the curvature ahead of the
motorcycle. Finally, from the predicted road curvature, the
measurements of the Euler angles and the vehicle speed, the
proposed algorithm is able to characterize the steering behavior.
To that end, we propose to estimate the steering ratio and we
introduce new pertinent indicators such as the vehicle relative
position dynamics to the road. The method is validated using
the advanced simulator BikeSim during a steady turn.

I. INTRODUCTION

Car manufacturers are very excited! The Powered Four-
Wheeled Vehicles (P4WV) market is again on the rise,
boosted primarily by the interest that portend future buyers
to new technologies and autonomous vehicles. Indeed, users
are gradually attracted by systems, providing optimum safety
(active safety belt, shared driving or automated, Brake Assist,
GPS, etc.).

For last two decades, research and development companies
and researchers are very active on new ways of assisting
drivers. Many of these Advanced Driver Assistance Systems
(ADAS) are already unavoidable (Adaptive Cruise Control
(ACC), Lane Keeping System (LKS), etc.) even manda-
tory (Anti-lock Braking System (ABS), Electronic Stability
Program (ESP), etc.). All automotive fields are covered,
more less well: traffic management and modeling, vehicle
automation, study of the driver’s behavior, infrastructure
development, inter-vehicular communication, etc.

Unfortunately, this keen interest is not as obvious to some
other road users, although they are most affected in road ac-
cidents. Indeed, according to the recent MAIDS (Motorcycle
Accident In Depth Study), Powered Two-Wheeled Vehicles
(P2WV) present a risk 20 times greater than that others
mean of transport. In question, we can mention excessive
speed, poorly adapted infrastructure, rider training level, etc.
When cornering, all these risk factors lead riders to imminent
danger even irremediable hazard. In France, 54% of accidents
occur during a bend, without a third party involved [1]. To
answer this issue, many advanced rider assistance systems
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(ARAS) have been proposed. One can cite: Advanced Safety
Vehicle (ASV) from Yamaha, Intelligent Speed Adaptation
system (ISA) [2], and in the SAFERIDER European frame-
work an Intelligent Curve Warning system [3].

Our present work tackles the question of the motorcy-
cle’s steering behaviour. This is achieved with vision-based
techniques, by far, achievable without the need for complex
computational algorithm or costly perception systems.

This paper is organized as follows. Section 2 presents the
motivations and defines the problem. All the vision aspects
such that the inverse perspective mapping technique, the road
marker filtering and the fitting step are addressed in section
3. At the end of the same section, we present pertinent
indicators to characterize the steering behavior. Whereas in
section 4, simulations carried out with the advanced motor-
cycle simulator ”BikeSim” are discussed. Finally, concluding
remarks are summarized in section 5.

II. MOTIVATION AND PROBLEM STATEMENT

During a bend, riding a motorcycle requires four key-
points: rider’s position on the motorcycle, adjusting speed
and gear ratio, direction gaze and finally motorcycle position
on the road (preferable or neutral zone). Here, we are
particularly interested in the last point and the detection of
over or under-steering situations. Over-steering is a drift of
the rear wheel greater than the front one. The bike wants
to turn more than what is required or lean too much to get
into the bend. As to under-steer is a drift of the front wheel
more than wheel behind. The bike seems to continue straight
while we steered the wheels (out of the curve situation).

Usually, it is possible to correct an under-steer by briefly
releasing the throttle and slightly straightening the front
wheels by counter-steering in order to recover more adhe-
sion. This phenomenon is very often related to an excessive
speed when entering in turn or an excessive acceleration at
the exit. In 30% of cases, motorcyclists do not have enough
time to reply to these dangerous situations [4].

From the control point of view, the over-steer is less
dangerous and occurs more generally under bad weather
conditions (snow, rain or icy road). The adjustment of the
brake distribution may be a catch-up solution to this skid
situation (similar to controlled drift for cars).

Within this context, the SAFERIDER project [5] gives
a full prospection of the researches that were interested in
performance and maneuverability indices during steady-state
turning. These last express the correlation between neutral
maneuvers and under or over-steering situations (ratio of roll
angle to steering torque or ratio of speed or road curvature



to steering dynamics). The most complete research is from
Cossalters team [6]. The main objective is to determine the
best cornering layouts and to identify a neutral driving zone.
This is achieved with the quantification of the steering ratio ξ
described by an explicit mathematical model. This parameter
is calculated based on prior knowledge or measure of various
dynamic states and geometrical features.

The major drawback of this work is the impossibility of
estimating without having access to several dynamic states
such as: linear and angular velocities, road curvature, roll
and steer angles as well as side slip ones. Not to mention
the prior knowledge of several geometric parameters of the
bike (caster angle, wheelbase, etc.). It is obvious that access
accurately to these data and measures, even noisy, is a very
difficult challenge.

Based on our approach developed in [7], the present
work attempts, beyond all the parameters mentioned above,
to measure steering ratio and proposes a new vision-based
approach as well as complementary steering indicators.

III. STEERING CHARACTERIZATION:
ALGORITHM DESIGN

A. Vision Aspects

Camera sensor is generalized for various kinds of auto-
motive applications. When the camera looks the road, the
Bird-Eye-View (BEV) can be reconstructed using the Inverse
Perspective Mapping (IPM). Indeed, the IPM creates a virtual
camera removing the perspective effect. Furthermore, the
IPM creates a top-view of the road making the markers easily
identifiable and the obstacle detection easier. Nevertheless,
the algorithms proposed for P4WV can not be extended to
P2WV since the roll motion which is required when it is not
considered for P4WV.

Consider a calibrated conventional camera attached to
the frame Fc. Let P be a 3D point of coordinates P =
(X Y Z)

> in the camera frame. The 3D point P is viewed
by the camera into the 2D point p of homogeneous coor-
dinates p = (u v 1)

> in the image plane. For perspective
conventional camera, the projection equation is given by:

p ∝ K P (1)

where ∝ denotes the equality up to scale and K is the camera
calibration matrix. Its expression is given in [7]. Note that
for the sake of simplicity, the camera distortions are not
considered in this study.

The IPM warps each image point p from initial image
I into a new point p′ of homogeneous coordinates p′ =
(u′ v′ 1)

> in the BEV image I ′. Since this transformation
is applied to a planar object, the wrapping function is the
collineation matrix denoted G. The latter ensures the IPM
transformation from I to I ′ such that:

p′ ∝ G p (2)

The collineation matrix G can be expressed in terms of the
intrinsic parameters and the Euclidean homography matrix
H ∈ SL(3) related to a planar viewed object. Note that

H depends on the rotational and translational displacement
between the real camera pose providing the image I and the
virtual one where I ′ is generated.

Let Fv be the virtual camera frame attached to the P2WV.
Its origin is the projection of the origin of the real camera
frame Fc on the road plane as illustrated in Figure 1. The
virtual camera frame Fv is oriented such that the X-axis is
parallel to the vehicle longitudinal axis and the Z-axis points
upward (perpendicular to the road). Under this assumption,
all the points belonging to the road lie on the same plane
XY of Fv . In this case, the aim of the IPM is to generate a
top-view of this plane by projecting back all the points from
the captured 2D image I to the plane XY of the 3D frame
Fv . Finally, the BEV is obtained by cropping the top-view of
the plane according to the desired Region Of Interest (ROI).
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Fig. 1: P2WV & Road geometry

Under the assumptions given above, the IPM transfor-
mation based on the collineation matrix G depends only
on the roll and pitch angles respectively denoted φ and
µ, the camera height hc (see Figure 1) and the camera
calibration matrices K and Kv (calibration matrix of the
virtual camera). The latter depends on the desired resolution
of the output BEV image and the ROI.

The collineation matrix G can be easily identified as:

G ∝ Kv M−1 K−1 (3)

where

M =

− sφ sµ − cφ −hc sφ cµ
cφ sµ − sφ hc cφ cµ
cµ 0 −hc sµ


with s� and c� denoting respectively sin(�) and cos(�).

Finally, the BEV image I ′ is obtained by warping each
point from I ′ onto I using the inverse mapping G−1. Then
the image intensity is computed by interpolating the local
pixels intensities in the origin image I . An example of
images I and I ′ is given by Figure 2.



(a) (b)

Fig. 2: Road images : (a) original image I , (b) BEV I ′

B. Road Lane detection and fitting

In the race for new ADAS, the road marker detection has
been widely addressed in the past years. In this work, we
used the method recently proposed in [7]. It is based on
the intensity gradient between the road lane markers and
their surroundings. It allows the detection of both straight
and curved road lanes and requires few computing resources.
Moreover, this method turns out to be a very appropriate
solution to detect the road lanes in a BEV image since it
takes into account the line width, denoted w, as a filtering
parameter. Note that the properties (width, length, etc.) are
precisely defined in the road design specifications. Then the
filtered image is thresholded and re-filtered to respectively
keep only the lane objects in a new binary image and remove
the small blobs. Once the binary image of the road lane
markers I ′′ is obtained, one aims to separate the lanes (left,
center and right in our case). To that end, a sliding window
algorithm is used to track each lane independently in I ′′.

When investigating the road design literature, it appears
that the well-known clothoid model was largely adopted to
design roads [8]. The clothoid-based design ensures smooth
transitions between straight and curved lines, helping drivers
to track the road markers and avoiding abrupt changes in the
steering direction. It is defined such that the length of the
curve l from the curve origin must be proportional to the
curvature. Hence, the following expression was introduced
in the literature by [9]:

C(l) = C0 + C1l (4)

where C0 and C1 are respectively the initial curvature and
its rate along the curve as illustrated below in Figure 1. Note
that C0 = 0 and C1 = 0 correspond to a straight line, C0 6= 0
and C1 = 0 to a circular curve and C0 6= 0 and C1 6= 0 to a
clothoid. This model is only valid for horizontal curves when
the road is planar. As in [10], if we consider the heading
angle between the road tangent and the vehicle X-axis is
small (less than 10◦), equation (4) can be approximated in
the Cartesian coordinate system with:

y(x) ≈ ∆Y + tan(∆ψ)x+
1

2
C0x

2 +
1

6
C1x

3 (5)

with ∆Y the lateral offset, ∆ψ the vehicle relative heading
angle to the road trajectory. Note that in our case, we have
chosen the right lane as the reference.

C. Steering Behavior Characterization

This subsection deals with the estimation of pertinent
indicators in order to characterize the P2WV steering be-
havior. The first objective is to propose an alternative to the
kinematic-based approach in order to estimate the steering
ratio ξ. This last is well-known as an indicator of under,
neutral and over-steering. A second aim is to introduce com-
plementary conditions for steering behavior characterization.
Note that, the proposed vision-based technique does not
require any knowledge of the vehicle parameters, any prior
estimation step or any steering encoder like for the kinematic
approach.

From kinematic point of view, the steering ratio ξ is
defined as the ratio between the cornering radius for ideal
conditions R0 (i.e. without tire side slips) and the actual
cornering radius denoted R:

ξ =
R0

R
(6)

The latter can be found in [6] where the authors proposed
to define the ideal cornering radius R0 as follows:

R0 =
l

tan(∆)
=

cos(φ) cos(δ)− sin(φ) sin(δ) sin(ε)

sin(δ) cos(ε)
l (7)

where ∆ denotes the kinematic steering angle. For more
details about its expression, the reader can refer to [11].
Finally, R0 can be directly computed from the motorcycle
parameters such that the caster angle ε, the wheel base l
and from the measures of the roll and the steering angles
respectively denoted φ and δ.

Still, according to [6], the actual kinematic radius R can
be expressed as follows:

R =
l

tan(∆− αf ) cos(αr) + sin(αr)
=
vx

ψ̇
(8)

where αf and αr denote the front and rear side slip angles.
While the terms vx and ψ̇ correspond respectively to the
longitudinal speed and the yaw rate. Regarding (8), there
are two possibilities to compute the actual radius R. The
first one is to equip the P2WV with an Inertial Measurement
Unit (IMU) and a speedometer providing the measures of
vx and ψ̇. The second solution, more complex, is to use a
prior estimation step to estimate the side slip angles αf and
αr. Indeed, these last are unmeasurable and their estimation
is still an open topic with recent publications as in [12].
Nevertheless, most of the time these algorithms are tricky
and require additional sensors.

Remark 1: Finally, once the steering ratio ξ is computed,
it directly reflects the vehicle steering behavior such that:
• ξ < 1: Under-steering
• ξ = 1: Neutral steering
• ξ > 1: Over-steering



In addition, ξ < 0 corresponds to the counter-steering, which
is a specific phenomena of P2WV when entering in a curve
and ξ =∞ means the steering behavior is critical.

For more information about the kinematic-based approach
the reader can refer to [11], [6], where the authors proposed
a complete investigation.

Our innovating technique is based on the use of vision.
Indeed, the kinematic approach requires the exact knowledge
of some P2WV parameters in (8) and a prior estimation
step or the use of an encoder which is tricky to install.
From practical point of view, the space around the steering
column is quite small to integrate an encoder and it is hard
to properly align the sensor and the steering rotation axis.
In addition, the small steering angle amplitude, generally
included between -5 and 5 degrees, involves the use of
an accurate sensor. Our approach overcomes this problem
and can be easily installed on any motorcycle without any
restriction. We propose to estimate the steering ratio thanks
to computer-vision.

Let us consider that the motorcycle is equipped with
a front module including a camera and an IMU. Since
in most of the countries, speedometers are mandatory for
road vehicles, we will consider that the measurement of the
longitudinal speed vx is available. Let us remind that the
vision-based algorithm introduced in the previous section
allows to predict the road geometry parameters such that the
road curvature and its rate. They are respectively denoted C0

and C1. In addition, it estimates the relative heading angle
∆ψ and the lateral position ∆Y between the P2WV to the
road markers. As for the kinematic technique, we proposed to
estimate the steering ratio ξ which is a key index for steering
behavior characterization. To that end, the actual steering
ratio R given in equation (8) can be directly computed using
the measurements. Nevertheless, our contribution is about
the estimation of the ideal radius R0. Since R0 = 1/C0,
the vision-based prediction of the road geometry allows to
directly estimate this variable.

Moreover, we propose to introduce the time derivatives of
∆ψ and ∆Y which turn out to be great steering indicators as
well. Although, ∆Y is the P2WV relative lateral distance to
the considered road marker (see (5)), its time derivative ∆̇Y
is absolute and the constant term is removed. Consequently,
the time derivation of ∆Y facilitates the characterization of
the steering behavior. Indeed, it amplifies the signal variation
from zero leading to the following findings:
• ∆̇Y < 0 : under-steering
• ∆̇Y = 0 : neutral steering
• ∆̇Y > 0 : over-steering

Note that the observation can be done for ∆ψ. Nevertheless,
the simulations show that its dynamics is much more noisy,
which make this variable a background steering indicator.

IV. BIKESIM SIMULATION RESULTS
This section validates the proposed approach during

a steady turn using the advanced motorcycle simulator
BikeSim which is the motorcycle version of CarSim. Let
us remind that the objectives are to figure out pertinent

indicators for over and under-steering detection. To that
end, the steering ratio is estimated using vision and other
indicators are proposed to strengthen the detection.

The camera has been virtually installed in front of the
P2WV at a height zc = 1.10 m and mechanically titled of
an angle µ0 = 15◦. Its resolution and its recording speed
are respectively set at (1080x720) and 30 fps. Its vertical
and horizontal FOV are respectively equal to FOVv = 58.4◦

and FOVu = 80◦. Whereas, the IMU is considered as fixed
on the camera and its measurements sampled at 30 Hz.
Both sensors, the camera and the IMU, are assumed to be
synchronized. Note that, plenty of conventional cameras and
IMU can satisfy these specifications even low cost devices.
The ROI is chosen large enough to capture the left, center
and right lanes with Ymax = −Ymin = 12 m. As discussed
in [7], Xmax = 30 m m and Xmin = 5 m allow the rider to
react in case of danger and to avoid blind spot consideration.
Note that all the results below are given at X0 which is the
projection of the camera center on the ground.

In the present scenarios below, we assume the road to
be planar (no elevation) and the curvature radius is constant
at 232 m. In addition, the road is in good condition with a
constant friction coefficient of 0.8. The motorcycle is moving
at 100 km/h in a single 5 m wide traffic lane demarcated
by a right and left solid lanes. For the simulations below,
the right lane is considered as the reference. Indeed, in
most cases, it is closer to the P2WV for right-hand drive
and it is a solid lane. Nevertheless, it is utterly possible to
consider other lane as a reference even if it is a dashed lane.
Nevertheless, the estimation performances could be affected.
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Fig. 3: Vehicle and road trajectories vs steering behavior

Figure 3 depicts the vehicle trajectories along the constant
turns. We can clearly notice the over, neutral and under-
steering behaviors, respectively in red, blue and magenta.
Note that these colors are reused below. For the neutral
case, the P2WV and road trajectories are equal. Nevertheless,
for an under-steering motorcycle, it means the rider does
not apply enough torque on the handlebar and the P2WV
consequently tends to expand the curve. On the contrary,
an over-steering behavior means the applied rider torque is
too important regarding the road trajectory and the vehicle
tends to cut the curve. Figure 4 highlights some of the P2WV
dynamics states and the estimated kinematic ratio. Figure 4.a
introduces the rider’s torque, used to control the vehicle, and
the induced steering angle. We can observe the torques used



to virtually generate the over and under-steering scenarios.
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Fig. 4: Kinematic steering ratio vs vehicle dynamics

Note that, the nominal rider torque for the neutral trajec-
tory is set at -5 N.m leading to a 0.2◦ steering angle. Note
that, the initial conditions are defined such that the P2WV
is entering in the curve with a null roll and steering angles.
Figure 4.b introduces the vehicle roll angle and its yaw rate
during the steady turn for the different steering behaviors. It
shows that the over and under steering behaviors directly
impact the roll angle. That is why, the vision algorithm
must take into account the roll angle variations. In addition,
the variation of the yaw rate turns out to be an interesting
indicator to characterize the steering behavior. This topic
is discussed below. Finally, Figure 4.c presents the steering
ratio ξ computed since the kinematic approach given in (6)
with (7) and (8). It clearly endorses the observations made
in the previous section in remark 1. The dashed vertical
line indicates the reference time when the steering ratio is
significantly affected by over and under-steering. It has the
same meaning in all figures below.

Figure 5 shows the estimations, in red, and the simulated
data, in blue. They come from the clothoid model given in
(4) with regard to the right lane. These last were estimated
using the vision algorithm introduced in the previous section.
We can notice that the (1080x720) image resolution allows
to get great estimation results. Figures 5.a depicts the road
trajectory. Whereas Figures 5.c-5.d and 5.e-5.f introduce the
P2WV relative position to the right road marker, respectively
for an under and over-steering scenario. As expected, an
under-steered motorcycle gets closer and closer to the right
lane until it crosses the lane. For an over-steering vehicle,
it gets further and further from the right lane. Because the
road sides are often filthy with sand, etc. These dangerous
behaviors can lead to a vehicle loss of control and, in the
worth case, to an accident. In this context, we propose a
new vision-based approach to detect these kind of dangerous

steering behaviors.
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Fig. 5: Estimated parameters with the vision

A. Under-steering & Over-steering scenario

This subsection aims to introduce the under-steering and
over-steering simulation results during a steady turn.
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Fig. 6: Under-steering scenario vs vision-based indicators



Figure 6 depicts the pertinent indicators an under-steering
case, whereas in Figure 7, the over-steering situation is
addressed.
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Fig. 7: Over-steering scenario vs vision-based indicators

B. Results discussion

Figures 6 and 7 highlight pertinent indicators for steering
behavior characterization. As for the kinematic approach, we
use the steering ratio computed thanks to vision. In addition,
we propose to include two complementary indicators such
that the time derivatives of the relative heading angle ∆ψ
and the lateral position ∆Y .

Note that these three dynamic states need to be filtered be-
cause of the estimation uncertainties. Even if the estimations
introduced in Figures 5.c-5.f are barely affected by noise, it
is amplified after the time derivation. To that end, we used
a simple first order Butterworth filter.

Finally, the vision-based steering ratio presented in Fig-
ures 6.c and 7.c is very close to the one obtained with
the kinematic approach. Then, the time derivative of the
relative lateral position (Figures 6.a and 7.a) turns out to
be a very interesting indicator. Indeed, this last is supposed
to be near zero for neutral steering whereas, it suddenly
changes for over or under-steering situations. Moreover, the
ratio between the noise and the signal’s amplitude is quite
small. That makes ∆̇Y a consistent indicator for steering
characterization.

Furthermore, the time derivative of the relative heading
angle ∆̇ψ can be used as a background indicator to endorse
the results. As Figures 6.c and 7.c depict, this variable is
affected by noise. Nevertheless, even with significant noise,
it allows to detect over or under-steering behavior as soon
as it differs from zero.

V. CONCLUSION

The present paper deals with the assessment of motorcycle
steering behavior in order to prevent dangerous situations

in turns. Indeed, the proposed approach is proficient in
identifying under, neutral or over-steering behavior with two
basic sensors: a conventional camera and an IMU. Based on
the well-known clothoid model and the inverse perspective
mapping technique, the both vehicle trajectory radius and
road radius are recovered entirely without the need of some
steady-state constraints or dynamics. In addition, no vehicle
parameter and no steering encoder are required. These both
radius are used to estimate the steering ratio ξ.

As well, we propose a new performance index for quali-
fying the steering behavior. This last is the dynamic of the
relative lateral position ∆̇Y between the motorcycle and the
road. This index, emphasize much more the steering behavior
because of an important signal to noise ratio comparing to ξ.
We also proposed a second background indicator ∆̇ψ which
corresponds to the dynamics of the relative yaw angle.

Finally, simulations are carried out using a nonlinear
multibody simulator called BikeSim. The results highlight
the great capabilities of the proposed approach of char-
acterizing the steering behavior in order to detect over
and under-steering situations (links to videos https://
youtu.be/2UDpoS4QuVk and https://youtu.be/
FgzHeQOEdCo).

In the near future, we would like to address the case of
the non-steady turn and the validation on experimental data.
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