N

N

Analysis and numerical simulation of a polymerization
model with aggregation and Ostwald ripening for the
growth phenomenon

Léon Matar Tine, Babacar Leye

» To cite this version:

Léon Matar Tine, Babacar Léye. Analysis and numerical simulation of a polymerization model with
aggregation and Ostwald ripening for the growth phenomenon. Acta Applicandae Mathematicae,
2018, pp.1-28. 10.1007/s10440-018-0222-x . hal-01933553

HAL Id: hal-01933553
https://hal.science/hal-01933553
Submitted on 10 Dec 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01933553
https://hal.archives-ouvertes.fr

Acta Applicandae Mathematicae manuscript No.
(will be inserted by the editor)

Analysis and numerical simulation of a polymerization model with
aggregation and Ostwald ripening for the growth phenomenon

Léon Matar Tine - Babacar Leye

the date of receipt and acceptance should be inserted later

Abstract In this paper we present an analytical and numerical modeling of a general polymerization
process with possible lengthening by coagulation mechanism. The proposed model takes into account
the 2D spatial diffusion of the monomers for the mass transfer between monomers and polymers. We
investigate the well-posedness of this general polymerization model and propose an adequate numerical
scheme based on a generalization of the anti-dissipative method developed in [14].
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1 Introduction

We are interested in the polymerization process when a population of polymers is immersed in a
bath of monomers with possible growth by gain or loss of monomers and possible coalescence by a
coagulation mechanism. This type of models for polymer (macro-particles) and monomer mixtures is
theoretically based on the standard Lifshitz-Slyozov system [25,19] which is commonly used to under-
stand the so called Ostwald ripening phenomenon. This phenomenon refers to the mecanism of the
growth of larger polymers at the expense of smaller ones due to the minimization of the interfacial
surface energy of the system which governs the processes of gain and loss of monomers.

Initially, the standard Lifschitz-Slyozov system describes the dynamics of a solution of macro-particles,
characterized by their size distribution function f(¢,€), ¢t,€ > 0, which interacts with monomers (free
size particles) characterized by their concentration ¢(t), t > 0. This interaction is governed by kinetic
coefficients named a, b and represent the rate at which monomers are added to or removed from poly-
mers. Of course the rates a and b depend on the considered processes of precipitation/dissolution.
In [25], Lifshitz and Slyozov propose the choice a(¢) = €'/ and b(¢) = 1 for the assumption that
mass transfer in the interaction is based on monomer diffusion. Thanks to this choice, the growth rate
V(t,&) = a(&)c(t) — b(§) vanishes at all time ¢ > 0 which means there exists a critical size, ..i¢, such
that V(¢,&.r4¢) = 0. So all polymers of size less than ..+ shrink and those of size greater than .,
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grow. Other choices of kinetic coeffients and their physical meaning can be found in [33].

To go beyond the classical Lifshitz-Slyozov system in order to understand the asymptotic trend of
the family of self-similar solutions for the macro-particles distribution functions, other works focus on
variants of this system for instance when possible coalescence (coagulation) of large polymers is taken
into account. It is the case in [20] where in addition to the encounter process, the evolution equation
for the volume (size) distribution function of macro-particle is coupled with a conservation of matter
equation involving the monomers concentration. The author analyzes in [20] the well-posedness of his
model by performing compactness properties of the solutions to approximating equations for the weak
topology L'(0,+00). Other existence proofs exist like the one done in [6] using characteristic curves.
One can refer to [25,33,6,18,14] for various modified Lifshitz-Slyozov system where coalescence of
polymers is taken into account. For the parabolic correction of the Lifshitz-Slyozov model derived
from the Becker-Déring model, an infinite system of ODEs when polymers have discrete sizes, see [37,
8,9,16,27].

In paper [13], the authors propose another variant derived from the Lifschitz-Slyozov standard sys-
tem by assuming that monomers are subject to space diffusion. This assumption is motivated by the
physical description of the sintering processes. They perform a rigorous proof of the existence and
uniqueness of the polymers distribution function in the case of a free coagulation mechanism.

In this paper, we wish to understand the behavior of the Lifschitz-Slyozov system when monomers are
assumed to follow a diffusion equation as in [13] and polymers are allowed to merge (coalesce) with
each other as in [14]. Let us remind here that the main conjecture in [14] concerning the coagulation
effect is that it allows to keep the right expected behavior of the polymers distribution function. In our
study, no diffusion is taken into account for the polymers distribution function. Some extensions where
a diffusion term is added to take into account fluctuations exist (see [26,30] and references therein). In
our modeling, we deliberately choose a constant coagulation kernel and there is no physical motivation
behind.

All these variants of the Lifshitz-Slyozov standard system are motivated by the amount of applications
related to the polymerization process which is often use in industrial processes for producing metallic
alloys such as stainless steel or nickel alloys used in jewelry [19,25]; in population dynamics when for
instance one is interested in the synthesis of DNA stand which is made by sequences of deoxyribonu-
cleotides or when one is interested in the mechanism of Prion diseases where the polymerization of
Prion protein is a central event [32,2,3,15,23]. Recently several papers in Alzheimer disease modeling
refer to such process of polymerization with aggregation (coagulation) in order to describe the ways
of oligomerization and fibrillation which are considered to our knowledge as the central mechanisms
of the evolution of the disease [17,34].

In our study, we denote as in [13] the size distribution function of polymers by f(¢, z,{) with
t>0,2 € 2 CR?and ¢ > 0 the time, space and size variables respectively and by c(t,2) the
concentration of monomers at time ¢ > 0 and position x. So the considered model stands as follows:

Ocf(t,x,€) + Oe((a(§)elt,z) — 1) f(t,2,8)) = AQ(f)(t, 2,8), t>0,2€02,§>0,
8, (c(t,x) n /OO EF(t,,€) dg) ~ Agelt,z) =0, t>0,2€0, (1.1)
0

d,c=Ve-v=0, on 942,

where (2 is a smooth bounded domain, with boundary 92 and v(x) to be the outward unit normal
vector at the point = € 0f2. The parameter A is a scale constant parameter for the coalescence process.
The dynamics of the polymers is governed by the growth rate a(§)c(t, ) — b(§) where, in our case, we
choose b(§) = 1.

The kinetic coefficients @ and b are non negative functions and quantify the rates at which monomers
are added to or removed from the polymers. Note that the precise expression of the coefficients de-
pends on the modeling of mass transfer between monomers and polymers. In the case where mass
transfer is based on monomer diffusion, [25] proposes the choice a(¢) = ¢1/3 and b(¢) = 1. One can
refer to [33] for other formulas for the kinetic coefficients. In any time, there exists a critical size .t
such that the growth rate vanishes. So all polymers of size smaller than £.,;; shrink while the larger
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ones grow.

The operator Q(f) describes the encounters between polymers and is written

3 oo
QN8 =5 [ K- €.t e - )it )de - [ K@t () de
0 0

3TN0, = f(6.2.9 L(t.a) where Ly(t.a) = [~ K(€.€) (b, ) o
(1.2)

The first term in the right hand side of the equality in (1.2) represents the gain of polymers of
size & when one of size £ — £’ encounters another of size £ smaller than £ (¢ < &) with the rate
K(¢& —¢,¢); while the second term represents the loss of polymers of size £ when it encounters an-
other of any size ¢’ with the rate K(&,¢’). The coagulation kernel K(£7,&) is a symmetric function
from [0, 00[? into R, . It represents the rate of coalescence between particles of size &; and &. This
coagulation operator is widely used for the dynamics of cluster growth especially in most coagulation-
fragmentation type models. For instance in [24], the author use the Smoluchowski operator to describe
coalescence and breakage for a system of particles. He analyzed the existence solution for a class of
coagulation and fragmentation kernels. We mention Norris, [31], who obtains an existence result in
the pure coagulation equation, by assuming that there exists a sub-linear function ¢ on |0, oo, such
that K(&,€) < ¢(€)p(€') and fooo 2(€) fO(x, £)dE < oo. He also investigates the case where K (€,¢)
blows up as £ — 0 or £ — 0 and the case where any local regularity conditions is assumed on K.

Of course this encounter mechanism doesn’t change the total mass of the polymers fooo EQ()(t,x,&)dE
0 and it decreases the number of polymers by collision fooo Q(f)(t,z,&)dE < 0.

Here for analytical convenience we assume that the encounter rate of polymers is constant.

We assume that the problem (1.1) is endowed with the following initial condition

ft=0,2,6) = fOx,£) >0, c(t =0,z) = ().

In the following, we will refer to the continuity equation of (1.1) as (1.1); and to the monomer
diffusion equation as (1.1)s . The mathematical analysis of this kind of interactions between polymers
and monomers is quite intriguing in view of the classical paper of Lifshitz and Slyozov [25]. Many
works discuss the existence and uniqueness results in different functional frameworks and one can refer
to [7,21,22,28,29] for more details. Numerical simulations exist for this kind of interaction without
space variables and one can refer to [4,5,14].

In our specific case we investigate the problem (1.1) and look to the influence of monomer space-
diffusion and the encounter phenomenon on the evolution of the polymer size distribution. The aim
of this paper is to analyze theoretically the well posedness and the numerical issues of (1.1).
Without loss of generality, we assume

Hypothesis 11 The data satisfy

o ' e L>(N),

o f0€ L(Q; L1((0,00), (1+€) de)).

The kinetic coefficients satisfy

e b=1,

e a is non decreasing with a(0) = 0 and a(+o00) = +oo,

e acC0,00))NCL(0,00)) and for any & > 0, there exists L, > 0 such that 0 < a/(£) < L, for
any & > § > 0.

One can make the obvious remark that the gain rate, a(¢) = £/3, proposed in [25] fulfills the previous
hypothesis. That is the case for the rates of the form a(¢) = O(1/(€)) as used in [37]. Formally, by
simple integration of the continuity equation (1.1); against the size £, it is easy to remark that the
diffusion equation can be recasted in the following simpler form

Dye(t, z) + elt, z) /O T A€ f (b, €) dE = Ane(t, ) + /O " f € de. (1.3)
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Integrating (1.1)2 on {2 we obtain thanks to the Neumann boundary condition the following mass
preservation relation

;tU(Z/Ooogf(t,x7g)dgdx+/Qc(t,x)dx} —0. (1.4)

In what follows we put our analysis in (1.1) where the diffusion equation (1.1)s is replaced by (1.3)
and throughout the paper we investigate the following main result

Theorem 1.1 From Hypothesis 11 and previous chosen properties for the coagulation operator
Q(f), the system (1.1) where the diffusion equation (1.1)o is replaced by (1.3) has a unique “mild”
solution (c, f) with ¢ € L*([0,T); H*(£2)) N C([0,T); L*(£2)) and f € L>=([0,T]; L* (R, (1 + £)d§)).
Most of the technical tools used in the proof of this main result comes from [13] with appropriate
modifications. So we organize the paper as follows. In Section 2 we establish the general tools related to
the monomer time evolution equation and polymer continuity equation by using a slight modification
of Hypothesis 11 which consists in assuming the kinetic coefficient a to be Lipschitz continuous on
[0,00). In Section 3 we first present the analysis of the well-posedness of our system by applying a
double fixed point theorem in the case where a is Lipschitz continuous on [0, 00) and we generalize the

well-posedness in the conditions of hypothesis 11. Section 4 is devoted to the 2D numerical simulations
of the model.

2 General tools related to polymer and monomer equations
2.1 Tools related to the monomer diffusion equation

The well-posedness of the equation (1.3) is obtained as a consequence of the following result on
parabolic equations.

Proposition 2.1 Let 0 < T < oo. Consider non negative functions A, B € L*((0,T) x §2). If we
assume that there exists Nog € Ry such that

0< B(t,x) < Ng VY (t,z)e (0,T) x £,

then for all c® € L*(£2) there exists a unique solution ¢ € L*((0,T); H'(£2)) N C([0,T); L*(£2)) of the
parabolic equation

Oe(t,x) + Ac(t,z) — Agce(t,x) = B(t,z), in (0,T) X {2,
Oy,c=Ve-v=0, on (0,T) x 012, (2.1)
c(t=0,2) ="(x), on (2.

In addition, for all0 <t <T < oo there exists a constant Ct such that

t
/ |e(t, ©)|? dz < O / / V.c(s,z)[*deds < Cp.
Q 0o Jo

And, if 0 < c® € L®(£2), then the solution c satisfies the mazimum principle relation
0 <c(t,r) < Kp with Ky = K7 (No, ||c°]00, T).

Proof The proof of Proposition 2.1 is very classical and is based on the analog of the Lax-Milgram
theorem for parabolic equations. For more details see [13].
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2.2 Tools related to the polymer transport equation

Here we adopt the same reasoning as in the paper [13] by neglecting the space variable which appears
only as a parameter in the continuity equation. So, making abstraction to the space variable “x” and
taking A = 1, we consider the following transport equation

atf(tvg) + af(vf)(t7£) = Q(f)(t7£)7 t, 5 > 0,
Vit &) = a(®)e(t) — 1. bEso, (2.2)
f(t=0,8) = (), £>0,

such that the kinetic coefficients are required to satisfy for a given locally bounded ¢ (0 < ¢ < Kr)
the following assumptions

o ||d/||cc < L, and a € L™(R),
e a(0) =0,
where M1 = La Kr.
With these assumptions, it is straightforward to deduce that V satisfies

V(t70) S 07 V(t7£) S MTS» |V(t7§)| é MT(]- + g) and |V(t7£) - V(ta£/)| S MT'& - fl‘
So we can introduce the characteristic curves associated to V'
d
—&(s;1,8) =V (s5,8(s5;1,)),
ds (2.3)
E(t;t,8) =¢&.

We define the mild formulation which arises by integrating (2.2) along the characteristic curves asso-
ciated to V. So, the solution of (2.2) in its mild formulation is given by

F(8.6) = P(E(0;4,€)) J(0:1,€) + / QUF) (1 E(5:1.€)) I (5:1,€) ds (2.4)

which is obtained by using the differential equation fulfilled by f(s,&(s;t,€)) and where J is the
jacobian of the change of variables £ — &(s;t,&) and is defined by

t
J(s;t,€) = 0:8(s;t,8) = exp(—/ 0:V (0,8 (0;t,€)) do) > 0.

The previous assumptions on the kinetic coefficients allows to infer the following results on the
characteristics and the distribution function f.

Lemma 2.1 If the previous hypothesis on the kinetic coefficients is satisfied, then
1.Vt>0, £0;t,0) >0,
2.¥t>0, lim &(0;t,&) =400

=+

3. V0<t<T <oo and & >0, there exists Lt > 0 such that &(t;0,£) < Lp &.

If f is a solution of the characteristic view point, that is to say it satisfies equation (2.4), then
4. f° >0 implies f(t,£) >0,

5. 9 € LY((0,00); (14 &) d€) implies that ¥t >0, f(t,-) € L'((0,00); (14 &) d€) and more precisely
one has

fec®(o,T]; L (R,)), /ft£d§</ P& d¢  and

[T entoas < ( [T ep@actant [T o),
0 0 0
6. If we assume O:V (t,€) = c(t)0za(§) >0V E >0 and t € [0,T)] then
2 e LY(0,00)) implies that f € L*((0,T); L'(0,00)) and one can deduce
£l 2o (0,7:2 (0,00)) < I1F°11 L1 0,00) + QI L2 (0,7 x (0,00))

Proof For the proof of Lemma 2.1 one can refers to [13, Lemma 2.1 and Proposition 2].
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3 Analysis of the well-posedness of problem (1.1)
The proof of the well-posedness of the problem (1.1) is a straight adaptation of the one given in [13].
The main idea consists of performing a double fixed point strategy under the assumptions of Section

2.2. The first fixed point strategy is based on the polymers distribution function and the second one
on the monomers diffusion equation.

3.1 First fixed point strategy for polymers distribution function

Let us consider a given ¢ such that ¢ € {C’O((O,T) x £2), 0 < c(t,x) < KT}. The choice of T is

specified later.
We define the application F : g — F(g)(t,z,&) = f(t,z,&) such that

- (3.5)

{@f +0:(Vf)+ K f=Q(g)+ Kyg, in (0,T) x £2,
f|t=0 = an on “Qa

where the parameter K is chosen so that
Q(g) +Kg:>0 whenge€ {f € L=((0,T) x 2, L' (Ry)); £ =0, [If(t, 2, ),y < M} = Cro.
The choice of the constant K is possible and depend on the bound M. Indeed let

Qg)+Kg:>0= Q(9) —Lyg+Kg>0
= Q7 (9) + (K — Ly)g > 0.

Knowing that Q" (g) > 0, then the implication is true if K — L, > 0 which means K > Ly > ||g||lr1(z,)-
So we need to choose K such that K > M.

The solution of (3.5) along the characteristic curves when neglecting the space variable (which
acts just as a parameter) is written as

Flg)(t,8) = f2(&(0;t,€)) J(0; tvﬁ)e‘K“r/O (Q(g)(S; E(s3t,€)+K g(s, @“(S;t,f))) J(s;t,&)e K= ds.

Looking at the L' norm we get thanks to the fact that ||J| = <1,

t
I < 1w+ [ (1Q@)E i + Kl M) d
1
<N @y + Tlgll oo 0,520 (R4 ) (K + §HgHL°°((O,T);L1(]R+)))-
: . M
Knowing that F(g) = f, then we can fix M such as || f°||p1g,) < > and choose a small T such that
1
T(K+2M) < 3 So, one can choose M (f°) so that
0<K<L i —2M and K > M
SK<on an > M.

With this choice of K, one has F(g) € Cr, if g € Cr 0.

Consider f; and fo defined by f; =: F(g1) and fo =: F(g2) two solutions of the problem (3.5)
associated to g1,92 € Cr,o and with the same initial condition. Following the characteristic curves,
one deduces

1(f1 = f2) Dy < /0 (||(Q(91) = Q(92)) ()2 my) + Kll(g1 — 92)(5)||L1(R+)> ds, (3.6)
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since the coagulation operator satisfies, see [6, Lemma 3], the relation

1
1Q(g) — QUo)lzsy) < 5 (gt erqeyy + lgzllzacen ) lgr = galliace, -

From (3.6), we get:

1
1(fi = ) O lzr@y) < T(K + 5 lgillzeo.mypr @iy + ng\|Loc((o,T);L1(R+)))) g1 — g2ll L= ((0,7):1 (R4 ))-
The fact that g; and g2 belong to Cr,; implies that
[(f1 = f2) D) < T(K +2M)[|g1 — g2l ((0,7);21 (r+))-

So F is a contraction and this gives the existence and uniqueness of f satisfying
Of + 0 (V ) = Q(f) and f € L(0,T]; L' (Ry)).

Here one remarks that there is a constraint on 7" depending implicitly on the bounds of the initial
distribution function. To go further in time, the trick is to take f(T, x,-) as the new initial distribution
function and reiterate the process on [T, 2T] then on [2T,3T] and so on. This achieves the proof of
the well-posedness for polymers continuity equation.

Remark 3.1 For initial data satisfying £f° € L!'(R,), using Proposition 2.1 one obtains £f €
L>((0,T); L*(Ry)) and thanks to the hypothesis on the operator Q the following relation on the
variation of polymers total mass holds

i(/oooifdf):/ooo‘/fdé

3.2 Second fixed point strategy for monomers diffusion equation

This fixed point strategy follows exactly the same reasoning as in [13]. The analysis is based on
equation (1.3) and the hypothesis 11.
oo
Let Qr = [0,T] x {2 for fixed T. We note Ny = Sup/ fo(x, &) d€ < 0o and we put Kt = ||col|n~ +
€2 JO

NoT the constant obtained in the maximum principle (Proposition 2.1). For the set
Er = {c € L*(Qr) such that 0 < c(t,z) < Ky and ¢ € C°(Qr)},

we define the application
% - ET — L2 (QT)
¢ — %) =c,

with ¢ satisfying

ue(t, ) + olt, z) /OOO (&)t 2, €) dE — Ayelt, z) :/Ooo Fto.&)de,  in (
(

0yc =0, on
Clt=0 = Cinit, on {2

where f solves

{&ef(t,af@ + 0 ((a(§)e(t, ») — D f(t2,8)) = QU)(t, 2, €), in (0,T) x £2 x(0,00),
fit=0 = £°, on {2 x (0,00).

We can state the following results on the well-posedness of the application % as in Lemma 3.1 below
and on the continuity of ¢ as in Proposition 3.1 below.

Lemma 3.1 The application € given above is well-defined and € (Er) is compact in L*(Qr).
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Proof The assumptions of Section 2.2 and ¢ € Ep allow to apply the results in Section 2.1 by using
the characteristics approach with the x variable acting as a space parameter. So one obtains

F(t2.6) = f2a, £(0:,2,€)) J(0,1,2,6) + / QUf) (5.2, E(s:t,,€)) J (s, 1,7, €) ds

where & and J are associated to ¢.
Thanks to Lemma 2.1 one has the relations

sup/ ftx,§ d§<sup/ Oz, &) dé = Ny < o0,

e

sup/ € f(t,z,€) d§<eMTT(sup/ £f9%x, €) d§+MTTsup/ foz£d£)<oo

e €N

o0

Then we deduce 0 < fooo a(€)f(t,z,£)d¢ € L®(Qr) and 0 < / flt,z,&)d¢ < Ny. So, the Propo-
0
sition 2.1 gives the well posedness of the application € with
c=%(¢) € L*([0,T); H'(£2)) N C([0,T]); L*(£2)) and fulfilling 0 < c(t,z) < K7 = €(Er) C Er.

Now we know that €'(¢) is bounded in L2 ([0, T]; H'(£2)) and 9, ¢ is also bounded in L2 ([0, T]; H*(£2))
so the compact embedding H'(£2) C L?(2) allows to apply J. Simon’s compacity lemma [35] and to
deduce the compactness of ¢ (Qr) in L?(Qr).

Proposition 3.1 Let (fn)nen and f solutions of the problem with the same initial data f(t =
073776) = fn(t = O,Ji,f).

Let define a sequence (¢,)nen € Er which converges toward ¢ in L?(Qr). Then & belongs to € (E1).
More precisely €(¢,) — €(¢) in L*(Qr) when n tends to infinity.

Proof Using to the characteristic curves, one obtains

{fn(t,x,f) Oz, &,(05t,2,€)) J, (Otaff—l-fo (s,2,8n(s;t,2,8)) Jn(s;t,x, &) ds
Ft,2,8) = fOz,8(05t,2,8)) J(03t,2,8) + [1 Qs,2,E(s5t,2,€)) J(s;t,2,) ds,

where

Jn(sit,x, &) = exp(—/ d (&n(oit,x,€))cn(o;2) do)
and .
J(s;t,x, &) = exp(—/ d(&(o;t,2,€))e(o;2) do).

In what follows, we give a sketch of the proof and let the readers refer to lemma 3.2 and lemma 3.3
of [13] for more details.
The first step is to show the following convergence results in L?(Qr):

- /0 a(€) fn(t,x, &) dE —>/0 a(€) f(t,x,€)dE when n — oo,

oo o0
— / fult,z,6)dE — / flt,x, &) d€ when n — co.
0 0
These convergence results are obtained by quantifying the difference between two characteristic curves

associated to two growth rates Vi = a(&)ci(t,z) — 1 and Vo = a(§)ca(t,x) — 1 for ¢1,co € Ep. So,
under the assumptions of Section 2.2 one deduces the following estimation

t
& — &(s:t,2,6) < Lo(l +g)(/ 1 — eoP(o,2)do) 2 VO < st <T< oo, (37)
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On one hand:

/OO fult 2, €)dé - /m Ft,,€) d

/foxg’(Otmf)) (05, 2,6) + /stﬁ(stm{)) (st x, &) dsdg

- / SO, 80t 2,)T (01,2, €) — / Q(s,x, & (s:t,2,€)) J(s: ., ) ds de
0

:/ (z,9) d5+/ / (s w,d)dédsf/ fO(z,8)ds (3.8)
&n (058, 0) & (s5t,2,0) &(05t,x,0)
/ / (s,z,0)ddds
g’(stwO)
- ( / 70z, 8)do — 70(z,8) d6)
&n (05t,2,0) &(0;t,x,0)

(// sx6d5ds—// sx,é)déds).
(s;t,2,0) & (sst,x,0)

It follows that for all s € [0,7]

| / fult, . €)de / F(t,.€) A (1, 2)

zg’n(O;t,x,O) En(s5t,x,0)
<] x6d5|+|// Q(s,z,0)ddds|
&(0;t,z,0) & (s;t,x,0)

<M e @) |6n = E1(05t,2,0) + TNQ L (@7 xR 1) [€n — El(s5t, 2,0).

Simple integration along (2 yields

|| / )(t,2,€) A2y < A1 ) / 160 — E12(0;,2,0) da

+4T2||Q||LOO(QTX]R+)/Q\éan—é"| (s:t,,0) da.

Using the result (3.7) we obtain

|| / )(t,7,€) €|
t
s4L2T( / /Q cz—a|2<a,x>dxda>||f0||im<@ﬂ+4T2L2T||Q|%m<@TXR+> | [ 16~ eP.a aras

t
< (AR B ) HAT LI @) [ [ 16— P02 d

since s > 0.
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On the other hand, we obtain using the characteristic curves

|/ €)fu(t, 2, ) A — / F(t,2,€) de|

= | a(&,(t;0,2,6)) £ (2, 6) ds + /OO / a(&(t;s,2,6))Q(s,x,8) dsds

&n (05t,z,0) En (s;t,z,0)
—/ ( tOx(S) f0x6d5 / / tsxé)Q(s,x,é)dsd(ﬂ
&(0;t,x,0) & (s;t,x,0)

&, (05t,2,0)
gl/

&(

(
(é‘)n(t, 0,z, 6))f0(x, 0)dd| + / |(a(§n) - a(g)) (t;0,2,68)|f°(x,6) do

0;t,x,0) &(05t,x,0)

En(s;t,x,0) t
—|—|/ / a(&n(sit,z,6))Q(s,z,8) dsdd|

& (s5t,2,0)
/ / (&))(t; 5,2,0)||Q(s,x,0)| ds dd,
&(s5t,2,0)
where (a(&,) = a(8)) (t:5,2,0) = a(&n(t;5,2,0)) = a(E(t; 5,2,9)), V5.

This implies that

|/ €) fult, 3, €) dé — / F(t,2,€) de]

En (0 t,x 0) o)
< Ly &, (t:0,2,6) f*(x, 5) d8| + La/ &, — &|(t:0,2,6) f(x,6) d5
&(05t,,0) &(0;t,z,0)
En(sit,x,0) pt (39)

+ L] / En(s;t,x,0)Q(s,x, ) dsdd]|
& (s;t,x,0)

&, — &
+ L /mo/| I(t: 5,2, 6) |Q(s, 2, 6)| ds do.

To continue our computation we need estimations on all terms in the right hand side of the pre-
vious relation. So we write:

|60 (850, 2,0)| = |€a(t;0,%,6) — &, (50,2, 6,(05¢,2,0)) |

=0

&n (05t,2,0)
y /5 De(t:0, 2, €) de|

(3.10)
&, (05t,2,0 0
-1 exp( [ (Eulost,0,9)6(02) do) ]
5 t
The fact that § € [min(é&,, &), max(&,,&)] at the point (0;¢,2,0) implies that
|€.(t;0,2,06)| < Lr|é&, — &|(0;¢, x,0) with Ly = exp(—T Mr). Then we deduce
&n (05t,2,0) 00
|/ £0(t:0,2,8) £z, 8) dd| < Lrl&, — &|(01,2,0) / (e, 5) do. (3.11)
&(05t,2,0) 0

Thanks to (3.7) we also have
00 t 00
/ &, — &|(:0,2,68)f0(x,6)dd < LT(/ |6 — &*(o, z) d0)1/2/ (1+06)f%x,6)ds. (3.12)
&(05¢,x,0) 0 0
By analogy to relation (3.10) one obtains
|€n(s5t,2,0)| < Lr|&, — &|(t; 8, x,0),
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which implies that
En (s5t,2,0) t
'/ [ éutsitn5)Q(s,2,8) ds g
0

& (s;t,x,0)
t En(s5t,z,0)
<L [ 16, - élts.n0) ([ 1Q(s. 2.6)] d6) ds
0 & (s5t,x,0)
t &)
< LT/ &, — &|(t;5,2,0) / |Q(s, x,8)| dd ds (3.13)
0 0

[e'e] t
< Ly suwp (|gn—g|(t;s,x,o))/ / 1Q(s, 2, 5)| d8 ds
0 0

s€[0,t]
s [f - a2 1/2
< I2( / 16— 2(0,2) d0) 2 QL o)

For the last term of equation (3.9) we use the following majoration

/ / |60 — E|(t;5,2,6) |Q(s, 2,0)| ds do
& (s;t,x,0)

< sup |&, @@|tsx5/ /|st§|dsd§ (3.14)
s€[0,T]

gLT(/:|c;l—é|2(o,x)da)1/2/0//o (14 6)[Q(s, 2, 8)| dd ds.

Combining relations (3.11)—(3.14) we deduce from (3.9):

|/ €)fult, 2, €) dE — / F(t,2,) de|

t
U 1/2 - . 1/2
< LaLzT(/O |6 — &P (0,2) do) "7 £l ooy ) + LaLr (/O (6 = &P (o) do) N Ol L vy (146) ag)

t t
- 1/2 L 1/2
+ LaL2T(/ 6o — (0, 2) do) " 7|Ql Lo @r) + LaLT(/ |G — (0, 2) do) 7| Q| Loo (@ (14€) de)
S S

t
U 1/2
< Lo L3 (10l oo my ) + HQIILoo(@T>)(/O |6 —¢f*(0,2) do)

t
. 1/2
+ Lo Ly (1Nl oo (14€) de) + QI L2 @ (146) de)) (/ |G — &l (o,2)do) 7,

which achieves the proof of following convergence result

/0 ) ot €) ¢ [ / a(©)f(t,.€) dc.

L2(Qr

Right now the convergence ¢, = €(¢;,) towards ¢ = €(¢) in L?(Qr) space is obtained by an energy
estimate based on the following system:

Oen(t, x) + cn(t, x) /Oo a(&) fn(t,x, &) dE — Agen(t, x) :/ fa(t,z,&)d€ in (0,T) x £2,
0

Ore(t, ) + c(t, z) /00 a(§) f(t,z,€) d — Age(t, x) / ft,z,8)dg in (0,7) x £2,
Byen = 0:0yc =0 on (0,T) x 992,
on {2,

Cnt=0 = C|t=0 = Cinit

what allows to obtain the relation

d 2 2 >
T Q(cn—c) (t,ac)da:—&—/ﬁ|vm(cn—c)| (t,m)dx—k/g(cn—c) (t, a:)/ a(&)f(t,z,&)dédr

:_/an(cn—c)(/oma@)fn—/ooo (é)f)(t@d“/ —C/ Ja = /
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Applying the Cauchy and Young inequalities and the fact that ¢, € Ep one obtains that

a
2dt

< [ o (tz)dx+—//0 a(€) fult, 2, €) A — / F(t,,€) d€)? da

+§/ﬂ(/0 fn(t,x,f)df—/o F(t2,€)dg)” da

The gronwall lemma yields that:

/Q(cn—c)z(tx)dxgcte(/ot/n/Oooa( ) fn dE — / €)f dé*(s,x) dxds
+/Ot/9/0wfnd£—/0 FagP(s.a) dods ).

where the constant cte = cte(T, Co, || f°]| L= (qs))- This gives us the convergence result. So by the
Schauder fixed point theorem, the application € admits a fixed point ¢ = € (c) satisfying the equation

C —C2 e X z(Cp — C 2 ,.’E X Cn—C2 ,fE Ooa ,fE, X
/<n (¢, 2)d +/|V< 2(t,2)d +/Q< Pt >/0 ()f (¢, 2. €)ded

Brelt, z) + clt, ) / T a(©)f(ta,€) A — Agelt,z) = / T a6 de.

The proof of the uniqueness of the solution c¢ is obvious if one applies the same reasoning as in the
proof of the continuity of €. The existence and uniqueness of the couple (c, f) solution of the problem
(1.1) is then proved in the case where the kinetic coefficient a is Lipschitz continuous on [0, co).

For the general case stated in Hypothesis 11 where the polymerization rate is singular, one remarks
that the Lipschitz constant L, is not involved in the above estimations. So we can adapt the previous
proof to the particular case of a non smooth kinetic coefficient a(£) as indicated in the hypothesis.
This consideration allows to take into account the kinetic coefficients, a(€¢) = £'/3, used by Lifshitz
and Slyozov [25] to describe the kinetics of precipitation from supersaturated solid solutions.
For the adaptation of this general case, we consider a sequence of smooth kinetic coefficients a™(§)
which converges pointwise to a(§). So, if (f™, ™) is the associated solution of the system with a™(€),
then there exists a subsequence which converges to (f,c¢) associated to the kinetic coefficients a(¢).
Otherwise, from the pointwise convergence of a”, we can pass to the limit when n tends to infinity and
obtain (f,¢) as a weak solution with the kinetic coefficients a(€). This method of solution extension is
explained in [21] for the case of homogeneous Lifshitz-Slyozov equation. The proof of the uniqueness
follows the same reasoning as in [13] (see this reference for more details). Let us give some hints
for the proof of the uniqueness. From two couples of solutions (¢, f1)) and (¢, f)) with the
same initial data of the system (1.1);—(1.3) we have to show that ¢} = ¢ and f1) = @ for
e (t,z) € (0,T) x 2 and £ > 0. One needs to derive an L! estimation of the monomer concentration
by introducing the approximation, S.(z) = \/ﬁ’ for the sign function. So, Z( fo e(
approaches |z| as € tends to 0. From (1.3) we have

(0 — Ay + A(l))(c(l) _ 0(2)) =M _p® 4 (A(2) _ A(l))c(2)
where AW = [*a(&)fD(t,x,£)d¢ and BY = [F fO(t,2,6)d¢ i ={1,2}, we apply the composi-
tion with Z. then integrate over {2 and obtain when ¢ — 0 the following L' estimation
/ V) — P|(t,z)dw < [, Y — Pt 2 dw—i—fo [o|1BY — BA|(s,2) dx (3.15)
+Kr fo fQ |A @ A(1)|(5,x) dz.

Knowing that c = 082), from the hypothesis of the same initial data, then the first term at the
right hand side of the 1nequality vanishes. To prove that the two other terms vanish, one can adapt
the same argument as in [21] for the problem without diffusion and coalescence. More details for this

adaptation can be found in [13].



Analysis and numerical simulation of a polymerization model 13

4 Numerical resolution of the equations

In this section we present a numerical scheme to simulate the modified Lifschitz-Slyosov model (1.1).
The construction of the scheme gives some hints concerning stability issues. For calculating the ap-
proximate solution, we give a discretization in time, space and size of the polymers. We choose to
discretize the monomers by an implicit finite difference scheme in time and space. To solve the equa-
tion of polymers, the time derivative is discretized by the finite differences method, and the length
one by a finite volume scheme.

The discretization provides a set of points (ty)n=1,. n,, N¢ € N in the time interval ]0,T7,
(Q)i=1,...,n,» Ni € N in the size range |0, L[, and nodes (x; ;)i j=1,..n, N € N of the domain 2.
For simplicity a constant discretization in length and space is used. Let Ax be the space step, A the
length step and At,, the time step. We set

At
to=0, t,=tn_1+ Aty, tn+%:tn+7" forn=1,.., Ny,

(= lAC, <l+1 =+ )AC forl=1,...,N;.

Let us consider the discrete cells C; =]¢;_1 /25 Cl1 /2[ centered on (;. We compute an approximative
solution (¢, f) to the problem (1.1), denoted

1
ey cltn,mig), filj =~ Z/ J(tn, x4 5,¢)dC.
CJe
The scheme is based on the following time-splitting between advection and aggregation:

1. First, the homogeneous advection equation is solved:

Ouf +0(V ) =0. (4.1)

2. Second, the solution obtained from the advection equation is used to build the aggregation operator:
af=rQ(f) (4.2)

Scheme for the advection of macro-particles The updating of the particles distribution follows
by integrating the advection equation over the finite volume cells Cj:

n+l _ pn
ig,0 — Ji,g,l v ( zjl+1f,jl+2 ’jl77 ’,j,lfé)’ (4.3)
with V" | =~ (tn, i j, () and v = At" . It remains to define the interface fluxes f . When

investigating the large time behavior of solutlons to transport equations, one faces the classmal draw-
back of usual stable schemes: numerical diffusion, in its general sense, that is, the deterioration of
profiles, the spreading of the initial data and the loss of the dependence cone. High-order schemes
(such as WENO ...) are a cure, but are known to spread all the same for any initial data, in very long
time. On the other hand, the anti-diffusive, limited downwind scheme of Ref [13], has the advantage
of avoiding this spreading, keeping in arbitrary large time the profiles. We recall its basic principles in
the case of advection with constant velocity. The idea is to take a downwind flux, under some stability
constraints. The stability constraints are those that lead to a local numerical maximum principle. We
adapt this idea to the present problem and refer to [14] for more details.
Let us consider the following notation:

n _ : n n n n
Migitd = mln(fi’j,l,fmm), M50y = max(fm,fi,j,m).
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n n
- If zgl7V l+17V %>O,then
1
b 1= ———(f" - M" 1)+ M".
3,5,0+35 Vn‘vvirfj,l| ( 1,5, Z,j,lfé) i,5,0—%7
3,5,l+5 Vn|v]l| 1Jl z,j,lfi zglf—
n
in( B ym7]177| Zﬂl*l‘Jrfi’j’l i mn >0
. FR Py VIV iy c Ay 20
Bi,j,H’% = .9,
n ta
L otherwise.
— n n .
LV, Vi,j,H%’ Vm.’li% < 0, then:
1
n n
bi,j,l+% v |V z‘(f gt~ M I+3 )+M,g I+3
1.7,
B™. 1 (f m., ) + m 1
A ) il T M gtd 4,+3
vV,
: n szJl"F*'VvJH‘l‘—’—f’]l . n
min{ B"”., ., , ifm™. >0,
bil=z l/"|V 1 i,5,l+%
BT = %7, lf—
NRES
n .
Bi,j’H%, otherwise.
— If the vr v 1 do not have the same sign, we set

i Vi Vida-

zgllf‘/leJr% >0,

7, n
bi,j,l+% B Biﬂ',l-‘r% -
n 3 n
fla BV 0 <O

b

z,j,l+%)’ ’j l+1 —mln(M"

n _ n n
pi gy = max(m D Bijaes):

ijilts’
The following statement clarifies the principles on which the construction of the fluxes is based.

Proposition 4.1 [14] Assume that the Courant-Friedrichs-Levy stability condition:

CFL=v" max(|V]l| v ) <1 (4.4)
05l

z]lJr

holds, then [ Mo ] #£D, foralll =1, .., N;. Moreover if

FRE R W R A

Fiury € 5500 Mijapgls V=100 N

the following assertions hold:

~

The scheme (4.3) is consistent with (4.1).
2. If AC is sufficiently small then f';, > 0 implies fﬁ;fll > 0. Otherwise a restricted condition

CFL < % is requested to ensure the non-negativity.
3. Let us consider

Figa = Flu = v ViU — fija-y)s VI=1 N
(a) If Z-"jl>0 then m7 1 <IG <M

(b) If ,le <0 then"’n7 ,l+1 <f7]l _Mi,j,l-‘r%.

1
Jl*g
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The goal now consists in defining fl"J J41 SO that on the one hand, Proposition 4.1 holds, and on
G+

the other hand the numerical diffusion is reduced as possible. To this end, we adopt a downwinding
approach. When VZ"J i1 >0, V%, >0 and Vz"J i1 >0, we choose the closest value to f"; ., that
2 2 W 2 2 2y

fulfills the requirements of Proposition 4.1. Namely fZ”j 141 will be the solution of the following
NEAE

. 1M1 1 n _ n 1 n n n
problem: Minimize \fi’j’H% fi'j.141| under the constraint fi’j’H% € [ui’j’H% , /\/li’j}H%].
By assuming that VZ"] 1 >0, V%, >0 and Vz"J L > 0, the minimization problem leads to the
INE] b ' 2Js bl

following three cases:

n

3 n n
Higaey WG S 100y
fz',j7l+% - Fijamn it Higiavs S g = Mz‘,j,l+%’

Mﬁj,H% if fzfrfj’l+1 > MZLJ,H%'
In the case of locally positive velocity, the stability constraint involves f[,‘j’ 1—1 and fi’)’jJ that are

upwind values for fi”j ,_1; it justifies the name of downwind flux under upwind constraint.
g%

Treatment of the coagulation operator How the coagulation term () modifies the asymptotic
behavior of the solutions is investigated numerically. For the Smoluchowski operator treatment, two
main approaches are discussed in [36]. The first “naive” approach and the second one suggested by
F. Filbert and P. Laurengot [11] are discussed in [36]. The “naive” approach preserves the solution
positiveness, but is very cost in CPU time. In our case, we use the approach suggested by F. Filbert
and P. Laurencot for its good performances. To this end, the treatment of the collision term thanks
to the approach developed in [21] is incorporated in the time-splitting algorithm.

The starting point of the method consists in rewriting 9; f = AQ(f) as follows:

¢ (%S)
Cof = XQ(f) = =Ao:J(f), with J(f)(t,z,¢) = /0 /_\sf(t,m,s)f(t,x,r)drds.

The next step relies on the approximation of the integrals that define J(f) and the necessary
truncation, embodied into a parameter 0 < R < oo, of the infinite integration domain.
The approach designed is the “Conservative method”, which consists in replacing J(f) by

¢ R—s
JR(f)(t,x,C):/ / sf(t,xz,s)f(t,x,r)drds, for0< (<R < oo.
0 —s

Note that JE(f)(t,z, R) = JR(f)(t,=,0) = 0.
Consequently, the solution fr of

R
%:—A%(ﬁ%), 0<(<R<ox

satisfies the preservation of the first-order moment:

R R
/ CTR(P) (b2, Q) = / CTR(F)(0,2,C)dC = 0.
0 0

One can see [12] for a thorough analysis of the method, in particular for the convergence analysis
when R — oo. The problem addressed in [12] is essentially concerned with the capture of the gelation
phenomenon, that is a loss of mass in finite time, a typical feature of certain coagulation equations.
Here, the situation is different and it turns out that the conservation of the first moment by the process
of encounter is crucial for the accuracy of the scheme and the evaluation of the monomers concentration
in the last step of the splitting. That is the reason why we work here with the conservation method.

For the discrete expression of the operator J®(f), it is convenient to introduce the change of
variables w = s + r to obtain



16 L. M. Tine, B. Leye

¢ R
R _ _
J (f)(t,x,()f/o /c sf(t,x,s)f(t,x,w — s)dwds.

The numerical scheme is written

n+1 _ "’+2 _ n n+3 n+3
Glige = Gligd =MV (Jz‘,j,z+2 T l——)

. nt3 . . .
where the numerical flux Jm.yli% is the approximation of JR(f)(thr%,mi,j, Cz+%)-

Monomers scheme For updating the monomers concentration, an implicit finite difference scheme
is used to solve equation (1.13). This numerical scheme is the following:

c'(LJ_rl _ Cn n+1 +cn+l 4 n+1 +Cn+1 +Cn+l n+1

L O e O B ¥ i+1,5 T Cig1 _ ,]l — fisa . _
At v = ZC Al, Yij=2,..N-1,Yn=1,..,N,,

C?,j = Cipit(zij), Vi, j=1,...,N.

Boundary conditions On 9f2, the Neumann boundary conditions are approximated by the following
relationships:

— For internal nodes to boundary edges:

C1,j =C2,45,CN,j = CN—-1,5 fOI‘j = 2, 7]\7 — ].,

(4.5)
Ci,1 = €32, GG, N = Ci N—1 for i = 2, ...,N —1.
— At the corner of the domain:
€1,1 = €2,2, CN,1 = CN—1,2, CN,N = CN—1,N—1, CI,N = C2 N—1- (4.6)

5 Numerical results

The geometric domain, defined by 2 = [0, 1]2, is discretized using a structured mesh with a space
step size h equal to 0.02. The polymers size domain is [0, 1] with 50 subdivisions. The CFL number is
set to 1.

5.1 Evolution of a mixed solution of monomers and polymers

The Coagulation coefficient A is equal to 1. The diffusion coefficient of the monomers is equal to
0.001. The monomers are initially randomly distributed in space. The polymers are also randomly
distributed is size and space. Only polymers whose size are lower than 0.2 are initially present in the
domain.

The evolution of the monomer spatial distribution is illustrated by Figure 5.1. The diffusion leads
to a smoothing of the density. After a while, the monomers are more concentrated at the bottom and
right sides of the domain.

The mean density of polymers with size included in the intervals [0.4, 0.6] and [0.8, 1] are respec-
tively displayed in Figures 2 and 3. The polymer density evolution exhibits at the first step a growth
caused by the presence of the monomers. After a while the lack of monomers causes a depolymerization
of polymers.
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20.000e+00 ~0,000e+00

(e) ()

Fig. 1 Density of monomers at times 0, 0.009, 0.03, 0.14, 0.22, 0.36, from left to right and from top to bottom.

The evolution in time of the number of polymers according to their size is illustrated by Figure 4,
where one can observe the growth of the polymers.
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20.000e+00 ~0,000e+00

Z0.000e+00

(e) ()

Fig. 2 Mean density of polymers with size included in the interval [0.4, 0.6] at times 0, 0.08, 0.16, 0.24, 0.36, 0.58, from
left to right and from top to bottom.

The evolution of the mass of monomers and polymers is illustrated by Figure 5. One can observe
first a polymerization process, followed by a depolymerization.
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~0.000e+00

(e) ()

Fig. 3 Mean density of polymers with size included in the interval [0.8, 1] at times 0, 0.16, 0.36, 0.57, 0.79, 1, from left
to right and from top to bottom.

5.2 Sensitivity analysis according to monomers diffusion

Figure 6 displays the evolution in time of the number of polymers; according to their size, for different
values of the monomer diffusion coefficient. One can see that the growth of the number of polymers
increases with the diffusion coefficient.

5.3 Sensitivity analysis according to the Coagulation coefficient
The evolution of the number of polymers, according to their size, for different values of Coagulation

coefficient is displayed in Figure 7. The diffusion coefficient is set to 0.001. In this case, the polymers
growth dynamic seems to be very insensitive to the caogulation coefficient change.
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Fig. 4 Evolution of the number of polymers according to their size at times 0, 0.02, 0.1, 0.18, 0.27, 0.36, from left ro
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Fig. 5 Evolution in time of monomers and polymers masses.
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Fig. 6 Evolution of the number of polymers according to their size for different values of the diffusion coefficient 0.001,
0.01, 0.1, 1, at times 0, 0.11, 0.4, 0.53, from left to right and from top to bottom.

6 Conclusion and perspectives

We described in this study a model of polymerization where polymers are immersed in a bath of
monomers. We assumed the interaction to be driven by mass transfer based on the space diffusion of
monomers. We added in the model the possible lengthening of polymers when one polymer coalesces
with another thanks to the Smoluchowski coagulation operator. With realistic assumptions we prove
that our coupling system of hyperbolic-parabolic type is well defined and the numerical approximation
based on the 2D generalization of the anti-dissipative scheme [14] is very suitable for the behavior
of the solution even when the coagulation arises. Our numerical results show that monomer diffusion
stimulate polymers growth. In order to go deeper in the understanding of the polymerization mecha-
nism with others related sub-processes, we need to investigate several directions for future work. One
of the interesting directions is to study the behavior of the polymerization process when in addition
polymers are subject to possible coagulation and fragmentation events. In particular, coagulation and
fragmentation do they regularize the asymptotic behavior of the solution toward on profile or not?
An other direction not far from this previous one is to allow polymers to follow also a space diffusion
equation and then investigate the well-posedness and numerical simulations of the system.
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