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In this paper we present a methodology to design didactical activities for training engineers. One 

phase of this methodology is selecting an extra-mathematical context, allowing identification and 

analysis of mathematical models used by engineers. We selected an industry beer context and we 

identified the Pareto chart as a tool to solve different problems, for example faults in production 

lines. This work uses elements from Anthropological Theory of Didactics. We present a 

praxeological analysis as basis of didactical activities. 
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Introduction 

Over the past 30 years, mathematical modelling and applications have been a subject of study and 

development in the field of Educational Mathematics, as in the ICMI 14 study, edited by Blum, 

Galbraith, Henn and Niss (2007). Mathematical modelling and applications are activities in which 

math is used to solve problems in various contexts (math, engineering, economy, medicine, etc.). 

They are based on developing competencies associated with the application of mathematics and 

constructing mathematical models in extra-mathematical contexts (Niss, Werner and Galbraith, 

2007). However, mathematical modelling and applications are not widely used in primary and 

secondary education, which give more importance to concepts and procedures. At the university 

level, modelling has emerged as a new educational paradigm (Bissell & Dillon, 2000). In the future, 

teaching professionals will be required not only to create but also adapt mathematical models to 

solve practical problems (Bissell & Dillon, 2000) related to interpreting solutions proposed by other 

professionals and to employ technology to perform mathematical tasks. This demands teaching 

math in such a way that it includes the use, adaptation, handling, and interpretation of mathematical 

models in order to adequately deal with tasks in extra-mathematical contexts. One of perspectives 

that comes closest to this demand is known as the realistic perspective, which is described in the 

proceedings of the Topic Study Group 21 (TSG21) of the 11th International Congress on 

Mathematical Education in 2008, as follows: “In this perspective, mathematical modelling is viewed 

as applied problem solving and a strong emphasis is put on the real life situation to be modelled and 

on the interdisciplinary approaches” (Blomhoj & Carreira, 2009). In this work, we consider the 

work of Kadijevich (2009), which illustrates this perspective, is a very interesting approach to the 

mathematical modelling due to the type of problems chosen to address it and to the use of 

information technology that is proposed. However, we believe that is not clear, from a theoretical 

point of view: how do you choose the actual context? How is a modelling activity generated in the 

context chosen? How is analyzed their relevance to the classroom? In general, it seems that the 

question of choosing the extra- mathematical context in order to propose the modelling activity has 

been theoretically little worked, it appears as a little cloudy element, leaving the emphasis on the 

characteristics of didactic activities (Galbraith & Stillman 2006) and on the modelling cycles that 



allow to describe and analyse it (Blum & Borromeo Ferri, 2009). In an effort to attend to this lack of 

theoretical framing of the choice of additional mathematical context for the design of didactic 

activities, we have proposed a methodology based on the extended praxeological model (Castela & 

Romo, 2011) for designing didactic activities based on modelling that incorporate elements of the 

use of models in real contexts.  

Elements of the Anthropological Theory of Didactic 

Since the extended praxeological model (Castela & Romo, 2011) is based on the Anthropological 

Theory of Didactics (ATD), we present in this section some of its elements. The ATD is an 

epistemological model that allows the study of human activity in its institutional dimension. An 

institution is a stable social organization that defines the human activities generating resources that 

make them possible. These materials or intellectual resources, which are made available to the 

subjects, have been produced by communities along the confrontation of problematic situations with 

the objective of solve them in a regularly and effectively way (Castela & Romo, 2011). The classic 

praxeological model, proposed by Chevallard (1999), recognizes the praxeology [T, τ, θ, Θ] as a 

minimal unit of analysis of human activity. Its four components are: the task type (T), the technique 

(τ), the technology (θ); and the theory (Θ). The ‘task’ refers to what is to be done; the ‘technique’ is 

how it is to be done; the ‘technology’ is a discourse that produces, justifies and explains the 

‘technique’; while the ‘theory’ produces, justifies and explains the ‘technology’. Mathematical 

praxeologies or mathematical organizations can be of different level and they serve to a hierarchy of 

levels of determination proposed by (Chevallard, 2002). Mathematical institution imposes a model 

of subjection to the mathematical praxologies: it rests on a structure that organizes praxeologies in 

different interlocked levels that are in increasing order of size as follows: specific, local, regional 

and global. The most basic level of a mathematical organization is the punctual [T, τ, θ, Θ] and it 

has only one technique for performing such tasks. The next level is the local, which groups all 

punctual mathematical organizations associated with the same θ technology. The regional level 

regroups all punctual organizations associated with same theory Θ, global or domain regroups 

certain regional mathematical organizations; discipline is the top level and combines all domains.  

Codetermination of the mathematical and didactic 

Chevallard (2002) develops the model presented below, in order to take into account the subjections 

that weigh on the didactic organization of the study of praxeologies. In this work, the author notes 

that didactic organizations cannot be developed if they are found far from higher levels, domain and 

discipline; reciprocally these levels cannot be imposed without considering the conditions of the 

educational institution. In that sense yields a co-determination of mathematical and didactic 

organizations. 

[…] each level imposes, at a given moment during life of educational system a set of 

constraints and support points:  ecology that results is determined both by what restrictions 

prohibit or drive, and the exploitation that actors make to the support points that different 

levels offers. (Chevallard, 2002, p.49) 

As you can see the fact that Chevallard be interested in teaching leads to extend the range of levels. 

He introduces three higher levels: society, school and pedagogy, noting that levels of domain and 

discipline are also subject to restrictions imposed by these three levels that complement the scale 



upward: Society → School → Pedagogy → Discipline → Domain →Sector → Local → Specific. 

This hierarchy makes us consider that the study of mathematical praxeology or modelling 

praxeology in an institution that is subject to various restrictions imposed by institutions of higher 

levels.  

Moments of the study 

In the frame of ATD, the study is seen as the construction or reconstruction of elements of a 

mathematical praxeology, in order to perform a troublesome task (a task type for which a 

mathematical praxeology does not exist or is not available). In order to finely describe this process 

of construction or reconstruction, the ATD proposes a model of study of a punctual mathematical 

praxeology. This model distinguishes six moments, which are also associated with groups of 

activities. A moment is a dimension of the activity, a phase in the process of study, which may 

appear several times but following an internal global dynamics. Chevallard (2002) presents the 

model as follows: 

Group I (Study and Research Activities [SRA]) 

1. Moment of the (first) meeting with T;  

2. Moment of the exploration of T and technical emergency τ; 

3. Moment of construction of the technological-theoretical block.  

Group II (Synthesis) 

4. Moment of institutionalization. 

Group III (Exercises and problems) 

5. Moment of work of the mathematical organization (specifically of the technique). 

Group IV (Controls) 

6. Moment of the evaluation. 

These moments are not detailed in this paper, but they are presented with the aim of showing how 

the ATD in the process of construction and reconstruction of a praxeology is conceived.  

In particular, we are interested in considering group I and generating an SRA: a didactic device for 

students to construct, in this case, a modeling praxeology involving the Pareto Diagram. One of our 

questions is, what legitimizes the chosen mathematical modeling praxeology? Why is it important 

for students to build this praxeology? And in particular, future engineers. For us it is important that 

the mathematical modeling of the classroom is related to the mathematical modeling of its 

professional practice, which is seen as a relationship between institutions as shown below. 

Training in mathematics and the professional world seen as institutions 

In the framework of the ATD, analysis of mathematical activity is considered in its institutional 

dimension. Given that our proposal is to generate a methodology for designing activities based on 

mathematical modelling that links mathematical knowledge teach at the training institution and the 

one used in the professional field, we must identify institutions that are adequate to participate in 

this process, and their interrelations. Romo-Vázquez (2009) argued that training engineers involves 

three types of institutions: Production (P), where praxeologies are produced, Teaching (E) 

responsible for transmitting the praxeologies. Use or users Ip, where the praxeologies are employed. 

By producing institutions we refer to mathematics P(M) seen as a discipline, together with its 



intermediate disciplines P(DI), which we will also call Engineering Sciences (e.g. signal processing, 

control theory, electrical circuits, etc.). Teaching institutions are represented by mathematics E(M), 

and the intermediate disciplines E(DI); while the practical institution is Ip. The latter is examined at 

two levels: the professional practice of engineers, and the devices that, upon approaching practice, 

are developed in schools; for example, a project to innovate a product or service. Also taken into 

account were three inter-institutional tours that can be followed by a mathematical praxeology by 

going from P(M) to Ip. These can be represented schematically as follows (Figure 2):  

 

Figure 1: Institutional tours of a mathematical praxeology to go from P(M) to Ip 

The transpositive effects (changes that occur upon moving from one institution to another) can be so 

large that a mathematical praxeology in Ip may not be recognized as mathematical. Research by 

Hoyles, Noss and Pozzi (2000) shows that some professionals utilize techniques and strategies in 

their practice that are based on mathematical models, but that when automated are no longer 

recognized as such. This begs the question: what sorts of didactic activities can be generated so that 

the mathematical models used in Ip practice or E(DI) find a place in methods of teaching 

mathematics E(M) (see Figure 2)? To answer these questions we propose the following 

methodology. 

 

Figure 2: News institutional relations between Ip- E(M) and E(DI)-E(M) 

Methodology for designing didactic activities (SRA) based on mathematical 

modelling 

This methodology for designing didactic activities based on mathematical modelling emerged from 

research by Macias (2012). Here, modelling activities are seen as praxeologies (mathematical and/or 

modelling) to be performed in E(M), but in relation to praxeologies of E(DI) and/or Ip. It consists of 

four phases: 1) Selecting an extra-mathematical context, 2) Praxeological analysis and identification 

of a mathematical model. 3) Analysis of the mathematical model identified and its relation to E(M) 

and 4) Design of the didactic activity (SRA) for E(M).  

1) Selecting an extra-mathematical context. First, we must consider the educational level at which 

teaching will take place, then the contexts where the mathematical applications will be put to use. 

For example, if we consider teaching programs for engineers, the natural contexts of use are 

specialty training E(DI) and professional practice Ip. After that, one must identify some of the 

elements (resistance of materials, control theory, data structure, among others) that are of macro 

scale and may include various sub-institutions for the analysis of the modelling activity that occurs 

there. Selecting this context must be based on an approach to the institution or sub-institution 



through interviews with one or more of the subjects involved (e.g. professors, expert users, 

researchers), a review of relevant documentation (suggested by the aforementioned subjects, and/or 

one’s own search), and visits aimed at identifying the type of mathematical and modelling activity 

that is used. Specifically, it is important to analyse whether the mathematical models identified as 

being in use correspond to those that are actually taught E(M); examples could include functions, 

vectors, matrixes, mathematical optimization, or differential equations, among others. In this way, 

one can determine whether the context chosen provides a suitable analytical basis for designing the 

didactic activity.  

2) Praxeological analysis and identification of a mathematical model. In this phase 

mathematical modelling activity is analysed through praxeologies. Modelling activities in an extra-

mathematical context may consist of mathematical praxeologies and/or mixed praxeologies.  

3) Analysis of the mathematical model identified and its relation to E(M). A mathematical 

model that is in use but that is also taught in E(M) is identified and then analysed through the 

functions of the technology practice; i.e., describe, validate, explain, facilitate, motivate and 

evaluate. Describing the model in use allows us to elucidate the reasons relative to context on the 

basis of which that particular model was chosen to resolve tasks in the extra-mathematical context. 

Identifying the elements that validate the use of the model, and under what conditions, makes it 

possible to understand what contextual elements must be considered in designing didactic activities. 

For example, many mathematical models are used in “ideal” conditions such that they make it 

possible to resolve certain tasks more easily, though the solutions obtained will later need to be 

adapted to reality. This adaptation is conducted on the basis of certain elements that validate it. 

Recognizing the explanations of use allows us to understand what each element of the model 

represents and to what degree the model used allows us to model the context (or part of it). 

Analyzing the elements that facilitate the use of the model reveals the process of mathematical 

modelling, which entails not only assuring that the mathematical model chosen will make it possible 

to resolve a problem in an extra-mathematical context but also that the resolution reached will be 

the least complex one. Identifying precisely what it is that motivates the use of the chosen model is 

a medullar phase in designing didactic activities, but this analysis of use must be complemented by 

a didactic analysis of the model in the context in which it is taught. 

4) Designing didactic activities (SRA). Designing a didactic activity must be based on both the 

praxeological analysis of use (praxeologies present in an Iu) and the mathematical model identified; 

i.e., one must recognize the praxeologies of both use and teaching in order to perceive the relations 

between them. One must choose the types of tasks that, because they emerge from use, can be 

adapted for a type of school task; for example, studying the behavior of a continuous signal, 

determining the total cost of an inventory, or calculating the inverse of a mixed matrix, etc. These 

types of tasks require mathematical techniques that may be school-related (being part of curriculum) 

but are also used in the professional field, so mathematical and non-mathematical technologies will 

have to be built by the students (3rd moment) in order to validate, explain and justify techniques that 

emerges when confronting the problematic tasks. Specifically, technologies of use (part of practical 

praxeologies) must be adapted in such way the students can build them in the first college courses. 

The objective of the didactic activities must be oriented towards the type of praxeologies that figure 



in the activity, whether this be constructing, mobilizing, or searching, for knowledge. It is intended 

that this activity may be an SRA which allows building a praxeology of modelling.  

The context proposed: Pareto chart in beer industry 

To make a praxeological analysis we are chosen a Beer industry that is constituted by ten production 

lines and produce about one million hectoliters of beer per month. Apart from domestic beer this 

industry produce lots of beer for export to countries in all continents. To meet domestic demand and 

shipments abroad, it requires each of the ten production lines, meet high levels of efficiency. 

However, in each production line problems requiring immediate attention in order to achieve the 

planned goals they are presented. Thus various problems for the maintenance of thousands of 

machines, components and parts that make up each of the production lines are also presented. And 

logistics to control the flow of materials required in the production and control of shipments. In 

Tolentino (2015), these questions are studied: What Mathematics used in this industrial 

environment? Are there some common mathematical tools to manage the wide range of problems in 

the brewing? Tolentino, was both a master's student of mathematics education program and he was 

working in the industry as an engineer, he found that a Pareto chart is used to solve problems in the 

industry. This chart is based on the principle that if 20% of the causes of problems is attended a 

solution of 80% is obtained in effect. 

Praxeology faults problems 

Type of task. Identify the most important causes of faults in production lines of an industry.Task. 

To solve faults (time) that arise in different production lines of beer production. Technique. Step 1. 

Data collection. It is recorded in a table stop time of production lines due to operational faults, 

faults in machinery or material defects. Step 2. Is ordered from highest to lowest the time column of 

this table, the percentages of stop time are obtained for each line, in relation to the accumulated 

from 157.62 hours. A column for cumulative percentage is added.  

 

 

 

 

 

 

 

Table 1: Wasting time of production lines 

Step 3. Two graphs are performed in Excel: in the bar graph the columns for each line indicate stop 

time. Graph of the Lorenz curve or cumulative percentage. On the right vertical axis measures the 

time from 0 to 41.02 h. For the Lorenz curve on the right vertical axis the percentage of 0 is 

measured at 100 percent (See figure 3). Step 4. Identify the diagram. Finally add a line from the 80 

percent that intersects the graph of the cumulative percentage, and descends to the x axis, to 

separate lines that are to the left of this line it is the line 2, 8, 12, 6 and 10 (see figure 4). These are 

the lines that generate 80 percent of the total time of overall production stoppages during this time 

period. 

Line Wasting time (h) Percentage Cumulative Percentage 

Line 2 41.02 26.02 26.02 

Line 8 25.65 16.27 42.30 

Line 12 24.34 15.44 57.74 

Line 6 14.73 9.35 67.09 

Line 10 14.17 8.99 76.08 

Line 3 13.8 8.76 84.83 

Line 11 11.03 7.00 91.83 

Line 5 8.33 5.28 97.11 

Line 4 4.55 2.89 100.00 

cumulative 157.62   



   

Figure 3: Bars and Lorenz curve  Figure 4: Analysis of the Pareto Diagram 

Step 5. Analyze the Pareto chart. As a result of the above analysis, attention is directed to lines 

that generate 80 percent of stop time, ie lines 2, 8, 12, 6 and 10. Therefore proceeds to Pareto 

analysis of each one of these 5 lines, starting at line 2. Leaving as trivial the 4 lines: 3, 4, 5 and 11. 

That is although the line 11 was stopped 11 hours during this week, is considered out of importance 

according to the analysis Pareto realized. In this case, the Pareto Diagram is used again to analyze 

lines 2, 8, 12 and 6, to make decisions about the elements that must be repaired urgently, in each of 

the lines. The Pareto Diagram is made by engineers and allows them to identify the main causes of 

the problem, however a deeper analysis of the industry is necessary to recognize how the practical 

and theoretical knowledge allows solving the identified causes. This analysis is repeated in the 

brewing industry several times to have elements to act and address problems optimally, using fewer 

resources and obtaining the greatest benefits.  

Conclusion 

We consider that this praxeological analysis (phase 2 of methodology), briefest presented, allow us 

to see the importance of Pareto chart on the beer industry. To design the SRA, it is necessary to 

analyze university courses likely to identify a local Praxeology the Pareto chart. However, analysis 

of the Pareto chart of the beer industry gives elements for SRA: from data of different problems ask 

propose a model that allows the company to identify the major causes of the problems. Considering 

the problem of faults, you can ask students a model to identify the line that causes the greatest 

wasting time or the lines that cause 50% of the strikes, then 75% and then 80%. The interesting 

thing about this proposal may lie not only that students can work with data from businesses, but they 

reach handle the Pareto Principle, the 80-20 ratio. The Pareto Diagram also involves mathematical 

elements that support them as the Lorenz Curve, which has hardly been mentioned here. In 

Tolentino (2015) the mathematical analysis of the origin and evolution of the Pareto Diagram is 

presented and this must also be considered in the design of the SRA, involving three institutions 

P(M), E(M) and Ip. 
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