
HAL Id: hal-01933464
https://hal.science/hal-01933464v2

Submitted on 7 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Tool-Supported Approach for Building the
Architecture and Roadmap in MegaM@Rt2 Project

Andrey Sadovykh, Alessandra Bagnato, Dragos Truscan, Pierluigi Pierini,
Hugo Bruneliere, Abel Gomez, Jordi Cabot, Orlando Avila-García, Wasif Afzal

To cite this version:
Andrey Sadovykh, Alessandra Bagnato, Dragos Truscan, Pierluigi Pierini, Hugo Bruneliere, et al.. A
Tool-Supported Approach for Building the Architecture and Roadmap in MegaM@Rt2 Project. SEDA
2018: Proceedings of 6th International Conference in Software Engineering for Defence Applications,
Jun 2018, Rome, Italy. pp.265-274, �10.1007/978-3-030-14687-0_24�. �hal-01933464v2�

https://hal.science/hal-01933464v2
https://hal.archives-ouvertes.fr


A tool-supported Approach for Building the
Architecture and Roadmap in MegaM@Rt2

project

Andrey Sadovykh1−2, Alessandra Bagnato2, Dragos Truscan3, Pierluigi
Pierini4, Hugo Bruneliere5, Abel Gómez6, Jordi Cabot7, Orlando

Avila-Garćıa8, and Wasif Afzal9

1 Innopolis University, 420500 Innopolis, Respublika Tatarstan, Russia
a.sadovykh@innopolis.ru

2 Softeam, 21 avenue Victor Hugo, 75016 Paris, France
andrey.sadovykh@softeam.fr, alessandra.bagnato@softeam.fr

3 Åbo Akademi University, 20520, Turku, Finland, dragos.truscan@abo.fi
4 Intecs S.p.A., Via U. Forti 5, 56121 Pisa, Italy, pierluigi.pierini@intecs.it

5 IMT Atlantique, LS2N (CNRS) & ARMINES, 44000 Nantes, France,
hugo.bruneliere@imt-atlantique.fr

6 IN3, Universitat Oberta de Catalunya, Spain, agomezlla@uoc.edu
7 ICREA, Spain, jordi.cabot@icrea.cat

8 Atos, Subida al Mayorazgo, 24B, 38110 Tenerife, Spain, orlando.avila@atos.net
9 Mälardalen University, Sweden, wasif.afzal@mdh.se

Abstract. MegaM@Rt2 is a large European project dedicated to the
provisioning of a model-based methodology and supporting tooling for
system engineering at a wide scale. It notably targets the continuous
development and runtime validation of such complex systems by devel-
oping the MegaM@Rt2 framework to address a large set of engineering
processes and application domains. This collaborative project involves
27 partners from 6 different countries, 9 industrial case studies as well
as over 30 different tools from project partners (and others). In the con-
text of the project, we opted for a pragmatic model-driven approach
in order to specify the case study requirements, design the high-level
architecture of the MegaM@Rt2 framework, perform the gap analysis
between the industrial needs and current state-of-the-art, and to plan
a first framework development roadmap accordingly. The present paper
concentrates on the concrete examples of the tooling approach for build-
ing the framework architecture. In particular, we discuss the collabora-
tive modeling, requirements definition tooling, approach for components
modeling, traceability and document generation. The paper also provides
a brief discussion of the practical lessons we have learned from it so far.

Keywords: Model-Driven Engineering, Requirement Engineering, Ar-
chitecture, UML, SysML, Traceability, Document Generation, Modelio



2 A. Sadovykh et al.

1 Introduction

MegaM@Rt2 is a three-years project, funded by European Components and
Systems for European Leadership Joint Undertaking (ECSEL JU) under the
H2020 European program, that started in April 2017 [1]. The main goal is to
create an integrated framework incorporating methods and tools for continuous
system engineering and runtime V&V [2, 8]. The underlying objective is to
develop and apply scalable model-based methods and tools in order to provide
improved productivity, quality, and predictability of large and complex industrial
systems [9].

One of the main challenges is to cover the needs coming from diverse and
heterogeneous industrial domains, going from transportation [3] and telecom-
munications to logistics. Among the partners providing use cases in the project,
we can cite Thales, Volvo Construction Equipment, Bombardier Transportation
and Nokia. These organizations have different product management and engi-
neering practices, as well as regulations and legal constraints. This results in
a large and complex catalog of requirements to be realized by the architecture
building blocks at different levels of abstraction. Thus, the development of the
MegaM@Rt2 framework is based on a feature-intensive architecture and a related
implementation roadmap.

The MegaM@Rt2 framework plans to integrate more than 30 tools imple-
menting the above mentioned methods and satisfying requirements of the case
studies. The tools features are grouped in three conceptual tool sets:

1. MegaM@Rt Systems Engineering Tool Set regroups a variety of current en-
gineering tools featuring AADL, EAST-ADL, Matlab/Simulink, AUTOSAR,
Method B or Modelica, SysML and UML in order to precisely specify both
functional and non-functional properties. Moreover, system level V&V and
testing practices will also be supported by this tool set.

2. MegaM@Rt Runtime Analysis Tool Set seeks to extensively exploit system
data obtained at runtime. Different methods for model-based V&V and
model-based testing (MBT) will be rethought and/or extended for runtime
analysis. Model-based monitoring will allow to observe executions of a system
(in its environment) and to compare it against the executions of correspond-
ing model(s). Monitoring will also allow a particular system to be observed
under controlled conditions, in order to better understand its performance.

3. MegaM@Rt Model & Traceability Management Tool Set is a key part of the
framework as it is dedicated to support traceability between models across
all layers of the system design and execution (runtime). This can go from
highly specialized engineering practices to low-level monitoring. Relying on
the unification power of models, it should provide efficient means for describ-
ing, handling and keeping traceability/mapping between large-scale and/or
heterogeneous software and system artifacts.



Building Architectures and Roadmaps in MegaM@Rt2 3

Model-based approaches for specification have been developed consistently
during almost two decades [4]. Automated document generation was one of the
first benefit offered by the Model-driven Architecture (MDA) [10, 4]. Indeed,
models as the first-class entities of the engineering process should contain all the
necessary information for the design documentation. However, several challenges
arise. First, the architect team should decide the right organization for the global
architecture model. Second, it should be carefully planned which level of details
is appropriate for the design of the individual contributions. Third, it should
be considered that the architecture model will be used during 3 years of the
project for numerous purposes, and thus needs to be prepared to accommodate
for changes in methodology. Fourth, several documents need to be generated by
extracting the relevant information from all over the architecture model.

In this paper, we present our experience on providing and utilizing model-
based tool support for defining MegaM@Rt2 framework architecture, to identify
the solution to be implemented in the context of the project and to obtain a cor-
responding roadmap for the development of architecture components throughout
the project.

2 Architecture specification approach

We adopted a practical approach for the architecture specification that is partic-
ularly adapted to collaborative projects such as MegaM@Rt2, integrating tools
coming from several parties [5, 6]. As modeling language, we took a Systems
Modeling Language (SysML) [11] subset for requirements specification and a
Unified Modeling Language (UML) [12] subset for the high-level architecture
specification. The approach to define the MegaM@Rt2 framework architecture is
depicted in Fig. 1. We splitted the architecture model in several parts, dividing
the responsibilities among: the Work Package (WP) leaders, the tool providers
and the case study providers, as detailed in the following list:

– Requirements/Purposes are specified using SysML
• Case Study Requirements are specified by case study providers,
• Framework Requirements are specified by WP leaders, refining the Case

Study Requirements
• Tool Purposes are specified by tool providers with the aim to realise a

specific subset of the Framework Requirements
– Architecture is specified in UML

• Conceptual Tool Set is specified by the WP leaders and represents the
basic architecture of the MegaM@Rt2 Framework

• Tool Set Component is each tool instance, specified by tool providers,
implementing part of the MegaM@Rt2 Framework functionalities

• Common Interfaces - specified by tool providers,
• Common deployment frameworks - specified by tool providers

In addition, to support the integration of each Tool Set Component into the
MegaM@Rt2 Framework, the following additional elements has been identified:



4 A. Sadovykh et al.

Fig. 1. Overview of the Architecture and Development process in MegaM@Rt2.

– Common Interfaces, specified by tool providers, to support data and model
exchange between tools

– Common Deployment Frameworks, specified by tool providers, to highlight
possible issues related to hardware and software platforms

At the Requirements/Purposes level, the needs of industrial partners have
been collected and classified by means of Case Study Requirements, from which
we specified (Activity 1) the MegaM@Rt2 Framework Requirements. For the
latter, we identify (Activity 2) a set of Tool Component Purposes that will
realize the case study requirements. At the Architecture level, each Conceptual
Tool Set component and and the relevant interfaces are identified (Activity 3) to
satisfy framework requirements. Then, for the Conceptual Tool Set we specify
(Activity 4) concrete Tool Set Components to realize the desired functionality.
Those Tool Set Components expose features (i.e. purposes) that are progressively
available, during the project time frame, based on specific development plan.
The roadmap is defined as the set of tools components purposes available at
each project milestone.

3 Tooling approach

Appropriate tooling support is important for the success of the model-driven
engineering process shown in Fig. 1. In order to provide tool support for our
architecture specification approach, we selected the Modelio and Constellation
tools provided by one of the project participants: the SOFTEAM partner.

When collecting inputs of 50 users, it was important to provide guidelines
and diagram templates. Otherwise, the integration work may become extremely
challenging. As such, we defined a set of template diagrams both for specifying
requirements and for collecting tool purposes. Users were able to clone these
templates inside the model to describe their concrete tools.



Building Architectures and Roadmaps in MegaM@Rt2 5

Fig. 2. Requirements editing with Modelio.

In the next subsections we are providing more details on how different fea-
tures of the tool were used to support our approach.

3.1 Architecture specification

Modelio is an MDE workbench supporting standard modeling languages such
as UML, SysML among others. All the modeling notations can be used in the
same global model repository which is important for model traceability and
management.

Requirements modeling. In our approach, requirements originated from dif-
ferent sources, i.e. from 9 case study providers and 22 tool providers. In order
to have an uniform approach for requirement specification that would facilitate
gap analysis and roadmap identification, we defined requirement templates that
were used to define the expected properties to be collected, such as criticality
for the case study requirements and planned release date for tool purposes.

Modelio allowed us to edit requirements in both diagram view and tabu-
lar view (see Fig. 2). The requirements were manually edited or automatically
imported from other documents, e.g. MS Excel.

Architecture modeling. On the architecture level, we used Class and De-
ployment diagrams. We limited modeling to a subset of UML to enforce the
common understanding of the architecture and simplify editing. In particular,
we choose to use UML Components, Interfaces, Associations, Generalizations
and Dependencies.

For tool components, we set a template for the architecture specification
that included class diagram to specify functional interfaces, tool components
subordinates and the relation to the conceptual tool set in the framework, and
deployment diagrams to identify the execution environment of the tool com-
ponent. In addition, Package diagrams have been used to define the high level
structure of the MegaM@Rt2 framework architecture.



6 A. Sadovykh et al.

Fig. 3. Editing architecture and documentation with Modelio.

For instance, Fig. 3 shows that the MegaM@Rt2 framework architecture is
composed of three parts corresponding to the three WPs of the project: Sys-
tem Engineering, Runtime Analysis, and Model and Traceability Management,
respectively.

In Modelio, the documentation (Fig. 3) can be added in the textual notes
or attached as separate documents. Both plain text and rich text notes are
supported. In our work, we deliberately restricted editing to plain text notes to
make sure that the generated documents are formatted correctly.

Fig. 4. Example: Traceability links among the tool set, framework and case study
requirements.



Building Architectures and Roadmaps in MegaM@Rt2 7

Requirements traceability. Once the requirements have been specified, for
each tool component we defined a traceability matrix to link case study require-
ments to framework requirements, and respectively framework requirements to
tool purposes as depicted as described by Activities 1 and 2 of the modeling
approach in Fig. 1. This allowed us to use instant traceability diagrams, as the
one in Fig. 4, to visualise the whole set of dependencies for a given requirement.
This proved beneficial not only for the requirement analysis and toolset integra-
tion planning, but also for identify common interfaces for tool components and
visualise gaps for the requirements analysis.

Generating documents. Modelio offers fairly flexible model query and docu-
ment generation facilities that were used for editing and maintaining four spec-
ifications in the project. The template editor (Fig. 5) was particularly useful
to implement custom extraction of model elements in order to create specific
sections of the document.

In the example below, the template specifies that the generator will search for
a Tool Components package, look at all the UML components to generate a tool
section. This document section will include introductory paragraph, Purpose
subsection, subsections for all class and deployment diagrams as well as section
on the owned interfaces.

Fig. 5. Example: Custom document generation template for individual tools section.



8 A. Sadovykh et al.

When editing the architecture model, it is quite useful to see the generation
result. Thus, along with developing custom document templates, we integrated
the document generation to the Modelio interface. That way regular users could
call the document generation directly from the tool using a context menu (Fig. 6).

3.2 Collaborative model editing

Modelio Constellation [7] is the model sharing, collaborative editing, versioning
and configuration management facility that allow hundreds of modellers to work
together on the same common and shared model. Indeed, authoring an architec-
ture deliverables in MegaM@Rt2 project required contributions of 27 partners.
Thus, around 50 users worked together on the single model. On the regular basis,
users connected to the Constellation server, synchronised the local model with
the central repository, edited the architecture and generated the documents with
alway updated templates. The documentation templates and user interfaces for
document generation were developed continuously and had to be rolled out to
the whole large team of modellers without interrupting the work process. It was
important to provide versioning and conflict resolution when editing touched the
common artifacts. Last but not least, several different deliverable were generated
out of the same model. Therefore, the branching facility allowed to fix the state
when the deliverable were released.

Fig. 6. Example: Architecture document generated with Modelio Document Publisher.



Building Architectures and Roadmaps in MegaM@Rt2 9

4 Conclusions

In this paper, we presented the tool support we used in order to identify and spec-
ify the architecture of the MegaM@Rt2 framework using model-driven principles
and practices. Our approach enforced the coordination and collaboration among
many different stakeholders and thus manageability of this complex project. In-
deed, the main benefits of our model-driven approach are that all information
was collected from different stakeholders and stored using one single model using
a single tool.

This model was used as a central repository, that every project partner can
access and update using model versioning techniques. In addition, having all the
information in one single place, allowed us not only to constantly monitor the
status of the process and to trace the requirements of the framework compo-
nents, but also to easily generate necessary artefacts (such as documents, tables,
diagrams) from the model, whenever needed.

However, using a model-based approach also had some challenges and limi-
tations.

The first of such challenge was that different project participants had differ-
ent levels of familiarity with modeling tools in general and with Modelio and
Constellation in particular. This issue has been addressed by providing several
project-wide online webinars along with proper documentation on describing
how the tools can be used to support the architecture specification approach.
The Modelio support team was helpful in solving the licensing issues, helping
with installation and resolving model versioning conflicts.

A second challenge came from the fact that 50 modellers worked collabora-
tively with the models which could trigger inconsistencies, conflicts and omis-
sions in the collected information. Using the Constellation tool we were able to
support model versioning and collaborative modeling. In addition, we splitted
the model in several parts corresponding to each work package and we provided
clear guidelines on how the work is organized.

A third challenge came from the limitations of the selected tools. For in-
stance, there were different restrictions on how the styling of the documents
generated from the models could be configured and how the information could
be visualized using different types of diagrams. Manual effort is also required
to create document templates and configure the document generators. However,
once the generators were created they could be reused easily and effectively.

In addition to the above challenges, some industrial partners were already
using an existing company-wide tool chain that is not part of our project con-
sortium. In this case, they still gave their requirements, which were mapped to
MegaM@Rt tool set capabilities. However, in such cases, the industrial partners
had an additional validation of the acceptance of their requirements using both
the MegaM@Rt tool set capabilities as well as the capabilities of their in-house
tool set.

Overall, the experience with Modelio and Constellation was mostly positive
and the tool will be further used in other architecture deliverables at later stages
of the project and as the reference document.



10 A. Sadovykh et al.

Acknowledgement. This project has received funding from the Electronic
Component Systems for European Leadership Joint Undertaking under grant
agreement No. 737494. This Joint Undertaking receives support from the Euro-
pean Union’s Horizon 2020 research and innovation program and from Sweden,
France, Spain, Italy, Finland and Czech Republic.

References

1. ECSEL JU MegaM@Rt2 Project Website, https://megamart2-ecsel.eu/. (2018).
2. Fitzgerald B., Stol K.J.: ”Continuous Software Engineering: A Roadmap and

Agenda”. Journal of Systems and Software 123, 176–189 (2017).
3. Wallin P., Johnsson S., Axelsson J.: ”Issues Related to Development of E/E Product

Line Architectures in Heavy Vehicles”. In: 42nd Hawaii International Conference on
System Sciences (HICSS 09). Big Island, HI, USA. IEEE (2009).

4. Di Ruscio D., Paige R.F., Pierantonio A.: ”Guest Editorial to the Special Issue
on Success Stories in Model Driven Engineering”. Journal Science of Computer
Programming. 89(PB), 69–70 (Sep 2014), http://dx.doi.org/10.1016/j.scico.2013.
12.006.

5. Afzal W., Bruneliere H., Di Ruscio D., Sadovykh A., Mazzini S., Cariou E., Truscan
D., Cabot J., Field D., Pomante L., Smrz P.: ”The MegaM@Rt2 ECSEL Project:
MegaModelling at Runtime - Scalable Model-Based Framework for Continuous De-
velopment and Runtime Validation of Complex Systems”. In: 20th EUROMICRO
Conference on Digital System Design (DSD). IEEE, 2017.

6. Bruneliere H., Mazzini S., Sadovykh A.: ”The MegaM@Rt2 Approach and Tool
Set”. In: DeCPS Workshop, 22nd International Conference on Reliable Software
Technologies. Ada-Europe, 2017.

7. Desfray P.: ”Model repositories at the enterprises and systems scale: the modelio
constellation solution”. In: 1st International Conference on Information Systems
Security and Privacy (ICISSP). IEEE, 2015.

8. ISO/IEC/IEEE: ”ISO/IEC/IEEE 29148: Systems and software engineering – Life
cycle processes – Requirements engineering”. (Nov. 2011).

9. ISO/IEC: ”ISO/IEC 25010: Systems and software engineering – Systems and soft-
ware Quality Requirements and Evaluation (SquaRE) – System and software quality
models”.(Mar. 2011).

10. OMG: Model Driven Architecture (MDA) Guide rev. 2.0, http://www.omg.org/
cgi-bin/doc?ormsc/14-06-01.

11. OMG: OMG Systems Modeling Language (OMG SysML), Ver. 1.4, http://www.
omg.org/spec/SysML/1.4/.

12. OMG: Unified Modeling Language (UML), Ver. 2.5, http://www.omg.org/spec/
UML/2.5/.


