
HAL Id: hal-01933464
https://hal.science/hal-01933464v1

Submitted on 4 Dec 2018 (v1), last revised 7 Jan 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tool-supported Approach for Building the Architecture
and Roadmap in MegaM@Rt2 Project

Andrey Sadovykh , Alessandra Bagnato , Dragos Truscan , Pierluigi Pierini ,
Hugo Bruneliere, Abel Gomez, Jordi Cabot, Orlando Avila-García , Wasif Afzal

To cite this version:
Andrey Sadovykh , Alessandra Bagnato , Dragos Truscan , Pierluigi Pierini , Hugo Bruneliere, et al..
Tool-supported Approach for Building the Architecture and Roadmap in MegaM@Rt2 Project. The
6th international Conference in Software Engineering for Defense Applications (SEDA 2018), Jun
2018, Rome, Italy. �hal-01933464v1�

https://hal.science/hal-01933464v1
https://hal.archives-ouvertes.fr

Tool-supported Approach for Building the Architecture
and Roadmap in MegaM@Rt2 project

Andrey Sadovykh​1​, Alessandra Bagnato​2​, Dragos Truscan​3​, Pierluigi Pierini​4​, Hugo
Bruneliere​5​, Abel Gómez​6​, Jordi Cabot​7​, Orlando Avila-García​8​, Wasif Afzal​9

1​Innopolis University, 420500 Innopolis, Respublika Tatarstan, Russia
a.sadovykh@innopolis.ru

2​Softeam, 21 avenue Victor Hugo, 75016 Paris, France
alessandra.bagnato@softeam.fr

3​Åbo Akademi University, 20520, Turku, Finland
dragos.truscan@abo.fi

4​ Intecs S.p.A., Via U. Forti 5, 56121 Pisa, Italy
pierluigi.pierini@intecs.it

5​ IMT Atlantique, LS2N (CNRS) & ARMINES, 44000 Nantes, France
hugo.bruneliere@imt-atlantique.fr

6​ IN3, Universitat Oberta de Catalunya, Spain
agomezlla@uoc.edu

7​ICREA, Spain
jordi.cabot@icrea.cat

8​Atos, Subida al Mayorazgo, 24B, 38110 Tenerife, Spain
orlando.avila@atos.net
9​Mälardalen University, Sweden
wasif.afzal@mdh.se

Abstract. ​​MegaM@Rt2 is a large European project dedicated to the
provisioning of a model-based methodology and supporting tooling for system
engineering at a wide scale. It notably targets the continuous development and
runtime validation of such complex systems by developing the MegaM@Rt2
framework to address a large set of engineering processes and application
domains. This collaborative project involves 27 partners from 6 different
countries, 9 industrial case studies as well as over 30 different tools from
project partners (and others). In the context of the project, we opted for a
pragmatic model-driven approach in order to specify the case study
requirements, design the high-level architecture of the MegaM@Rt2
framework, perform the gap analysis between the industrial needs and current
state-of-the-art, and to plan a first framework development roadmap
accordingly. The present paper concentrates on the concrete examples of the
tooling approach for building the framework architecture. In particular, we
discuss the collaborative modelling, requirements definition tooling, approach
for components modelling, traceability and document generation. The paper
also provides a brief discussion of the practical lessons we have learned from it
so far.

2

Keywords: Model-Driven Engineering, Requirement Engineering,
Architecture, UML, SysML, Traceability, Documentation~Generation,
Modelio

1 Introduction

MegaM@Rt2 is a three-years project, funded by European Components and Systems
for European Leadership Joint Undertaking (ECSEL JU) under the H2020 European
program, that started in April 2017. The main goal is to create an integrated
framework incorporating methods and tools for continuous system engineering and
runtime V&V. The underlying objective is to develop and apply scalable model-based
methods and tools in order to provide improved productivity, quality, and
predictability of large and complex industrial systems.

One of the main challenges is to cover the needs coming from diverse and
heterogeneous industrial domains, going from transportation and telecommunications
to logistics. Among the partners providing use cases in the project, we can cite Thales,
Volvo Construction Equipment, Bombardier Transportation and Nokia. These
organizations have different product management and engineering practices, as well
as regulations and legal constraints. This results in a large and complex catalog of
requirements to be realized by the architecture building blocks at different levels of
abstraction. Thus, the development of the MegaM@Rt2 framework is based on a
feature-intensive architecture and a related implementation roadmap.

The MegaM@Rt2 framework plans to integrate more than 30 tools implementing
the above mentioned methods and satisfying requirements of the case studies. The
tools features are grouped in three conceptual tool sets

1. MegaM@Rt Systems Engineering Tool Set regroups a variety of current
engineering tools featuring AADL, EAST-ADL, Matlab/Simulink,
AUTOSAR, Method B or Modelica, SysML and UML in order to precisely
specify both functional and non-functional properties. Moreover, system
level V&V and testing practices will also be supported by this tool set.

2. MegaM@Rt Runtime Analysis Tool Set seeks to extensively exploit system
data obtained at runtime. Different methods for model-based V&V and
model-based testing (MBT) will be rethought and/or extended for runtime
analysis. Model-based monitoring will allow to observe executions of a
system (in its environment) and to compare it against the executions of
corresponding model(s). Monitoring will also allow a particular system to be
observed under controlled conditions, in order to better understand its
performance.

3. MegaM@Rt Model & Traceability Management Tool Set is a key part of the
framework as it is dedicated to support traceability between models across all
layers of the system design and execution (runtime). This can go from highly
specialized engineering practices to low-level monitoring. Relying on the
unification power of models, it should provide efficient means for

3

describing, handling and keeping traceability/mapping between large-scale
and/or heterogeneous software and system artifacts.

Model-based approaches for specification have been developed consistently during
almost two decades [8]. Automated document generation was one of the first benefit
offered by the Model-driven Architecture (MDA) [3,8]. Indeed, models as the
first-class entities of the engineering process should contain all the necessary
information for the design documentation. However, several challenges arise. First,
the architect team should decide the right organization for the global architecture
model. Second, it should be carefully planned which level of details is appropriate for
the design of the individual contributions. Third, it should be considered that the
architecture model will be used during 3 years of the project for numerous purposes,
and thus needs to be prepared to accommodate for changes in methodology. Fourth,
several documents need to be generated by extracting the relevant information from
all over the architecture model.

In this paper, we present our experience on providing and utilizing model-based
tool support for defining MegaM@Rt2 framework architecture, to identify the
solution to be implemented in the context of the project and to obtain a corresponding
roadmap for the development of architecture components throughout the project.

2 Architecture specification approach

We adopted a practical approach for the architecture specification that is particularly
adapted to collaborative projects such as MegaM@Rt2, thus integrating tools coming
from several parties. As modeling language, we took a Systems Modeling Language
(SysML) [4] subset for requirements specification and a Unified Modeling Language
(UML) [5] subset for the high-level architecture specification. We splitted the
architecture model in several parts and divided the responsibilities among the
different Work Package (WP) leaders, tool providers and case study providers (see
Fig. 1) :

● Requirements, specified in SysML
○ Case study requirements - specified by case study partners,
○ Framework requirements - specified by WP leaders,
○ Tool purposes - specified by tool providers

● Architecture, specified in UML
○ Framework - each conceptual tool set specified by WP leaders
○ Tool set - each tool specified by tool providers
○ Common interfaces - specified by tool providers
○ Common deployment frameworks - specified by tool providers

.

4

Fig. 1.​​ ​Overview of the Architecture and Development process in MegaM@Rt2.

The approach to define the MegaM@Rt2 framework architecture is depicted in

Fig. 1. At the Requirements Purposes level, we identify the needs of industrial
partners in the form of Case Study Requirements and from them we extract (Activity
1) generic MegaM@Rt2 Framework Requirements. For the latter, we identify
(Activity 2) a set of Tool Component Purposes that will realize the case study
requirements. At the Architecture level, each Conceptual Tool Set component and and
the relevant interfaces are identified (Activity 3) to satisfy framework requirements.
Then, for each Conceptual Tool Set Component we specify (Activity 4) concrete tool
set components to realize the desired functionality. Those concrete tool set component
expose features and satisfy purpose requirements that includes the release milestones
indications for the roadmap definition.

3 Tooling approach

Appropriate tooling support is important for the success of the model-driven
engineering process shown in Fig. 1. In order to provide tool support for our
architecture specification approach, we selected the Modelio and Constellation tools
provided by on of the project participants, SOFTEAM.

When collecting inputs of 50 users, it was important to provide guidelines and
diagram templates. Otherwise, the integration work may become extremely
challenging. As such, we defined a set of template diagrams both for specifying
requirements and for collecting tool purposes. Users were able to clone these
templates inside the model to describe their concrete tools.

In the next subsections we are providing more details on how different features of
the tool were used to support our approach.

5

3.1 Architecture specification

Modelio is an MDE workbench supporting standard modeling languages such as
UML, SysML among others. All the modelling notations can be used in the same
global model repository which is important for model traceability and management.

Requirements modeling. In our approach, requirements originated from different
sources, i.e. from 9 case study providers and 22 tool providers. In order to have an
uniform approach for requirement specification that would facilitate gap analysis and
roadmap identification, we defined requirement templates that were used to define the
expected properties to be collected, such as ​criticality for the case study requirements
and ​planned release date​ for tool purposes.

Modelio allowed us to edit requirements in both diagram view and tabular view
(see Fig. 2). The requirements were manually edited or automatically imported from
other documents, e.g. MS Excel.

Fig. 2.​​ Requirements editing with Modelio.

Architecture modeling. On the architecture level, we used Class and Deployment
diagrams. We limited modelling to a subset of UML to enforce the common
understanding of the architecture and simplify editing. In particular, we choose to use
UML Components, Interfaces, Associations, Generalizations and Dependencies.

For tool components, we set a template for the architecture specification that
included class diagram to specify functional interfaces, tool components subordinates
and the relation to the conceptual tool set in the framework, and deployment diagrams
to identify the execution environment of the tool component. In addition, Package
diagrams have been used to define the high level structure of the MegaM@Rt2
framework architecture. For instance, Fig. 3 shows that the MegaM@Rt2 framework
architecture is composed of three parts corresponding to the three WPs of the project.

6

System Engineering, Runtime Analysis, and Model and Traceability Management,
respectively.

Fig. 3.​​ Editing architecture and documentation with Modelio.

In Modelio, the documentation (Fig. 3) can be added in the textual notes or
attached as separate documents. Both plain text and rich text notes are supported. In
our work, we deliberately restricted editing to plain text notes to make sure that the
generated documents are formatted correctly.

Requirements traceability. ​​Once the requirements have been specified, for each tool
component we defined a traceability matrix to link case study requirements to
framework requirements, and respectively framework requirements to tool purposes
as depicted as described by Activities 1 and 2 of the modelling approach in Fig. 1.
This allowed us to use instant traceability diagrams, as the one in Fig. 4, to visualise
the whole set of dependencies for a given requirement. This proved beneficial not
only for the requirement analysis and toolset integration planning, but also for
identify common interfaces for tool components and visualise gaps for the
requirements analysis.

7

Fig. 4.​​ Example: Traceability links among the tool set, framework and case study requirements

Generating documents. ​​Modelio offers fairly flexible model query and document
generation facilities that were used for editing and maintaining four specifications in
the project. The template editor (Fig. 5) was particularly useful to implement custom
extraction of model elements in order to create specific sections of the document. In
the example below, the template specifies that the generator will search for a Tool
Components package, look at all the UML components to generate a tool section.
This document section will include introductory paragraph, “Purpose” subsection,
subsections for all class and deployment diagrams as well as section on the owned
interfaces.

Fig. 5.​​ Example: Custom document generation template for individual tools section.

When editing the architecture model, it is quite useful to see the generation result.
Along with developing custom document templates, we integrated the document
generation to the Modelio interface. That way regular users could call the document
generation directly from the tool using a context menu (Fig. 6).

8

Fig. 6.​​ Example: Architecture document generated with Modelio Document Publisher.

3.2 Collaborative model editing

Modelio Constellation [12] is the model sharing, collaborative editing, versioning and
configuration management facility that allow hundreds of modellers to work together
on the same common and shared model. Indeed, authoring an architecture
deliverables in MegaM@Rt2 project required contributions of 27 partners. Thus,
around 50 users worked together on the single model. On the regular basis, users
connected to the Constellation server, synchronised the local model with the central
repository, edited the architecture and generated the documents with always updated
templates. The documentation templates and user interfaces for document generation
were developed continuously and had to be rolled out to the whole large team of
modellers without interrupting the work process. It was important to provide
versioning and conflict resolution when editing touched the common artifacts. Last
but not least, several different deliverable were generated out of the same model.
Therefore, the branching facility allowed to fix the state when the deliverable were
released.

9

4 Conclusions

In this paper, we presented the tool support we used in order to identify and specify
the architecture of the MegaM@Rt2 framework using model-driven principles and
practices. Our approach enforced the coordination and collaboration among many
different stakeholders and thus manageability of this complex project. Indeed, the
main benefits of our model-driven approach are that all information was collected
from different stakeholders and stored using one single into one single model using
one single tool. This model was used as a central repository, which every project
partner updated or accessed using model versioning techniques. In addition, having all
the information in one single place, allowed us not only to constantly monitor the
status of the process and to trace the requirements of the framework components, but
also to easily generate necessary artefacts (such as documents, tables, diagrams) from
the model whenever needed.

However, using a model-based approach also had some challenges and limitations.
The first such challenge was that different project participants had different levels of
familiarity with modeling tools in general and with Modelio and Constellation in
particular. This issue has been addressed by providing several project-wide online
webinars along with proper documentation on describing the how the tools can be
used to support the architecture specification approach. The Modelio support team
was helpful in solving the licensing issues, helping with installation and resolving
model versioning conflicts.

A second challenge came from the fact that 50 modellers worked collaboratively
with the models which could trigger inconsistencies, conflicts and omissions in the
collected information. Using the Constellation tool we were able to support model
versioning and collaborative modeling. In addition, we splitted the model in several
parts corresponding to each work package and we provided clear guidelines on how
the work is organized.

A third challenge came from the limitations of the selected tools. For instance,
there were different restrictions on how the styling of the documents generated from
the models could be configured and how the information could be visualized using
different types of diagrams.

Last but not least, manual effort had to be put into creating document generators
that were used to extract the information from the models into documents. However,
once the generators were created they could be reused easily and effectively.

In addition to the above challenges, some industrial partners were already using an
existing company-wide tool chain that is not part of our project consortium. In this
case, they still gave their requirements, which were mapped to MegaM@Rt tool set
capabilities. However, in such cases, the industrial partners had an additional
validation of the acceptance of their requirements using both the MegaM@Rt tool set
capabilities as well as the capabilities of their in-house tool set.

10

Overall, the experience with Modelio and Constellation was mostly positive and
the tool will be further used in other architecture deliverables at later stages of the
project and as the reference document.

Acknowledgement. This project has received funding from the Electronic
Component Systems for European Leadership Joint Undertaking under grant
agreement No. 737494. This Joint Undertaking receives support from the European
Union's Horizon 2020 research and innovation program and from Sweden, France,
Spain, Italy, Finland and Czech Republic.

References

1. Wallin, P., Johnsson, S., Axelsson, J.: Issues Related to Development of E/E Product Line
Architectures in Heavy Vehicles. In: 42nd Hawaii International Conference on System
Sciences (HICSS ‘09). Big Island, HI, USA. IEEE (2009).

2. Fitzgerald, B., Stol, K.J.: Continuous Software Engineering: A Roadmap and Agenda.
Journal of Systems and Software 123, 176 – 189 (2017).

3. OMG: Model Driven Architecture (MDA) Guide rev. 2.0, http://www.omg.org/cgi-bin/
doc?ormsc/14-06-01

4. OMG: OMG Systems Modeling Language (OMG SysML), Ver. 1.4, http://www.omg.org/
spec/SysML/1.4/

5. OMG: Unified Modeling Language (UML), Ver. 2.5, http://www.omg.org/spec/UML/2.5/
6. Afzal, Wasif, et al. "The MegaM@ Rt2 ECSEL Project: MegaModelling at

Runtime—Scalable Model-Based Framework for Continuous Development and Runtime
Validation of Complex Systems." Digital System Design (DSD), 2017 Euromicro
Conference on. IEEE, 2017.

7. Bruneliere, Hugo, Silvia Mazzini, and Andrey Sadovykh. "The MegaM@ Rt2 Approach
and Tool Set." DeCPS Workshop, 22nd International Conference on Reliable Software
Technologies-Ada-Europe 2017. 2017.

8. Di Ruscio, D., Paige, R.F., Pierantonio, A.: Guest editorial to the special issue on success
stories in model driven engineering. Sci. Comput. Program. 89(PB), 69–70 (Sep 2014),
http://dx.doi.org/10.1016/j.scico.2013.12.006

9. ISO/IEC/IEEE 29148: Systems and software engineering - Life cycle processes -
Requirements engineering. ISO/IEC/IEEE. Nov. 2011.

10. ISO/IEC 25010: Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SquaRE) - System and software quality models. ISO/IEC.
March 2011

11. MegaM@Rt project web-site, https://megamart2-ecsel.eu/, last visited on April 8, 2018
12. Desfray, Philippe. "Model repositories at the enterprises and systems scale: the modelio

constellation solution." Information Systems Security and Privacy (ICISSP), 2015
International Conference on. IEEE, 2015.

