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mixers, etc.). In addition, the collection of statistically con
verged breakup probability or frequency in such experimental
devices is a hard task to achieve, in particular due to low prob
ability of highest pressure fluctuations and to limited residence
time of drops or bubbles in the flow area of interest. As a
result, experimental data may exibit opposite trends, making
difficult their interpretation with statistical models. In view of
assessing breakup frequency models in turbulent flows, it is
therefore necessary to develop numerical and physical breakup
experiments which fully verify the statistical convergence in
space and time of the deformation process.
Following the pioneering work of Kolmogorov4 and Hinze,5

most of the existing models consider the turbulent flow like a
discrete array of eddies at the scale of drop or bubble size, and
they assume that a breakup event occurs when the kinetic
energy of a turbulent eddy is sufficient to overcome surface ten
sion, that is, they suppose the existence of a critical Weber
number for breakup. Some breakup frequency expressions are
obtained directly from a modeling of the probability density
function of the turbulent kinetic energy of the eddies6-9 (using
different statistical laws: normal law, Maxwell’s law, etc.).
Other models multiply a collision frequency between eddies
and drops with a collision efficiency.10-12 In the case of air bub
bles in a liquid jet, further extended by Eastwood et al.13 for
liquid liquid systems, Martinez Bazan et al.14 consider that the
characteristic velocity of the breakup process is proportional to
the difference between the dynamic pressure produced by the
turbulent fluctuations at the drop scale and the restoring pres
sure force induced by interfacial tension, leading to a breakup
frequency proportional to the square root of the Weber number.
One common idea to these models is the existence of a critical

Weber number for breakup, resulting from a force balance
between turbulent pressure force and surface tension force. If
such a critical value exists, it is not universal. As shown by
Risso,15 this static balance is not suitable in cases where the resi
dence time of the drop or bubble is large compare to the period
of shape oscillation of the drops, as discussed in the present arti
cle. A few other works insist on the importance of the dynamic
response of the drop, like the study of Sevik and Park,16 who
postulate a resonance mechanism between the bubble dynamics
and turbulent fluctuations, or the work of Zhao and Ge17 who
introduce the concept of eddy efficiency by considering that the
time scale of response of the drops to turbulent fluctuations con
trols the maximal amount of energy that can be extracted from
each turbulent eddy. The importance of the resonance mecha
nism between turbulent fluctuations and bubble dynamics in the
breakup problem has been shown in detail in the paper of Risso
and Fabre,18 and a model for the breakup probability was pro
posed. This model has been successfully compared to experi
mental data on breakup statistics in non homogeneous turbulent
flows in the case of liquid liquid dispersions, from dilute up to
concentrated emulsions at 20 vol %.19,20 In the context of atomi
zation, note that a similar dynamic model exists for the calcula
tion of low Weber number engineering sprays, known as the
Taylor analogy breakup model,21 which accounts for the cou
pling between interface dynamics and aerodynamic forces
responsible for breakup due to the relative velocity between
the drops and the gas phase in that case.
First, the physical basis and range of validity of the

Lagrangian model proposed by Risso and Fabre18 is discussed,
both from elementary examples and from comparison of new
experimental data of breakup in a liquid liquid system. One
major interest of this approach is to account for the finite time
of a breakup event. Another interesting feature of this dynamic

model is to include the contribution of densities and viscosities
of both phases in an explicit way, in the limit of low Ohne
sorge number of the dispersed phase (resistance to drop defor
mation is controlled by surface tension).

Then, by combining computations of this Lagrangian model
with experimental measurements of turbulent fluctuations in
an isotropic turbulent flow, statistics on the breakup frequency
are collected, and a new breakup frequency law is derived
based on turbulence spectra properties. Finally, scalings of
these statistical quantities valid in the inertial range of
turbulence are introduced into this Eulerian law of breakup
frequency, with the objective to implement this model in
population balance codes for industrial applications, in future
works.

A Dynamic Model for Drop Deformation
Force and time scales of interface and flow

We consider a drop or a bubble of diameter d, of density
and dynamic viscosity ρd and μd, respectively, immersed in a
carrier fluid of density and dynamic viscosity ρc and μc,
respectively. The interfacial tension between the two phases is
denoted σ and is assumed to be constant: no dynamic effects
due to a possible presence of surfactants adsorbed at the inter
face are considered here. In the following, the fluid particle
will be called a drop, but it can be a bubble as well.

Interface Dynamics. Surface tension induces an interfacial
stress Fs / σ

d that maintains the drop shape so as to minimize
surface energy. Then, when the shape of a drop is shortly
disturbed whatever the cause of surface perturbation, it
undergoes oscillations damped by viscous effects, until recov
ering its equilibrium shape. This problem has been addressed
theoretically by several authors (Rayleigh,22 Lamb,23 Miller
and Scriven,24 Lu and Apfel,25 Prosperetti26) in the case of
low amplitude shape oscillations, its solution showing that the
interface dynamics can be expressed as a series of eigen
modes. Each mode describes the dynamics of a particular
shape, and is associated with both an eigenfrequency of oscil
lation and a damping rate. Mode 2 represents the oscillation
between a prolate and an oblate drop shape. As it is the defor
mation mode of lowest energy (the mode with the lowest fre
quency), Mode 2 is the most easily excited and drop breakup
is often observed to be associated with a prolate shape. Thus,
Mode 2 gives a good description of the drop prevalent defor
mation; by denoting A(t) the amplitude of this axisymmetric
mode of deformation, the droplet shape deformed only along
this mode can be written, in polar coordinates (r, θ), as
r θ, tð Þ¼R+A tð Þ:12 : 3cos2 θð Þ−1ð Þ with R the undeformed drop
let radius. A(t) is an oscillating signal at eigenfrequency ω2

and damped at a rate β2; these characteristics of Mode 2 thus
define the timescales of the interface dynamics (T2 = 2π/ω2 is
the period of shape oscillation and tv = 1/β2 is the characteris
tic time of damping of the amplitude of oscillation).

ω2 and β2 can be obtained by solving numerically a gen
eral nonlinear equation given by Prosperetti (Eq. 33 in his
paper of 1980). Note that these expressions explicitly account
for the role of density and viscosity of both phases without
the need of any empirical results; for a given size, values of
ω2 and β2 are different in the cases of a drop or a bubble
immersed in another liquid. In the limit of weak viscous
effects (i.e., ξ = β2/ω2 � 1), estimations of these time scales
can be obtained from an asymptotic development,24,25 which
gives:
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As examples, in the case of an air bubble in water, the devi
ation of Eq. 1 compared to a numerical solution of the (exact)
nonlinear equation is <5% provided ReOSC ≥ 5 for ω2 and pro
vided ReOSC ≥ 100 for β2. Then, in the case of an heptane
drop in water, the same accuracy is reached for ω2 when
ReOSC ≥ 30, and for β2 when ReOSC ≥ 150.
In the expressions given by Eq. 1, ω2 and β2 include a con

tribution from both the potential flow rising from the oscillat
ing motion far from the interface, and the boundary layers that
develop in each fluid close to the interface, the latter contribu
tion corresponding to the terms proportional to ReOSC

p
. Note

that the contribution of the viscous boundary layers is negligi
ble in the expression of ω2, which is well predicted by the
Lamb inviscid frequency ω0

2, whereas it is a dominant term in
the expression of β2 in general. Indeed, frequency is mainly
driven by inertial effects with a contribution of density of
both dispersed and continuous phases, and surface tension,
like in a spring mass system. At the opposite, damping rate β2
is increasing with the viscosity of each phase.
Even if expressions of Eq. 1 have been obtained without

considering the influence of gravity in the shape oscillations,
they are generally still valid in the presence of a buoyancy
induced motion, under the conditions given by Lalanne
et al.27,28 Moreover, more complex expressions of ω2 and β2
can also be computed by considering effect of surfac
tants24,25,29 adsorbed at the drop surface.
Turbulent Flow. We consider now that the drop is travel

ing in a turbulent flow, and that the main cause of drop defor
mation and breakup is due to turbulent pressure fluctuations.
The drop size is supposed to lie within the inertial range of
turbulence length scales, which implies it is larger than the
Kolmogorov scale η of viscous dissipation.
The instant velocity field can be split at any point of the

flow as u¼ u + u0, where u is the average velocity and u0 is
the turbulent fluctuation, the over bar symbol denoting the
average over a large number of realizations.

Following the Hinze Kolmogorov theory which considers
that the most efficient vortices for deformation are those of
size comparable to that of the undeformed drop, the average
turbulent force responsible for drop deformation is related to
the average dynamic pressure difference between two points
separated of a drop diameter distance, which scales as the
second order structure function of velocity fluctuations at a dis

tance d: δu2 x,dð Þ ¼ u0 x + d, tð Þ−u0ðx,tÞk k2 . From a Lagrangian
point of view, if we consider δu2 dð Þ to be the averaged turbu
lent energy experienced by the drop along its path x(t) in the
turbulent field, the average turbulent stress at the drop scale
is Fturb ¼ ρcδu2 dð Þ.

In a turbulent flow, successive and random interactions
between vortices and the droplet cause oscillations of its
shape; the dynamics of relaxation of the interface is then well
described by the scales given previously which are the charac
teristic frequency of oscillation ω2 and the damping rate β2.
Risso and Fabre18 have shown in their experiment of a bubble
in a homogeneous turbulent flow that the oscillation frequency
ω2 is dominant in the shape oscillation dynamics even in a tur
bulent flow, as illustrated in Figure 1. However, contrary to
the drop dynamics, the turbulent flow does not contain a single
characteristic frequency but a continuous spectrum of frequen
cies, each one being associated to a given power.

Nondimensional numbers and breakup conditions

Finally, the drop is characterized by a restoring force Fs and
a frequency ω2 and a rate β2, whereas the flow exerts an aver
age force intensity Fturb distributed over a broad range of fre
quencies. Another important time scale is the time of
residence tr of the drop in the flow, which is defined as the
time spent by the drop in the turbulent field.

Based on these scales, a first analysis leads to the following
nondimensional numbers that are relevant for the problem of
drop deformation in a turbulent flow:

• the ratio between the time of residence of the drop and its
oscillation period (which is its response time to shape pertur
bations): tr/T2;

• the average turbulent Weber number which compares the
intensity of turbulent (pressure) fluctuations and the capillary
force: We¼ ρcδu2 dð Þd=σ¼Fturb=Fs;

• the damping coefficient of the drop deformation dynam
ics, which compares the time scale of viscous damping to the
period of shape oscillation: ξ = β2/ω2.

Breakup is assumed to occur whenever either the Weber
number or the amplitude of drop deformation exceeds a critical
value. The first criterion is identical to the classical one that
compares the deformation stress and the interfacial stress.
Then, it disregards the response time of the drop, understating
that the drop adjusts its deformation immediately after its

Figure 1. A bubble oscillating in a turbulent flow, and a scheme of a bubble deformed by turbulent fluctuations at its
scale.
[Color figure can be viewed at wileyonlinelibrary.com]



interaction with an eddy. However, breakup can occur in zones
of low averaged stress, as observed in Galinat et al.,30 whereas
it has been shown that droplets do systematically breakup
above a given deformation; then, the alternative criterion of
critical deformation is chosen here. In this study, we focus on
the case of a two phase flow system with low to moderate vis
cosities, characterized by ξ � 1, where frequency and damp
ing rate of drops or bubbles can be easily calculated from
Eq. 1. Another important condition to be fulfilled is that surface
tension is the main resistance force to deformation in the turbu
lent field. This criterion corresponds to small value of the
Ohnesorge number based on the inner phase viscosity, defined

as Oh¼ μd
ρdσd

p (note that Oh¼ 1
ReOSC

2 3
p
γ

p ). Under this condition,

experiments30,31 show that the critical deformation corre
sponds to a drop elongation of about twice its initial diame
ter; in the case of a high internal viscosity (high Oh), much
larger deformations can be reached,31 so considering turbu
lent fluctuations at the initial drop size scale would not be
sufficient for the prediction of breakup. Note that the condi
tion ξ � 1 is not strictly equivalent to Oh � 1, and in the
frame of the proposed model for breakup, both conditions
have to be verified.
With the objective to compute an average drop breakup fre

quency, an important quantity to be scaled is the frequency of
occurrence of eddies with a sufficient intensity. It must be noted
that We can be the same for a flow with rare and strong vorti
ces and a flow with moderate vortices appearing at a higher
frequency. A priori, the information concerning the frequency
of repetition of events of a given threshold is not contained in
the turbulent spectrum. Consequently, a statistical study is
required to characterize the breakup frequency and relate it to
the relevant nondimensional parameters of the turbulent flow
considered.
Drop breakup in homogeneous turbulence may result from

two distinct mechanisms: (i) an interaction with a strong turbu
lent vortex, intense enough to provide a critical deformation,
or (ii) a series of interactions with vortices of low or moderate
intensity which make the droplet accumulating energy of
deformation up to the critical deformation.
Mechanism (i) is the one considered in a critical Weber

number Wecrit approach because it corresponds to an instanta
neous static balance of forces with a critical threshold as
breakup criterion. This approach is relevant in case of a turbu
lence composed of rare eddies of sufficient intensity for
breakup; in the latter case, statistics of occurrence of breakup
events are similar to that of occurrence of intense eddies, as
shown in the experimental device of Ravelet et al.32 We could
also think that a Wecrit approach is able to predict breakup
when the residence time of the drop in the turbulent field
is negligible compared to the time scale of drop dynamics:
tr � T2; however, such a static approach assumes an instanta
neous breakup whereas a dynamic approach accounts for the
finite response time of the drop to reach the critical deforma
tion, hence statistics of breakup frequency are expected to be
different between the two modeling approaches.
Mechanism (ii) of drop deformation due to a cumulative pro

cess can only be described by a dynamic approach. In this case,
breakup results from the interaction between the drop and the
repetition of eddies, each one with its own duration, which can
be of moderate intensity (associated to a small Weber number).
This resonance mechanism occurs when tr is higher than T2,
and it is able to produce breakup events on long times. Note
that, if the viscous damping of the oscillations is fast compared

to the oscillating period tv � T2, this mechanism will not be
effective in the deformation process; however, as we limit this
study to droplets for which ξ � 1, this case is excluded here.

To conclude, the dynamic approach developed in this article
is suitable whatever the time scales ratio and accounts for
breakup mechanisms (i) and (ii). In the following, the oscilla
tor model is presented and used in the limit of low ξ.

A model of forced oscillator for drop deformation and
breakup

The model detailed here is the linear forced oscillator model
first introduced in the article of Risso and Fabre.18 It is a
Lagrangian model that follows the interactions of the drop
with the turbulent eddies along its trajectory. The model pre
dicts the drop deformation in time, described through the
amplitude of deformation A(t) of Mode 2 which is assumed to
be the first mode excited by turbulence. This amplitude repre
sents the oscillation of the drop shape between a prolate (posi
tive amplitude) and an oblate shape (negative amplitude),
which is forced by the turbulent fluctuations at its scale; oscil
lations are driven by surface tension which is the restoring
interfacial force in this model, and are damped by viscous
effects either from the dispersed or the continuous phase.

This model simply relates the local turbulent fluctuations
and the interface dynamics by means of a forced oscillator:

d2A

dt2
+ 2β2

dA

dt
+ω2

2A¼KF tð Þ, ð2Þ

In this model Eq. 2, it is assumed that main vortices respon
sible for breakup are in average those of size comparable to
that of the undeformed droplet, in accordance with the Kolmo
gorov theory. Then, F(t) represents the forcing term due to the
turbulent excitation at the drop initial scale d, which is written

as F tð Þ¼ δu2 d, tð Þ
d , based on the instantaneous dynamic pressure

difference experienced by the drop. ω2 and β2 correspond to
the time scales of the response process of the drop shape.
K scales the amount of kinetic stress which excites Mode 2. It
is the only unknown parameter of this model that requires to
be determined from experimental data.

This model predicts the drop deformation in time; because
of the definition of the amplitude of Mode 2, the length associ
ated to the maximal deformation writes d + 2A(t) (cf Figure 1).
It can be combined with a breakup critical value for A(t).

By introducing the nondimensional numbers ξ and We(t) =
ρcδu

2(d, t)d/σ, Eq. 2 can be written in its dimensionless form,
with â¼A=d, t̂¼ tω2:

d2â

dt̂2
+ 2ξ

dâ

dt̂
+ â¼K 0We tð Þ, ð3Þ

in which K 0 ¼Kσ= ρcd
3ω2

2

	 

. Note that if K is constant, K0 is

also constant for a given ρ̂ owed to the fact that ω2 is close to
the Lamb frequency ω0

2.
The choice here is to consider the linear model of Eq. 3,

with the use of ω2 and β2 calculated from a theory assuming
small deformation around the spherical shape, and a descrip
tion of turbulence and drop shape reduced each one to a
unique scalar, as it is believed that this level of complexity is
enough to capture the main mechanisms responsible for drop
deformation when the drop viscosity is moderate (low ξ and



low Oh), in consistency with the theory of Kolmogorov Hinze
for drop breakup in a turbulent flow.

Application of the model

In this section, the response of the dynamic model Eq. 3 is
illustrated in some elementary cases.
Response to a Single Eddy. The first case corresponds to

the interaction of a drop with an isolated eddy of intensity Wet
during a time tr. The forcing term in Eq. 3 is We(t) = Wet when
0 ≤ t ≤ tr, and We(t) = 0 otherwise (with K0 = 1). Solving this
ODE allows to calculate the drop deformation, which is propor
tional to Wet; thus, we examine the normalized maximal defor
mation with time âmax ¼ max â tð Þð Þ, divided by Wet, which is
plotted in Figure 2 as a function of the eddy duration tr/T2,
and for different values of the damping coefficient ξ. Il is
found that maximum deformation reaches its highest value
when the eddy duration tr is larger than T2/2. In the inviscid
case (ξ = 0), deformation is maximum and reaches 2Wet. The
higher ξ, the lower the drop deformation caused by the eddy.
Note also that the response time of the drop to reach the

critical deformation âmax=Wet is always less or equal to T2/2,
depending on tr; this corresponds to the finite time of deforma
tion accounted for in this oscillator model.
Response to a Succession of Turbulent Eddies. The sec

ond case corresponds to the deformation of the drop by two
consecutive eddies of same intensity Wet and duration
t1 = T2/2, these two eddies being separated in time by Δt. The
forcing term is We(t) = Wet when 0 ≤ t ≤ t1 or t1 + Δt ≤ t ≤ 2
t1 + Δt, and We(t) = 0 otherwise (with K0 = 1).
After being deformed by the first eddy, the deformation can

be cumulative depending on the instant the second eddy inter
acts with the drop: Figure 3 shows the cases of Δt = T2,
T2 + 1/4T2, T2 + 1/2T2, and T2 + 3/4T2. If the second eddy
interaction occurs exactly after one (or an integer number of )
oscillating period T2, the drop deformation totally vanishes.
However, in the other cases considered here, the deformation
of the drop increases, the most efficient case corresponding to
a second eddy occurrence at T2/2. Then, it is concluded that
the drop response after being deformed by two consecutive
eddies depends both on their duration and their time spacing;
there are cases where the drop deformation vanishes or is
enhanced by the second eddy.
The third case corresponds to the interaction of the drop

with periodic eddies of same intensity. We choose a duration

of T2/2 for each eddy of intensity Wet, which are separated by
a time interval Δt = T2/2 to maximize deformation. Figure 4
shows the amplitude of deformation of the drop with time, for
different values of ξ = 0, 0.1, 0.3. The cumulative process is
the most efficient in the inviscid case. For ξ > 0, the maximal
deformation increases during the first periods then saturates at
a given value, which is a decreasing function of ξ. This graph
illustrates how viscosity, either of internal or external phase
(involved in the expression of β2) resists to drop deformation.

A real turbulent flow is obviously not as simple as these
examples. The different eddies seen by the drop along its

Figure 2. Maximal deformation âmax=Wet provoked by a
single eddy of duration tr and intensity Wet, at
different ξ values.
[Color figure can be viewed at wileyonlinelibrary.com]

(a)

(b)

(c)

(d)

Figure 3. Amplitude of deformation of a drop deformed by
two successive eddies: the first one of duration
T2/2 and the second one of same duration but
after a time Δt, equal to (a) T2, (b) T2 + 0.25T2,
(c) T2 + 0.5T2, and (d) T2 + 0.75T2.
In any cases, ξ = 0. [Color figure can be viewed at
wileyonlinelibrary.com]







deformation, and is able to include both mechanisms of breakup
(induced by a strong eddy or by resonance).
In the following, this dynamic model is used to compute

statistics on the breakup frequency.

Breakup Frequency Model

In this section, the average breakup frequency of drops of
different sizes is determined in the isotropic turbulent flow
corresponding to the experiment described in the previous sec
tion. All the results presented here are obtained from the
forced oscillator model, with again âcrit=K 0 ¼ 2:5. Then, an
original model for the breakup frequency is proposed as a
function of Eulerian statistical quantities of the flow and the
damping coefficient of the oscillator, to include the effect of
density and viscosity of both phases.

Statistics on the breakup frequency

Monodispersed populations of oil drops are considered,
with diameters ranging from 2 to 20 mm, for which physical
properties are those given in the previous section, except vis
cosity which is varied (either in dispersed or continuous
phase) so as to investigate different values of ξ. In particular,
the reference case is the inviscid one (ξ = 0), then ξ is chan
ged by increasing the continuous phase viscosity up to a factor
of 30, its maximal value being ξ = 0.3 (giving a maximal
value of Oh of 0.18).
In this range of drop sizes, 0:2 ≤We ≤ 7:7. The temporal

spectrum of turbulent fluctuations Su0(f ) of the continuous
phase at the measurement point is displayed in Figure 8, where
S denotes the power spectral density of the signal and f the fre
quency. The lowest and the highest eigenfrequencies of the
drops (f2 = 2π/ω2) are also indicated in this figure. The veloc
ity spectrum is close to a −5/3 power law and the drop size
lies within the inertial range of the turbulent spectrum.

For each drop size, the oscillator model of Eq. 3 is com
puted using the experimental forcing term corresponding to
Eq. 4, this forcing being sampled at a frequency of 1 ms. Sim
ulations are run until the drop reaches the breakup criterion.
This numerical experiment is thus equivalent to droplets
remaining in an isotropic and homogeneous turbulent field in
a box, with infinite time of residence. For each drop size, the
breakup frequency fb is defined as the inverse of the average
time that the drops remain in the flow before breaking up. In
this simulation, the number of drops is large enough to obtain
converged results both of the mean value and the standard
deviation of the breakup time distribution.

For the inviscid cases (ξ = 0), Figure 9a displays the evolution
of the breakup frequency as a function of the drop diameter, using
the two approaches based on âcrit and Wecrit ¼ âcrit=K 0. fb varies
over one order of magnitude, from very low values (compared
to the oscillating frequency f2) for the smaller drops to higher
frequencies for the larger ones for which fb become of same
order as f2. As shown by the plot, breakup frequency is found
to be an increasing function of diameter. However, the critical
Weber number and the critical deformation approaches exhibit
different trends, highlighting the contribution of the history of
droplet deformation in the breakup process, even though the
predictions of these two approaches are close in the range
5 ≤ d ≤ 10 mm for the present system. As illustrated in
Figure 9b, which shows the effect of ξ on the normalized
breakup frequency fb/f2 obtained with the critical deformation
criterion, increasing the damping coefficient tends to
decrease fb due to both a decrease of amplitude (same eddy
intensity induces a smaller deformation) and a reduction of
the possible cumulative process of deformation (mechanism
of resonance). Finally, fb depends on the turbulent intensity,
on the repetition of strong enough vortices in the flow, and
on the value of ξ.

Eulerian model for breakup frequency

The objective is to relate the values of fb, obtained with the
critical deformation criterion, to statistical characteristics of
the turbulent fluctuations at the drop scale.

Time Evolution of the Variance of Deformation. Among
the mathematical properties of a forced oscillator, when the forc
ing term is a stochastic process with a continuous spectrum, the

time evolution of the variance â22 of the oscillator estimated
for a large number of realizations can be derived analytically
under the assumption that the dominant contribution of the
forcing term to oscillator amplitude is reached at the neighbor
hood of the resonance frequency of the oscillator (see Preu
mont34). This is equivalent to consider the forcing signal as a
white noise, that is, a signal with a power spectral density
independent of the frequency, taking the value of the spectral
density at the oscillator resonance frequency. Note that, in the
case of low ξ, the resonance frequency is nearly equivalent to
the drop eigenfrequency ω2. Then, the dynamics of the vari
ance of the deformation depends on two parameters:

• the dimensionless power spectral density of the forcing
term noted ŜK 0We and evaluated at the frequency of response
of the oscillator, which represents the amount of energy of the
forcing available at this frequency,

• the damping coefficient ξ.
This requires the knowledge of the power spectral density

of the turbulent forcing ŜK 0We f̂
	 


at f̂ ¼ 1= 2πð Þ to be known

(this dimensionless function is evaluated at 1/(2π) because f̂ is

2

u’²

Figure 8. Power spectral density of the axial velocity
fluctuations Su0(f ) (unit: [m2/s]) and of their
square Su02 fð Þ (unit: [m4/s3]) measured inside
the test section of the experiment considered
in this article.
The two vertical lines correspond to the drop eigenfre-
quency f2 of the largest and the smallest diameter (respec-
tively, the smallest and the largest frequency). The model
( ) for Su02 fð Þ corresponds to the computation of
Eq. 12. [Color figure can be viewed at
wileyonlinelibrary.com]







derived from the temporal spectrum of turbulent kinetic energy
Su02 fð Þ based on Eq. 8. Assuming a homogeneous and isotro
pic turbulence (HIT), this quantity can be scaled as a function
of classical power spectrum of velocity fluctuations Su0(f ).
In the inertial range of turbulence, the one dimensional tem

poral power spectrum of the velocity fluctuations, Su0(f ), is a
power law in f−5/3 and writes:

Su0 fð Þ¼ α ð u02
p

Þ2=3 ϵ2=3 f −5=3, ð11Þ

where α¼ 9
55Ck , Ck≈1:6 is the Kolmogorov constant, u02 is

the variance of velocity fluctuations, and ϵ is the dissipation
rate of the turbulent kinetic energy.

Introducing the time scale T ¼ u02
ϵ in Eq. 11, the normalized

spectrum reads: Su0 fð Þu02 ¼ α T −2=3 f −5=3.
The power spectrum of kinetic energy Su02 has been com

puted from the experimental signal and plotted in Figure 8.
The curve exhibits the same power law as a function of fre
quency as the velocity power spectrum Su0. Therefore, the nor
malized power spectrum (scaled by the fourth order moment
of velocity fluctuations) is expected to scale like that of veloc
ity power spectrum, leading to: Su02 fð Þu04 ¼ α T −2=3 f −5=3.
This scaling law has also been verified by generating numeri
cal velocity signals (with random phases in the complex
plane), power spectrum of which follows a −5/3 power decay.
Therefore, Su02 fð Þ can be related to Su0(f ) by:

Su02 fð Þ¼ Su0 fð Þu
04

u02
ð12Þ

The accuracy of Eq. 12 to estimate Su02 is illustrated in
Figure 8. Note that the ratio u04=u02 is known as the product
of the variance of velocity fluctuations by the flatness coeffi
cient. Assuming the probability density function of the veloc
ity fluctuations to be Gaussian, this ratio is equal to 3u02 .
Hence, under the assumption of HIT, the power spectral

density of the turbulent forcing taken at the inviscid drop
eigenfrequency f2(ξ = 0) can be computed in the inertial range
as a function of common turbulent statistical quantities, com
bining Eqs. 8, 12, and 11, leading to:

Ŝ0 ¼ 24π α 1−Bzz dð Þð Þ2 K 02 ρ
2
cd

2

σ2
u02

4=3
f2 ξ¼ 0ð Þ½ �−2=3 ϵ2=3 ð13Þ

Making use of Eq. 4, the autocorrelation coefficient Bzz(d)
can be expressed as a function of the second order structure

function δu2 dð Þ by Bzz dð Þ¼ 1− δu2 dð Þ
2u02

. In HIT, this quantity

scales as δu2 dð Þ ¼ β ϵ2=3 d2=3 with β = 4.82Ck ≈ 7.7, follow
ing Batchelor.35

By combining these expressions with Eq. 13, the following
scaling law for Ŝ0 in HIT is proposed:

Ŝ0 ¼ 3
8π3

α β2 K2 ϵ
u02 f2 ξ¼ 0ð Þ

" #2
u02

d f2 ξ¼ 0ð Þð Þ2
" #4=3

ð14Þ

To summarize, the implementation of Eq. 14 into Eqs. 9a
and 9b gives a prediction of the breakup frequency as a func
tion of Eulerian statistical quantities (ϵ and u02 ) in the inertial
range of a HIT flow, which provides a new breakup kernel for
practical use in population balance equations provided these
turbulent quantities are computed or measured. By combining
these two equations and by applying this model on the experi
mental data previously presented, Figure 9a shows that the

latter model predicts that fb evolves as a power law of diame
ter d1.1 (with all other physical parameters remaining con
stant), which is close to the evolution measured in the
simulations.

An important remark is that this predictive model can be
applied in heterogeneous turbulent flows, provided that the
local values of ϵ and u02 are known.

Finally, note also that the modeling approach which is pro
posed here is not limited to a particular form of the structure
function δu2(d) and that other scalings of Ŝ0 could be obtained
by integrating other structure functions in the development
detailed in this article.

Discussion on the comparison with experimental breakup
frequencies

Evaluation of the present breakup frequency law, Eq. 9, on
other experimental sets (as those presented in Solsvik et al.3)
is not a simple task as such a validation requires details which
are not always specified in the related papers. Indeed, the
knowledge of the local flow hydrodynamics at the scale of
the drop is often missing and cannot be reduced to a global
value of the dissipation rate, the flows being generally
heterogeneous.

Moreover, the breakup frequency data are generally not
resulting from a direct measurement but are considered to be
the product of a breakup probability divided by a breaking
time, which is not the definition used here and that may
strongly impact the prediction of breakup statistics. A strong
requirement for a relevant comparison using the present model
is that breakup frequencies should be measured under the
assumption of a sufficiently large residence time. Indeed, in
the present work, we have obtained (and then correlated) fb as
the converged averaged breakup frequency value of breaking
droplets, that is, having a breakup probability equal to 1 when
residence time is infinite. Figure 13 presents the normalized
probability density function of the breakup times of droplets
of d = 5 mm and d = 10 mm, and the average value of these
distributions: it shows that when the droplets are small (i.e., at
low We), tr has to be sufficiently large to capture rare breakup
events which can radically change the average value of the
distribution which decays very slowly at long times. Here,
droplets of d = 2.5 mm required a residence time

Figure 13. PDFs of the breakup times in the simulations
(on 30,000 droplets) which give converged
values of both the average breakup time tb =
1/fb and its standard deviation, for diame-
ters d = 5 mm and d = 10 mm (with ξ = 0.15).
[Color figure can be viewed at wileyonlinelibrary.com]



corresponding to 700 periods T2 of oscillation, whereas it was
of only 10T2 in the case of d = 10 mm.
In the experimental data of Wilkinson et al.36 with air bub

bles in a turbulent flow through a venturi shaped pipe, the resi
dence time lies between 4T2 and 14T2 for all bubbles, which
means that the experimental data do not fulfill the condition of
sufficiently high residence time as the breakup probability is
<0.6. The study of Martinez Bazan et al.14 has been carried
out in conditions where bubbles have very short residence
times (tr inferior to T2), the same remark being valid with that
of Eastwood et al.13 with viscous droplets for which tr ≈ T2.
Finally, data of Maaβ and Kraume37 correspond to breakup
probabilities lying between 0.2 and 0.8; then, using either the
maximal value of the peak of the distribution of breakup times
or the average value of the latter distribution, they obtain
opposite evolutions of fb with the droplet diameter.
These two problems of convergence of breakup statistics

and knowledge of local flow hydrodynamics in experiments
make difficult any validation of the present breakup model
from available experimental results, as it requires that data are
obtained at the same scale level, and are converged in both
space and time.
More generally, for validation purposes of the physical con

cepts used to derive any breakup model, relevant hydrodynam
ics conditions could be an HIT, at least in a local region of
the flow.

Conclusion

In this study, the development of a new drop/bubble
breakup frequency model in a turbulent flow has been pro
posed, which is valid in the case where turbulent pressure fluc
tuations of the carrier flow are responsible for breakup, and
the resistance to deformation is controlled by the interfacial
force (Ohnesorge number Oh � 1, that is, low damping coef
ficient ξ). Under these conditions, a dynamic model considers
that the droplet or the bubble behaves as an oscillator of eigen
frequency f2, which is forced by the turbulent fluctuations at
the drop scale. This case is relevant for many chemical engi
neering applications involving bubbles or droplet emulsions of
moderate viscosity in a turbulent carrier phase. It turns to con
sider breakup events occurring for drop or bubble deformation
of the order of their initial diameter. The novelty provided by
the present approach is that the viscosities of both phases,
as well as their densities, are explicitly included in the calcula
tion of the drop oscillation characteristic times (the eigenfre
quency f2 and damping rate β2) without resorting to any
adjustable parameter, and showing that their roles are not
symmetrical.
Based on this dynamic model of deformation, the breakup

frequency fb of droplets has been measured using experimental
turbulent velocity signals. In this numerical experiment, time
of residence tr of the drops is infinite, allowing the computa
tion of breakup frequency in a wide range of variation from fb/
f2 � 1 (smallest drops) to fb/f2 = O(1) (largest drops). fb is
found to be an increasing function of d, and viscous effects
decrease fb compared to the inviscid case, taken as reference.
Compared to classical approaches based on a Wecrit for

breakup, this dynamic model includes the mechanism of defor
mation resulting from the interaction of the drop with succes
sive eddies leading to an increase of deformation by
resonance. It is found that taking into account this mechanism
leads a different power law of the breakup frequency as func
tion of the drop diameter.

An important result of this study is the approach used for pro
posing an Eulerian model for fb, from statistics performed on
Lagrangian forced oscillators. This scale change has been possi
ble thanks to the use of relevant nondimensional parameters. The
choice of these parameters is based on the mathematical proper
ties of the time evolution of the variance of a forced oscillator,
that depends on (i) the power spectral density of the forcing taken
at the resonance frequency of the oscillator Ŝ0 and (ii) the damp
ing coefficient ξ of the oscillator. Hence, it has been possible
to propose a model, Eq. 9, for the breakup frequency that
relies only on these two parameters. This model is valid pro
vided that ξ ≤ 0.3 and residence time is large enough (tr �
T2). For application purposes, Ŝ0 has been related in Eq. 14 to
local statistical properties of a turbulent flow (dissipation rate
and variance of velocity fluctuations, that can be computed by
Eulerian CFD codes), using scaling laws valid in the inertial
range of a homogeneous and isotropic turbulent flow.

In practical applications with emulsions, which often
involve excess of surfactants and saturated interfaces or multi
layers, the interface stress tensor cannot be reduced to a con
stant interfacial tension, as adsorbed surfactants are susceptible
to form networks at the interfaces with visco elastic properties.
Note that this case is beyond the scope of this article, and is
generally not addressed in other literature devoted to the
development of breakup kernels in chemical engineering
applications. However, the present dynamic model could be
extended by including such complex interfacial rheology
effects (Gibbs and intrinsic surface elasticity, dilatation and
shear surface viscosity) on the drop characteristic times f2 and
β2, thanks to the theoretical framework of Miller and Scriven24

or Lu and Apfel25 on drop shape oscillation, which is another
strength of such an oscillator model for the droplet.

Concerning breakup in turbulent emulsification processes,
in the case of highly viscous droplets in such a way that Oh >
1, the drop deformation becomes controlled by the internal
viscosity that tends to stretch the droplet in long filaments.
Then, interfacial forces (such as surface tension) can be disre
garded and the present oscillator model is not able to describe
the droplet deformation statistics in time. This problem consti
tutes another interesting although rather complex regime to
investigate,38,39 due to the quite important number of related
industrial applications.

Notation and Greek letters

R undeformed radius, m
d undeformed diameter, m

ReOSC Reynolds number of oscillation: ReOSC
ρd ω0

2 d2

4μd
We Weber number We ρcδu

2 d, tð Þd
σ

Oh Ohnesorge number Oh μd
ρd σ d

p
f2 frequency of Mode 2 of oscillation f2 2π/ω2, 1/s
T2 period of Mode 2 of oscillation: T2 2π/ω2, s
tv viscous time of damping of Mode 2 of oscillation: tv 1/β2, s

f2(ξ 0) inviscid frequency of Mode 2 of oscillation f2 ξ 0ð Þ
2π=ω0

2, 1/s
u time averaged value of the velocity component u, m/s
u0 velocity fluctuation around the averaged value, m/s
A amplitude of oscillation (of Mode 2), m
tr time of residence, s
â nondimensional amplitude of oscillation (of Mode 2) â A=d

âcrit critical nondimensional amplitude for breakup
Wet Weber number associated to a turbulent eddy
F(t) dimensional instantaneous turbulent forcing at the drop scale

F tð Þ δu2 d, tð Þ
d , m/s2

Fturb average turbulent stress at the drop scale Fturb ρcδu2 dð Þ, Pa
Fs interfacial stress that resists to deformation Fs

σ
d, Pa



t̂ nondimensional time t̂ t ω2

K constant of the deformation model
K0 constant of the dimensionless deformation model K 0 Kσ= ρcd

3ω2
2

	 

u02 variance of velocity fluctuations, m2/s2

Bzz(d) longitudinal velocity correlation coefficient
SX(f ) temporal spectrum of quantity X
Ck Kolmogorov constant Ck ≈ 1.6
fb breakup frequency, 1/sbf2 nondimensional frequency of oscillation bf2 1= 2πð Þ
Ŝ0 nondimensional value of the temporal spectrum of K0 We evaluated

at the nondimensional resonance frequency: Ŝ0 ŜK 0We 1= 2πð Þð Þ
ρc density of the continuous phase, kg/m3

ρd density of the dispersed phase, kg/m3

ρ̂ ratio of densities: ρ̂ ρc=ρd
μc dynamic viscosity of the continuous phase, Pa.s
μd dynamic viscosity of the dispersed phase, Pa.s
μ̂ ratio of viscosities: μ̂ μc=μd
σ interfacial tension, N/m

ω2 angular frequency of Mode 2 of oscillation, rad/s
ω0
2 inviscid angular frequency of Mode 2 of oscillation:

ω0
2

σ
d3

192
2ρc + 3ρd

q
, rad/s

β2 damping rate of Mode 2 of oscillation, 1/s
ξ nondimensional damping coefficient of the oscillator: ξ β2/ω2

η Kolmogorov scale in the turbulent flow, m
δu2(d, t) instantaneous structure function of Order 2 expressed at a sepa

ration distance equal to d, m2/s2

α constant: α (9/55) Ck

β constant β ≈ 7.7
ϵ dissipation rate of a turbulent flow, m2/s3
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