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Résumé — Méthodes de décomposition de domaine à deux niveaux pour les équations de Darcy à

coefficients très hétérogènes. Liens avec les méthodes multi-échelles — Les écoulements

multiphasiques en milieux poreux conduisent à la solution de systèmes d’Équations aux

Dérivées Partielles (EDP) à coefficients très hétérogènes. Nous nous concentrons sur les

méthodes de décomposition de domaine avec recouvrement de type Schwarz sur calculateurs

parallèles et sur les méthodes multi-échelles. Nous présentons un espace grossier [Nataf F.,

Xiang H., Dolean V., Spillane N. (2011) SIAM J. Sci. Comput. 33, 4, 1623-1642] qui est

robuste, même en présence de telles hétérogénéités. L’approche méthodes de décomposition de

domaine à deux niveaux est comparée aux méthodes multi-échelles.

Abstract — Two-Level Domain Decomposition Methods for Highly Heterogeneous Darcy Equa-

tions. Connections withMultiscaleMethods—Multiphase, compositional porous media flow models

lead to the solution of highly heterogeneous systems of Partial Differential Equations (PDE). We

focus on overlapping Schwarz type methods on parallel computers and on multiscale methods. We

present a coarse space [Nataf F., Xiang H., Dolean V., Spillane N. (2011) SIAM J. Sci. Comput.

33, 4, 1623-1642] that is robust even when there are such heterogeneities. The two-level domain

decomposition approach is compared to multiscale methods.
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NOMENCLATURE

ASM Additive Schwarz Method

BC Boundary Conditions

BICGSTAB BIConjugate Gradiant STABilized

CG Conjugate Gradient

DD Domain Decomposition

d.o.f. Degrees of freedom

DtN Dirichlet-to-Neumann

GMRES Generalized Minimal RESidual

JSM Jacobi Schwarz Method

MsFEM Multiscale Finite Element Method

MsFV Multiscale Finite Volume

PDE Partial Differential Equations

RAS Restricted Additive Schwarz

SPD Symmetric Positive Definite

INTRODUCTION

Multiphase, compositional porous media flow models,

used in reservoir simulations or basin modeling, lead to

the solution of complex non linear systems of Partial

Differential Equations (PDE). These PDE are typically

discretized using a cell-centered finite volume scheme

and a fully implicit Euler integration in time in order

to allow for large time steps. After Newton type lineari-

zation, one ends up with the solution of a linear system at

each Newton iteration which represents up to 90 per-

cents of the total simulation elapsed time. The corre-

sponding pressure block matrix is related to the

discretization of a Darcy equation with high contrasts

and anisotropy in the coefficients. We focus on overlap-

ping Schwarz type methods on parallel computers and

on multiscale methods.

Coarse spaces are instrumental in obtaining scalabil-

ity for domain decomposition methods. For matrices

arising from problems with smooth coefficients, it is

possible to build efficient coarse spaces based on

domain wise constant vectors [1]. For problems with

high heterogeneities, these simple coarse spaces do

not work well. Here, we present a recent coarse space

[2] that is robust even when there are such heterogene-

ities. We achieve this by solving local generalized

eigenvalue problems which isolate the terms responsi-

ble for slow convergence. Building efficient coarse

spaces is closely related to multiscale methods which

also aim to reduce the computational cost of large

scale problems.

An outline of the paper is as follows. Section 1 con-

sists in an introduction to one level Schwarz methods.

Material is basic but the presentation is quite new.

In Section 2, we present a recent spectral coarse space

which adapts automatically to the heterogeneities of

the problem. In Section 3, we present results of large

scale computations. In Section 4, it is compared to mul-

tiscale methods. Then, we conclude and present pros-

pects on adaptation of the spectral coarse space to

finite volume discretizations.

1 SCHWARZ METHODS

We start with the original Schwarz algorithm [3] at the

continuous (i.e. partial differential equations) level

whose parallel version is named Jacobi-Schwarz Method

(JSM). We introduce two variants that are at the origin

of the popular Additive Schwarz Method (ASM) and

Restricted Additive Schwarz (RAS [4]) algorithms. The

first one has been the subject of hundreds of papers

(see [1] and references therein). The second one is the

default parallel solver of the parallel package software

PETSc [5]. This presentation shows in a unified setting

the connections between these three algorithms.

1.1 Three Schwarz Algorithms at the Continuous Level

Hermann Schwarz was a German analyst of the 19th

century. He was interested in proving existence and

uniqueness of the Poisson problem. At his time, there

were no Sobolev spaces nor Lax-Milgram theorem.

The only available tool was the Fourier transform, lim-

ited by its very nature to simple geometries. In order to

consider more general situations, Schwarz devised an

algorithm based on solving iteratively Poisson problem

set on a union of simple geometries. Let the domain X
be the union of a disk and a rectangle, see Figure 1

and consider the Poisson problem:

Ω1 Ω2

Figure 1

A complex domain X made from the union of two simple

geometries.
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Find u : X ? R such that:

��u ¼ f in X

u ¼ 0 on @X
ð1Þ

The Schwarz algorithm is an iterative method based

on solving alternatively subproblems in domains X1

and X2. It updates un1; u
n
2

� �! unþ1
1 ; unþ1

2

� �
by:

�� unþ1
1

� � ¼ f in X1

unþ1
1 ¼ 0 on @X1 \ oX

unþ1
1 ¼ un2 on @X1 \ �X2

ð2aÞ

then,

�� unþ1
2

� � ¼ f in X2

unþ1
2 ¼ 0 on @X2 \ oX

unþ1
2 ¼ unþ1

1 on @X2 \ �X1

ð2bÞ

Schwarz proved the convergence of the algorithm and

thus the well-posedness of the Poisson problem in com-

plex geometries.

With the advent of digital computers, this method also

acquired a practical interest as an iterative linear solver.

Subsequently, parallel computers became available and

a small modification of the algorithm makes it suited

to these architectures. It is sufficient to solve concur-

rently in all subdomains, i = 1, 2:

�� unþ1
i

� � ¼ f in Xi

unþ1
i ¼ 0 on @Xi \ oX

unþ1
i ¼ un3�i on @Xi \ �X3�i

ð3Þ

It is easy to see that if the algorithm converges, the

solutions u1i , i = 1, 2 in the intersection of the subdo-

mains take the same values. Indeed, in the overlap

X12 := X1 \ X2, let e1: ¼ u11 � u12 . By the last line of

(3), we know that e1 = 0 on oX12. By linearity of the

equation, we also have that e1 is harmonic. Thus, e1

solves the homogeneous well posed BVP:

�� e1ð Þ ¼ 0 in X12

e1 ¼ 0 on oX12

and thus e1 = 0.

Algorithms (2) and (3) act on the local functions

(ui)i = 1, 2. In order to write algorithms that act on global

functions inH1(X), the space in which problem (1) is nat-

urally posed, we need extension operators, Ei so that for

a function wi : Xi 7! R, EiðwiÞ : X 7! R is the extension

of wi by zero outside Xi. We also need partition of unity

functions vi : Xi 7! R, vi � 0 and vi(x) = 0 for x 2 oXi

and such that:

w ¼
X2
i¼1

Ei vi wjXi

� � ð4Þ

for any function w : X 7! R. This definition of a parti-

tion of unity is closer to the computer implementation

than the classical definition of a partition of unity

functions.

There are two ways to write related algorithms that

act on functions un 2 H1ðXÞ. The first possibility is: let

un be an approximation to the solution to the Poisson

problem (1), un+1 is computed by solving first local sub-

problems:

�� unþ1
i

� � ¼ f in Xi

unþ1
i ¼ 0 on @Xi \ oX

unþ1
i ¼ un on @Xi \ �X3�i

ð5Þ

and then gluing them together using the partition of

unity functions:

unþ1: ¼
X2
i¼1

Ei vi u
nþ1
i

� � ð6Þ

A second possibility consists in replacing the above

formula by a simpler formula not based on the partition

of unity:

unþ1: ¼
X2
i¼1

Ei unþ1
i

� � ð7Þ

Starting from the original Schwarz algorithm (2) that

is sequential, we have thus three continuous algorithms

that are essentially parallel:

– algorithm (3) Jacobi Schwarz Method (JSM);

– algorithm (5-6) Restricted Additive Schwarz (RAS);

– algorithm (5-7) Additive Schwarz Method (ASM).

These algorithms although closely related are differ-

ent in nature. The JSM method acts on a pair of local

functions ðun1 un2Þ whereas RAS and ASM act on a global

function un. Note that in the overlapping region, algo-

rithms RAS and ASM update the solution in a different

way. Algorithm ASM seems rather bizarre since it does

not converge to the exact solution in the intersection

X1 \ X2. But its algebraic form given by (10) when used

a preconditioner as explained in the sequel has the

advantage to be Symmetric Positive Definite (SPD).

On the contrary the algebraic counterpart to RAS given

by (9) is unsymmetric.

V. Dolean et al. / Two-Level Domain Decomposition Methods for
Highly Heterogeneous Darcy Equations. Connections with Multiscale Methods
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1.2 Schwarz Algorithms at the Algebraic Level

So far, we have given a continuous presentation of

domain decomposition methods. Actually, these meth-

ods are used in their algebraic form to solve linear sys-

tems arising from the discretization of partial

differential equations. We now give the matrix counter-

part of these algorithms.

For this, we first give a kind of dictionary to go from

the continuous level to the discrete one:

– the counterparts of a domain X and of an overlapping

decomposition X ¼ [N
i¼1Xi are a set of degrees of free-

dom (d.o.f.) N and a decomposition in subsets

N ¼ [N
i¼1Ni;

– a function u : X ! R corresponds a vector U 2 RN;

– the restriction of a function u : X ! R to a subdo-

main Xi, 1 � i � N is analog to the restriction Ri U

of a vector U 2 RN to subsetNi. Matrix Ri is a Bool-

ean rectangular of size Ni �N;

– similarly, EiðuiÞ the extension by zero of a function

ui : Xi ! R to a function X ! R corresponds at the

algebraic level to RT
i Ui where RT

i is the transpose of

matrix Ri and Ui 2 RNi is a local vector;

– the counterparts of partition of unity functions vi,
1 � i � N are diagonal matrices with positive entries,

of size Ni �Ni s. t. Id ¼PN
i¼1R

T
i Di Ri;

– after discretization, solving Poisson problem (1)

amounts to solving a SPD linear system:

AU ¼ F ð8Þ

– solving a local subproblem in a subdomain Xi such as

in Equations (3) or (5) corresponds at the algebraic

level to solving linear systems of the form

Ri A RT
i U

nþ1
i ¼ Fn

i .

We now define, at the algebraic level, the RAS and

ASM algorithms and not JSM since it is seldom used

and is more complex to define. As for the counterpart

of the RAS algorithm (5-6), we give the following defini-

tion:

M�1
RAS : ¼

XN
i¼1

RT
i Di RiAR

T
i

� ��1
Ri ð9Þ

so that the iterative RAS algorithm reads:

Unþ1 ¼ Un þM�1
RASr

n

where rn : ¼ F � AUn.

As for the counterpart of the ASM algorithm (5-7), we

give the following definition:

M�1
ASM :¼

XN
i¼1

RT
i Di RiAR

T
i

� ��1
Ri ð10Þ

so that the iterative ASM algorithm reads:

Unþ1 ¼ Un þM�1
ASMr

n

As is well known, such fixed point methods are out

performed by Krylov based iterative solvers such the

Conjugate Gradient (CG) algorithm of the generalized

minimal residual method (GMRES), see the book by

Saad [6] and references therein. In our context, using

these methods amounts to solve the linear system (8)

by a CG algorithm preconditioned by the symmetric pre-

conditionerMASM or by a GMRES algorithm precondi-

tioned by the unsymmetric preconditioner MRAS. In

both cases, the convergence properties are related to

the spectral properties of the preconditioned operator

M�1
ASM or RAS A. The RAS [7] is the default parallel solver

in the PETSc package. For the ASM many theoretical

results have been derived [1].

2 ADAPTIVE SPECTRAL COARSE SPACE

The domain decomposition methods presented so far

were written for a two subdomain decomposition.

Their extension to an arbitrary number N of subdo-

mains (Xi)1 � i � N is only a matter of notation. It

is sufficient in definitions of the previous section to

sum over all subdomains from i = 1 to i = N.

But, when the number of subdomains is large, pla-

teaus appear in the convergence of Schwarz domain

decomposition methods. This is the case even for a

regular problem such as the Poisson problem (1).

The problem comes from the fact the preconditioner

lacks of a global mechanism for exchange of informa-

tion. Preconditioners RAS and ASM defined in the

previous sections are called one-level methods. Data

are exchanged only from one subdomain to its direct

neighbors. But the solution in each subdomain

depends on the right handside in all subdomains.

Let us call Nd the number of subdomains in one

direction. Then, for instance, the leftmost domain of

Figure 2 needs at least Nd iterations before knowing

something about the value of the right handside f in

the rightmost subdomain. The length of the plateau

is thus typically related to the number of subdomains

in one direction and therefore to the notion of

scalability met in the context of high performance

computing.
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In order to achieve scalability of the Domain Decom-

position (DD) method, we introduce two-level domain

decomposition methods via a coarse space correction.

The precise motivation and linear algebra setting are

given in Section 2.1 for a problem with smooth coeffi-

cients. A new approach Section 2.2 introduced in [2, 8]

is necessary to achieve scalability for arbitrary highly

heterogeneous coefficients. A condition number estimate

theorem supports the approach. The method is tested in

Section 2.4 on difficult heterogeneous test cases includ-

ing channelized medium. In practice, the coarse space

seems to be optimal, see Table 10 in Section 2.4.1.

2.1 Need for a Two-Level Method

When the number of subdomains is large, plateaus

appear in the convergence of Schwarz domain decompo-

sition methods. The remedy will consist in the introduc-

tion of a two-level preconditioner via a coarse space

correction.

The problem and its cure are well illustrated in

Figure 3 for a domain decomposition into 64 strips.

The one level method has a long plateau in the conver-

gence whereas with a coarse space correction conver-

gence is quite fast. For instance, in Figure 4 [9], we

consider a 2D problem decomposed into 2 9 2, 4 9 4

and 89 8 subdomains. For each domain decomposition,

we have two curves: one with a one-level method and the

second with a coarse grid correction which is denoted by

M2. We see that for the one-level curves, the plateau has

a size proportional to the number of subdomains in one

direction. In two-level methods, a small problem of size

typically the number of subdomains couples all subdo-

mains at each iteration. It is through this mechanism that

scalability can be achieved.

From a condition number point of view, stagnation

corresponds to a few very low eigenvalues in the spec-

trum of the preconditioned problem. Using precondi-

tioners MASM or MRAS, we can remove the influence of

very large eigenvalues of the coefficient matrix, which

correspond to high frequency modes. Indeed, it has been

proved that for a SPD matrix, the largest eigenvalue of

the preconditioned system by MASM is bounded by the

number of colors needed to color the overlapping subdo-

mains with different colors for adjacent subdomains, see

[1] or [6] for instance. But the small eigenvalues still exist

and hamper the convergence. These small eigenvalues

correspond to low frequency modes and represent cer-

tain global information. We need a suitable coarse grid

space to efficiently deal with them.

i

Figure 2

Decomposition into many subdomains.
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A classical remedy consists in the introduction of a

coarse grid or coarse space correction that couples all

subdomains at each iteration of the iterative method.

This is closely related to deflation technique classical in

linear algebra, see Nabben and Vuik’s paper [10].

Suppose we have identified the modes corresponding

to the slow convergence of the iterative method used to

solve the linear system:

Ax ¼ b

with a preconditionerM, in our case a domain decompo-

sition method. That is, we have some a priori knowledge

on the small eigenvalues of the preconditioned system

M�1A. For a Poisson problem, these slow modes corre-

spond to constant functions that are in the null space

(kernel) of the Laplace operators. For a homogeneous

elasticity problem, they correspond to the rigid body

motions. Let us call Z the rectangular matrix whose col-

umns correspond to these slow modes. There are alge-

braic ways to incorporate these informations to

accelerate the domain decomposition method. We give

here the presentation that is classical in domain decom-

position methods. In the case where A is SPD, the start-

ing point is to consider the minimization problem:

min
b

A yþ Zbð Þ � bA�1

It corresponds to finding the best correction to an

approximate solution y by a vector Zb in the vector

space spanned by the nc columns of Z. This problem is

equivalent to:

min
b2Rnc

2 Ay� b; Zbð Þ2 þ AZb;AZbð Þ2

and whose solution is:

b ¼ ZTAZ
� ��1

ZT b� Ayð Þ

Thus, the correction term is:

Zb ¼ Z ZTAZ
� ��1

ZT b� Ayð Þ

Let R0 := ZT and r = b � Ay be the residual associ-

ated to the approximate solution y, the best correction

that belongs to the vector space spanned by the columns

of Z reads:

RT
0 R0AR

T
0

� ��1
R0r

When using such an approach with an Additive

Schwarz Method (ASM), it is natural to introduce an

Additive correction to the Additive Schwarz Method:

M�1
ASM ;2 :¼ RT

0 R0AR
T
0

� ��1
R0 þ

XN
i¼1

RT
i RiAR

T
i

� ��1
Ri ð11Þ

where the Ri’s (1� i� N) are the restriction operators to

the overlapping subdomains. The structure of the two

level preconditioner M�1
ASM ;2 is thus the same than in

the one level method. Compared to the one level Sch-

warz method where only local subproblems have to be

solved in parallel, the two-level method adds the solution

of a linear system in a sequential way with the matrix

R0ART
0 . This problem couples all subdomains at each

iteration. But this matrix is a small O(N 9 N) square

matrix and the extra cost is negligible compared to the

gain. Indeed, in Table 1 we display the iteration counts

for a decomposition of the domain in an increasing num-

ber of subdomains. In Figure 3, we see that without a

coarse grid correction, the convergence curve of the

one level Schwarz method has a very long plateau that

can be bypassed by a two-level method.

We give here a precise definition to Z for a Poisson

problem. This construction was introduced in Nicolaides

[11]. We take Z so that it has a domain decomposition

structure. Z is defined by vectors which have local sup-

port in the subdomains and so that the constant function

1 belongs to the vector space spanned by Z. Recall that

we have a partition of unity in the following sense: let Di,

1 � i � N , be matrices:

Di : R
dimðNiÞ 7!RdimðNiÞ ð12Þ

so that we have:

XN
i¼1

RT
i DiRi ¼ Id

We define Z such that the i-th column of Z is:

Zi : ¼ RT
i DiRi1 for 1 � i � N ð13Þ

TABLE 1

Iteration counts for a Poisson problem on a domain decomposed into

strips. The number of unknowns is proportional to the number of

subdomains (weak scalability)

N subdomains Schwarz With coarse grid

4 18 25

8 37 22

16 54 24

32 84 25

64 144 25
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where 1 is the vector full of ones. The structure of Z is

thus the following:

ZNico ¼

D1R11 0 � � � 0

..

.
D2R21 � � � 0

..

. ..
. � � � ..

.

0 0 � � � DNRN1

2
666664

3
777775 ð14Þ

The results of Figures 3 and Table 1 were obtained

using this method.

For problems of the type �divðaruÞ ¼ f with smooth

coefficients a, this coarse space gives good results. But for
highly heterogeneous coefficients, there is still a plateau in

the convergence of the solver. The results in Figure 5 cor-

respond to a domain which has two layers with high val-

ues of a. The computational domain has a stripwise

decomposition into 64 subdomains. Two Schwarz meth-

ods are tested with either no coarse space correction, a

Nicolaides coarse space or a spectral coarse space defined

in Section 2.2 so a total of six curves. The curves with very

long plateaus are one level Schwarz methods. The curves

ZNico (pink curves) correspond to two level Schwarzmeth-

ods with a Nicolaides coarse space, Equation (13). The

plateau in the convergence is not as large but still exists.

With the spectral coarse space of the next section, we

automatically select two modes per subdomain and get

the convergence curves ZD2N (black curves).

2.2 Spectral Coarse Space for Highly Heterogeneous
Problems

We now propose a construction of the coarse space that

will be suitable for parallel implementation and efficient

for accelerating the convergence for problems with

highly heterogeneous coefficients of the type:

�divðaruÞ ¼ f in X

BðuÞ ¼ 0 on oX
ð15Þ

with a a positive function. We still choose Z such that it

has the form:

Z ¼

W 1 0 � � � 0

..

.
W 2 � � � 0

..

. ..
. � � � ..

.

0 0 � � � WN

2
666664

3
777775 ð16Þ

where N is the number of overlapping subdomains.

But Wi is now a rectangular matrix whose columns are

based on the harmonic extensions of the eigenvectors

corresponding to small eigenvalues of the Dirichlet-to-

Neumann (DtN) map in each subdomain Xi. Remark

that the sparsity of the coarse operator E ¼ ZTAZ is a

result of the sparsity of Z. The nonzero components of

E correspond to adjacent subdomains.

More precisely, let us consider first at the continuous

level the Dirichlet-to-Neumann map DtNXi Let u :

Ci 7! R, (Ci : ¼ oXi=oX):

DtNXiðuÞ ¼ a
ov
oni

����
Ci

where v satisfies:

LðvÞ : ¼ �divðarÞv ¼ 0; in Xi

v ¼ u; on Ci

�
ð17Þ

and Ci is the interface boundary. If the subdomain is not

a floating one (i.e. oXi \ oX 6¼ /), we use on the part of

the global boundary, the boundary condition from the

original problem BðuÞ ¼ 0. To construct the coarse grid

subspace, we use the low frequency modes associated

with the DtN operator:

DtNXiðuÞ ¼ ka u ð18Þ

with:

k < 1=diamðXiÞ ð19Þ

where diamðXiÞ is the diameter of subdomain Xi. The

rationale for this choice is that the condition number

106

104
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PADEF2: RAS + ZNico
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Figure 5

Convergence curves for a domain with two high permeabil-

ity layers: long plateaus for one level methods, shorter pla-

teaus for Nicolaides coarse spaces and no plateau for DtN

coarse space.
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estimate of Theorem 2.2 is then similar to the one of The-

orem 2.1 for the Poisson problem. Note the term a in the

generalized eigenvalue problem (18).

We first motivate our choice of a coarse space based

on DtN map. We write the original Schwarz method at

the continuous level, where the domain X is decomposed

in a one-way partitioning, Figure 6.

The error eni between the current iterate at step n of the
algorithm and the solution ujXi

(eni : ¼ uni � ujXi
) in sub-

domain Xi at step n of the algorithm satisfies:

Lðenþ1
i Þ ¼ 0 in Xi

enþ1
i ¼ enj on �Xi \ oXj

On the 1D example sketched in Figure 6, we see that

the rate of convergence of the algorithm is related to

the decay of the harmonic functions eni in the vicinity

of oXi via the subdomain boundary condition. Indeed,

a small value for this boundary condition leads to a

smaller error in the entire subdomain thanks to the max-

imum principle.

Moreover a fast decay for this value corresponds to a

large eigenvalue of the DtN map whereas a slow decay

corresponds to small eigenvalues of this map because

the DtN operator is related to the normal derivative at

the interface and the overlap is thin. Thus the small

eigenvalues of the DtN map are responsible for the slow

convergence of the algorithm and it is natural to incor-

porate them in the coarse grid space.

We now explain why we only keep eigenvectors with

eigenvalues smaller than 1=diamðXiÞ in the coarse space.

We start with the constant coefficient case a ¼ 1. In this

case, the smallest eigenvalue of the DtN map is zero and

it corresponds to the constant function 1. For a shape

regular subdomain, the first positive eigenvalue is of

order 1=diamðXiÞ [12]. Keeping only the constant func-

tion 1 in the coarse space leads to good numerical con-

vergence, see Figure 3. In the case of high contrasts in

the coefficient a, the smallest eigenvalue of the DtN

map is still zero. But due to the variation of the coeffi-

cients, we may possibly have positive eigenvalues smaller

than 1=diamðXiÞ. In order to have a convergence behav-

ior similar to the one of the constant coefficient case, it is

natural to keep all eigenvectors with eigenvalues smaller

than 1=diamðXiÞ.
To obtain the discrete form of the DtN map, we con-

sider the variational form of (17). Let’s define the bilin-

ear form ai : H1ðXiÞ � H1ðXiÞ ! R:

ai w; vð Þ :¼
Z
Xi

arw � rv

With a finite element basis f/kg, the coefficient matrix

of a Neumann boundary value problem in domain Xi is:

AðiÞ
kl ¼

Z
Xi

ar/k � r/l

Let I (resp. Ci) be the set of indices corresponding to

the interior (resp. boundary) degrees of freedom and

nCi : ¼ ðCiÞ the number of interface degrees of freedom.

Note that for the whole domain X, the coefficient matrix

is given by:

Akl ¼
Z
X
ar/k � r/l

With block notations, we have:

AðiÞ
II ¼ AII ; A

ðiÞ
CiI

¼ ACiI andA
ðiÞ
ICi

¼ AICi

But thematrix A ið Þ
CiCi

refers to thematrix prior to assem-

bly with the neighboring subdomains and thus can-

not be simply extracted from the coefficient matrix A.

In problem (17), we use Dirichlet boundary condi-

tions. Let U 2 RnCi and u : ¼ P
R2�i

UR /R: Let

v : ¼ P
R2I

VR /R þ
P
l2�i

Vl /l be the finite element approx-

imation of the solution of (17). Let VI ¼ Vkð Þk2l, we have
with obvious notations:

AIIV I þ AICiU ¼ 0 ð20Þ

A variational definition of the flux reads:Z
Ci

a
@v

@n
/k ¼

Z
Xi

arv � r/k

for all /k , k 2 Ci. So the variational formulation of the

eigenvalue problem (18) reads:Z
Xi

arv � r/k ¼ k
Z
Ci

tr að Þv/k ð21Þ

for all /k , k 2 Ci and where tr að Þ is the restriction of aXi

to Ci. Let M a;Ci be the weighted mass matrix:

M a;Ci

� �
kl
:¼
Z
Ci

tr að Þ/k/l; 8k; l 2 Ci

Ωi −1 Ωi Ωi Ωi −1Ωi +1 Ωi +1

ei −1
n +1

ei 
n ei 

n 

ei +1
n +1

ei +1
n +1ei −1

n +1

Figure 6

Fast or slow convergence of the Schwarz algorithm.
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The compact form of Equation (21) is:

A ið Þ
CiCi

U þ ACiIV I ¼ kM a;CiU

With (20), the discrete form of (18) is a generalized

eigenvalue problem:

A ið Þ
CiCi

� ACiIA
�1
II AICi

� �
U ¼ kM a;CiU ð22Þ

Let (Uk, k) be an eigenpair, we need its harmonic

extension to the degrees of freedom of domain Xi, that

is the vector:

�A�1
II AICiUk

Uk

" #

Actually, there is more practical way to “directly”

compute these eigenpairs. For subdomain Xi, let:

v : ¼ VI

VCi

� 	
; A ið Þ: ¼

AII AICi

ACiI A ið Þ
CiCi

" #

we compute the lowest eigenvalues of the sparse general-

ized eigenvalue problem:

A ið Þvdtn ¼ k
0 0

0 Ma;Ci

� 	
vdtn ð23Þ

This can be done using standard linear algebra library

such as ARPACK.

The step by step procedure on how to construct the

rectangular matrices Wi in the coarse space matrix Z,

see (16), is summed up in Algorithm 1.

Algorithm 1. Construction of the spectral coarse space

In parallel for all subdomains 1 � i � N,

1. Compute eigenpairs of (23)

V i
1; k

i
1

� �
; V i

2; k
i
2

� �
; . . . ; V i

mi
; kimi

� �
such that:

ki1 � � � � � kimi
<

1

diam Xið Þ � kimiþ1
� � � �

2. Let Z de defined as in (16) with for each 1 � i � N,Wi

the rectangular matrix with mi columns defined by:

Wi ¼ DiV
i
1j � � � jDiV

i
mi

h i
3. Note R0 := ZT and compute the coarse matrix E:

E : ¼ R0AR
T
0

4. The two-level preconditioner is given by Equation

(11):

M�1
ASM ;2 : ¼ RT

0E
�1R0 þ

XN

i¼1
RT
i RiAR

T
i

� ��1
Ri

We call this procedure the ZD2N method. We also use

ZD2N to denote the coarse space constructed by this

method. Its construction is fully parallel. Similarly we

call ZNico the method of Nicolaides or the corresponding

coarse space. Let us remark that when the subdomain

does not touch the boundary of X, the lowest eigenvalue
of the DtN map is zero and the corresponding eigenvec-

tor is a constant vector. Thus, ZNico and ZD2N coincide.

As we shall see in the next section, when a subdomain

has several jumps of the coefficient, taking ZNico is not

efficient and it is necessary to take ZD2N with more than

one mode per subdomain.

This construction has been analyzed in [13]. We first

recall a classical result. Let Z be a “Nicolaides type’’

coarse space:

Z :¼ RT
i DiRi1

� �
1�i�N

We have, see [1]:

Theorem 2.1. Let M(ASM,2) be the two-level additive

Schwarz method with the “Nicolaides” coarse space, we

have for a = 1 the following condition number estimate:

j M�1
ASM ;2 A

� �
� C 1þ H

d


 �

where d is the size of the overlap between the subdomains

and H the subdomain size and C does not depend on the

number of subdomains.

But, for a discontinuous, C would depend on the

jumps of a.
Let Z be the coarse space built via Algorithm 1, we

prove under technical assumptions on a:

Theorem 2.2. Under the monotonicity of a in the over-

lapping regions, we have the following condition number

estimate:

j M�1
ASM ;2 A

� �
� C 1þ max

1�i�N

1

di k
i
miþ1

 !

where di is the size of the overlap of domain Xi and C is

independent of the jumps of a and of the number of subdo-

mains.

Note that if a = 1 and we take only one mode per

subdomain (mi = 1), we have for a regular interface
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Highly Heterogeneous Darcy Equations. Connections with Multiscale Methods

739



ki2 ’ 1=Hi [12] and we recover the “classical’’ estimate.

Now in the general case, if the number of modes

associated to subdomain Xi mi is chosen so that,

kimiþ1 � 1=Hi, the convergence rate will be analogous to

the constant coefficient case.

2.3 Comparison with a Volumic Spectral Coarse Space

The DtN spectral coarse space makes use of eigenvectors

of the local Dirichlet to Neumann maps. There is thus a

clear relationship with recent works by Galvis and Efen-

diev [14-17] where the coarse space is based on eigen-

values of the “volumic” operator:

�div aruið Þ ¼ k a ui in Xi ð24Þ

The drawback of their approach is that the coarse

space is too large. This is easy to see in 1D. In Figure 7,

we represent the function a in a subdomain Xi. We have

many discontinuities inside the domain. But, whatever

the number of discontinuities is, our DtN map is a two

by two matrix. The number of eigenvectors of the DtN

map is two. Thus, the coarse space is made of two vectors

per subdomain at most. But, the size of a volumic spec-

tral coarse space is equal to the number of high hetero-

geneities islands. This phenomena also holds in the 2D

case. In Figure 8, we show permeability field with high

heterogeneities islands. For this case, only 4 eigenvalues

of the DtN map are smaller than 1.3 9 10�4 whereas the

other ones are larger than 0.9. Whereas twenty volumic

eigenvalues of Equation (24) are smaller than

3.89 10�3 and the others are larger than 150. Numerical

tests show that in this case only four eigenvalues are

enough for having an efficient coarse space. In the papers

by Galvis and Efendiev [17], they noted this fact and

they have a complex procedure to get rid of the useless

eigenvectors. In our case, the method adapts automati-

cally to the permeability field. In Figure 9, we show typ-

ical DtN and volumic eigenvectors.

2.4 First Numerical Tests

We solve the model problem (15) on the domain

X = [0, 1]2 using standard continuous, piecewise linear

(P1) finite elements. The diffusion a is a function of x.

The boundary condition is u = 0 on the left side bound-

ary and @u
@n ¼ 0 on the remainder. The corresponding dis-

cretizations and data structureswere obtained by using the

software FreeFem++ [18] in connection with the METIS

partitioner [19]. We will test the Standard Additive

Ωi −1 Ωi Ωi +1

Figure 7

1D example with many high heterogeneities islands.

IsoValue
-42104.2
21053.6
63158.8
105264
147369
189474
231580
273685
315790
357895
400000
442106
484211
526316
568421
610527
652632
694737
736842
842105

Figure 8

2D example with many high heterogeneities islands.

3th VP DtN 7.03722e-05 14th VP Volumic 0.00134774

Figure 9

Eigenvectors for a) DtN map and b) the volumic operator

(Free Fem++ plots).
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Schwarz (SAS) and the RAS preconditioners with and

without coarse space, in particular comparing the new

coarse space based on harmonic extensions of eigenvec-

tors of the local DtN operators with the standard coarse

space that is the piecewise constant space of Nicolaides

[11]. In the tables and figures, +Nico means the use of

the Nicolaides coarse space (14) and +DtN the use of

the spectral coarse space defined in Algorithm 1. We test

the method on (fairly irregular) overlapping partitions

intoN subdomains. These overlapping partitions are built

by adding layers to non-overlapping ones obtained, e.g.,

via graph partitioner Metis (Fig. 10).

In Table 2, we test robustness w.r.t. the heterogene-

ities. The domain X contains layers with jumps in

the coefficients ranging from 1 to 106. We have 32

subdomains. The iteration counts depend weakly on

the size of the jump in the coefficients. In Figure 11,

we show the permeability field, domain decomposition

(regular or METIS) into 16 subdomains and the

solution corresponding to convergence curves of

Figures 12 and 13. In Table 3, we show how many

eigenvalues were selected in the coarse space. In

Table 4, we vary the domain decomposition for the

same permeability field.

We now present a selection of difficult test cases in a

more systematic way, with so called inclusions and chan-

nels.

We solve two test cases with known difficulties. The

diffusion coefficient a is highly heterogeneous and takes

values between 1 and approximately 2 9 106 and con-

tains both high-permeability inclusions and channels.

First of all, we will analyze the performance of the

method by increasing the number of channels and then

by increasing the number of inclusions.

We use a uniform triangulation with 160 9 160 nodes

and a partition into 16 (irregular) subdomains (Fig. 10).

Each subdomain is extended by one layer, leading to an

overlap of 2 layers, such that dj =2h for all j= 1, . . .,N.

We use the ASM preconditioner within Conjugate Gra-

dients (CG) and the RAS preconditioner within

GMRES, and in each case, we stop the iteration process,

when the relative residual is smaller than 10�6.

We start with only inclusions and add the channels

one by one as shown in Figure 14 (Test Problem 1).

When there are no channels, a varies between 1 and

106, as indicated by the colors in Figure 14. With all

three channels present, a varies between 1 and

2.8 9 106. The corresponding convergence results are

given in Table 5. Our algorithm performs significantly

better. The piecewise constant coarse space has virtu-

ally no effect on the performance of either ASM or

RAS, leading to iteration numbers that differ little

from the results without any coarse grid in all four

cases. Our new coarse space, on the other hand, is fully

robust to the coefficient variation and to the addition

of channels, and it leads to a gain of at least a factor 8

compared to the one-level method in all cases. The sit-

uation is similar, if we use deflation-based coarse grid

correction [10] with the same coarse spaces

(Tab. 6). However, the absolute numbers of iterations

are reduced almost by a factor 2 in this case. Our the-

ory applies equally to this case [20], but we will not

include any further numerical results with deflation-

based coarse grid correction.

Table 7 gives some information on the size of the

coarse space that we build with our automatic selection

strategy: for each number of channels we give minj mj

and maxj mj, as well as the global coarse space size

nH ¼Pjmj and the average number of modes included

per subdomain nH/N. For comparison, we also include

information on the total number nCj of eigenmodes of

the discrete DtN operator on each subdomain. We note

that adding channels does not have a big influence on the

Figure 10

Subdomain partitioning into 16 subdomains using METIS.

TABLE 2

Iteration counts vs jumps in the coefficients

Jumps in coeff 1 10 102 103 104 105 106

Iteration counts 15 24 10 10 10 11 11
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size of the coarse space; we only need three additional

eigenvectors in the case of three channels compared to

the case of no channels.

Then, using the same domain and the same partition

we successively add inclusions without any channels

present as shown in Figure 15 (Test Problem 2). The

results are in Table 8. Again, the piecewise constant

coarse space is not working at all for this test problem.

The DtN-based coarse space is almost completely robust

to an increase in the number of inclusions and requires

again significantly less iterations than the one-level

method in all cases. Note that the subdomain partition

(Fig. 10) is not aligned with the inclusions at all

(Fig. 15). In Table 9, we see that also in this test problem,

the coarse space size grows only very slowly with the

number of inclusions and even in the hardest case nH is

IsoValue
-47367.4
23685.2
71053.6
118422
165790
213159
260527
307895
355264
402632
450001
497369
544737
592106
639474
686842
734211
781579
828947
947368

IsoValue
-99998.9
50001
150001
250001
350001
450001
550001
650001
750001
850001
950000
1.05e+06
1.15e+06
1.25e+06
1.35e+06
1.45e+06
1.55e+06
1.65e+06
1.75e+06
2e+06

IsoValue
-121052
60527.3
181580
302632
423685
544738
665790
786843
907895
1.02895e+06
1.15e+06
1.27105e+06
1.39211e+06
1.51316e+06
1.63421e+06
1.75526e+06
1.87632e+06
1.99737e+06
2.11842e+06
2.42105e+06

IsoValue
-142104
71053.6
213159
355264
497369
639474
781580
923685
1.06579e+06
1.2079e+06
1.35e+06
1.49211e+06
1.63421e+06
1.77632e+06
1.91842e+06
2.06053e+06
2.20263e+06
2.34474e+06
2.48684e+06
2.84211e+06

a) b)

c) d)

y
y

y
y

x x

x x

Figure 11

Channels and inclusions: 1 � a � 1.5 9 106. a) permeability field, b) the solution, c) regular partition and permeability field, d) Metis

partition and permeability field.
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only 53 (cf. the dimension n of Vh,0, and thus of A is

25 600).

2.4.1 Practical Optimality of the Spectral Coarse Space

The last series of tests, in Table 10, aims to prove that

the number mj of eigenvectors per subdomain chosen

by our automatic algorithm is indeed optimal in some

sense. For Test Problem 1 with one channel (Fig. 14),

we first reduce the number of coarse basis functions

per subdomain by one, this has a huge influence on

the iteration count. Then, we add one basis function

per subdomain and notice that this has much less

effect. This suggests that the selection process we have

designed is indeed the best compromise between

enriching the coarse grid and solving a reasonably

sized coarse problem.

3 ADAPTIVE COARSE SPACE ON HPC PLATFORMS

Results in this section are based on a related method to

the DtN coarse space method namely the Geneo

method. The principle of this coarse space construction

is similar in that the coarse space is built after solving

local eigenvalues problems. It suffices to change the right

TABLE 4

Convergence results for the test case of Figure 10

ASM +Nico +DtN RAS +Nico +DtN

2 9 2 103 110 22 70 70 14

2 9 2

Metis

76 76 22 57 57 18

4 9 4 603 722 26 169 165 15

4 9 4

Metis

483 425 36 148 142 23

8 9 8 461 141 34 205 95 21

8 9 8

Metis

600 542 31 240 196 19

TABLE 3

Number of small eigenvalues (nsmeig(i)) satisfying criterion (19) for

subdomain i – Metis 4 by 4 decomposition

Subdomain i nsmeig(i) Total number of eigenvalues (i)

1 3 155

2 1 109

3 5 175

10 4 174

11 2 71

12 2 128

13 3 166

14 3 127

15 3 188

16 3 106
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Figure 13

RAS convergence for channels and inclusions – Regular

decomposition – Metis partitioning.
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RAS
PBNN : RAS + ZNico

PBNN : RAS + ZD2N

Figure 12

RAS convergence for channels and inclusions – Regular

partitioning.
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hand side in the generalized eigenvalue problem (23).

The new eigenvalue problem is of the form:

A ið Þvdtn ¼ kDiRiAR
T
i Divdtn ð25Þ

see [21] for more details. The Geneo coarse space is in

practice quite close to the DtN coarse space. Its main

advantage is to work not only for scalar PDE but also

for systems of PDE as the elasticity system for instance.

When applied to scalar PDE, DtN and Geneo coarse

spaces are almost identical and give very similar results.

As a result, in order to have a general purpose code, we

focused in HPC developments and tests on the Geneo

method. Results in this section were obtained on Curie,

a Tier-0 system for PRACE2 (Partnership for Advanced

Computing in Europe) composed of 5 040 nodes made of

2 eight-core Intel Sandy Bridge processors clocked at

2.7 GHz. The interconnect is an InfiniBand QDR full

IsoValue
-47367.4
23685.2
71053.6
118422
165790
213159
260527
307895
355264
402632
450001
497369
544737
592106
639474
686842
734211
781579
828947
947368

IsoValue
-99998.9
50001
150001
250001
350001
450001
550001
650001
750001
850001
950000
1.05e+06
1.15e+06
1.25e+06
1.35e+06
1.45e+06
1.55e+06
1.65e+06
1.75e+06
2e+06

IsoValue
-121052
60527.3
181580
302632
423685
544738
665790
786843
907895
1.02895e+06
1.15e+06
1.27105e+06
1.39211e+06
1.51316e+06
1.63421e+06
1.75526e+06
1.87632e+06
1.99737e+06
2.11842e+06
2.42105e+06

IsoValue
-142104
71053.6
213159
355264
497369
639474
781580
923685
1.06579e+06
1.2079e+06
1.35e+06
1.49211e+06
1.63421e+06
1.77632e+06
1.91842e+06
2.06053e+06
2.20263e+06
2.34474e+06
2.48684e+06
2.84211e+06

Figure 14

Test Problem 1: successively adding channels.
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fat tree. We want here to assess the capability of our

framework to scale:

– strongly: for a given “global”mesh, the number of sub-

domains increases while “local” mesh sizes are kept

constant (i.e. local problems get smaller and smaller);

– weakly: for a given “global” mesh, the number of sub-

domains increases while “local” mesh sizes are refined

(i.e. local problems have a constant size).

We don’t time the generation of the mesh and parti-

tion of unity. Assembly and factorization of the local

stiffness matrices, resolution of the generalized eigen-

value problems, construction of the coarse operator

and time elapsed for the convergence of the Krylov

method are the important procedures here. The Krylov

method used is the GMRES, it is stopped when the

relative residual error is inferior to e = 10�6 in 2D,

and 10�8 in 3D. All the following results where obtained

using a LDLT factorization of the local solvers Ad
i and

the coarse operator E using MUMPS (with a MPI com-

municator set to respectivelyMPI_COMM_SELF or the

communicator created by our library binding master

processes).

First, the system of linear elasticity with highly heter-

ogeneous elastic moduli is solved with a minimal geo-

metric overlap of one mesh element. Its variational

formulation reads:

Z
X
kr � ur � vþ 2le uð ÞT e vð Þ þ

Z
X
f � vþ

Z
@X

g � v ð26Þ

where:

– k and l are the Lamé parameters such that l ¼ E
2 1þmð Þ

and k ¼ Em
1þmð Þ 1�2mð Þ (E being Young’s modulus and m

Poisson’s ratio). They are chosen to vary between

two set of values, (E1, m1) = (2 9 1011, 0.25), and

(E2, m2) = (108, 0.4);

– e is the linearized strain tensor and f the volumetric

forces (here, we just consider gravity).

Because of the overlap and the duplication of unk-

owns, increasing the number of subdomains means that

the number of unknowns increases also slightly, even

though the number of mesh elements (triangles or tetra-

hedra in the case of FreeFem++) is the same. In 2D, we

use piecewise cubic basis functions on an unstructured

“global” mesh made of 110 million elements, and in

3D, piecewise quadratic basis functions on an unstruc-

tured “global” mesh made of 20 million elements. This

yields a symmetric system of roughly 1 billion unkowns

in 2D and 80 million unknowns in 3D. The geometry is a

simple [0; 1]d9 [0; 10] beam (d=1 or 2) partitioned with

Metis.

Solving the 2D problem initially on 1 024 processes

takes 227 seconds, on 8 192 processes, this time is reduced

to 31 seconds (quasioptimal speedup) (Fig. 16). With

that many subdomains, the coarse operator E is of size

121 935 9 121 935. It is assembled and factorized in

7 seconds by 12 master processes. For the 3D problem,

the wall-clock time is initially 373 seconds. At peak

performance, near 6 144 processes, the time is reduced to

35 seconds (superoptimal speedup). Then, the coarse oper-

ator is of size 92 160 9 92 160 and is assembled and

factorized by 16 master processes in 11 seconds.

Moving on to the weak scaling propreties of our

framework, (Fig. 17) the problem we now solve is a sca-

lar equation of diffusivity with highly heterogeneous

TABLE 5

Number of iterations for Test Problem 1 (additive coarse grid

correction)

ASM +Nico. +DtN RAS +Nico. +DtN

0 ch. 529 1 000 57 243 245 41

1 ch. 619 520 64 227 228 46

2 ch. >1000 516 68 226 226 47

3 ch. 585 697 76 212 213 44

TABLE 6

Number of iterations for Test Problem 1 (deflation-based coarse

grid correction)

ASM +Nico. +DtN RAS +Nico. +DtN

0 ch. 529 656 39 243 231 25

1 ch. 619 538 41 227 215 28

2 ch. >1 000 808 47 226 211 27

3 ch. 585 641 47 212 199 28

TABLE 7

Size of the coarse space for Test Problem 1 with various number

of channels

Over 16

subdomains

# eigenvalues

on Cj

# Local coarse space modes

0 ch. 1 ch. 2 ch. 3 ch.

Minimum 70 1 1 1 1

Maximum 191 4 4 4 4

Average 138.8 2.75 2.88 2.94 2.94

Sum 2 220 44 46 47 47

V. Dolean et al. / Two-Level Domain Decomposition Methods for
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coefficients (varying from 1 to 105) on [0;1]d (d = 2 or 3).

Its variational formulation reads:

Z
X
aru � rvþ

Z
X
f � v ð27Þ

The targeted number of unkowns per subdomains is

kept constant at approximately 800 thousands in 2D,

and 120 thousands in 3D (once again with P3 and P2

finite elements respectively).

In 2D, the initial extended system (with the dupli-

cation of unkowns) is made of 800 million unkowns

and is solved in 141 seconds. Scaling up to 12 288 pro-

cesses yields a system of 10 billion unkowns solved

in 172 seconds, hence an efficiency of 141/172 � 82%.

In 3D, the initial system is made of 130 million

unkowns and is solved in 127 seconds. Scaling up

to 8 192 processes yields a system of 1 billion

unkowns solved in 152 seconds, hence an efficiency of

127/152 � 83%.

IsoValue
-15788.4
7895.71
23685.1
39474.6
55264
71053.4
86842.8
102632
118422
134211
150000
165790
181579
197369
213158
228948
244737
260526
276316
315789

IsoValue
-26314.7
13158.9
39474.6
65790.3
92106.1
118422
144738
171053
197369
223685
250000
276316
302632
328948
355263
381579
407895
434211
460526
526316

IsoValue
-47367.4
23685.2
71053.6
118422
165790
213159
260527
307895
355264
402632
450001
497369
544737
592106
639474
686842
734211
781579
828947
947368

IsoValue
-57893.7
28948.3
86843
144738
202632
260527
318422
376316
434211
492106
550000
607895
665790
723685
781579
839474
897369
955263
1.01316e+06
1.15789e+06

Figure 15

Test Problem 2: successively adding inclusions.
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4 CONNECTIONS WITH MULTISCALE METHODS

Multiscale methods are an active field of research, for

finite element methods see [22] and for multiscale finite

volume methods see for example [23]. In Section 4, we

compare them with our two-level spectral coarse space.

In Section 4.1, we first recall basic facts on multiscale dis-

cretizations and their difficulties with arbitrary channeli-

zed flows, Section 4.1.1.1. Although the goals of

multiscale methods and DD methods are different, they

have many related features that we compare in

Section 4.2. In particular, both methods build coarse

basis functions. The superiority of the spectral coarse

space comes the fact that the “number” and the “shape”

of basis functions adapts automatically to the heteroge-

neities of the medium even for channelized media. This is

not always the case for multiscale methods.

4.1 Presentation of Multiscale Methods

Consider a problem set on a fine grid (Fig. 18):

Lh uhð Þ ¼ fh inXh ð28Þ

that is too large to be solved. We approximate uh via a

coarse problem set on a coarse mesh XH. Defining a mul-

tiscale methods involve three steps:

– pre-computation of a multiscale basis functions;

– global formulation at the coarse level;

– reconstruction of a fine scale solution.

There are of course many variants to deal with these

topics and we don’t try to give a complete review on

the subject. We present here basic materials in order to

compare multiscale methods with our DtN coarse space.

In particular, we shall see that the DtN approach is more

general and systematic.

4.1.1 Multiscale Basis Functions

The preferred and most common technique is to use

oversampling, [22]. For simplicity, we start with the ori-

ginal non oversampling approach.

We consider a structured two-dimensional grid. A

coarse element is typically denoted by K Let (xi, yi) be

a coarse grid vertex. We recall the construction of the

corresponding coarse basis function uH,i,j. For both

Multiscale Finite Element Method (MsFEM) and Mul-

tiscale Finite Volume (MsFV), a standard choice is to

solve the fine scale equation on the four neighboring

coarse elements Ki±1/2,j±1/2, Figure 18:

Lh /i�1=2;j�1=2

� �
¼ 0 in Ki�1=2;j�1=2

/i�1=2;j�1=2 ¼ gi�1=2;j�1=2 on @Ki�1=2;j�1=2

ð29Þ

where gi±1/2,j±1/2 is a piecewise affine function such that

gi±1/2,j±1/2 (xi,yi) = 1 and is zero on the three other ver-

tices of oKi±1/2,j±1/2. Then, function /H,i,j is defined by

taking restrictions of /i±1/2,j±1/2 to the coarse elements

adjacent to the coarse grid vertex (xi, yj):

/H ;i;j x; yð Þ ¼ /i�1=2;j�1=2 x; yð Þ if x; yð Þ 2 Ki�1=2;j�1=2

0 Otherwise

�
ð30Þ

TABLE 8

Number of iterations for Test Problem 2 (additive coarse grid

correction) vs number of inclusions

# incl. ASM +Nico +DtN RAS +Nico +DtN

2 9 2 108 80 51 100 81 41

3 9 3 194 342 58 154 153 46

5 9 5 529 no cv. 57 243 245 41

6 9 6 835 823 71 266 267 51

TABLE 9

Size of the coarse space for Test Problem 2

Over N = 16

subdomains

# eigen values

on Cj

# Local coarse space modes

0 ch. 1 ch. 2 ch. 3 ch.

Minimum 70 1 1 1 1

Maximum 191 3 3 4 5

Average 138.8 1.6 2.1 2.8 3.3

Sum 2 220 26 33 44 53

TABLE 10

Iteration numbers when reducing or increasing the numbermj of coarse

basis functions per subdomain given by the automatic selection

strategy

ASM RAS

No coarse space 619 227

Piecewise constant coarse space 520 228

DtN with max{mj � 1,1}

functions

446 177

DtN with mj functions 64 46

DtN with mj + 1 functions 37 32

V. Dolean et al. / Two-Level Domain Decomposition Methods for
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This construction presents unwanted boundary layers

effects. In order to fix this problem, functions /i±1/2, j±1/2

are computed on a coarse cell K@
i�1=2;j�1=2 enlarged with

a few layers of fine elements, Figure 18. Then a coarse basis

function /H,i,j (x, y) is computed as a linear combination of

the restrictionsof functions/i±1/2, j±1/2 toKi±1/2, j±1/2.This

leads to a non conformal basis.When the coefficients of the

operatorLh are sufficiently smooth, this basis is adequate.

This procedure is called oversampling.

When the coefficients are heterogeneous across these

edges (Fig. 19a) the basis functions should see the

heterogeneities. For this purpose, the piecewise linear

Dirichlet boundary conditions are replaced by oscilla-

tory boundary condition obtained by solving a reduced

elliptic problem along the boundary of the coarse cell.

The Dirichlet data must be in the kernel of the tangential

part of the partial differential operator in Equation (29).

An algebraic implementation of this construction was

proposed in [24] and [25].

Note that for finite volume schemes for problems with

high anisotropies, the cell problems (29) can also be mod-

ified by replacing Dirichlet Boundary Conditions (BC)
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Diffusion equation test cases. a) 2D, b) 3D. Weak scaling.
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Linear elasticity test cases. a) 2D, b) 3D. Strong scaling.
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by Neumann BC on some parts of oK@
i�1=2;j�1=2, see Sec-

tion 6.3. of [23].

4.1.1.1 Multiscale Basis Functions for Channelized Permeability
Distributions

When the problem has strong heterogeneities, typically,

three situations occur as shown in Figure 19:

– isolated heterogeneities;

– one heterogeneous channel;

– several heterogeneous channels;

The first case is well treated by multiscale methods

as recalled above. For the second case, it has been

noticed that it might not be sufficient: “It has been

shown that the accuracy of purely local methods may

be low if the permeability field has structures with very

long correlation lengths” quoted from [23]. This is the

case for instance with channels, Figure 19b,c. In order

to fix this problem, iterative constructions of the coarse

basis functions have been proposed, [26-28]. Iterations

take place between the coarse scale global flow and the

fine scale local flow. A coarse space is first built with

the oversampling method. It is used to obtain a coarse

and then a fine grid solution. Then, the coarse basis

functions are corrected by taking the coarse edge val-

ues of this solution as Dirichlet boundary conditions

in Equation (29). This procedure stops with some con-

vergence criterion. To our knowledge, this technique is

not supported by theoretical approximation results.

The last case with several heterogeneous channels

seems to be a concern even for this approach. Indeed,

in this case the good coarse space functions depend on

the flow conditions: “The introduction of wells may

additionally change global flow significantly and the

coarse properties generated from the two generic glo-

bal flows might lose accuracy in some cases. For such

problems, the T can be recomputed, based on the

actual well configuration and flow rates, using a local-

global procedure analogous to that applied here. The

overall issue of robustness with respect to global

boundary conditions is complex and will be addressed

in detail in a future paper.” quoted from [26]. The

problem comes from the fact that the “number” of

coarse basis functions attached to the cell should be

at least equal to the “number” of channels crossing

the cell, see [29]. But, in multiscale methods even in

the more algebraic ones as [25], the number of degree

of freedom per aggregate is prescribed in advance.

For a scalar problem, only one coarse basis function

is assigned to a coarse grid vertex. It is thus not possi-

ble to cover all possible flow configurations.

4.1.2 Coarse Problem

This step consists in approximating the fine scale solu-

tion uh by defining a suitable coarse space problem

whose solution, denoted by uH, belongs to the space

spanned by the coarse basis functions (/H,i,j)i,j. We con-

sider first finite element formulation and then finite vol-

ume approximations.

For a finite element method, a Galerkin approach is

usually used. For all i,j, let us denote by Zi,j the vector

of the components of /H,i,j on the basis of the fine

FEM.We collect all these vectors in a rectangular matrix

Z. Let Ah denote the matrix associated to the fine FEM

so that the matrix form of the fine FEM reads:

AhUh ¼ Fh ð31Þ
where Uh are the components of the solution uh on the

fine FEM basis. Let us define AH := Zt Ah Z and the

coarse problem by:

Find uH : ¼Pi;jUH ;i;j/H ;i;j such that:

AHUH ¼ ZTFh

K i −1/2,j +1/2 K i +1/2,j +1/2

K i −1/2,j −1/2 K i +1/2,j −1/2

K i +1/2,j −1/2
δ

(xi ,yj)

Figure 18

Fine mesh Xh, coarse mesh XH and a dual coarse cell

around point (xi, yj).

Figure 19

a) Isolated heterogeneities, b) one channel, c) two channels.
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This way, the coarse approximationUH satisfies a var-

iational formulation in the coarse space spanned by the

coarse basis functions /H,i,j.

For finite volume methods, the Galerkin approach

can be used as well. But then, conservativity and mono-

tonicity of the initial finite volume scheme are lost. In

order to recover them, a dual coarse mesh is introduced,

Figure 18. The coarse grid problem consists in finding

uH : ¼Pi;jUH ;i;j/H ;i;j such that conservativity is satisfied

on the boundaries of the dual cells. Typically, a 9-point

stencil is thus obtained and for anisotropic problems

the monotonicity of the finite volume scheme on the fine

mesh is lost on the coarse problem. Then, a modified

7-point stencil is sought that still ensures conservativity,

[24].

4.1.3 Fine Scale Solution

This step is actually optional since UH contains fine scale

information via the coarse basis functions /H,i,j. In

MsFEM, one can further improve the solution by solv-

ing local Dirichlet boundary value problems in each

coarse element Ki±1/2, j±1/2

Lh uhð Þ ¼ fh in Ki�1=2;j�1=2

and

uh ¼ UH on @ Ki�1=2;j�1=2

Thus UH could be used in principle to solve for

instance a transport equation at the fine level. But the

method to compute UH is not conservative which is then

a big drawback. In multiscale finite volume methods, the

reconstruction is based on solving Neumann problems in

each coarse cell so that local conservativity is satisfied.

As a result, the fine scale solution is not continuous at

the edges of the coarse elements.

4.2 Comparison with the DtN Two-Level Schwarz
Method

The foremost difference between multiscale methods

and two-level domain decomposition methods is the

goal itself. In the first method, one wants to “approx-

imate” the solution of the fine scale problem whereas

in the second method one wants to “solve” the fine

scale Equations (28) or equivalently Equation (31).

In this respect, multiscale methods are competitors

to homogenization or upscaling methods, [22]. But

in contrast to these methods, multiscale methods

don’t lead to some kind of average PDE models.

They are a framework to provide a cheap way via a

coarse solve to approximate the solution uh of a

(too) large scale system of equations. In this respect,

they can be seen as approximate two level solvers

and could be used as well as preconditioners for Kry-

lov type methods such as CG, GMRES or BICG-

STAB. They are thus naturally comparable to two

level DD methods such as the DtN approach

described above. This has been noticed by several

authors, [24, 25, 30]. There, the multiscale approach

is simply a framework to provide an adequate coarse

space. Thus, we compare the coarse basis functions

constructions and give indications of their relative effi-

ciency as preconditioners.

Moreover, the involved tools have some similarities.

4.2.1 Oversampling and Overlapping

For both methods, the fine mesh is decomposed into

aggregates of fine elements. But:

– in MsFEM or MsFV, the aggregates consist of some

dozens of elements;

– whereas in DDM, subdomains may be quite large the

construction of the coarse problem is essentially par-

allel.

But:

– in multiscale methods, we have a fine grain parallel-

ism;

– in DDM, we have a coarse grain parallelism.

Oversampling is very reminiscent of overlapping in

DDM. In both approaches, coarse basis functions are

harmonic functions in overlapping aggregates (subdo-

mains in DDM and extended coarse cells in oversam-

pling multiscale methods). In order to use them in a

coarse problem, they have to be cast to functions defined

in the whole domain Xh. In multiscale methods this was

done via procedure which is somehow “brutal’’ since the

resulting function is not even continuous on Xh. In DD

methods, the local coarse space functions are multiplied

by a kind of partition of unity (the local matrices

(Di)1 � i � N, see formula (12)) before the extension by

zero in the whole domain Xh so that the resulting

function is continuous on Xh. In [15], the authors use

partition of unity functions in MsFEM methods.

4.2.2 Local and Global Effects

Coarse basis functions are used to define a coarse prob-

lem and they are harmonic in the aggregates. But:

– in multiscale methods, they mimic finite element basis

function: only one such function per aggregate;

– in the spectral coarse space of Section 2.2, the number

of coarse basis functions per aggregate is not pre-

scribed a priori.
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In multiscale methods, the number of degree of free-

dom per aggregate is prescribed in advance. For a scalar

problem, only one coarse basis function is assigned to a

coarse grid vertex. It has been explained in Section 4.1.1.1

that even for sophisticated multiscale methods, it might

not be enough for channelized media with changing flow

conditions. Whereas the spectral coarse space construc-

tion works well for arbitrary channels configuration,

see Figure 20, as we have seen in Section 2.4.

CONCLUSION AND PROSPECTS

After having introduced Schwarz domain decomposi-

tion methods, we have presented the spectral coarse

space introduced in [2] and later analyzed in [13]. It is

practically optimal in the sense that a larger coarse space

does not bring much improvement while a smaller one

has a poor performance, see Section 2.4.1. Moreover,

the method adapts automatically to the heterogeneities

of the problem. If necessary, more than one coarse basis

function is allowed per aggregate. This construction is

supported by a theoretical condition number estimate

independent of the heterogeneities of the physical prob-

lem, see Theorem 2.2. In coarse spaces built using multi-

scale methods, such a theorem cannot hold since only

one degree of freedom is allowed per aggregate, see Sec-

tion 4.2. This is why these methods have problems with

channelized permeability distributions. A cure proposed

[15] is to use a suitable spectral coarse space as a basis for

a MsFEMmethod. Our DtN coarse space could be used

in MsFEM methods in the same manner.

The spectral coarse space was developed, tested and

analyzed in the finite element framework. In reservoir

or basin simulations, finite volume discretizations are

usually preferred to finite element discretizations. The

extension of the spectral coarse space of Section 2 to a

finite volume discretization is thus mandatory for its

use in subsurface modeling. As explained in Section 2.2,

the rationale behind this coarse space is written in terms

of the original model i.e. in terms of partial differential

equations. Thus the basis of the method does not depend

on the discretization scheme. Therefore the definition

and implementation of the spectral coarse space in a

finite volume discretization will demand some work

but can definitely be done. It would improve the method

introduced in [25] by selecting in a sure (Theorem 2.2)

and optimal (Sect. 2.4.1) manner more efficient coarse

spaces when the channelized character of the permeabil-

ity distribution makes it necessary.
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