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Résumé — Adaptation de maillage pour un schéma volumes finis pour la simulation d’écoulement et

de transport de radionucléides en milieux poreux hétérogènes — Cet article traite de l’adaptation

dynamique de maillages pour la simulation numérique d’écoulements incompressibles et

miscibles en milieux poreux. Le problème est modélisé par un système couplé entre une

équation elliptique (pression-vitesse de Darcy) et une équation de diffusion-convection

(concentration). Le système est discrétisé par une méthode volumes finis centrés sur les

sommets. On utilise un schéma de Godunov pour approcher le terme de convection et une

approximation élément fini P1 pour le terme de diffusion. Nous développons des estimateurs

d’erreur a posteriori de type résiduel. Nous introduisons deux sortes d’indicateurs. Le premier

est local en temps et en espace et constitue un outil efficace pour l’adaptation du maillage à

chaque pas de temps. Le second est global en espace mais local en temps et peut être utilisé

pour l’adaptation en temps. La méthode proposée a été intégrée en deux dimensions d’espace

dans le logiciel MELODIE développé par l’Institut de Radioprotection et de Sûreté Nucléaire

(IRSN). La méthodologie d’adaptation de maillage décrite dans cet article est utilisée pour

simuler des exemples de relâchement et de migration de radionucléides dans un stockage

géologique de déchets radioactifs. Des résultats numériques d’adaptation dynamique de

maillages sont présentés et montrent l’efficacité et la robustesse de la méthode.

Abstract — Adaptive Mesh Refinement for a Finite Volume Method for Flow and Transport of

Radionuclides in Heterogeneous Porous Media — In this paper, we consider adaptive numerical sim-

ulation ofmiscible displacement problems in porousmedia,which aremodeled by single phase flow equa-

tions.A vertex-centredfinite volumemethod is employed to discretize the coupled system: theDarcyflow

equationand the diffusion-convection concentration equation.The convection term is approximatedwith

a Godunov scheme over the dual finite volumemesh, whereas the diffusion-dispersion term is discretized

by piecewise linear conforming finite elements. We introduce two kinds of indicators, both of them of

residual type. The first one is related to time discretization and is local with respect to the time discret-

ization: thus, at each time, it provides anappropriate information for the choice of the next time step.The

second is related to space discretization and is local with respect to both the time and space variable and

the idea is that at each time it is an efficient tool for mesh adaptivity. An error estimation procedure
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evaluates where additional refinement is needed and grid generation procedures dynamically create or

remove fine-grid patches as resolution requirements change. The method was implemented in the soft-

ware MELODIE, developed by the French Institute for Radiological Protection and Nuclear Safety

(IRSN, Institut de Radioprotection et de Sûreté Nucléaire). The algorithm is then used to simulate

the evolution of radionuclidemigration from thewaste packages through a heterogeneous disposal, dem-

onstrating its capability to capture complex behavior of the resulting flow.

INTRODUCTION

Numerical modeling of flow and transport in porous

media is significant for many petroleum and environ-

mental engineering problems. Most recently, modeling

multiphase flow has received increasing attention in con-

nection with the disposal of radioactive waste and for

CO2 storage sequestration in geological formations.

The long-term safety of the disposal of nuclear waste

is an important issue in all countries with a significant

nuclear program. One of the solutions envisaged for

managing waste produced by nuclear industry is to dis-

pose of the radioactive waste in deep geological forma-

tions chosen for their ability to delay and to attenuate

possible releases of radionuclides in the biosphere.

Repositories for the disposal of high-level and long-lived

radioactive waste generally rely on a multi-barrier sys-

tem to isolate the waste from the biosphere. The multi-

barrier system typically comprises the natural geological

barrier provided by the repository host rock and its sur-

roundings and an engineered barrier system, i.e. engi-

neered materials placed within a repository, including

the waste form, waste canisters, buffer materials, backfill

and seals, for more details see for instance [1]. An impor-

tant task of the safety assessment process is the handling

of heterogeneities of the geological formation.

In this paper, we focus our attention on the numerical

simulations of a single phase flow of an incompressible

fluid with a dissolved radioactive solute: miscible flow,

in connection with questions of safety of a nuclear waste

repository. For more details on the formulation of such

problems see, e.g., [2, 3] and the references therein.

Numerical simulation of flow and transport in porous

media in petroleum and environmental applications

has been a problem of interest for many years and many

methods have been developed. There is an extensive lit-

erature on this subject. We will not attempt a literature

review here, but merely mention a few references. We

refer to the books [4-6] and the references therein.

In the safety assessment of deep geological reposito-

ries, a thoughtful consideration must be given to the

mechanisms and possible pathways of migration of

released radionuclides. However, when assessing con-

finement capabilities of disposal facilities and of the geo-

logical formations, the investigated domain covered by

the numerical simulations includes a strong variability

in the domain properties as well as in the geometrical

scales (from cm to km) and presents significant computa-

tional challenges. Simulation models, if they are

intended to provide realistic predictions, must accurately

account for these effects. Furthermore, such flows are

often characterized by localized phenomena such as

steep concentration fronts. Accurately resolving these

types of phenomena requires high resolution in regions

where the solution is changing rapidly. For this reason,

the development of some type of dynamic griding capa-

bility has long been of interest in the porous media

community.

The adaptive mesh refinement has been a problem of

interest for many years and many methods have been

developed. There is an extensive literature on this subject

for finite element approximations. Adaptive discontinu-

ous Galerkin methods have tremendously developed in

the last decade. We will not attempt a literature review

here, but merely mention a few references. Here, we

restrict ourself to adaptive methods for finite volume dis-

cretization in the context of flow and transport in porous

media. Closely related to our work, we refer for instance

to [7-25] and the references therein.

The French Institute for Radiological Protection and

Nuclear Safety (IRSN) developed the code MELODIE,

see for instance [26] and [27], and is constantly upgrading

it, for numerical modeling of the physico-chemical phe-

nomena involved in the release and in the migration of

radionuclides from waste packages to the geosphere out-

lets (in deep geological formations, and more recently at

surface or sub-surface locations). The mathematical for-

mulation of these type of flow leads to a coupled system

of partial differential equations, which includes an ellip-

tic pressure-velocity equation and a diffusion-convection

concentration equation. A vertex-centred finite volume

method is employed to discretize the coupled system:

the Darcy flow equation and the diffusion-convection

concentration equation. The convection term is approx-

imated with a Godunov scheme over the dual finite vol-

ume mesh, whereas the diffusion-dispersion term is

discretized by piecewise linear conforming finite ele-

ments. The motivation for applying such finite volume

procedure for modeling flow in porous media arises from

the fact that this scheme is mass conservative element by
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element and satisfies a discrete maximum principle.

IRSN is constantly upgrading MELODIE to improve

the resolution time, the accuracy and the confidence in

the results of the simulations.

The purpose of this paper is to build a posteriori error

estimators with a strategy of adaptive mesh refinement,

implement the method in the code MELODIE and pres-

ent numerical simulations. The estimators are expected to

allow managing of the process of local refinement of the

mesh in order to minimize the discretization error at an

optimal computational cost. We introduce two kinds of

indicators, both of them of residual type. The first one

is related to time discretization and is local with respect

to the time discretization: thus, at each time, it provides

an appropriate information for the choice of the next time

step. The second is related to space discretization and is

local with respect to both the time and space variable

and the idea is that at each time it is an efficient tool for

mesh adaptivity.An error estimationprocedure evaluates

where additional refinement is needed and grid genera-

tion procedures dynamically create or remove fine-grid

patches as resolution requirements change. The aim is

to concentrate the computational work near the regions

of interest in the flow, such as in regions where the solu-

tion is changing rapidly and aroundwells. This can signif-

icantly reduce the computational effort required to

obtain a desired level of accuracy in the simulation.

The reminder of the paper is organized as follows. In

the next section, we give a short description of the math-

ematical and physical model used in this study. The third

section describes their discretization using a vertex-

centred finite volume method and a semi-implicit Euler

approach is used for time discretization. In the fourth

section, we present the construction of the residual error

estimators and the adaptive algorithm. Results from

numerical simulations are presented in the fifth section.

To validate the efficiency and the accuracy of the

method, two tests are investigated for 2D miscible flow

problems. In the first test, a domain made of two porous

media separated by an interface with one source is con-

sidered. The second test addresses the evolution of radio-

nuclide migration from the waste packages through a

complex heterogeneous disposal made of six different

layers, where large permeability variations are allowed,

with three source terms. Finally, we give some conclu-

sions and remarks on this work, and discuss some of

our future research.

1 MODEL SYSTEM FOR MISCIBLE FLOW

We consider for simplicity a two-dimensional horizontal

reservoir where the gravity effects are negligible.

The single-phase flow of an incompressible fluid with a

dissolved solute in a horizontal porous reservoir

X � R2 over a time period �0; Tf ½, is given by Darcy’s

law and mass conservation (e.g., [4-6]):

~q ¼ �KðxÞ
lðcÞ rP in X��0; Tf ½ ð1Þ

div~q ¼ 0 in X��0; Tf ½ ð2Þ

x xð Þ oC
ot

� div D x;~qð ÞrC � C~qð Þ ¼ f in X��0; Tf ½ ð3Þ

where P and~q are the pressure and Darcy velocity of the

fluid mixture, x and K are the porosity and the perme-

ability of the medium, l is the viscosity of the mixture,

C is the concentration of the contaminant solute, and

f is a given source term. D is the diffusion-dispersion

tensor given by:

Dðx;~qÞ ¼ deI þ j~qj½alEð~qÞ þ atðI � Eð~qÞÞ� ð4Þ

with Eijð~qÞ ¼ qiqj
j~qj2, 1 � i; j � 2, j~qj is the Euclidean norm

of ~q, de is the effective diffusion coefficient, and al and
at are the magnitudes of longitudinal and transverse dis-

persion respectively.

The system (1-3) is subjected to appropriate boundary

conditions and an initial condition. In what follows we

use standard assumptions for miscible flow in porous

media. Namely, we will assume that the porosity x is

bounded above and below by positive constants, the per-

meability K and the diffusion-dispersion D are uniformly

positive definite matrices, the viscosity l is such that,

0 < l� � lðcÞ � lþ; c 2 ½0; 1�, and de, al and at are posi-
tive constants such that at � al.

2 FINITE VOLUME DISCRETIZATION

For the spatial discretization of the system (1-3), we use

the vertex-centered finite volume method, also called the

control volume finite element method. We consider here

the two dimensional case, for more details see for

instance [2, 28] and the references therein. The method

is based on two spatial grids: a primary grid, which is a

conforming finite element grid, and a secondary grid

composed of control volumes centered in the vertices

of the primary grid. Control volumes are constructed

around grid nodes by joining the midpoints of the edges

of a triangle with the barycenter of the triangle (Fig. 1).

All model data, permeability, porosity, sources, and dis-

persivity are constant element-wise on the primary grid.

The material interfaces are therefore aligned with the

B. Amaziane et al. / Adaptive Mesh Refinement for a Finite Volume Method for Flow
and Transport of Radionuclides in Heterogeneous Porous Media
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edges of the primary grid. The pressure and concentra-

tion unknowns, are represented as P1 finite element func-

tions over the primary grid.

Before introducing the scheme, let us give

some definitions and notations for the meshes.

We introduce a partition of the interval ½0; Tf �
into sub-intervals ½tn�1; tn�; 1 � n � N such that

0 ¼ t0 < t1 < ::: < tN ¼ Tf : We denote by sn the length

tnþ1 � tn; and by s the maximum of sn; 1 � n � N : For

each n; we consider Tn
h a regular triangulation of X by

closed triangles. We denote by Vn
h the dual decomposi-

tion associated to Tn
h: The partition Vn

h is chosen as

the set of N control volumes V i that constitute the dual

of the triangulationTn
h known as the Voronoı̈ mesh and

such that X ¼ [i¼1;:::;NV i: The mesh is constructed by

connecting the middle points of edges and circumcenters

of each neighboring pair of triangles having a common

edge with a straight-line segment. Furthermore, we

denote by En
h the set of edges E of the triangulation

Tn
h; and Cn

h the set of edges c of the dual decomposition

Vn
h: In the following, we denote respectively by r1 and r2

the edges gmij and gmik and by~nr1 and~nr2 their outward
unit normals, and by R1 et R2 the sub-edges of T : imij and

imik ; and~nR1 and~nR2 their outward unit normals.

2.1 Discretization of the Flow Equation

To efficiently solve the governing equations, we use a

sequential approach in which the pressure and concen-

tration equations are solved consecutively. For simplic-

ity, we will consider a permanent regime and take

l ¼ 1, so the time level is omitted to shorten the

notation.

We now describe the space discretization with

a vertex-centred finite volume scheme, (e.g., [29]).

Integrating Equation (2) over a control volume V i and

using the divergence theorem and (1), we get:

0 ¼ �
Z
oV i

KrP:~ndr � �
X
T ;i2T

Z
oV i\T

KTrP:~ndr ð5Þ

where KT is an approximation of the permeability tensor

in T and i a vertex belonging to T : Denote

by VT ðiÞ ¼ fj neighbor of i ; j 2 Tg, the neighbors of i
belonging to T , and by:

aflowij ðTÞ ¼ �
Z
oV i\T

KTrNj:~ndr ð6Þ

the elementary diffusive term, where Nj is the P1 finite

element base function on the triangle associated to the

vertex xj. Using a P1 Galerkin expansion of P and using

the fact that
P

j2VT ðiÞ Nj ¼ 1 in T , we obtain:

�
Z
oV i

KrP:~ndr ¼
X

j2VT ðiÞ
aflowij Tð Þ Pj � Pi

� � ¼ 0 ð7Þ

Observing that oV i \ T ¼ r1 [ r2, we get:

aflowij Tð Þ ¼ �KTrNj: r1j j~nr1 þ r2j j~nr2ð Þ

We can express the flux of KTrNj on oV i \ T using

the outward normals at edges of the triangle T : To do

so, we use the Gaussian theorem:Z
oV
~ndr ¼ 0 ð8Þ

where V is a surface with the boundary oV :We take V as

a surface limited by R1; R2; r1 and r2: Then, we get:

aflowij Tð Þ ¼ KTrNj: R1j j~nR1 þ R2j j~nR1ð Þ

Taking into account that:

jR1j ¼ 1

2
jxixjj jR2j ¼ 1

2
jxixk j

and using (8), we get:

aflowij Tð Þ ¼ 1

2
KTrNj: xixj

�� ��~nR1 þ xixkj j~nR2

� �
¼ � 1

2
KTrNj: xjxk

�� ��~njk� � ð9Þ

where~njk is the outward unit normal at the edge ðxjxkÞ of
T . We recall that rNj ¼ � jxixk j

2jT j~nR2 , then we get:

aflowij Tð Þ ¼ xixkj j
2 Tj j

xjxk
�� ��
2 Tj j KT~nR2 :~njk

� �
Tj j ð10Þ

V_i

Triangular
elements

g

Dual control volume

x_k

x_j

x_i

i j

k

g

m_ij

m_jkm_ik

Figure 1

A vertex-centred cell and notations for the triangulation

and the dual mesh.

690 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 69 (2014), No. 4



Finally, we incorporate the boundary conditions in (7)

to obtain the linear system for the flow equation which is

solved by the preconditioned conjugate gradient

method. The preconditioning step utilizes incomplete

Gaussian elimination.

Finally, the Darcy velocity ~q, performed as a post-

processing step, is approximated by a piecewise constant

in each element T , denoted by~qT , and given by:

~qT ¼ �
X
j2T

PjKTrNj ð11Þ

For each vertex xj of T ; we have rNj ¼ � jxixk j
2jT j~nR2 and

then we can express~qT ; using the opposite edge Fj of the

vertex xj in T and ~nj the outward unit normal vector at

Fj; as following:

~qT ¼ 1

2 Tj j
X
j2T

Pj Fj

�� ��KT~nj ð12Þ

2.2 Discretization of the Transport Equation

Discretization of the concentration Equation (3) is per-

formed by using a vertex-centred finite volume method,

(e.g., [2]), with a semi-implicit time stepping, the time dis-

cretization is implicit for the diffusion term and it is

explicit for the convective term. The diffusion term is dis-

cretized by piecewise linear conforming finite elements,

whereas the convective term is approximated with the

aid of a Godunov scheme. Let us mention that a fully

implicit scheme is also available in the code MELODIE.

Let Cn
i be an approximation of C at the point ðxi; tnÞ.

First, we integrate Equation (3) over the control volume

V i, we apply the divergence theorem, a semi-implicit time

discretization, the mass lumping in the accumulation

term and a full upwind stabilization in the convective

term, resulting in the following discrete concentration

equation:

xi V ij jC
n
i � Cn�1

i

sn
�
Z
oV i

DrCn �~qCn�1
� �

:~ndr ¼ V ij jf ni
ð13Þ

where xi ¼ 1
jV ij
R
V i
xðxÞdx and f ni ¼ 1

jV ij
R
Vi
f ðx; tnÞdx

The discretization for the diffusive flux in (13) is per-

formed using the same steps as above for the pressure

equation. We have:

�
Z
oV i

DrCn:~ndr ¼
X

j2VT ðiÞ
adiffij ðTÞðCn

j � Cn
i Þ ð14Þ

where:

adiffij Tð Þ ¼ xixkj j
2 Tj j

xjxk
�� ��
2 Tj j DT~nR2 :~njk Tj j ð15Þ

with DT is an approximation of the diffusion-dispersion

tensor D in T .
To approximate the convective flux, we use the

Godunov scheme. We have:

Z
oV i

Cn�1~q:~ndr �
X
T ;i2T

ðjr1jCn�1
jr1 ~qT :~nr1 þ jr2jCn�1

jr2 ~qT :~nr2

ð16Þ

On the dual edge r1 separating the vertices i and j, we
approximate Cn�1

jr1 ~qT :~nr1 as following:

Cn�1
jr1 ~qT :~nr1 � Cn�1

i ð~qT :~nr1Þþ þ Cn�1
j ð~qT :~nr1Þ� ð17Þ

where for r 2 R; rþ ¼ maxf0; rg and r� ¼ minf0; rg:
Note that Cn�1

jr1 is approximated taking care of the flow

direction. Denote by:

aconvij ðTÞ ¼ jr1jð~qT :~nr1Þ�; aconvii ðTÞ
¼ jr1jð~qT :~nr1Þþ þ jr2jð~qT :~nr2Þþ

ð18Þ

the elementary convective terms. Then (17) implies:

R
oVi

Cn�1~q:~ndr � P
T ;i2T

aconvii ðTÞCn�1
i þ aconvij ðTÞCn�1

j

þ aconvik ðTÞCn�1
k ¼

X
T ;i2T

faconvii ðTÞCn�1
i þ

X
j2VT ðiÞ

aconvij ðTÞCn�1
j g

ð19Þ

Finally, the scheme could be written in the following

form:

xi V ij jCn
i þ sn

X
T ;i2T

X
j2VT ðiÞ

adiffij Tð Þ Cn
j � Cn

i

� �

¼ xi V ij j � sn
X
T ;i2T

aconvii Tð Þ
" #

Cn�1
i

�sn
X
T ;i2T

X
j2VT ðiÞ

aconvij Tð ÞCn�1
j � sn V ij jf ni

ð20Þ

Then, we incorporate the boundary conditions to

obtain, at each time step, the linear system which is

solved by the preconditioned conjugate gradient

method. The preconditioning step utilizes incomplete

Gaussian elimination.

Let us end this section by the following remark.
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Remark 1. To ensure the discret maximum principle

and hence the stability of this scheme we define locally

the CFL condition as:

xi V ij j
sn

�
X
T ;i2T

aconvii Tð Þ
 !

� 0 ð21Þ

Taking into account (18), we get the following estima-

tion for aconvii :

aconvii � joV i \ T jj~qT :~njmax ð22Þ

where j~qT :~njmax is the maximum of j~qT :~nj over all dual

edges belonging to T :
Furthermore we get:

xi V ij j ¼
X
T ;i2T

V i \ Tj jxi ð23Þ

It follows thanks to (22) and (23) that (21) holds true

if:

s � xijV i \ T j
joV i \ T jj~qT :~njmax

Then we define the following CFL condition:

CFL ¼ min xi V i \ Tj j; i 2 Tf g
max oV i \ Tj j; i 2 Tf gmaxfj~qT :~njmax; i 2 Tg

ð24Þ

3 A POSTERIORI ESTIMATORS AND ADAPTIVE
ALGORITHMS

In this section, we derive an adaptive numerical tech-

nique using the finite volume approximation described

in the previous section. The proposed error estimators

were suggested in [8] for vertex-centered finite volumes

method. Here, we extend this strategy to finite volumes

finite elements discretization and for more complex

geometry. The estimator was obtained by dual volumes

summation of the residuals, while in the current work

it is obtained by summation over the underlying triangu-

lation. The method expresses the error in terms of the

residual of the approximate solution. Based on the error

estimators, the mesh adaptivity relies on mesh generator.

A new mesh must be generated at each time step. After

that, there are two alternatives: either restart the compu-

tation from scratch or project all the information from

the old mesh to the new mesh. The two meshes may have

very different topologies and number of elements and

the number of degrees of freedom can change arbitrarily

to meet a prescribed accuracy. The initial mesh does not

drastically influence the adaptive process, because a new

mesh is rebuilt at each step.

Each triangulation Tnþ1
h is derived from Tn

h by refin-

ing some elements of Tn
h into a few sub-elements or by

derefining some elements into a new elements. We

denote Dn ¼ DðtnÞ, ~qn ¼~qðtnÞ and f n ¼ f ðtnÞ, and we

introduce Dn
h (resp. f nh ) a piecewise approximation of

Dn (resp. f n). In the following, Cn
h will denote the finite

volume approximation of Cn; such that

Cn
h ¼

PN
i¼1C

n
i Ni; and~qnh the piecewise P0 approximation

of~qn expressed by the hydraulic head.

Following [30] and [8], we define the residuals and

inter-element jumps of the approximation:

Rn
hjT ¼ 

f nh � xT
Cn

h � Cn�1
h

sn
þ div Dn

hrCn
h

� �� div ~qn�1
h Cn�1

h

� �!

ð25Þ

where T stands for the current element T 2 Tn
h. Let:

rnhjE ¼ Dn
hrCn

h:~nE
� � ð26Þ

where ½; �E denotes the difference between limits from

either side of the edge E 2 En
h; and~nE is the outward unit

normal vector at the edge E: Let:

znhjc ¼~qn�1
h :~nc Cn�1

h xið Þ � Cn�1
h xj
� �� � ð27Þ

where c 2 Cn
h is an edge of the dual decomposition Vn

h

and~nc is the outward unit normal vector at c:
We define local spatial error indicators:

ðgnRÞ2 ¼
X
T2Tn

h

h2T jjRn
hjj20;T ð28Þ

diffusive jumps:

ðgnr Þ2 ¼
X
E2enh

hEjjrnhjj20;E ð29Þ

and convective jumps:

ðgnz Þ2 ¼
X
c2Cn

h

hcjjznhjj20;c ð30Þ

where jjvjj0;S ¼
R
S v

2dx denotes the L2 norm for any func-

tion v and any subset S of X:
The global spatial error indicator is given by:

ðgnspÞ2 ¼ ðgnRÞ2 þ ðgnr Þ2 þ ðgnz Þ2 ð31Þ
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For each n 2 f1; :::;Ng, we define the temporal error

indicator as:

gntm ¼ 
sn
3
ðjjDn

hÞ
1
2rðCn

h � Cn�1
h Þjj20;X þ jjdivð~qn�1

h ðCn�1
h � Cn

hÞÞjj20;XÞ
!1

2

ð32Þ

With the family ðCn
hÞ0�n�N , we associate the function

Chs in ½0; T � which is linear on each interval

½tn�1; tn�; 1 � n � N ; and equal to Cn
h at tn; 0 � n � N :

This function writes, for 1 � n � N :

Chs ¼ Cn�1
h þ t � tn�1

sn
Cn

h � Cn�1
h

� �

We define the norm jjCh;sjjðtn�1;tnÞ as follows:

jjCh;sjj2tn�1;tnð Þ ¼
Z tn

tn�1

ðjjðDn
hÞ

1
2Ch;sjj20;X þ jjðdiv~qnhÞCh;sjj20;XÞ

We define the global error indicator as follows:

g ¼
XN
n¼1

ðgnsp þ gntmÞ2

Then for an approximate solution Ch;s; we define the

relative error estimator gr by:

gr ¼
gPN

n¼1jjCh;sjj tn�1;tnð Þ

Our aim is to control the relative error between the

exact and approximated solution by a prescribed toler-

ance. In the following, we give an overview of the basis

time-stepping routine and then describe in detail each

time step of the algorithm. We denote byNTn�1
h

the num-

ber of triangles belonging to Tn�1
h :

We present here an adaptive algorithm based on the

above a posteriori error estimates which is designed to

ensure that the relative energy error between the exact

and approximate solutions will be below a prescribed

tolerance. The spatial refinement-derefinement is per-

formed using the maximum strategy, while the temporal

adaption is based on the temporal error indicator and

the CFL condition. Let e a predefined parameter. The

aim is to build an adaptive mesh Tn
h; n ¼ 1; :::;N for

an adapted time step sn such that the error indicators

ensure that the relative error estimator is below the pre-

scribed parameter e; such that gr � e2 so as to equilibrate

the space and the time estimators.

For a given time level tn�1, we set:

Tol ¼ e
jjuhsjj tn�1;tnð Þffiffiffi

2
p

We denote by 0 < dref < 1 and 0 < dderef < 1 two

parameters. For practical implementation purposes

and because computer limitations, we introduce maxi-

mal level parameters Nsp;Frsp and Frtm; where:
– Nsp, is the limit number (level) of refinement,

– Frsp, the frequence of using the spatial refinement-

derefinement process,

– Frtm, the frequence of using the temporal adaptation

process,

– Cfllim, a prescribed value constraint that the CFL con-

dition limit does not exceed.

Adaptive algorithm

Let an initial mesh T0
h , and an initial time step s0

Set n = 1 and t1 = t0 + s0

Time iterations: While tn � T

DO

Resolve Cn
h ¼ SolðCn�1

h ; sn�1;Tn�1
h Þ

Estimmate gnsp and g
n
tm

Refine elements T 2 Tn�1
h where gnspjT � dref max

fgnspjK ; =K 2 Titn�1
h g; or

Derefine elements T 2 Tn�1
h such that gnspjT � dderefP

K2T
n�1
h gnspjK=NTn�1

h
to obtain the final mesh Tn

h such

that the refinement’slevel is less than Nsp

While gnsp � Tol
Depending on the value frtm
If gntm > Tol and CFL < Cfllim

Set tn ¼ tn � sn�1 and sn�1 ¼ sn�1=2
Else

Set tn ¼ tn þ sn�1 and sn�1 ¼ 1:1sn�1

Save the approximation Cn
h; the mesh Tn

h and the

temporal step size sn:
Set n ¼ nþ 1:

The mesh refinement algorithm is based on bisecting

an element into three triangles. Suppose that a set of ele-

ments are scheduled for refinement, then those elements

are bisected by creating a gravity center node, see

Figure 2. The derefinement process consists in deleting

every couple of triangles, based on error indication infor-

mation. If so the mesh would be coarsened to the one

shown in Figure 3 or Figure 4. Suppose that error indi-

cators reveal that these elements may be coarsened.

The strategy of collapsing the vertices of the current tri-

angle onto his gravity center is done by deleting all edges

connected to those vertices. After coarsening or refining

we update the mesh calling a Delaunay correction pro-

gram to ensure that the mesh respects the empty circle

criterion (Fig. 5, 6).
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The shape of elements containing small or large angles

that were created during refinement or coarsening may

be improved by edge swapping. This procedure operates

onpairs of trianglesT1 andT2;which violate the empty cir-

cle criterion, that share a common edge E. The edge swap-
pingoccurs deleting this edgeand the empty circle criterion

is satisfied for the trianglesK1 andK2 Figure7.Theprocess

is continued until all irregular triangles are removed. As

such, swapping will have to provide mesh quality.

Remark 2. In addition of the set of elements that are

marked in this way, we also mark all their neighbors with

a common edge. We moreover add to this set those ele-

ments that now have more than half of the neighbors

marked (Fig. 3).

T_1T_2

K_1

K_2

Figure 5

Refinement process.

T_1
T_2

T_1
T_2

K_1
K_2 K_12

K_22

Figure 6

Derefinement process.

Figure 4

Derefinement of the boundary elements.

x_i x_j

x_k

g

x_k

x_jx_i

Figure 2

Refinement process of the current triangle.

Figure 3

Coarsening of a polygonal region.

694 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 69 (2014), No. 4



Remark 3. In order to approximate the flux at the fine

grid in the boundaries we introduce additional (auxiliary)

points, in which the solution is obtained by interpolation on

the coarse grid (Fig. 8).

We end up this section by the following remark about

the interpolation of the solution after a modification of

the mesh.

Remark 4. Note that the solution interpolation is also a

key point in the mesh adaptation algorithm. For that, we

need an interpolation scheme to transfer the information

of the solution from the current mesh to the newly adapted

mesh. Before proceeding to mesh adaption, we save the his-

tory of the current mesh. The new generated vertices are

located in the current mesh by identifying the elements

containing them. Then an interpolation scheme is used to

extract the information from the solution. More precisely,

the mesh refinement algorithm is based on bisecting an ele-

ment into three triangles by adding a gravity center node.

Then we assign to this new node the average of the values

of the solution to the vertices of the triangle containing it.

The temporal error indicators are used to control the

errors due to the solution interpolation stage. The software

automatically selects time steps to satisfy a prescribed

(local) temporal error tolerance and to maintain stability.

4 NUMERICAL RESULTS

In this section, we illustrate the adaptive methodology.

We study the performance of the algorithm by looking

at the spatial adaptation of the mesh and aim at obtain-

ing a good distribution of nodes, in taking into account

also the temporal adaption. The following numerical

two examples are performed to demonstrate the imple-

mentation of the proposed algorithm. In the first exam-

ple, we verify our underlying adaptive numerical

algorithm. In the second one, we present a numerical

example for a waste-disposal in a complex domain.

4.1 Example 1: Heterogeneous Domain with One Source

This scenario consists of a pulse of activity in a heteroge-

neous domain. This example helps to get the first conclu-

sions about the efficiency of the adaptive method. We

consider the domain X ¼�0; 50½��0; 20½ composed of

two parts, i.e., the left medium Xl ¼�0; 20½��0; 20½ and
the right medium Xr ¼�20; 50½��0; 20½ (Fig. 9). The

values of physical parameters are presented in Table 1.

The dispersivity is isotropic for the right medium and

anisotropic for the left. The flow calculation is carried

out with a condition of constant pressure head on the

right vertical limit of a value of 30 meters and on the left

vertical limit of a value of 0 meter. The initial concentra-

tion is 104 Bq at the center of the left medium and

releases immediately at the first step of time of the simu-

lation. The transport equation is solved for a short time

interval (0-5 years) with adapted time step size.

For this domain, the adaptive strategy is applied. The

error indicators are computed for each element T at time

g

T_1

T_2

x_k

x_i x_j

x_l

g

K_1
x_i x_j

x_k

x_l

K_2

Figure 7

The edge swap mesh modification.

Figure 8

Refinement of the boundary elements.

TABLE 1

Physical parameters of the two medias

Medium K (m.year�1) x al (m) at (m) de (m2.year�1)

Xl 1.0 0.1 1.0 5e-05 0.0

Xr 1.0 0.01 0.5 0.5 0.0
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tn: then elements with the largest error indicator values

are refined, and other elements with the smallest error

indicator values are coarsened. The propagation of the

mesh and the corresponding activities till the end time

is displayed in Figure 10. The simulation results show

that the contaminant moves from the left in a narrow

20
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5

0
0 10 20 30 40 50

20

15

10

5

0
0 10 20 30 40 50

20

15

10

5

0
0 10 20 30 40 50

Activity
25 50 75

1000

Figure 9

Adaptive mesh (left) and concentration (right) after 1, 2 and 5 years.
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Figure 11

A heterogeneous porous medium of a realistic model.
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Figure 10

Heterogeneous domain: Xl (left) and Xr (right).
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TABLE 2

Physical parameters of the media

Medium K (m.year�1) x al (m) at (m) de (m2.year�1)

1 10.0 0.15 0.5 0.5 0.05

2 0.0001 0.3 1.0 1.0 0.01

3 500.0 0.2 12.0 6.0 0.5

4 0.05 0.2 5.0 0.5 1.0

5 50.0 0.17 10.0 1.0 0.05

6 5.0 0.15 8.0 0.4 2.0

100
0

-100
-200
-300
-400
-500

0 1.0 2.0 3.0 4.0 5.0

(x 103) (x 103)

(x 103)(x 103)

(x 103) (x 103)

100
0

-100
-200
-300
-400
-500

1.00 2.0 3.0 4.0 5.0

100
0

-100
-200
-300
-400
-500

1.00 2.0 3.0 4.0 5.0

100
0

-100
-200
-300
-400
-500

0 1.0 2.0 3.0 4.0 5.0

Activity 50 years

le-5 0.0001 0.001 0.01le-6 0.1

100
0

-100
-200
-300
-400
-500

0 1.0 2.0 3.0 4.0 5.0

Activity 1 000 years

le-5 0.0001 0.001 0.01le-6 0.1
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10-6 10-5 10-4 10-3 10-2 10-1

Figure 12

Adaptive mesh (left) and concentration (right) after 50, 1000 and 10 000 years.
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plume and wide in the right medium after the interface

between the two media. The mesh follows the movement

of the plume. This numerical test shows that the pro-

posed adaptive strategy is effective for guiding mesh

adaption.

4.2 Example 2: Waste-Case Model with Different
Sources

One of goals of this work is to simulate the flow of water

and transport for 10 000 years in realistic conditions. The

model is a cross cutting geological of 5 000 meters long

and 600 meters high with 3 different layers cutting by

3 faults cf. Figure 11. The different values of parameters

are presented in Table 2. The groundwater flow is under

steady state condition. The flow calculation is carried

out with a condition of the pressure head equal to the

topographic level on the top of the model by applying a

first spatial adaptation of the a posteriori error method.

On the field of hydraulic head obtained, the simulation

of the immediate release of the three sources of waste is

modeled with a condition that the adapt mesh cannot

be less precise than the first mesh on which the water flow

calculation is made. The simulation time is 10 000 years

and the calculation of the transport of the contaminant

is made upon all the domains. Figure 12 displays the state

of the concentration in the cross cutting for 3 dates of the

simulation and the corresponding propagation of the

mesh like for the example 1. In this case, the adaptive

strategy also performs fairly well with mesh refinement

which is made almost solely around sources points.

CONCLUSION

In this paper, we presented an adaptive mesh refinement

algorithm for single phase flow in porous media.

The processes modeled are miscible flow of an incom-

pressible fluid with a dissolved radioactive solute to sim-

ulate the evolution of radionuclide migration in a

nuclear waste repository. The resulting system is discret-

ized by a vertex-centred finite volume method. The

method was implemented in the software MELODIE.

This leads to a considerable improvement in computa-

tional efficiency. The adaptive strategy has been illus-

trated by means of numerical examples in an academic

scenario and a realistic scenario. The above results illus-

trate that the proposed adaptive mesh refinement is

capable of tackling in a robust and accurate fashion var-

ious physical phenomena relevant to flow and transport

of radionuclides in heterogeneous porous media. Our

goal in future work will be to extend this approach to

more realistic 3D problems.
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