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Résumé — Adsorption et désorption d’un colorant organique à l’interface sable de quartz-eau —

Nous avons étudié le transport, la sorption et la désorption d’un cation organique (bleu de

méthylène (BM)), à travers un milieu poreux constitué de particules de sable de quartz

chargées négativement. Nous avons examiné l’influence des paramètres, tels que : la force

ionique de la solution aqueuse, la vitesse de circulation, le pH de la phase aqueuse, la

température du milieu et la nature des cations divalents métalliques présents en solution, sur le

transport et le dépôt du BM à travers le milieu poreux. Les mesures de la rétention du

colorant ont été réalisées en utilisant la technique d’injection-échelon.

Les résultats obtenus ont montré une diminution de la quantité de BM adsorbé sur le quartz

lorsque le pH de la phase aqueuse diminue de 9,5 à 4. Une baisse de la quantité de BM

adsorbé a été également observée lorsque la force ionique ou le débit augmente. Cependant,

l’augmentation de la température a conduit à une augmentation de la quantité de BM

adsorbée, ce qui laisse supposer que l’adsorption du BM sur la surface de quartz est de nature

endothermique. En présence de cations divalents en solution (Ca2+, Cu2+, Zn2+ et Ba2+), la

quantité retenue du colorant dépend de la nature du cation. L’ensemble de ces résultats,

montre que l’adsorption du colorant basique est contrôlée par les interactions électrostatiques

entre la surface négative du quartz et le polluant organique cationique.

Abstract — Adsorption and Removal of Organic Dye at Quartz Sand-Water Interface —

We studied the transport, sorption and desorption of organic cation (Methylene Blue, MB) through

a porous medium consisting of quartz sand particles negatively charged. We examined various

parameters such as the ionic strength of the aqueous solution, the flow velocity, the pH of the aqueous

phase, the temperature of the medium and the nature of the divalent metal cations present in solution,

which affect the transport and the deposition of MB through the porous medium. Step-input exper-

iments were carried out to measure the dye retention. The data showed a decrease in the MB

adsorbed amount on the quartz, when the pH of the aqueous phase, or the temperature, decreases,

or when the flow rate, or the affinity of the divalent cation (Ca2+, Cu2+, Zn2+ and Ba2+) toward

the quartz surface increases. The increase in ionic strength leads to a small decrease in the MB

adsorbed amount. However, the increase in temperature leads to an increase in the retained MB

amount, which suggests that the adsorption of MB on the surface of quartz is endothermic in nature.

The overall data indicate that, at ambient temperature, electrostatic interaction forces, which occur

between the cationic organic pollutant and the negative surface of the quartz substrate, mainly con-

trol the adsorption process.
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INTRODUCTION

Chemical synthetic dyes are widely used in many indus-

trial processes for various purposes such as textile dye-

ing, paper, and plastic, leather tanning. These dyes are

also used in food, pharmaceutical or cosmetic [1, 2].How-

ever, most of the solutions used containing these dyes are

discarded as effluents. It has been observed that some of

these dyes have toxic and carcinogenic effects [3-5] on

aquatic life and on human’s health. Thus, for reasons

related to human health and to protect the environment,

the removal of synthetic dyes from aqueous effluents is of

great importance.

Various methods of dye removal, such as, coagulation

[6], electrochemical deposition [7], adsorption on different

adsorbents, chemical decomposition by oxidation, photo-

degradation andmicrobiological discoloration, were used.

Biological wastewater treatment processes, were found to

be ineffective for the removal of dyes [8]. However, the

removal of dyes from water by their adsorption on solid

supports is one of powerful and low cost treatment pro-

cesses. In thismethod, adsorbents suchas activated carbon

and clays are used. Activated carbon is the most success-

fully used adsorbent [9-13], but its cost limits its use, espe-

cially in developing countries. Therefore, there is a need to

find an effective and low cost material as an alternative

adsorbent for removing the dyes from water. Among the

materials that fulfil these requirements, natural adsorbents

such as clays and clay minerals [14-17], zeolites [18], agri-

cultural materials [19-21], cellulosic materials, and various

industrial wastes have been investigated in various water

depollution studies [22-25].However, very fewstudies have

focused on the use of quartz sand, as an adsorbent for the

removal of dyes from water [26, 27].

The aim of the present work is to study the adsorption

of Methylene Blue (MB) from water onto the surface of

quartz sand or Fontainebleau sand, which is a cheap and

abundant adsorbent. The use of quartz sand as adsor-

bent will allow us mimic the natural conditions found

in hydro systems (soils, aquifers, etc.). In addition, the

purpose of this study is to elucidate the mechanism of

MB adsorption on the quartz surface, and to investigate

the influence on the dye retention of various parameters

such as the ionic strength, the flow rate, the pH of the

aqueous phase, the temperature, and the nature of the

divalent cations present in the aqueous phase.

1 EXPERIMENTAL PART

1.1 Porous Medium

The quartz sand used is a Fontainebleau sand purchased

from Prolabo. It contains mainly quartz according to the

elementary analysis (Si = 45.03%, O = 52.18%, C

<0.3%, H <0.3%, Ca = 100 ppm, Al = 185 ppm, Mg

<10 ppm, Na<50 ppm, Fe= 150 ppm). The mean grain

diameter, Dm, of the sand, is Dm = 233.6 ± 46 lm,

as determined by Scanning Electron Microscopy

(SEM) image analysis (Fig. 1), and its isoelectric point

IEP = 2.44, as measured by microelectrophoresis

(Fig. 2).

Figure 1

Fontainebleau sand particles as observed by Scanning Elec-

tronic Microscopy (MEB).
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Figure 2

Zeta potential of Fontainebleau sand particles aqueous dis-

persions. NaCl=10�3M, 0.2 wt% of the sand in water.
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In addition, the sand’s surface area was measured by

using Micromeritics ASAP 2000 surface area analyser.

The adsorption-desorption isotherms were obtained by

measuring, respectively, the adsorbed and desorbed vol-

umes of N2 at 77 K and relative pressure P/P0 ranging

from 0 to 1, as depicted in Figure 3. The sample specific

surface area is 5.1 ± 0.1 m2.g�1, as determined in the rel-

ative pressure range 0.05 < P/P0 < 0.35 according to

the BET method [28].

It should be noted that in the present work, the quartz

sand specific surface area, was also measured in aqueous

mediumby titrationof the negatively charged sandparticles

by the MB cations. The data gives a specific surface area

value of 6.6 ± 0.1 m2.g�1, which is 25% higher than the

value foundfor thequartz sandpowderby theBETmethod.

1.2 Dye (Methylene Blue, MB)

The dye used is Methylene Blue (MB), supplied from

Merck. This basic dye belongs to the class of thiazine

dyes. Its chemical formula is C16H18ClN3S, and its struc-

tural formula is given below (Fig. 4). The MB dye is used

in various chemical industries, such as textile dyeing,

biology, pharmacy, and as an antiseptic. The maximum

solubility of MB in water, at 20�C, is equal to 50 g.L�1.

1.3 Reagents

All chemical reagents employed in this work are of purity

>99.5%, and the aqueous solutions were prepared using,

in all instances, bidistilled water. The ionic strength was

fixed by using sodium chloride (NaCl) as salt, (except

when indicated). The pH values of the samples were var-

ied in the range 4; 6 and 9.5, by adding to the aqueous

phase small amounts of sodium hydroxide (NaOH) or

hydrochloric acid (HCl) aqueous solutions. Aqueous

solutions of calcium chloride (CaCl2), copper chloride

(CuCl2), zinc chloride (ZnCl2) and barium chloride

(BaCl2), were prepared and used to study the effects of

nature of the divalent cations on transport and deposition

of MB in a saturated porous medium of quartz sand.

1.4 Experimental Device

The experimental device consisted of three following

components:

– a cylindrical column containing the quartz sand made

of Altuglas and fitted with a jacket thermostated

(length, L = 10 cm; inner diameter, D = 1 cm);

– a syringe pump (Perfusor� secura) to control the flow

rate;

– a fraction collector, and a pH-meter allowing the con-

tinuous measurement of pH at the column outlet.

The experimental device, held vertically, is fed from

bottom to top, in order to facilitate degassing and to

reduce the non-uniform flow rise. It should be noted that

all the materials used in the experimental device, had

demonstrated by preliminary experiments to be non-

adsorptive toward MB in the conditions used. Experi-

ments were conducted at room temperature (20±2�C)
(except when indicated). In addition, the bottle contain-

ing the MB injected solution is made with amber glass to

prevent photochemical degradation of the dye molecule,

and it was kept under nitrogen atmosphere during all the

column experiments.

1.5 Column Experiments

1.5.1 Determination of the Column Pore Volume and Porosity
by Using a Tracer

For each experiment, the mass of quartz sand in the col-

umn was weighted accurately to be about 9.5 ± 0.2 g.
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Figure 3

Adsorption-desorption isotherms of nitrogen at 77 K, on

Fontainebleau.
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Figure 4

Methylene Blue (MB) structure.
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The column was filled with sand, vacuum packed, and

then saturated with degassed bi-distilled water. Washing

the column of sand was carried out by continuous injec-

tion of bidistilled water, until the obtention of the same

inlet and outlet values, of the pH and the conductivity.

Both ends of the column were sealed with a device, allow-

ing the immobilization of the quartz sand particles (Glass

sintered PTFE), and the obtention of uniform distribu-

tion of the liquid flowat the inlet andoutlet of the column.

It should be noted that pre-treatment of sand with bi-

distilled water, was made in order to avoid the release of

fines during the MB flow experiments.

The column outflow for conservative tracer experi-

ments (Potassium Iodide, KI, 20 mg.L�1), was moni-

tored with a UV-visible spectroscopy at k = 234 nm.

Such tracer experiments were made in order to determine

the column characteristics such as the pore volume, Vp,

and the absolute porosity, e. The latter is defined as the

ratio of the pore volume Vp (cm
3) to the volume of the

column Vc (cm
3), and it is given by Equation (1):

e ¼ VP=VC ð1Þ

Typical column parameters were Vp = 2.29 mL and

e = 0.42, for 9.5 ± 0.2 g sand mass.

The Peclet number, Pe, was determined using two

parameters, the residence time ts (the time corresponding

to the inflection point of the tracer breakthrough curve)

and Dt, determined as shown in Figure 5, and using

Equation (2) below [29]:

Pe ¼ 4p ts=Dtð Þ2 � 1 ð2Þ

1.5.2 Injecting Through the Porous Medium, Aqueous Solutions
Containing or not the MB Cations

In a first step, the porous medium is saturated by contin-

uous injection, at constant flow and during one day, of

MB free aqueous solution (blank experiments at given

pH and ionic strength, I), until a steady state is reached.

Then, in a second step, MB solution is injected continu-

ously, under the same conditions as those made for the

blank tests into the column, until equilibrium. In a third

step, elution of sorbed MB is performed with MB free

aqueous phase having the same values of pH and ionic

strength, than those previously used in injecting the

dye into the porous medium.

1.5.3 Column Outlet Fractions Analysis

The fractions at the outlet of the column were collected

at constant volume, and their fluorescence excitation

spectra were measured by using a spectrofluorimeter

(ShimadzuRF-5001). The fluorescence excitation spectra

were recorded at the excitation wavelength range

450-720 nm and emission wavelength = 750 nm. From

the integrated fluorescence intensities of, the outlet or

effluent fractions, and the known MB aqueous solutions

series (recorded under identical conditions), the MB

residual concentrations in the collected fractions, C,

were then determined.

In the following, only the breakthrough curves deal-

ing with the effect of the ionic strength, I, will be pre-

sented. These curves will be expressed as C/C0 versus

V/Vp. The ratio (C/C0) is the normalized effluent concen-

tration and the (V/VP) is normalized injected solution

volume; C is the total MB concentration measured in

each effluent fraction, V is the cumulated volume eluted

since the beginning of the MB injection, Vp the pore vol-

ume, and C0 the inlet MB concentration. From the

breakthrough curves dealing, with the effects of various

parameters (flow rate, pH, temperature and the nature of

divalent cation), we determined the amounts of MB

adsorbed, Mads, and the MB desorbed, Mdes, at the

quartz sand-aqueous solution interface. Note that in

all the experiments, each breakthrough curve is com-

posed of two fronts: an adsorption front followed by a

desorption one.

2 RESULTS AND DISCUSSIONS

2.1 Effect of the Ionic Strength

Figure 6 shows the adsorption fronts of the break-

through curves dealing with the effect of the ionic

C/C0

1.0

0.5

ts

Δt

Time (min)

Figure 5

Tracer (KI) breakthrough curve.

408 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 69 (2014), No. 3



strength, I. This figure indicates clearly the influence of

ionic strength on the transport and adsorption of MB

through the quartz sand column.

As can be seen in Figure 6, they are small differences

between the adsorption fronts obtained at various values

of the ionic strength. Moreover, masses balances were

calculated as the difference between the breakthrough

data of the conservative tracer and MB for each experi-

ment, and for both adsorption and desorption fronts.

The variation of the MB amounts sorbed, Mads, and

released, Mdes, versus the ionic strength, I, are presented

in Figure 7, which shows that Mads decreases slightly

when the ionic strength, I, of the solution increases.

The sorption of MB on the quartz grains in the pres-

ence of NaCl salt can be explained by competition

between the MB and Na+ cations, towards the negative

sites of the quartz surface (pH > IEP), and the zeta

potential magnitude, which decreases, as the concentra-

tions of various ionic species, increase at the quartz sand-

solution interface. TheMB adsorption on the quartz sur-

face results from the ionic nature of the interaction

occurring between the MB cations and the sand negative

surface sites [30].

A decrease in the magnitude of zeta potential at the

quartz – solution interface, by increasing the ionic

strength of the medium, will be in favour of a decrease

in the coulombic attraction between the quartz negative

surface sites and the MB cations, which explains the

decrease of the MB adsorbed amount on the solid sur-

face. This behaviour in the presence of salt, of cationic

dye through negatively porous medium, is in agreement

with the works reported by other authors [31-35]. More

recently, Bilgiç [36], found that the adsorption capacities

of MB dye on bentonite and sepiolite decrease with

increasing ionic strength.

The elution curves as depicted in Figure 8, show at the

beginning the presence of plateaus which are followed, at

V/Vp > 20, by diffuse fronts of desorption.

TheMB released amount,Mdes, as calculated from the

mass balance, is much lower than the MB adsorbed

amount, Mads, as can be seen in Figure 7. The Mdes

0 0.02 0.04 0.06 0.08 0.10
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
ad

s, M
de

s (
m

g/
m

2 )

Ionic strength (M)

Mads’ adsorbed MB amount on quartz sand (mg/m2)
Mdes’ desorbed  MB amount from quartz sand (mg/m2)

Figure 7
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values represent about 8% of Mads values. This behav-

iour is characteristic of an irreversible adsorption or

pseudo-irreversible process, and may due to the strong

adsorption, by attractive electrostatic forces, of MB cat-

ions on the quartz sand surface.

In the following, only the variations with the various

parameters (flow rate, pH, temperature and the nature

of divalent cation), of the MB adsorbed and released

amounts, Mads and Mdes, at the quartz sand-aqueous

solution interface, will be presented.

2.2 Effect of the Flow Rate

In this experiment series, we studied the influence of the

flow rate on the mobility of MB (C0 = 1 ppm) through

the porous medium, in the presence of 10�3 M NaCl.

The MB adsorbed and released amounts,Mads andMdes,

at the quartz sand-aqueous solution interface, and at dif-

ferent flow rates, are shown in Figure 9. As can be

observed in the figure, Mads and Mdes, increase both

when the flow rate, Q, decreases from Q = 90 mL.h�1

to Q = 45 mL.h�1.

These variations may be due to the decrease, at high

flow rate, of the diffusion and the penetration of the

MB solute, to the quartz sand surface.

Qualitatively, the Peclet number, Pe, which is a rele-

vant parameter in the study of transport phenomena in

fluid flows, represents the ratio of two time characteris-

tics, that of transfer by convection and that of transfer

by diffusion. The Peclet number, Pe, encompasses in a

dimensionless form, the impact of both the flow rate

and the particle size, on the MB adsorbed mass on the

quartz sand surface [37]. Moreover, it was shown that

the collection efficiency, g, defined for a spherical collec-

tor, as the ratio between, the flow of particles retained by

the collector and the incident flux, is related to Pe by a

power law having an exponent of�2/3 or�1, depending

on whether the deposit is limited, respectively, by diffu-

sion (DLD) or by reaction (RLD) [37]. Thus, according

to these power laws, the fraction of MB retained on the

quartz surface decreases when the flow rate,Q, increases.

Our experimental data are in a good agreement with the

theoretical predictions using the colloidal approach.

Our results agree also with the data reported by Lin

et al. [38]. According to these authors, the increase in

the flow rate, Q, disadvantages the acidic dye adsorption

on montmorillonite. Our findings are consistent with the

work reported by Benkli et al. [18], showing that the

adsorption of hexadecyl trimethyl ammonium bromide

on zeolites, depends on the flow rate. The effect of flow

rate on the retention of MB, results from the duration

time when the fluid is in contact with the quartz surface

(contact time). Thus, when the flow rate is low, the num-

ber of adsorbed MB cations on the solid surface is

higher, as resulting from the long contact time occurring

between the fluid molecules and the quartz surface.

2.3 Effect of the Aqueous Phase pH

We carried out adsorption experiments of MB on the

quartz sand surface, at three values of the aqueous phase

pH: pH = 4, 6 and 9.5.

The observed increases of Mads and Mdes with the

increase of the aqueous phase pH, as shown in Figure 10,

indicate that the pH is a parameter that strongly affects

the adsorbed MB amount. The influence of the aqueous

phase pH on the variation of the MB sorbed amount,

results in the bonding forces involved in the formation

of the MB-silica complex. Such bonding interactions

include electrostatic, as well as Van der Waals forces

[39]. Kar et al., [40], have reported similar pH effect,

on the adsorption of dye molecules, at mineral-water

interface. According to these authors, the dye adsorption

capacity on silicates increases with increasing the pH of

the aqueous phase. Moreover, recently, Tsai et al. [41],

found that the adsorption of basic dye from aqueous

solution onto clay surface, reached its maximum value

in basic medium (i.e., at pH = 10).

2.4 Effect of Temperature

The influence of the temperature on the transport of the

MB basic dye through the porous medium is shown in
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Effect of flow velocity,Q, on adsorbed (Mads) and desorbed

(Mdes), MB amounts at quartz sand-water interface. Initial

MB concentration, C0 =1 ppm, ionic strength, I = 10-3M

(NaCl), pH = 6, temperature T = 20�C.
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Figure 11, which indicates that the increase of tempera-

ture promotes the MB retention. Such dye behaviour

proves that the adsorption of MB at the quartz sand-

aqueous solution interface is an endothermic process.

The same thermal behaviour was observed by Ghosh

and Bhattacharyya [16], when they studied the adsorp-

tion of MB on kaolinite. Further, Dogan and Alkan

[15], examined the retention of methyl violet onto perlite,

and they found that the rate of methyl violet adsorption

increased with increasing temperature and pH of the

aqueous phase. From the breakthrough data and mass

balances calculations, the increase in temperature from

293 K to 333 K, leads to an increase in Mads from 0.12

to 0.17 mg/m2, i.e. an increase of about 42%. However,

the same increase in temperature does not show signifi-

cant change ofMdes, as can be seen in Figure 11. Increas-

ing the temperature leads to an increase of thermal

agitation, and also to an increase of the diffusion rate

of the ions, resulting in an enhancement of the exchange,

and/or displacement, of Na+ ions, immobilized near the

surface solid, by MB cations. Finally, the adsorption of

MB on the quartz sand particles involves twomain steps:

a first transport step, during which the MB molecules

diffuse from the aqueous phase to the quartz surface,

and a second step (anchoring or binding step) in which

theMBmolecules adsorb on the solid surface. The kinet-

ics of transport and binding of MB molecules at solid-

liquid interface, are controlled by different factors, such

as ionic strength, pH of the aqueous phase, and the tem-

perature of the medium.

2.5 Effect of the Divalent Cation Nature

In this experiment series, we examined the effect of diva-

lent metal ions on the MB adsorption from water onto

quartz sand. The divalent cations used, were in the form

of metal chloride salts (CaCl2, CuCl2, ZnCl2 and BaCl2),

at a concentration of 10�3M.

TheMads andMdes were calculated from the mass bal-

ances of the breakthrough data, and their variations with

the divalent cation nature, are presented inFigure 12. The
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Effect of the divalent cationMe2+, on adsorbed (Mads) and

desorbed (Mdes), MB amounts at quartz sand-water inter-
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Effect of temperature, T, on adsorbed (Mads) and desorbed

(Mdes), MB amounts at quartz sand-water interface. Initial

MB concentration, C0 = 1 ppm, ionic strength, I=10-3M.
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results show that theMB adsorbed mass,Mads, decreases

in the sequence: Cu2+ > Zn2+ > Ca2+ >Ba2+. This

behaviour may be explained by the cation affinity toward

the solid support. Thus, the saturation of the quartz sand

by the divalent cations (Me2+ = Ca2+, Cu2+, Zn2+

and Ba2+) reduce the number of the solid negative sites,

resulting in reduction of the electrostatic attraction

between the MB cations and the solid surface. However,

the decrease in the electrostatic attraction between the

MB cations, and the solid surface depends on the ionic

radius, ri, of the divalent cation, Me2+, present in the

aqueous solution. Thus, according to Coulomb’s law,

the divalent cation,Me2+, having the largest ionic radius,

ri, (non-hydrated radius), is preferentially adsorbed on

the solid surface [42]. The ionic radii of different divalent

cations Me2+, decrease in the following sequence:

Ba2þ ri ¼ 140 pmð Þ > Ca2þ ri ¼ 100 pmð Þ
> Zn2þ ri ¼ 74 pmð Þ > Cu2þ ri ¼ 73 pmð Þ

Therefore, the strong adsorptions of MB cations on

the quartz sand, as observed in the presence of Cu2+

and Zn2+ ions, result from the slight reduction of the

quartz negative surface charge and/or the low affinities

of the metal cations toward the solid. On the other hand,

the low adsorptions ofMB cations on quartz particles, in

the presence of Ca2+ and Ba2+ ions, are due to the

strong reduction of the quartz negative surface charge

and/or to the higher affinities of the metal cations

toward the solid.

In summary, the adsorption of MB cations on the

quartz surface, in the presence of divalent metal cation

Me2+, depends on both, the metal cation affinity toward

the solid surface, and its hydration by water molecules.

Metal cation having smaller ionic radius, ri, is more

hydrated than cation with higher ri, resulting in higher

mobility towards the solid surface of the smaller metal

cation. Increasing the metal cation Me2+ ionic radius

leads, to decrease of its hydration shell thickness, and

to an increase of its affinity toward the solid surface,

resulting hence in a decrease of the MB adsorbed

amount on the solid surface.

CONCLUSION

A natural quartz sand column was used to study the

transport, retention, and release of Methylene Blue

(MB). The quartz sand was selected as adsorbent, due

to its availability and low cost. The data presented in this

work show the effects of various parameters, such as

ionic strength, flow rate, pH of the aqueous phase,

the temperature of the medium, and the nature of the

divalent cation, on the transport and the retention of

MB dye, through the porous medium. The main results

are summarized as follows:

– the retained MB amount, in the quartz sand porous

medium, decreases significantly when the flow rate

increases. However, a slight decrease in the retained

MB amount occurs when the ionic strength of the

aqueous phase increases;

– the fraction of MB deposited on the quartz increases

by increasing either the temperature of the medium,

or by raising the pH of the aqueous phase;

– the presence of metal divalent cations in the medium

decreases in all instances, the adsorbed MB amount.

However, such decrease depends on both, the metal

cation affinity toward the solid surface, and its hydra-

tion by water molecules;

– the adsorption of MB on the quartz sand particles is

endothermic nature and it is irreversible.

The overall data provide useful information to eluci-

date the mechanisms of complex formation, occurring

in soil and groundwater, between inorganic or organic

cations and the quartz sand surface.
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