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Résumé — Mélange de Gaussiennes spatialisé et sélection de modèle pour la segmentation non-

supervisée d’images spectrales — Dans cet article nous décrivons un nouvel algorithme de

segmentation non-supervisée applicable aux images spectrales. Cet algorithme étend les

techniques de classification non-supervisée fondées sur les modèles de mélange de Gaussiennes,

en y incorporant les informations spatiales : les spectres sont modélisés par un mélange de

K classes, chacune avec une distribution Gaussienne, dont les proportions de mélange

dépendent de la position. En imposant une structure constante par morceaux aux proportions

de mélange, nous construisons une procédure d’estimation, de type maximum de

vraisemblance pénalisée, qui optimise simultanément la partition ainsi que les autres

paramètres du modèle, en particulier le nombre de classes. Nous fournissons une garantie

théorique pour cette estimation, même quand la loi génératrice ne fait pas partie des modèles

envisagés, et décrivons une mise en oeuvre efficace. Finalement, nous appliquons

cet algorithme à un jeu de données réel.

Abstract — Unsupervised Segmentation of Spectral Images with a Spatialized Gaussian Mixture

Model and Model Selection — In this article, we describe a novel unsupervised spectral image seg-

mentation algorithm. This algorithm extends the classical Gaussian Mixture Model-based unsuper-

vised classification technique by incorporating a spatial flavor into the model: the spectra are

modelized by a mixture of K classes, each with a Gaussian distribution, whose mixing proportions

depend on the position. Using a piecewise constant structure for those mixing proportions, we are

able to construct a penalized maximum likelihood procedure that estimates the optimal partition

as well as all the other parameters, including the number of classes. We provide a theoretical guar-

antee for this estimation, even when the generating model is not within the tested set, and describe an

efficient implementation. Finally, we conduct some numerical experiments of unsupervised segmen-

tation from a real dataset.
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INTRODUCTION

Located at the SOLEIL Synchrotron (Saint-Aubin,

France), IPANEMA is a platform that is unique in the

world, dedicated to the study of ancient material. It sup-

ports research projects on ancient material using the syn-

chrotron beamlines and develops novel methodological

tools to be used in these studies [1]. The high-quality

light produced by SOLEIL allows, for instance, high-res-

olution high signal-to-noise ratio spectral image acquisi-

tion, collecting a full high-resolution spectrum for each

pixel. These tools have proved to be very interesting in

the ancient material study context, as shown by the con-

clusive studies on Stradivarius [2] varnish and microscale

tissue discrimination in soft-bodied fossils from

Lagerstätten [3], for instance. While studies similar to

this one focus on a small set of fairly well pre-studied

samples, most work in archaeology, palaeontology and

cultural heritage would benefit better from the explora-

tion of a wider set of samples that are less well pre-

studied. In this context, it is beneficial to develop spectral

image analysis methodologies which are both robust to

low signal-to-noise ratio, enabling fast measurement of

a large sample set, and require only weak prior knowl-

edge of the samples.

Unsupervised spectral image segmentation is natu-

rally within the scope of spectral image processing and

has already been studied. While the result should be

close to supervised spectral image segmentation, in

which the number of classes is known and labeled exam-

ples are available for every class, unsupervised spectral

image segmentation is a much harder task. Two natural

approaches can be distinguished. In the first one, the spa-

tial (or region-based) one, regions are obtained by

locally grouping pixels with a similar spectrum using

image segmentation techniques. In the second one, the

spectral one, the spectra are clustered disregarding their

spatial position using unsupervised classification tech-

niques, and the regions are defined as the set of pixels

corresponding to spectra of the same classes. The first

approach yields regions that are adapted to the geomet-

rical structures of the images but fails to detect that two

disjoint regions may correspond to the same spectrum

class. The second approach has exactly the inverse

behavior. The first technique has been used, for instance,

by Tarabalka et al. [4] and Bunte et al. [5] while the sec-

ond has been used by Acito et al. [6] and Yang et al. [7].

Trying to combine these approaches to obtain a

method with only the advantages is thus natural. Several

directions have been explored, a review of which has

been carried out by Tarabalka [8]. Amongst them the

most classical are based on the hierarichal Markov field;

see, for instance, the work of Farag et al. [9], in which

spatial regularization is imposed on the clustering labels.

Another direction is that of Tarabalka et al. [10] in which

the regions are initially segmented using a spatial method

and then combined according to spectral criteria.

We consider the opposite direction: extending the

spectral methods to take into account the geometrical

nature of images. Our proposed contribution is based

on conditional density estimation by the penalized max-

imum likelihood technique that allows one to estimate

simultaneously the number of meaningful classes and

the pixel labels. Density estimation is already at the core

of the most classical spectral method in which the

observed spectra are modelized as a realization of a

Gaussian Mixture Model (GMM). As described, for

instance, by Biernacki et al. [11], for a given number of

classes, the parameters of this mixture can be estimated

and classes can be assigned by a simple maximum

likelihood or maximum a posteriori principle. Estimating

the number of classes can be performed in this setting by

the penalization technique, as shown by Maugis and

Michel [12]. Following ideas introduced by Kolaczyk

et al. [13] and Antoniadis et al. [14], we modeled the spa-

tial dependency through the mixing proportions of the

mixture: they will depend on the pixel position to take

into account the spatial inhomogeneity of spectral

images. More sophisticated spatial models have been

proposed, e.g. using a random Markov field to impose

spatial constraints on the mixture proportions [15], even

presenting efficient optimization algorithms for univari-

ate or color RGB images [16].Whilst avoiding the model

selection problem, these latter methods only consider the

semi-unsupervised case since the proposed algorithms

rely on the user to provide the number of classes,

K, and typically to set the spatial regularization

parameter(s).

Using the results we obtained in [17] and our extended

technical report [18], we propose a true unsupervised,

parameter-free methodology which includes the estima-

tion of the number of classes, their Gaussian parameters

and the spatially varying mixing proportions using a uni-

fied model selection approach. Compared with the work

of Kolaczyk et al. [13], our proposition does not require

a quantization step on the pixel-wise feature to be appli-

cable. Furthermore, the theoretical framework we are

using encompasses the frequent cases where the data is

not generated by any of the tested models and the user

is targeting a best approximating model within a set

rather than the true model. From now on, we will call

the model we are using a conditional Gaussian Mixture

Model (cGMM) hereafter. The purpose of this article is

to present the theoretical results, to describe an efficient

numerical implementation, to discuss its calibration and

to present some numerical experiments on a real dataset.
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1 UNSUPERVISED SEGMENTATION BY MODEL
SELECTION

Assume we observe a n1 � n2 spectral image S, we let

n ¼ n1 � n2 be the number of pixels, ðxiÞi2f1;...;ng
¼ ðx1;i; x2;iÞ
� �

i2f1;...;ng be an arbitrary ordered list of pixels

and SðxiÞ be the observed spectrum at pixel xi. Our goal is

to assign to each pixel a class bkðxÞ to which the spectrum

is supposed to belong. This implies estimating these clas-

ses as well as their number.

To this purpose, we use a statistical model in which

each class corresponds to a Gaussian model, as in a clas-

sical GMM, but whose mixing proportions depend on

the position. More precisely, we assume that the spectra

SðxiÞ are independent realizations of law of density

s0ð�jxiÞ with respect to the Lebesgue measure that

depends on the pixel position xi. We model this condi-

tional density by Gaussian mixtures sð� � � jxÞ with mixing

proportions depending on the position x:

sð�jxÞ ¼
XK

k¼1

pkðxÞUhk �ð Þ

with K the number of mixture components, lk the

mean of the kth component, Rk its covariance matrix,

hk ¼ ðlk ;RkÞ, pkðxÞ its proportion at the position x and

Uhk ðyÞ the density of a Gaussian of mean lk and covari-

ance Rk . Each Gaussian naturally corresponds to a spec-

trum class. As soon as these parameters have been

estimated (respectively, by bK , bhk and bpk), the spectral

image segmentation is obtained by a maximum likeli-

hood principle for the different classes:

bk yjxð Þ ¼ argmax bpkðxÞUbhk

ðyÞ

FollowingKolaczyk et al. [13] andAntoniadis et al. [14],

we consider mixing proportions that are piecewise

constant on a hierarchical partition P induced by a tree

structure, one of the recursive dyadic partitions of

Donoho [19]. The conditional densities we consider are

thus of the form:

sP;K;h;pð�jxÞ ¼
XK

k¼1

X

Rl2P
pk ½Rl�1 x2Rlf g

 !
Uhk �ð Þ

where P is a partition of X and p ¼ p½Rl�ð ÞRl2P, the
set of proportions on each hyperrectangle Rl, defines

the function p. These parameters, as well as the number

of classes K and the Gaussian parameters hk , will be esti-
mated by a penalized maximum likelihood principle as

described in [17, 18].

Assuming we know the number of classes K and the

partition P, as well as the structure of the K-uples of

the Gaussian parameters (for instance, by assuming

common covariance matrices or a common diagonaliza-

tion basis) defined by set G of possible parameter

K-uples, the only remaining parameters are the Gaussian

parameter K-uples itself as well as the proportions

ðp½Rl�ÞRl2P . It turns out that these parameters can be

easily estimated by a maximum likelihood principle

using an Expectancy Minimization (EM) type algo-

rithm. This maximum likelihood principle is not suffi-

cient to select the number of classes, the partition or

even the structure of the K-uples: the maximum likeli-

hood approach will overfit the data and always favors

the more complex model. To avoid this issue, we will

add a penalization term that should compensate for

the overfit due to the model complexity.

More precisely, we define a model SP;K;G by its number

of classes K, a recursive dyadic partitionP and a set G for

the K-uples ðUh1 ; . . . ;UhK Þ (or equivalently a set HG for

h ¼ ðh1; . . . ; hKÞÞ:

SP;K;G ¼ minfsP;K;h;pð�jxÞ; jðUh1 ; . . . ;UhK Þ
2 G; 8Rl 2 P; p½Rl� 2 SK�1g

where SK�1 is the K � 1 dimensional simplex. The

space G is chosen among the classical Gaussian

K-uples described in Biernacki et al. [11], that is

some set:

G½��K ¼ Uh1 ; . . . ;UhK

� �jh ¼ ðh1; . . . ; hKÞ 2 H½��K
n o

obtained by imposing some (mild) constraint on the

means lk (basically that they belong to a compact set)

and some (strong) constraints on the covariance matrices

Rk . The assumptions on the covariance range from the

weak assumption that the eigenvalues of the covariance

matrix are within a subset ½km; kM � with km > 0 to the

strong assumption that they are all spherical. They can

further be chosen independently for all classes or

assumed to share a structure; for instance, a common

diagonalization basis or the same value. We refer to

our technical report [18] for more details.

For a given model SP;K;G, we will use the maximum

likelihood estimate:

bsP;K;GðSijxiÞ ¼ argmin
sP;K;G 2 SP;K;G

Xn

i¼1

� lnðsP;K;GðSijxiÞÞ
 !

As explained below, the maximum likelihood value

grows as the complexity of the models increases; in order

S.X. Cohen and E. Le Pennec / Unsupervised Segmentation of Spectral Images with a
Spatialized Gaussian Mixture Model and Model Selection
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to select a reasonable model, we will add a penalty term

penðP;K;GÞ that will counterbalance this effect and

select the model dP;K;G that minimizes:

Xn

i¼1

� lnðbsP;K;GðSijxiÞÞ
 !

þ pen P;K;Gð Þ

Choosing the penalty penðP;K;GÞ appropriately is

obviously of crucial importance. A key result of our

theoretical analysis, recalled in Appendix, is that the

choice:

pen P;K;Gð Þ ¼ ek 1dim SP;K;G
� �þ ek 2jjPjj

(where jjPjj is the number of regions in the partition) is a

good choice in terms of conditional density estimation.

Although there is no theoretical guarantee that this is a

good choice in term of unsupervised segmentation, we

will nevertheless use this penalty as if our task was con-

ditional density estimation. As:

dimðSP;K;GÞ ¼ jjPjjðK � 1Þ þ dim Gð Þ

this penalty can be rewritten as:

pen P;K;Gð Þ ¼
X

Rl2P
ek 1 K � 1ð Þ þ ek 2
� �

þ ek 1dim Gð Þ

which has an additive structure which is a key property

to derive the efficient estimation algorithm of the next

section.

2 AN EFFICIENT SEGMENTATION ALGORITHM

As described above, our procedure is based on two suc-

cessive minimizations: one should first find the maxi-

mum likelihood estimate bsP;K;G for every partition P,

every number K of classes and every set of Gaussian

K-uples within the collection and then only minimize

the penalized criterion involving those maximum likeli-

hood estimates. This is indeed the strategy used for the

classical GMM, for which no partition is used, and thus

the number of models remains OðKmaxÞ. Such an exhaus-

tive strategy becomes impossible when one optimizes the

partition, as the number of partitions grows exponen-

tially fast with n. To overcome this issue, we propose a

minimization algorithm that simultaneously computes

the best partition and the corresponding likelihood esti-

mate given a number K of classes and a set of Gaussian

K-uples. Only the optimization of the number of classes

and of the set of Gaussians used is performed by an

exhaustive search.

Our goal can be rewritten as the search for the mini-

mizer in , P; h 2 G and ðp½Rl�ÞRl2P 2 SK�1 of:

PLðP;K;G; h; pÞ ¼
Xn

i¼1

� ln
XK

k¼1

pk RðxiÞ
� �

Uhk ðSiÞ
! !

þ pen P;K;Gð Þ
 

where the penalty can be written in the following way:

pen P;K;Gð Þ ¼
X

Rl2P
penspaðKÞ þ penparðK;GÞ

Our main concern is the case:

penspa Kð Þ ¼ ek 1 K � 1ð Þ þ ek 2

and

penpar K;Gð Þ ¼ ek 1dim Gð Þ

Denoting with a slight abuse of notation:

sK;h;pðSÞ ¼
XK

k¼1

pk Uhk ðSÞ

this problem can thus be rewritten as the search for the

minimizer of:

PLðP;K;G; h; pÞ ¼
X

Rl2P

  
X

ijxi2Rl

� ln sK;h;p½Rl �ðSÞ
� �

!
þ penspaðKÞ

!

þ penparðK;GÞ

For a fixed number of classes K and a given structure

G for the Gaussian parameter K-uples, we perform this

minimization with an iterative scheme, very similar to

the classical EM algorithm, in which one alternately

modifies h, p and P :

� Initialization: let bP ð0Þ ¼ f½0; 1�2g be the trivial parti-

tion, let ðbhð0Þ; bpð0ÞÞ be the result of a classical EM ini-

tialization (for instance, with the best K-means

strategy; Biernacki et al. [11].)

� Optimization: given ðbP ðjÞ; bh
ðjÞ
; bpðjÞÞ,

1. Majorization (expectation) step: compute,

8i 2 f1; . . . ; ng; 8k 2 f0; . . . ;Kg,

bPðjÞ
k ½i� ¼

bpðjÞ
k ½ bRðjÞðxiÞ�UbhðjÞ

k

ðSiÞ
PK

k 0¼1
bpðjÞ
k 0 ½ bRðjÞðxiÞ�UbhðjÞ

k0
ðSiÞ
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2. Minimization step in h: using the technique used in

classical EM, compute bhðjþ1Þ the minimizer in G of:

Xn

i¼1

�
XK

k¼1

bPðjÞ
k ½i� lnUhk

ðSiÞ
 !

3. Minimization step in p: compute for all square Rl:

bpðjþ1Þ
k ½Rl� ¼

P
ijxi2Rl

bPðjÞ
k ½i�

P
ijxi2Rl

1

4. Per square cost computation: Compute for all

square Rl:

Cðjþ1Þ½Rl� ¼�
X

ijxi2Rl

ln
XK

k¼1

bpðjþ1Þ
k ½Rl�Ubh jþ1ð Þ

k

ðSiÞ
 !

þ penspaðKÞ
5. Minimization step in P: using a fast dynamic pro-

gramming strategy, compute bP ðjþ1Þ the minimizer

over all partitions of:
P

Rl2P
Cðjþ1Þ½Rl�

� Stopping criterion: stop when the decrease in the cost

is smaller than a prescribed precision for two consec-

utive steps.

This algorithm is, as hinted in its description, an

example of a Majorization-Minimization (MM) algo-

rithm, as is the Expectancy Minimization (EM)

algorithm. A detailed description can be found in

Appendix.

As often with the EM algorithm, initialization has to

be performed carefully. We initialize our algorithm with

the result of a classical GMM mixture model, one with

weights that do not depend on the position, and thus

partition is reduced to the unit square. This first estimate

is itself obtained by the classical EM algorithm, whose

initialization is obtained by selecting the parameter set

yielding the largest likelihood with a set of M runs of

K-means initialized by a random data subset. We used

M ¼ 10 and ran only 10 steps of K-means.

We stress the (lack of) theoretical convergence guar-

antee of this algorithm. Due to the complex structure

of the objective function (mainly its non-convexity), we

are only able to show that the algorithm converges to a

local optimum. A stochastic variant (SEM) in which

the expectation step is replaced by a random draw of

the unobserved label k½x� according to the the current

posterior law sK;hðiÞ;pðiÞ;PðiÞ½x�ðk½x�jS½x�Þ could be used to

remove this issue at a price of a slower convergence

speed.

An important practical issue is the choice of the

parameters ek 1 and ek 2 in the penalty:

pen P;K; pð Þ ¼ ek 1dimðSP;K;pÞ þ ek 2jjPjj
¼ P

Rl2P
ðek 1 K � 1ð Þ þ ek 2Þ þ ek 1 dimðGÞ

which corresponds to penspa Kð Þ ¼ ek 1 K � 1ð Þ þ ek 2 and
penpar K;Gð Þ ¼ ek 1dimðGÞ. We propose to use here the

slope heuristic introduced by Birgé and Massart [20] to

calibrate these constants from the observed data, as

described, for instance, by Baudry et al. [21] in a similar

setting. For the sake of completeness, this heuristic is

described in Appendix. Roughly speaking, the idea is

that these parameters can be estimated from the behav-

ior of the � log-likelihood of the most complex models:

it is expected that a good fit of its lower envelope can

be obtained with the shape of the penalty proposed in

the theorem and that using a penalty twice as larger as

the estimated one yields a good selection. More pre-

cisely, we use the following procedure:

1. Compute bsP;K;G and
Pn

i¼1 � logbsP;K;GðSi½xi�Þ for a col-
lection of complex models of various K, dimðGÞ and P

2. Compute a lower envelope:

FðP;K;DÞ ¼ inf jjPjj¼P;K;dimðGÞ¼D

Xn

i¼1
� log bs P;K;GðSi½xi�Þ

3. Robustly fit FðP;K;DÞ by ek 01 KP þ ek 02Dþ c
4. Set ek 1 ¼ 2ek 01 and ek 2 ¼ 2ek 01
Our implementation of the algorithm is thus parame-

terless; the only choice left to the operator is in the def-

inition of the collection of complex models used.

Following Baudry et al. [21], we can increase the robust-

ness of the selection using a stability principle: we com-

pute the penalty and the selected model for the

collection of the p most complex model for various p
and choose the penalty yielding the most selected model

complexity.

3 APPLICATIONS TO SPECTRAL IMAGES

To test the proposed algorithm, and more specifically the

usefulness of the spatial information in the segmenta-

tion/classification process, we used it on experimental

data measured in the context of a study of coating pro-

cesses in lutherie [2]. The sample is observed using Fou-

rier Transform Infrared microscopy (FTIR), producing

a full infrared spectrum for each pixel of the image, aim-

ing at the chemical characterization of the sample, and in

particular of the coating layer(s).

3.1 Sample

The studied sample is a thin cross-section of maple wood

with a single layer of hide glue on top of it, prepared

recently using materials and processes from the Cité de

la Musique, using materials of the same type and quality

that are used for lutherie. This sample is to serve as

Spatialized Gaussian Mixture Model and Model Selection
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reference material to study the spectral variation of the

hide glue at the various steps of the process. Infrared

spectra were measured as a way to provide chemical

characterization of the sample.

After application of the hide glue to a small maple

wood piece, a sample was cut out of the piece and thin

sections were produced using a Leica ultra-microtome

fitted with a diamond knife from Diatome to produce

a thin section of about 4 to 6 lm thickness. The section

was then deposited on a MirrIR microscopy blade

coated with gold, providing reflection in the infrared

domain, resulting in the doubling of the optical path of

the absorption, reaching approximately 10 lm. The spec-

tral image was obtained using a Bruker Hyperion 3000

microscope fitted with a 20� Schwarzschild objective

with a numerical aperture of 0:6, and using a focal plane

array sensor made of 64� 64 pixels with projected pixel

size of 2 lm. Acquisition was carried out through a 3� 3
tiling and the result cropped to a 128� 128 pixel region

encompassing most of the section (Fig. 1). Spectra were

measured from 4 000 cm�1 to 800 cm�1 with a resolution

of 8 cm�1 (1 577 samples, one every 2 cm�1). To test the

robustness of the proposed algorithm 4 images were

collected, from a low to high signal-to-noise ratio: 1, 8

and 64 scan to serve as input for the algorithm and 256

scan to serve as ground truth. For these images the data

acquisition required an measurement time of, respec-

tively, 2, 5, 30 mn and 2 h.

The range of wavenumbers corresponding to atmo-

spheric variation of carbon dioxide was removed from

the spectra, hence removing all samples for which the

wavenumber is in the range from 2 318 cm�1 to

2 418 cm�1, hence practically reducing the dimension

of the spectra from 1 577 to 1 528. Random projections

were used to reduce the problem dimensions from

1 528 to 24 (Fig. 2). Each projection was generated

using a centered uniform random number generator,

then projected onto the sub-space orthogonal to the

previously generated projections, and finally scaled to

obtained a unitary L2 norm, hence producing an

orthonormal basis of the random 24-dimensional sub-

space. Using a non-adaptative method for dimension

reduction enabled us to use the exact same basis for

all 4 datasets without privileging any particular dataset

(e.g. the one that would have been used to optimize the

basis) nor having a projection basis dependent on data
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Figure 1

General view of the imaged sample. The background image is the visible color image of the section, surrounded by the MirrIR micros-

copy blade. The central region corresponds to the cropped image used in the spectral image analysis; the image corresponds to the total

energy of the infrared absorbance spectra of each pixel in false colors, from blue for low values to red for hight values. Note that the

tiling is different between the two modes of acquisition, visible light vs infrared. On the right, spectra obtained for two pixels (hide glue

on the top, wood on the bottom) corresponding to 1, 8, 64 and 256 scan in red, violet, blue and black, respectively.
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from a different dataset which would have been the

case if jointly adapting for all datasets at once. Within

this constraint the random-projection method is advan-

tageous as it provides an quasi isometry.

3.2 Statistical Analysis

The set of spectra of each image was submitted to both

regular GMM, using the EM algorithm, as well as the

spatially-aware model proposed herein. In both cases,

we considered the following GMM/cGMM types:

– pkLkC proportions and volumes of the Gaussians are

not identical, but they share the same co-variance

matrix;

– pkLkD
0AkD proportions and volumes of the Gaussians

are not identical; co-variance matrices are non-

identical but have a joint diagonalization basis;

The number of classes was not set a priori but using

the non-asymptotic model selection criteria described

earlier: the minimization of – log-likelihood plus a pen-

alty term proportional to the number of degrees of free-

dom of the model. In the regular GMM case the penalty

proportionality constant was set using the maximal

dimension jump slope heuristic described in Birgé and

Massart [20] and further explained in Baudry et al. [21].

In the cGMM model, the model complexity constant

and the segmentation cardinal constant were set simulta-

neously using the same approach but estimating the

asymptotic bilinear form.

As expected, the critical slope for the number of

components of the mixture increased at higher signal-

to-noise ratio: 4.10, 8.60, and 12.39, respectively, for

the 1-, 8- and 64-scans datasets for the GMM modeliza-

tion, without spatial co-variables. The corresponding

critical slope for the cGMM models are, respectively,
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Figure 2

Projection on the 24-dimensional random orthonormal basis from the «fastest» image (top rows) to the reference image (bottom rows).

To enhance the contrast, false colors from blue for low values to red for high values were used. No clear morphological differences are

seen between the two extreme images, 1 vs 256 scans, but the effect of the reduced signal-to-noise ratio is clearly visible as a strong con-

trast degradation on the 1-scan projections.
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Map of the values of the a posteriori probability for a given component of themixture for each dataset and comparingGMMand cGMM

results. Maps for mixture components corresponding to pixels 1 and 2 of Figure 1 are, respectively, represented on the left and right.
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Result of unsupervised classification through Gaussian Mixture (conditional) density estimation and penalized likelihood model selec-

tion. Results from both the GMM and cGMM are shown, respectively, on the top and bottom rows. From left to right, an increasing

level of signal-to-noise ratio; respectively, 1 scan/2 mn, 8 scan/5 mn and 64 scan/30 mn acquisitions. The optimal number of Gaussian

components in each mixture ranges from 12 to 16, every time with a pkLkD
0AkDmodel. To be able to visually compare the 6 images, we

mapped the colors taking the 64-scan GMM case as a reference since it has the highest k, and mapping to minimize the distance between

the means (lk ) of the Gaussians from one model to the other.
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6.89, 21.46 and 33.87. The number of classes is not

strictly identical among the various datasets, but they

are consistent: between 14 and 16 for the GMM models

and between 12 and 13 for the cGMM models.

The cGMM model selection also involves a critical

slope for the segmentation penalty which is consistent

for the three datasets, ranging from 0.037 to 0.040;

0.0393, 0.0371 and 0.0402, respectively, for the 1-,

8- and 64-scans dataset. This is expected, since the seg-

mentation penalty is related to the image morphology’s

complexity rather than to the signal-to-noise ratio of

the measurements.

The result of the procedure is the estimation for each

pixel of the posterior probability for it to correspond to

each of the Gaussian components of the mixture. This

can be visualized by plotting the “maps” for each com-

ponent, displaying for each pixel the corresponding pos-

terior probability, as in Figure 3. The effect of using the

pixel’s spatial coordinates as co-variables is the spatial

regularization of the posterior probability maps leading

to enhanced contrast compared with that obtained using

the regular GMM.

Both GMM and cGMM results can also be shown in

terms of classification of the pixels, as in Figure 4, where

each pixel is assigned the color corresponding to the

most likely component of the Gaussian mixture model.

This other representation also evidences the spatial

regularization effect of using the pixel’s spatial coordi-

nates as co-variables in the probability density

estimation.

As for the GMM, the cGMM provides for each pixel

the posterior probability that the spectra belong to each

particular component. These probabilities can be used as

weight in a weighted averaging of the measured spectra

to obtain the mean spectra of each Gaussian in the

full-dimensional space rather than in the 24-dimensional

random space used to reduce the problem’s complexity.

Finally, weighted averaging can be performed for each

pixel: averaging the Gaussian means using the posterior

as weights, producing a ‘‘denoised’’ spectrum for each

pixel. The noise reduction effect of the averaging is clear

(comparing Fig. 1 and 5) in all three exposures, produc-

ing spectra of the same overall quality as the best mea-

sured spectra. Nevertheless, the produced results have

to be taken qualitatively since the objective of the proce-

dure is not to minimize quadratic error, hence the target

is not to enhance the signal-to-noise ratio as such but

rather to try to discriminate spectra as well as possible.

Comparing the obtained spectra with those measured

using 256 scan/2 h acquisition, one sees that they are not

missing a single of the small peak features which are all

clearly discernible compared with the raw pixel spectra

for the 1 scan/2 mn and 8 scan/5 mn datasets. The

recomputed spectra from the three datasets (1-, 8- and

64-scan) are nearly identical among each other. When

compared to the raw spectra obtained by a 256-scan/

2 h acquisition, the exact same peaks are present in all

spectra with the same positions in terms of local maxima;

there are only slight variations in terms of the relative

amplitudes of the various peaks. This latter difference

only concerns the quantitative analysis of the chemical

materials which would anyhow be better obtained using

a regression method on raw data once the base constitu-

ents are identified. This identification is performed

through the qualitative analysis we mentioned earlier,

based on the presence and position of peaks and not

relative amplitudes.
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Appendix A : Conditional Density Estimation by Model Selection

In [17] and the corresponding extended technical report [18], we showed that the penalty choice proposed here is a

good choice in terms of conditional density estimation. For the sake of completeness, we summarize here the impli-

cation of these results for spatialized Gaussian mixture models.

We should first specify our goodness criterion. The most natural quality measure in a maximum likelihood

approach is the the Kullback-Leibler divergence, KL. All the conditional densities appearing here are defined with

respect to the Lebesgue measure. We can thus write, with a slight abuse of notation:

KLðs; tÞ ¼ KLðsdk; tdkÞ ¼
R
X

sðyÞ
tðyÞ ln sðyÞ

tðyÞ tdðyÞ if sdk � tdk () 8x 2 X; sðxÞ ¼ 0 ) tðxÞ ¼ 0

þ1 otherwise

(

This divergence is an intrinsic quality measure; it does not depend on the choice of the reference measure but only

on the probability laws. This divergence should be further adapted to the conditional density setting. We are thus led

to the following natural tensorized divergence:

KL�n
k ðs; tÞ ¼ 1

n

Xn

i¼1

E KLkðsð�jxiÞ; tð�jxiÞÞ½ �

Unfortunately, we will not be able to control this divergence but only a slightly smaller one. More precisely, we use the

Jensen-Kullback-Leibler divergence JKLq with q 2 ð0; 1Þ defined by:

JKLq sdk; tdkð Þ ¼ JKLq;kðs; tÞ ¼ 1

q
KLk s; ð1� qÞsþ qtð Þ

already used by Massart [22], Birgé and Massart [23] and van de Geer [24]. This divergence is smaller than the

Kullback-Leibler one but larger than the squared Hellinger one, denoted d2kðs; tÞ. We define their tensorized counter-

part:

d2�n
k s; tð Þ ¼ 1

n

Xn

i¼1

E d2k s �jxið Þ; t �jxið Þð Þ� �

and

JKL�n
q;kðs; tÞ ¼

1

n

Xn

i¼1

E JKLq;kðsð�jxiÞ; tð�jxiÞÞ
� �

In [18], we show precisely that:

Theorem 1. Assume we observe (xi, Si) with unknown conditional density s0. Let bsm be a g-log-likelihood minimizer

in Sm:

Xn

i¼1

� lnðbs mðSijxiÞÞ 	 inf
sm2Sm

Xn

i¼1

� lnðsmðSijxiÞÞ
 !

þ g

For any q 2 ð0; 1Þ and for any C1 > 1, there exist a C
 > p and a C
 > 0, such that the penalized estimator bsbm with bm
such that:

Xn

i¼1

� lnðbsbm ðSijxiÞÞ þ penðbmÞ 	 inf
m2M

Xn

i¼1

� ln ðbsbmðSijxiÞÞ þ penðmÞ
 !

þ g0

satisfies:

E
h
JKL�n

q ðs0;bs dP;K;G Þ
i
	 C1 inf

ðP;K;GÞ2M
inf

sP;K;G2SP;K;G

KL�nðs0; sP;K;GÞ þ penðP;K;GÞ
n

� 	
þK0

n
þ gþ g0

n

	�
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as soon as:

pen P;K;Gð Þ � ek 1 dim sP;K;G
� �þ ek 2jjPjj

with:

ek 1 � k 2C
 þ c
 þ 1þ ln
n

eC


� 	

þ

� 	

and
ek 2 � C
k ln 2

with k > k0, where k0 is a constant that depends only on q and C1.

The variance of the maximum likelihood in each model is asymptotically of the order 2dimðsP;K;GÞ and a similar

bound also holds non-asymptotically [18]. The variance is thus up to a factor that may grow logarithmically with

n, of the order ðsP;K;GÞ. This implies that, again up to a factor that may grow logarithmically with n, the risk of the

penalized estimator is bounded by the best possible risk among the collection of models. This specific choice of penalty

is thus a good choice for conditional density estimation. Although this does not imply a good classification property,

this is sufficient to obtain the consistency of the number of classes and the parameters when the true conditional den-

sity is indeed a spatialized Gaussian mixture.

Appendix B: Detailed Description of the Optimization Algorithm

It is based on the construction of majorizations of PL which coincide at the current estimate and are easier to min-

imize. The remaining part of this section is devoted to the mathematical justification of this algorithm. To construct

the majorization, we extend at each pixel the observation of the spectrum S to the observation of the couple ðS; kÞwith
k 2 f1; . . . ;Kg. With a slight abuse of notation, we denote:

sK;h;pðS; kÞ ¼ pkU hk ðSÞ

the joint density with respect to the tensor product of the Lebesgue measure and the counting measure. This cor-

responds indeed to the way we assign each sample to its class through our MAP principle as:

sK;h;pðkjSÞ ¼ pkU hk ðSÞPK
k 0¼1 pk 0U h0k

ðSÞ

Using this notation, the weights computed in the majorization step can be rewritten as:

bPðjÞ
k i½ � ¼ s

K;bhðjÞ;bpðjÞ½Rl �
ðkjSiÞ

The key property is the following majorization property:

Lemma 1. Let ðbP ðjÞ; bhðjÞ; bpðjÞÞ be a current estimate, 8P; h 2 G; p � SjjPjjk�1

PLðP;K;G; h; pÞ 	 P
Rl�P

P
ijxi2Rl

� P
K

k¼1

bP ðjÞ
k ½i�pk ½Rl�

 !
þ penspaðKÞ

 !

þP
n

i¼1
�P

K

k¼1

bPðjÞ
k ½i� lnUhk

ðSiÞ
� 	

þ penparðK;GÞ

þP
n

i¼1

PK

k¼1

bP ðjÞ
k ½i� ln bP ðjÞ

k ½i�
� 	
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with equality when ðP; p; hÞ ¼ ðbP ðjÞ; bpðjÞ; bhðjÞÞ.
proved, using a conditioning with respect to k.

The minimization step in h corresponds exactly to the minimization of the right-hand side, a minimization that

reduces to the minimization of:

Xn

i¼1

�
XK

k¼1

bPðjÞ
k ½i� lnUhk

ðSiÞ
 !

This minimization has the exact same structure as the corresponding one in the classical Gaussian Mixture Model

(GMM) case. We can thus rely on the classical optimization technique described, for instance, by Biernacki et al [11]

This efficiently provides a new estimate bh
ðjþ1Þ

for the K-uples of Gaussian parameters within the prescribed set G.

Minimizing in P and p the same right-hand side is equivalent to minimizing:

X

Rl2P

X

ijxi2Rl

�
XK

k¼1

bPðjÞ
k ½i�ln pk ½Rl�

 !
þ penspaðKÞ

0
@

1
A

which have an additive structure with respect to the squares of the partition. Given a square Rl, a simple compu-

tation shows that the minimum of:

X

ijxi2Rl

�
XK

k¼1

bPðjÞ
k ½i�ln pk ½Rl�

 !
þ penspaðKÞ

is attained at:

bp jþ1ð Þ
k Rl½ � ¼

P
ijxi2Rl

bP jð Þ
k i½ �

P
injxi2Rl

1

Let Cðjþ1=2Þ½Rl� the value at this minimum:

Cðjþ1=2Þ½Rl� ¼
X

ijxi2Rl

�
XK

k¼1

bPðjÞ
k ½i�ln bpðjþ1Þ

k ½Rl�
 !

þ penspaðKÞ

the optimization in P becomes equivalent to the minimization of:

X

RleP

Cðjþ1Þ Rl½ �

Capitalizing on the tree structure of the dyadic recursive partition, one can use the fast dynamic programming strat-

egy of Donoho [19] and Huang et al. [25] described briefly in Appendix C, to obtain an optimal partition bP ðjþ1=2Þ. Note

that the algorithm could have been stopped here as, by construction:

PLðbP ðjÞ;K;G; hðjÞ; bpðjÞÞ � PLðbP ðjþ1=2Þ;K;G; hðjþ1Þ; bpðjþ1ÞÞ

A slight modification of the cost function, the one used in the description of the algorithm, yields a better partition

choice. Indeed:

PL bP jþ1
2ð Þ;K;G; h jþ1ð Þ; bp jþ1ð Þ

� �
¼ P

Rl2bP jþ1
2ð Þ

P
ijxi2Rl

�ln
PK

k¼1
bp jþ1ð Þ
k ½Rl�Ubh jþ1ð Þ

k

ðSiÞ
� 	

þ penspa Kð Þ
!

þ penpar þ ðK;GÞ
 

¼
X

Rl2bP ðjþ1=2Þ

Cðjþ1Þ½Rl� þ penparðK;GÞ
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so that the optimizer bP ðjþ1Þ
of:

X

Rl2P
Cðjþ1Þ½Rl�

the one proposed in the algorithm, can be obtained with the same dynamic programming algorithm and is such

that:

PLðbP ðjÞ;K;G; bhðjÞ; bpðjÞÞ � PLðbP ðjþ1Þ;K;G; bhðjþ1Þ; bpðjþ1ÞÞ � PLðeP ðjþ1Þ;K;G; bhðjþ1Þ; bpðjþ1ÞÞ

Proof of Lemma 1. We will be slightly more general in the proof and assume that the per rectangle penalty may

depends on R and p while the other may depends on h :

pen P;K;G; h; pð Þ ¼
X

Rl2P
penspa Rl;K; p Rl½ �ð Þ þ penparðK;G; hÞ

For any probability (qk) on the classes k:

ln Sk;h;p Sð Þ ¼ PK

k¼1
qk ln Sk;h;p Sð Þ

¼ PK

k¼1
qk ln

Sk;h;pðk;SÞqk
Sk;h;pðkjSÞqk

� �

¼ �P
K

k¼1
qk ln

�
qk

Sk;h;pðk;SÞ
�
þ P

K

k¼1
qk ln

qk
Sk;h;pðKjSÞ
� �

¼ �KL q; sK;h;pð:jSÞ
� �þ KL q; sK;h;pð:jSÞ

� �

Assume we have a “current” estimate (bp jð Þ; bhðjÞÞ and let:

qk ¼ s
K;bh jð Þ;bp jð Þ kjSð Þ ¼

bp jð Þ
k UbhðjÞ

k

ðSÞ
PK

k 0¼1 bp
jð Þ
k 0
UbhðjÞ

k0
ðSÞ

we obtain a surrogate function of –ln sK;h;p with the help of the previous formula:

� ln sK;h;p Sð Þ ¼ KL s
K;bh jð Þ;bp jð Þ �jSð Þ; sk;h;p �jSð Þ

� 	
� KL

�
s
K;bh jð Þ;bp jð Þ �jSð Þ; sK;h;p �jSð Þ

	

	 KL

�
s
K;bh jð Þ;bp jð Þ �jSð Þ; sK;h;p �jSð Þ

	

with equality when (p; h ¼ bp jð Þ; bh jð Þ
� �

This idea can be used pixelwise and thus starting with a current estimate cðP jð Þ; bh jð Þ; bp jð ÞÞ; one obtains:

X

R2P

X

ijxi2Rl

� ln sk;h;p½Rl �

0
@

1
A 	

X

Rl2P

X

ijxi2Rl

KLðs
K;bh jð Þ bR jð Þ

l xið Þ
� �

;bh jð Þ �jSi
� �

; sK;p Rl½ �;h �; Sið ÞÞ
0
@

1
A

with equality when P; p; hð Þ ¼ ðbP ðjÞ; bpðjÞ; bhðjÞÞ. Adding the penalties yields:

PL P;K;G; h; pð Þ 	
X

Rl2P

X

ijxi2Rl

KL
�
s
K;bp jð Þ bR jð Þ

l xið Þ
� �

;bh jð Þ �; Sið Þ; sK;p Rl½ �;h �jSi
� �

penspaðRl;K; p½Rl�Þ
!

þ penparðK;G; hÞ
0
@
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still with equality when P; p; hð Þ ¼ ðbP ðjÞ; bpðjÞ; bhðjÞÞ. This right-hand side can be rewritten:

P
Rl2P

P
ijxi2Rl

KL s
K;bh jð Þ;bpðjÞ bR jð Þ

l xið Þ
� � �jSi

� �
; sK;h;p Rl½ � :; Sið ÞÞ þ penspaðRl;K;p½Rl�

� 	 !
þ penparðK;G; hÞ

¼ P
Rl2P

� P
ijxi2Rl

�P
K

k¼1
s
K;bh jð Þ ;bpðjÞ bR jð Þ

l xið Þ
� �

;
kjSi
� �

ln sK;h;p Rl½ � k; Sið Þ
� 	

þ penspaðRl;K; p½Rl�Þ
	
þ penpar K;G; hð Þ

þ P
Rl2P

P
ijxi2Rl

PK

k¼1
s
K;bh jð Þ ;bpðjÞ bR jð Þ

l xið Þ
� �

;
kjSi
� �

ln s
K;bh jð Þ ;bp jð Þ bR jð Þ

l xið Þ
� � kjSi

� �
 !

or using the notation bPðjÞ
k i½ � ¼ s

K;bh jð Þ;bp jð Þ bR jð Þ
l xið Þ

� � kjSi
� �

:

¼ P
Rl2P

P
ijxi2Rl

�P
K

k¼1

bP jð Þ
k i½ � In sK;h;p Rl½ �ðk; SiÞ þ penspaðRl;K; p½Rl�Þ

� 	
þ penpar K;G; hð Þ

 !

þP
n

i¼1

PK

k¼1

bP jð Þ
k i½ � ln bP jð Þ

k i½ �
� 	

¼ P
Rl2P

P
ijxi2Rl

�P
K

k¼1

bP jð Þ
k i½ � ln pk Rl½ �

� 	
þ penspaðRl;K; p½Rl�Þ

 !

þP
n

i¼1
�P

K

k¼1

bP jð Þ
k i½ � lnUhkSi

� 	
þ penpar K;G; hð Þ þP

n

i¼1

PK

k¼1

bP jð Þ
k i½ � ln bP jð Þ

k i½ �
! 

Appendix C: Partition Optimization Algorithm

The fast linear programming strategy used to minimize over the set of dyadic partitions an additive cost:

X

Rl2P
CðRlÞ

capitalizes on the quadtree structure of those dyadic partitions. For any leafR, we denote PðRÞ a generic partition
of R and ePðRÞ the one minimizing the local cost,

P
Rl2pðRÞCðRlÞ:

The key observation is that the best partition ePðR0Þ of a squareR0 is either the whole squareR0 or the union of the

best partitions of its four subsquaresR1;R2;R3 andR4. Furthermore, the decision is obtained by comparing the cost

of these two possibilities. If we denote:

eC ðRÞ ¼
X

Rl2eP ðRÞCðRlÞ

ePðR0Þ ¼ R0f g if CðR0Þ 	
P4

i¼1

eC ðRÞ
[4
i¼1
eP ðRiÞ otherwise

8
<
:

This leads to a recursive algorithm as soon as one notes that there is a minimal size for the subsquares, for which the

only possible partition is the trivial one, thus allowing the initialization of the recursion.
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