
HAL Id: hal-01933374
https://hal.science/hal-01933374

Submitted on 23 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Morphological Component Analysis for the Inpainting of
Grazing Incidence X-Ray Diffraction Images Used for

the Structural Characterization of Thin Films
G. Tzagkarakis, E. Pavlopoulou, Jalal M. Fadili, G. Hadziioannou, J.-L. Starck

To cite this version:
G. Tzagkarakis, E. Pavlopoulou, Jalal M. Fadili, G. Hadziioannou, J.-L. Starck. Morphological Com-
ponent Analysis for the Inpainting of Grazing Incidence X-Ray Diffraction Images Used for the Struc-
tural Characterization of Thin Films. Oil & Gas Science and Technology - Revue d’IFP Energies
nouvelles, 2014, 69 (2), pp.261-277. �10.2516/ogst/2012077�. �hal-01933374�

https://hal.science/hal-01933374
https://hal.archives-ouvertes.fr


This paper is a part of the hereunder thematic dossier
published in OGST Journal, Vol. 69, No. 2, pp. 195-372

and available online here
Cet article fait partie du dossier thématique ci-dessous
publié dans la revue OGST, Vol. 69, n°2, pp. 195-372

et téléchargeable ici

Do s s i e r

DOSSIER Edited by/Sous la direction de : L. Duval

Advances in Signal Processing and Image Analysis for Physico-Chemical,
Analytical Chemistry and Chemical Sensing

Progrès en traitement des signaux et analyse des images pour les analyses
physico-chimiques et la détection chimique

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 69 (2014), No. 2, pp. 195-372
Copyright © 2014, IFP Energies nouvelles

195 > Editorial

207 > Multivariate Analysis for the Processing of Signals
Traitement de signaux par analyse multivariée
J.R. Beattie

229 > NMR Data Analysis: A Time-Domain Parametric Approach Using Adaptive
Subband Decomposition
Analyse de données RMN : une approche paramétrique basée sur
une décomposition en sous-bandes adaptative
E.-H. Djermoune, M. Tomczak and D. Brie

245 > Unsupervised Segmentation of Spectral Images with a Spatialized
Gaussian Mixture Model and Model Selection
Mélange de Gaussiennes spatialisé et sélection de modèle pour
la segmentation non-supervisée d’images spectrales
S.X. Cohen and E. Le Pennec

261 > Morphological Component Analysis for the Inpainting of Grazing
Incidence X-Ray Diffraction Images Used for the Structural
Characterization of Thin Films
Analyse en composantes morphologiques pour les retouches d’images
de diffraction des rayons X en incidence rasante utilisés pour
la caractérisation structurale des couches minces
G. Tzagkarakis, E. Pavlopoulou, J. Fadili, G. Hadziioannou and J.-L. Starck

©
Ph

oto
s:

DO
I:

10
.25

16
/og

st/
20

14
01

3,
IF

PE
N,

X.

279 > Inverse Problem Approach for the Alignment of Electron
Tomographic Series
Approche problème inverse pour l’alignement de séries en
tomographie électronique
V.-D. Tran, M. Moreaud, É. Thiébaut, L. Denis and J.M. Becker

293 > Design of Smart Ion-Selective Electrode Arrays Based on Source
Separation through Nonlinear Independent Component Analysis
Développement de réseaux de capteurs chimiques intelligents par
des méthodes de séparation source fondée sur l’analyse de
composantes indépendantes non linéaire
L.T. Duarte and C. Jutten

http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2014/02/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2014/02/contents/contents.html


//
�

�

�

�

�

�

�

�

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 69 (2014), No. 2, pp. 261-277
Copyright c© 2013, IFP Energies nouvelles
DOI: 10.2516/ogst/2012077

Morphological Component Analysis for the Inpainting
of Grazing Incidence X-Ray Diffraction Images Used

for the Structural Characterization of Thin Films
G. Tzagkarakis1∗, E. Pavlopoulou2, J. Fadili3, G. Hadziioannou2 and J.-L. Starck1

1 Commissariat à l’Energie Atomique (CEA), Centre de Saclay, 91191 Gif-sur-Yvette Cedex - France
2 Université Bordeaux, LCPO, UMR 5629, 33600 Pessac - France

3 GREYC CNRS, UMR 6072, ENSICAEN, 14050 Caen Cedex - France
e-mail: georgios.tzagkarakis@cea.fr - eleni.pavlopoulou@enscbp.fr - jalal.fadili@greyc.ensicaen.fr - hadzii@enscbp.fr - jstarck@cea.fr

∗ Corresponding author

Résumé — Analyse en composantes morphologiques pour les retouches d’images de diffrac-
tion des rayons X en incidence rasante utilisés pour la caractérisation structurale des couches
minces — La diffraction des rayons X en incidence rasante (GIXD) est une technique de caractéri-
sation souvent utilisée dans l’étude de la structure des couches minces. En ce qui concerne les films
organiques, le confinement du film sur le substrat conduit à des structures GIXD anisotropes à deux
dimensions, telles celles observées pour les films à base de polythiophène utilisés comme couches
actives dans les applications photovoltaiques. D’éventuels dysfonctionnements des détecteurs utilisés
peuvent altérer la qualité des images acquises, affectant ainsi le processus d’analyse et l’information
structurelle qui en est dérivée. Motivés par le succès des analyses en composantes morphologiques
(MCA) en traitement d’images, nous nous attaquons dans cette étude au problème de la récupération de
l’information manquante dans les images GIXD due à un dysfonctionnement potentiel des détecteurs.
Nous montrons d’abord que les structures géométriques présentes dans les images GIXD peuvent
être représentées de façon parcimonieuse en utilisant une combinaison de transformées redondantes,
à savoir la transformée en curvelets et en ondelettes non-décimée. Ceci permet une description simple
et compacte de l’information contenue dans ces images. Ensuite, l’information manquante est récupérée
en appliquant la MCA dans un cadre d’« inpainting », en exploitant la représentation parcimonieuse des
données GIXD dans ces deux domaines transformés. L’évaluation expérimentale montre que l’approche
proposée est très efficace pour récupérer les informations manquantes lorsqu’elles sont aléatoirement
distribuées sur les pixels de l’image ou lorsque des rangées entières sont manquantes, même lorsque
la moitié du nombre total de pixels est affectée. Ce résultat indique que la MCA peut être appliquée
pour remédier aux potentiels problèmes liés à la performance des détecteurs lors de l’acquisition, ce
qui est d’une grande importance dans les expériences synchrotron, puisque le temps de faisceau alloué
aux utilisateurs est extrêmement limité et que toute défaillance technique peut être préjudiciable pour
le cours du projet expérimental. En outre, nos résultats permettent de réduire le temps d’acquisition ou
d’éviter la répétition des mesures, qui donne plus de valeur à l’approche proposée.

Abstract — Morphological Component Analysis for the Inpainting of Grazing Incidence X-Ray
Diffraction Images Used for the Structural Characterization of Thin Films — Grazing Incidence
X-ray Diffraction (GIXD) is a widely used characterization technique, applied for the investigation of
the structure of thin films. As far as organic films are concerned, the confinement of the film to the
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substrate results in anisotropic 2-dimensional GIXD patterns, such those observed for polythiophene-
based films, which are used as active layers in photovoltaic applications. Potential malfunctions of the
detectors utilized may distort the quality of the acquired images, affecting thus the analysis process and
the structural information derived. Motivated by the success of Morphological Component Analysis
(MCA) in image processing, we tackle in this study the problem of recovering the missing information
in GIXD images due to potential detector’s malfunction. First, we show that the geometrical structures
which are present in the GIXD images can be represented sparsely by means of a combination of
over-complete transforms, namely, the curvelet and the undecimated wavelet transform, resulting in a
simple and compact description of their inherent information content. Then, the missing information
is recovered by applying MCA in an inpainting framework, by exploiting the sparse representation of
GIXD data in these two over-complete transform domains. The experimental evaluation shows that
the proposed approach is highly efficient in recovering the missing information in the form of either
randomly burned pixels, or whole burned rows, even at the order of 50% of the total number of pixels.
Thus, our approach can be applied for healing any potential problems related to detector performance
during acquisition, which is of high importance in synchrotron-based experiments, since the beamtime
allocated to users is extremely limited and any technical malfunction could be detrimental for the
course of the experimental project. Moreover, the non-necessity of long acquisition times or repeating
measurements, which stems from our results adds extra value to the proposed approach.

INTRODUCTION

Since the introduction of X-ray diffraction for the investi-
gation of the unit cell of crystals in the beginning of the
20th century, X-rays turned to be an indispensable char-
acterization tool that probes the structure of a wealth of
materials, ranging from inorganic crystals and powders to
organic small molecules and polymers, up to proteins and
other biological samples [1, 2]. During the last 20 years, the
need for characterizing the structure of 2-dimensional (2-D)
systems, such as thin films that are of particular interest in
microelectronics and other nanosciences, led to the emer-
gence of Grazing Incidence X-ray Diffraction (GIXD) [3].
GIXD exploits the principles of X-ray diffraction, however
the X-ray beam probes the sample at a very small inci-
dent angle, typically below 1◦, allowing, thus, an effec-
tive increase of the penetration depth and, consequently, the
interaction of X-rays with a bigger part of the sample. On
top of that, the physical confinement of one side of the film
to the substrate may result in preferentially oriented scatter-
ers that give rise to non-isotropic diffraction patterns. Such
patterns are recorded when studying organic thin films, like
polythiophene-based films, which are extensively used in
organic photovoltaics [4].

In order to acquire and exploit all information contained
in the anisotropic diffraction patterns, 2-D detectors are uti-
lized. Data acquisition is followed by sophisticated data
analysis, which premises the high quality of the recorded
images. For this, synchrotron-based experiments are pre-
ferred, since the high X-ray flux provided in a synchrotron
facility allows for increased signal-to-noise ratio. However,
due to large demand for synchrotron beamtime, the time
allocated to users is extremely limited and the success of

the experiments is imperative. In the quest for an alterna-
tive way of recovering information that is partially recorded
in the GIXD images due to technical problems during the
experiment or less acquisition time than the optimum, we
turn to image processing theories.

In image processing, finding an efficient and compact
representation of the data under consideration is of major
importance in several distinct tasks, such as, compression,
denoising and restoration, to name a few. In the quest
for a suitable transform, sparsity of the representation was
recognized as a key requirement in seeking simplifying
operations [5, 6]. Specifically, the design of over-complete
redundant representations is now at the core of many state-
of-the-art algorithms used in image compression [7], denois-
ing [8], deconvolution [9] and restoration [10]. In each case,
an image is represented as a linear combination of atoms
from a dictionary, where the number of atoms is much larger
than the original image dimension. Due to the redundancy,
there exist numerous ways to represent the image, with our
preference being towards the sparsest one, that is, with the
fewest non-zero components as being the simplest.

Focusing on images, another important task is to
decompose the data into elementary building blocks. The
successful separation of the image content is crucial for
its effective analysis, as well as for tasks, such as, image
enhancement, compression and synthesis. Numerous meth-
ods have been proposed for the solution of the image separa-
tion problem, especially in the frameworks of Blind Source
Separation (BSS) [11] and Independent Component Analy-
sis (ICA) [12]. In addition, the need to recognize structures
of different sizes in a given image, makes it impossible
to define a priori an optimal resolution for analyzing it.
Multiresolution decomposition was introduced as a simple
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hierarchical framework for interpreting the image informa-
tion, where at different resolutions the details of an image
generally characterize different physical structures.

In this direction, multiscale methods have become pop-
ular image processing tools in the last couple of decades,
especially with the development of wavelets [13]. While
the Discrete Wavelet Transform (DWT) was implemented
successfully in image compression, the results were far
from optimal for other image processing tasks, such as,
deconvolution, detection and filtering. The dual-tree com-
plex wavelet transform [14] was introduced as a valuable
enhancement of the traditional DWT, which is nearly shift
invariant and, in higher dimensions, it is characterized by
directional selectivity. One of the reasons to focus on the
design of new redundant representations was the need to
preserve the shift-invariance property, while also approxi-
mating more closely the continuous analogue.

For this purpose, several novel tailored multiscale and
multidirectional redundant transforms have been introduced
in the literature, including, among others, the Undecimated
Discrete Wavelet Transform (UDWT) [15], the curvelet
transform [16], the contourlet transform [17] and the ban-
dlet transform [18]. Most importantly, each of these trans-
forms adapts to specific characteristics and structures in a
given image, thus, yielding highly sparse representations
in the presence of the corresponding structures, in a non-
linear approximation scheme. For instance, sparse approxi-
mations of piecewise smooth images with point singularities
are obtained using the UDWT, which is efficient in capturing
roughly isotropic features. However, this is no longer opti-
mal in case of piecewise smooth images with singularities
along smooth curves or edges. Such images are approxi-
mated more efficiently using the curvelet transform, which
is highly anisotropic and thus exhibits high directional selec-
tivity by defining an adapted multiscale geometry.

Apart from decomposing an image in terms of the physi-
cal size and orientation of its structural content via a mul-
tiscale transform, natural images are often considered to
consist of homogeneous regions and oscillating patterns
(e.g., texture and noise). In this later case, it is also of
high importance to be able to decompose an image into its
constituent components. Several methods [19-22] have been
introduced for decomposing a given image into a component
with bounded variation, which holds the geometrical infor-
mation, and an oscillating component, which corresponds to
the textural information. A recent work [23] generalized the
previous approaches providing a method for decomposing
an image in more than two components, while being also
able to handle data corrupted with a linear operator and a
non-necessarily Gaussian noise.

Tackling the decomposition problem from a different per-
spective, the use of sparsity as a desired property to rely on
was recognized earlier [24, 25]. In this framework, Mor-
phological Component Analysis (MCA) [26] is a recent

novel technique, which exploits the sparse representation
of structured data in large, generally over-complete, trans-
form domains (or dictionaries) to separate them in a set of
distinct components based on their difference in morphol-
ogy. The method is based on the assumption that for each
morphological feature to be separated, there exists a suit-
able transform that enables its reconstruction via a sparse
representation, while this transform is highly inefficient in
representing the other morphological features. For instance,
it has been shown that MCA can be used to separate the
texture from the piecewise smooth component of a given
image, by noticing that the former is characterized well
using local cosine functions, while the latter may be well
represented using curvelets [27]. The MCA algorithm has
been employed successfully for the analysis of data in sev-
eral areas, such as, video analysis [28], astrophysics [29]
and medical imaging [30,31], while it was extended recently
in the framework of “image inpainting” [32], enabling the
treatment of problems where parts of the image are missing
or corrupted.

Motivated by the success of MCA in signal and image
processing, the purpose of this study is to exploit the effec-
tiveness of modern over-complete transforms and extend the
applicability of MCA to the analysis of 2-D GIXD data. To
the best of our knowledge, this is the first study that bridges
the gap between the analysis of diffraction data and state-of-
the-art image processing techniques. More specifically, first
we show that the geometrical structures, which are present in
GIXD images for the specific type of thin films considered in
this study, can be represented efficiently by means of a com-
bination of over-complete transforms, namely, the UDWT
and the curvelet transform, resulting in a simple and com-
pact description of their inherent structures. Then, we tackle
the important problem of recovering the missing information
in GIXD images, e.g., due to potential malfunction of the
detectors, by applying MCA in an inpainting framework.

The experimental evaluation using high-resolution GIXD
images shows that the proposed approach is highly efficient
in recovering missing information in the form of either ran-
domly burned pixels or whole burned rows, even at the
order of 50% of the total number of pixels (which is any-
way an extreme practical scenario). This missing informa-
tion may inhibit the post-processing of GIXD images and
data evaluation. Data analysis is mainly based on reduc-
tion of the 2-D images into 1-D intensity patterns. This is
done either by integrating the diffracted intensity (through-
out the whole image or on specific sectors) or by plot-
ting the intensity across the meridian and/or the horizon.
In case of missing information due to burned pixels, or
inaccurate statistics related to a small number of measure-
ments due to reduced acquisition times, incomplete inten-
sity 1-D plots will be derived. This entails the danger of
allowing for data misinterpretation and derivation of false
scientific outcomes, which are highly sensitive to the form
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Figure 1

Schematic of the GIXD setup. a) GIXD setup: α is the incidence angle, 2θ is the scattering angle. b) Directions of the various linecuts that can
be performed for the evaluation of GIXD data.

of the intensity patterns. The added value of our approach
stems, thus, from its application in healing potential prob-
lems related to detector performance during image record-
ing. Additionally, MCA weakens the necessity for long
acquisition times or repeating experiments. All these merits
are of high importance in synchrotron-based experiments,
since the beamtime allocated to users is extremely limited
and any technical malfunction could be detrimental for the
course of the experimental project.

The rest of the paper is organized as follows: Section 1
provides the principles of GIXD technique, experimental
details on image acquisition and a brief description of the
thin films under study. Section 2 overviews the basic
concepts of MCA applied in the framework of inpainting.
Section 3 studies the efficiency of a combination of over-
complete redundant transforms, namely, the UDWT and the
curvelet transform, in decomposing the given GIXD images
into their constituent morphological components. Then, an
evaluation of the performance of MCA and its comparison
with the performance of classical inpainting methods, in
recovering the missing information in the form of individ-
ually burned pixels, or whole burned lines, distributed uni-
formly at random over the whole image area, is performed.
Finally, we conclude and give directions for future work.

1 GIXD MEASUREMENTS AND MATERIALS UNDER
STUDY

GIXD experiments were performed on the Dutch-Belgian
Beamline (DUBBLE CIG), station BM26B, at the European
Synchrotron Radiation Facility (ESRF), Grenoble, France.
In GIXD, the X-ray beam probes the sample at the grazing

geometry and the diffracted intensity is recorded by a 2-D
position sensitive detector, which is placed after the sample
typically at a distance of around 20-40 cm (Fig. 1a). The
energy of the X-rays was 12 eV and the angle of incidence
was set at 0.15◦. The diffracted intensity was recorded by a
Frelon CCD camera and it was normalized by the incident
photon flux and the acquisition time. Each pixel monitors
the intensity as a function of the scattering vector q that
is defined with respect to the center of the incident beam
and has a magnitude of q = (4π/λ) sin θ, where 2θ is the
scattering angle and λ is the wavelength of the X-ray beam.

In order to analyze the GIXD data several “linecuts”
are performed. Usually, the 2-D images are radially aver-
aged around the centre of the primary beam, which gives
the 1-D plot of the intensity as a function of q. In a second
approach, linecuts across the meridian and/or the horizon
are extracted, which provide the intensity plots across the
out-of-plane (qz) and in-plane (qxy) directions, respectively
(Fig. 1b). Finally, azimuthal scans can be performed around
a q-range of special interest, herein at around q = 0.37 Å−1

(the highest intensity ring apparent in the test images shown
in Fig. 2). In this case, the diffracted intensity is plotted as a
function of the polar angle χ, which is defined with respect
to the normal to the substrate (Fig. 1b).

The GIXD images presented herein were collected from
polythiophene-based films. Poly(3-hexylthiophene), P3HT,
is a semi-conducting polymer that is widely used as a
donor material for the fabrication of organic photovoltaic
devices. For our study, P3HT was blended with [6, 6]-
phenyl-C61-butyric acid methyl ester, PCBM, a fullerene-
based organic small molecule, in equal masses in chloroben-
zene and 100 nm thick films were spin-coated on indium
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Figure 2

Original high-resolution 2048 × 2048 GIXD images.

tin oxide, ITO, substrates. Two films were prepared and
annealed at 160◦C for 10 min (image X1) and 20 min
(image X2), respectively, in order to induce small morpho-
logical changes that will result in small changes in the two
GIXD images. We opt to use polythiophene-based films
as a case study due to the non-isotropic features that are
apparent in their GIXD patterns. We note that no discus-
sion on the structural characteristics of the two films will
be presented in this work, since our objective is to stress
the potential use of image processing techniques in physico-
chemical applications.

2 IMAGE INPAINTING USING MCA

In this section, the main principles of MCA are introduced
in the framework of image inpainting. Since the perfor-
mance of the MCA algorithm relies and depends highly, on
the degree of sparsity achieved for the analyzed data, we
start by introducing briefly the concept of sparsity in trans-
forms. Then, the process of decomposing an image in a set
of distinct morphological components by exploiting sparse
representations will be described, along with the extension
of MCA as a solution to the image inpainting problem.

2.1 Sparse Recovery in a Transform Domain
In the following, we consider for convenience the case of
square N × N images, although the proposed approach is
extended straightforwardly in the general non-square case.
Let X ∈ RN×N be the given image, T {·} denote a sparsifying
transformation and c ∈ RL be the vector of transform coef-
ficients, that is, c = T {X}. Although T {·} can be linear or
non-linear in the general case, however, for computational
and implementation purposes, the linear transformations are
highly promoted for carrying out several signal and image
processing tasks (e.g., restoration, denoising, deconvolu-
tion). Thus, in the subsequent analysis the linear case is

considered. We note the following two remarks concerning
the sparsifying transform:
– in case of linearity, both the forward,T {·}, and the inverse

transform,T−1{·}, can be expressed in matrix form, while
the transform coefficients are obtained by means of sim-
ple matrix-vector multiplications;

– in case of an over-complete redundant representation the
number of transform coefficients is larger than the origi-
nal image dimension, that is, L > N2.
An image X is said to be “K-sparse” in the transform

domain T if the coefficient vector c has exactly K � L non-
zero components. However, in practice a natural image X is
not strictly sparse but “compressible”, which means that the
magnitude of the re-ordered transform coefficients decays at
a power law:

|cri | ≤ C i−1/δ , i = 1, . . . , L (1)

where cri denotes the i-th sorted coefficient, C is a real pos-
itive constant and δ > 0 controls the rate of decay. Thanks
to the rapid decay of their coefficients, compressible images
are well-approximated by K-sparse images, that is, by keep-
ing the K most significant (largest magnitude) coefficients
cri , i = 1, . . . ,K. Following a typical transform coding-
based approach, a way to choose the value of K is given
by keeping the K transform coefficients, which contain a
predetermined percentage of their total energy. In practice,
the value of this percentage is set in a heuristic way.

In contrast to a complete transform basis, where X has an
exact representation, an over-complete redundant transform
yields several exact representations. In the later case, these
representations are not equally interesting in terms of mod-
eling and feature extraction. In particular, the representation
of X by means of highly sparse coefficient vectors c is pro-
moted, since it usually leads to a more concise and possibly
more interpretable representation of X.
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However, selecting the smallest subset of transform basis
functions (also called “atoms”) from a large redundant set,
which will be combined linearly to reproduce the salient
features of a given image, is a hard combinatorial problem.
In a formal way, the requirement for obtaining the sparsest
representation c for a given image X in a transform domain
T is written as follows:

min
c∈RL
‖c‖0 subject to X = T−1{c} (2)

where ‖c‖0 denotes the �0-pseudo-norm (1) defined as the
number of non-zero elements of the vector c. The difficulty
in addressing (2) is that this optimization problem is highly
non-smooth and non-convex, while it has been also proved
to be NP-hard in terms of computational complexity [33].

On the other hand, the relaxation of (2) by replacing the
�0-pseudo-norm with the �1-norm reduces to a linear pro-
gram, and hence it can be solved in polynomial time:

min
c∈RL
‖c‖1 subject to X = T−1{c} (3)

where the �1-norm of c is given by ‖c‖1 = ∑L
i=1 |ci|. More-

over, it was shown that under certain conditions, the solu-
tions of (2) and (3) are identical [34, 35].

Several pursuit algorithms with empirical success have
been proposed for the solution of (3), among them, the
greedy Matching Pursuit (MP) [36], the Basis Pursuit
(BP) [37] and their variants [43]. Nevertheless, in applica-
tions involving large data sets, such as, the high-resolution
GIXD images we deal with, MP or BP algorithms are com-
putationally intense.

On the other hand, as discussed in [27], a single basis is
often not well-adapted to large classes of highly structured
data such as “natural images”. Furthermore, over the past
years, new tools have emerged from modern computational
harmonic analysis, such as, wavelets [5], ridgelets [38] and
curvelets [39], to name a few. It is quite tempting to combine
several representations to build a larger dictionary of wave-
forms that will enable the sparse representation of larger
classes of signals.

Morphological Component Analysis (MCA) [26] was
introduced recently aiming at decomposing signals in (gen-
erally overcomplete) dictionaries made of a union of bases.
MCA serves as a fast alternative to other algorithms in the
sparsity literature, like the ones mentioned above, where the
solution of the corresponding minimization problem neces-
sitates to deal with unknowns, that is, the sparse coefficient
vectors, living in a high-dimensional space (getting larger
as the dictionaries become more redundant). In contrast,
MCA solves a minimization problem in terms of the mor-
phologically distinct components directly, whose dimension

(1) Despite the fact that �0 is a pseudo-norm, the improper term “norm” is
often used, too.

is less than or equal to the dimension of the corresponding
transformed version. The following sections introduce in
brief the main concepts of MCA, as well as its extension
in the framework of image inpainting, to be exploited for
recovering the missing information in our GIXD data due to
detectors malfunction.

2.2 Overview of MCA

In the subsequent analysis, we assume that a given image X
is modeled as a linear combination of S images (compo-
nents) with different morphologies, X =

∑S
s=1 Xs. The fun-

damental assumption of MCA is morphological diversity,
which relies on the sparsity of those morphological com-
ponents in specific bases. In other words, MCA is based
on the existence of a set of transforms (or a dictionary of
bases) {T1, . . . ,TS } such that the s-th component Xs is
sparsely represented in Ts, while its representation in the
other transform domains Ts′ , s′ � s, is not sparse. This is
ensured with high probability by an increased incoherence
between the distinct dictionaries. The problem to be solved
is the separation of the linear mixture X into its constituent
morphological components Xs, relying on the discriminative
power of the distinct transforms Ts, s = 1, . . . , S .

By extending (3) in the multi-component case, the prob-
lem of recovering the corresponding sparse coefficient vec-
tors {cs ∈ RLs }s=1, ..., S is expressed as follows:

min
c1, ..., cS

S∑
s=1

‖cs‖1 subject to X =
S∑

s=1

T−1
s {cs} (4)

Notice also that, generally, the coefficient vectors cs can be
of different dimension Ls depending on the corresponding
transform. For this reason, we also keep denoting a lin-
ear transform as a general operator Ts, instead of using a
matrix notation Ts, to avoid any inconvenience due to the
potentially different dimensions among the transform coef-
ficient vectors corresponding to distinct morphological com-
ponents.

The solution of (4) should be expected to give a truly
sparse decomposition if the image X is indeed composed
solely of the morphological components Xs, s = 1, . . . , S ,
and thus it can actually be represented sparsely in terms
of the transforms Ts. However, in a real-world scenario
the assumption of an exact decomposition does not hold in
general. For this purpose, we compensate by reformulat-
ing the constrained optimization problem (4) as an uncon-
strained regularized one. Moreover, the increased mem-
ory and computational costs when we work directly with
the coefficient vectors cs, whose dimensions can be much
higher than the dimension of the original image in case
of highly redundant transforms, are resolved by solving
the optimization problem using the morphological compo-
nents Xs as the unknowns. The above two considerations
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result in the following minimization problem solved by the
MCA algorithm [26]:

min
X1, ..., XS

S∑
s=1

‖Ts{Xs}‖1 + τ
∥∥∥∥∥∥∥X −

S∑
s=1

Xs

∥∥∥∥∥∥∥
2

2

(5)

where τ > 0 is a regularization parameter, which con-
trols the amount of distortion in representing X in terms
of the morphological components Xs. This problem has a
quadratic programming structure, for which efficient solvers
exist, with the “soft-thresholding” being among them as it is
described in the following section.

2.3 Extending MCA for Image Inpainting

The MCA algorithm can be easily extended in the frame-
work of image inpainting, where the main requirement is
the preservation of discontinuities (e.g., edges and textures).
In the following, we focus on the case where part of the
original image information content is missing, in the form
of occluded (“burned”) pixels. Let M be a “binary mask”,
where zeros indicate that the corresponding pixels in the
original image X have been occluded, while ones indicate
valid pixels. Then, the observed image captured by the
detector can be expressed as:

Xd =M ◦ X (6)

where Xd is the detected, possibly corrupted, image and ◦
denotes element-by-element multiplication (that is, for two
matrices A, B of the same dimensions we have that [A ◦
B]i j = [A]i j · [B]i j).

The standard optimization problem (5) solved by the
MCA algorithm can be modified easily to account for
inpainting the missing information as follows:

min
X1, ..., XS

S∑
s=1

‖Ts{Xs}‖1 + τ
∥∥∥∥∥∥∥M ◦

⎛⎜⎜⎜⎜⎜⎝X −
S∑

s=1

Xs

⎞⎟⎟⎟⎟⎟⎠
∥∥∥∥∥∥∥

2

2

(7)

Notice that the inclusion of the binary mask M in the
above objective function to be minimized prevents the sparse
model we try to build from attempting to consider the invalid
(missing) data. A solution to the optimization problem (7)
can be obtained by employing the same iterative threshold-
ing strategy as in the MCA algorithm. In particular, the
“block-coordinate relaxation” method [41] is used. It is a
fast numerical technique, which requires only the use of
matrix-vector multiplications due to the linear assumption
for the sparsifying transformations.

Regarding the choice of the regularization parameter τ,
which is also employed by the soft-thresholding operator
used in the solution of (7), one solution is based on the fol-
lowing observation. At the early stages of the algorithm’s
execution, the estimation of the individual morphological
components may be inaccurate because of the missing data.

To overcome this drawback, one has to start by considering
a large value of τ in order to favor the data fidelity term
(second term in (7)). The appropriate initialization of τ is
done in a rather heuristic way, with its value affecting the
speed of convergence. In the present implementation, it
is expressed as the minimum of maximal amplitude coef-
ficients of the recorded image in each sparsifying transform
domain. Then, the value of τ is decreased monotonically
(e.g., according to a linear or an exponential strategy as we
employ here) in order to favor the sparsity-enforcing term
(first term in (7)). Moreover, τ is updated as a function of
the estimated noise standard deviation (e.g., by employing
a “Median Absolute Deviation” (MAD) estimator) so as to
reject noise. Algorithm 1 (Tab. 1) summarizes the main steps
of MCA and gives the expressions for the regularization
parameter τ and its updating rule for solving the inpainting
problem expressed by (7).

Concerning the convergence of this algorithm, MCA for
image inpainting is based on an iterative thresholding pro-
cess, as in the original MCA algorithm which has been
proven to converge [26, 42]. As far as inpainting is con-
cerned, the presence of the mask makes things not to be
straightforward anymore. In [32], a sketch of a proof for the
convergence of MCA in case of inpainting, along with the
role and the effect of the mask, is provided. However, we
emphasize that convergence here means that the sequence
of iterates for the recovery of the individual morphological
components converges but there is not a guarantee on the
properties of the minimizer with respect to the true signal. In
fact, the recovery guarantees of MCA for inpainting is a very
important theoretical problem that remains largely open.

3 EXPERIMENTAL EVALUATION

In this section, we evaluate the efficiency of the MCA
framework for the recovery of missing information in high-
resolution GIXD images, and subsequently, for the analysis
of 1-D intensity patterns (linecuts), which are of interest for
characterizing the structure of thin films. More specifically,
our test set consists of two 2 048 × 2 048 GIXD images, X1
and X2, shown in Figure 2, whose acquisition details were
described in Section 1.

As already stated, the analysis of GIXD data is based on
the reduction of the 2-D images into 1-D intensity patterns.
From the several linecuts mentioned in Section 1, herein we
focus on three distinct types of linecuts (Fig. 1b):
• Intensity as a function of the scattering vector q

(I versus q);
• Intensity as a function of the out-of-plane component of

the scattering vector (I versus qz);
• Intensity as a function of the polar angle (I versus χ).
It is noted that in the subsequent experimental evaluation,
we ignore the part at the bottom of the GIXD images that
corresponds to the shadow of the film substrate, since the
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TABLE 1

Algorithm 1. MCA for image inpainting

Require: Maximum iterations Imax, initial threshold τ(0)

Initialize: residual r(0) = 0, morphological components {X(0)
s = 0}Ss=1

Set: λ =
(
λmax
λstop ·σn

) 1
1−Imax ,

where λmax = min maxs=1, ..., S |Ts{Xd}|, λstop a constant depending on the noise level (set to a small value e.g., 10−6 in the noiseless case and between 3

and 5 for noisy images), σn the estimated noise standard deviation (e.g., using MAD)

while τ(t) > τmin do
Execute the following iteration to estimate each

component Xs at iteration t by assuming all the

others {Xk}Sk=1, k�s are fixed:

for s = 1, . . . , S do
• update residual:

r(t) = Xd −∑S
k=1 X(t−1)

k

• estimate current transform coefficients c(t)
s and apply soft-thresholding with threshold τ(t):

c(t)
s = Δτ(t) (Ts{M ◦ r(t) + X(t−1)

s })
• update morphological component from the selected transform coefficients:

X(t)
s = T−1

s {c(t)
s }

end for
• update threshold using an exponential decay rule:

τ(t) = τ(t−1) · λ
end while

∗ Soft thresholding operator: Δτ(c) =

{
0 c < τ
c − τ · sign(c) c ≥ τ

intensity recorded in this area is not diffracted from the film
under study.

The performance of MCA (2) is evaluated in the case
of corrupted GIXD images. In particular, the simulated
missing information appears in the form of either randomly
burned pixels, or whole burned rows distributed also at ran-
dom across the whole image. For this purpose, two types of
random binary masks are generated, namely:

• Random Mask (MRM): matrix whose elements are equal
to 1, except for a subset of them being 0, whose positions
are distributed uniformly at random;
• Random Lines Mask (MRLM): matrix whose elements are

equal to 1, except for a subset of rows consisting of all-
zero elements, with the indices of these “burned” rows
being selected uniformly at random among all the rows
of the original image.

Under this assumption, an observed corrupted GIXD image
X can be expressed as follows, depending on the corruption
pattern:

Xd,RM =MRM ◦ X , Xd,RLM =MRLM ◦X (8)

where Xd,RM and Xd,RLM are the recorded images with ran-
domly missing pixels and whole rows, respectively. In the
subsequent experiments, we generate random masks of the
above two types with the number of missing pixels varying

(2) Matlab code available at: http://www.greyc.ensicaen.fr/∼jfadili/
demos/WaveRestore/downloads/mcalab/Home.html

in {20%, 30%, 40%, 50%} as a percentage of the total num-
ber of pixels. In practice, the case of randomly distributed
burned lines appears in case of 2-D detectors based on wire
chambers [40], while the case of randomly burned pixels
is met in more modern acquisition systems, such as CCD
cameras.

Figure 3 shows corrupted instances for both images, X1
and X2, where the top row corresponds to a random mask
with 50% of missing information, while the bottom row cor-
responds to a random lines mask, also with 50% of burned
pixels. In our case, a successful inpainting of the observed
GIXD images using MCA, is equivalent to recovering accu-
rately the missing information such that the associated line-
cuts, estimated from the reconstructed images, to be close
approximations of the linecuts corresponding to the original
images. Although an amount of 40% or 50% of missing
pixels is considered an extreme scenario in practice, how-
ever, we validate the efficiency of MCA even under such
immoderate conditions.

3.1 Morphological Components using UDWT
and Curvelets

As mentioned in Section 2.2, the morphological diversity
relies on the sparsity of the distinct morphological com-
ponents in specific bases. The appropriate choice of these
bases, or in general the sparsifying transform domains, is
highly determined by the specific structural content of a
given image. For instance, the Discrete Cosine Transform
(DCT) is appropriate in describing spatially homogeneous
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a) b)

c) d)

Figure 3

High-resolution 2 048 × 2 048 GIXD images with 50% of missing pixels masked with: a random mask with uniformly distributed burned
a,b) pixels; c,d) lines.

texture, while the local ridgelet transform [38] is efficient
in describing lines of fixed size. On the other hand, for
images containing isotropic features and piecewise smooth
regions, the UDWT has been shown to provide a very pre-
cise description [15], while anisotropic curvilinear struc-
tures have been shown to be represented optimally sparsely
by the curvelet transform [16].

A visual inspection of the GIXD images used in this
study, shown in Figure 2, implies that none of the above
transforms alone will be capable of extracting the geomet-
ric structures of these images. In contrast, we observe that

the recorded images are characterized by both piecewise
smooth regions and curvilinear structures. This necessitates
the use of a combination of transforms to represent GIXD
images for this type of thin films in a sparse way. This
first observation induces the combination of the UDWT and
the curvelet transform to be a suitable choice. Moreover, we
emphasize that the success of the MCA technique is based
on the degree of incoherence between the distinct sparsify-
ing transforms [26] (the s-th morphological component Xs

is sparsely represented in Ts, while its representation in the
other transform domains is not sparse). The requirement of
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 X1: UDWT component

a)

 X1: Curvelet component  X2: UDWT component  X2: Curvelet component

b)

Figure 4

Analysis of X1 and X2 in two morphological components using the UDWT and the curvelet transform. a) MCA decomposition of X1. b) MCA
decomposition of X2.

incoherence holds for the {UDWT, curvelet transform} pair,
as it is proved in [44] (ref. Lemma 3.3 and discussion in
Section 3.5). This serves as a second strong motivation for
the selection of this pair of transforms.

Unlike the DWT, which decomposes a given image at
multiple scales by downsampling the approximation and
detail coefficients at each decomposition level, the UDWT
does not incorporate the downsampling operations. Thus,
the approximation and detail coefficients at each level have
the same dimension as the original image. Besides, unlike
the DWT, the UDWT is shift-invariant, while it is also more
robust to ringing artifacts around singularities or edges.

On the other hand, the curvelet transform, to be used for
the extraction of the anisotropic structures (curves, lines),
is a special member of the family of multiscale geometric
transforms. Conceptually, the curvelet transform is a mul-
tiscale pyramid with many directions (angles) and locations
at each length scale, and needle-shaped elements (atoms)
at fine scales. More specifically, curvelets, in addition to
a variable width (w), have also a variable length (l) and so
a variable anisotropy. The length and width at fine scales
are related by a scaling law, w = l2 and thus the anisotropy
increases with decreasing scale like a power law.

It has been shown [6, 16] that curvelets address effi-
ciently problems where wavelets are far from ideal. For
instance, they provide optimally sparse representations of
objects which are characterized by smoothness except for
discontinuities along a general curve with bounded cur-
vature. Moreover, they model faithfully the geometry of
wave propagation-like structures, since they may be viewed
as coherent waveforms with enough frequency localization
so that they behave like waves but at the same time,
with enough spatial localization so that they simultaneously
behave like particles. GIXD images of the kind used in this
study (Fig. 2) present both characteristics, that is, curvilinear

structures, as well as a wave propagation-like behavior, thus
motivating the use of the curvelet transform for the analysis
of the corresponding morphological component.

In the following, we test the effectiveness of MCA in
decomposing the given GIXD images into their morpho-
logical components. More specifically, the parameters
required by Algorithm 1 are set as follows: Imax = 150,
λstop = 10−6, and τ(0) = λmax, where λmax is the minimum
of maximal amplitude coefficients of the recorded image in
each sparsifying transform domain. Regarding the UDWT,
each image is analyzed in 3 scales using the “Symlet 6”
(sym6) wavelet, which is near symmetric, orthogonal and bi-
orthogonal. Moreover, the spread and the oscillating nature
of the associated scaling and wavelet functions, respectively,
are appropriate enough to analyze images with relatively
piecewise smooth content, such as the GIXD images under
study. Regarding the curvelet transform, each GIXD image
is decomposed in 7 scales, where the number of angles for
each scale, from the coarsest to the finest one, is equal
to 1, 16, 32, 32, 64, 64, 128, respectively. For the above
experimental setup and for the specific implementations, we
used here, the redundancy factor (i.e., the ratio of the number
of transform coefficients over the number of pixels) for the
UDWT is equal to 3, while for the curvelet transform the
redundancy factor is equal to 2.3.

Figure 4 shows the morphological decomposition of X1
and X2 in the two distinct components. A visual inspection
of both images verifies that UDWT is indeed capable of rep-
resenting the isotropic, piecewise smooth regions, whereas
the curvelets approximate anisotropic features, such as the
arcs and the edges, which appear in both images.

As mentioned above, apart from the mutual incoherence
of the (possibly over-complete redundant) transforms, the
second key ingredient required for MCA to work properly,
is their ability to represent the information content of a given
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image in a precise and compact form. This is indeed the
case with the UDWT and the curvelet transform when they
are applied on the given GIXD images. More precisely,
for the image X1, 50% of UDWT coefficients contains the
82% of the total energy (the sum of the absolute values of
the transform coefficients), while 96% of the total energy
is compressed in the 25% of the most significant (of high-
est magnitude) curvelet coefficients. A similar behavior is
observed for the image X2, where 50% of the UDWT coef-
ficients contains the 81% of the total energy, while 25% of
the curvelet coefficients corresponds to 94% of their total
energy.

3.2 Approximation Accuracy of the Original Linecuts

The primary objective of this study is the MCA inpainting
of corrupted GIXD images, with the goal of approximating
as accurately as possible the original diffracted intensity,
expressed in terms of the three linecuts introduced in
Section 1.

Although MCA is designed in a sparsity-based frame-
work, solving a sparse optimization problem in suitable
transform domains, however, for completeness of presenta-
tion its performance is compared with two classical inpaint-
ing techniques, namely, the method of Fields of Experts
(FoE) [45] and a Partial Differential Equations-based (PDE)
approach [46]. In the former case, expressive image pri-
ors that capture the statistics of natural scenes are learned,
extending traditional Markov Random Field (MRF) models
by learning potential functions over extended pixel neigh-
borhoods. In the later case, the lost information is restored
guided by the anisotropic diffusion principle and the con-
nectivity principle of human visual perception. Specifically,
a fourth-order PDE model allows for the transportation of
available information from the exterior towards the interior
of the inpainting domain and the simultaneous diffusion of
the information inside the inpainting region.

Starting with the efficiency of MCA in inpainting GIXD
images corrupted by a random mask, Figure 5 shows the
inpainted X1 and X2 images corresponding to the two
extreme cases of our experimental setup, that is, for 20%
and 50% of randomly burned pixels. As it can be seen, the
performance of MCA is excellent, even for 50% of missing
information, which is a rather immoderate practical sce-
nario. Comparing the inpainted images with their original
versions, shown in Figure 2, we observe that the smooth
regions in X1 are preserved, while the noise-like appearance
of X2 is suppressed slightly in its two inpainted counter-
parts. This is mainly due to an internal soft-thresholding
step used by MCA, which tends to moderate the noise-like
features.

Figure 6 presents the corresponding linecuts (I versus q,
I versus qz, I versus χ) for X1 and X2, comparing the
original curves with the curves obtained from the inpainted

images. In case of X1, the approximation of all three orig-
inal linecuts is almost perfect, even for high percentages of
corrupted pixels. The reconstruction performance for X2 is
also very high, except for the extreme case at which half of
the information is missing. In that case, small deviations
from the original curves are apparent (for instance, in the
rightmost part of the I versus χ linecut in Fig. 6b). The
above observations initially derived by visual inspection of
the curves in Figure 6 are verified numerically by computing
the Mean Squared Relative approximation Error (MSRE)
between the original and reconstructed linecuts, as follows:

MSRE(l̂, ltrue) = mean

⎛⎜⎜⎜⎜⎜⎝
(

l̂ − ltrue

ltrue

)2⎞⎟⎟⎟⎟⎟⎠ (9)

where ltrue is the original and l̂ the corresponding recon-
structed linecut.

Table 2 shows the MSRE (%) for the two GIXD
images, along with the associated standard deviation of the
approximation errors for MCA, FoE and PDE methods. The
approximation accuracy is extremely high, especially for the
smoother image X1, while, as we expected, it decreases
slightly as the number of missing pixels increases. More-
over, MCA clearly outperforms the other two inpainting
methods in most of the cases (the minimum MSRE values
are shown in bold type). In particular, the PDE approach
for inpainting GIXD images of the type studied here results
in the worst performance. This is not surprising, since the
diffusion operation, which is inherent in every PDE-based
method, tends to smooth out the interiors of the inpainted
regions. This smoothing effect may detract the noise-like
structures of our GIXD images, thus yielding less accurate
linecuts. An additional advantage of MCA, when compared
with FoE and PDE, is that, apart from restoring the lost
information of a given image, it also gives the decompo-
sition into its morphological components as a by product.
As mentioned above, this decomposition can be further
employed to extract structural information from GIXD data.
For instance, a difference in the curvilinear structures cor-
responding to the two different annealing temperatures is
apparent by a simple visual inspection of the curvelet com-
ponents of X1 and X2 (Fig. 4).

As a second experiment, we evaluate the efficiency of
MCA when whole lines of burned pixels are distributed ran-
domly in the recorded GIXD image. Figure 7 shows the
inpainted X1 and X2 images for 20% and 50% of burned
pixels across randomly distributed lines. As in the previ-
ous scenario of uniformly random burned pixels, the per-
formance of MCA is again very high, even for 50% of
missing information. Comparing the inpainted images with
their original counterparts in Figure 2, we can see that
the noise-like appearance of X2 is suppressed in the two
inpainted images. The smoothing effect of MCA for the
specific combination of sparsifying transforms we employ
here (UDWT, curvelets) is more prevalent in the darker area
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a)

b)

Figure 5

Inpainted (random mask) images a) X1, b) X2 using MCA for randomly distributed missing pixels (20%, 50%).

at the bottom of the inpainted images (Fig. 7b). However,
this is not a constraint, since, as mentioned at the beginning
of this section, the dark area is ignored during the computa-
tion of the linecuts.

Figure 8 shows the corresponding linecuts for X1 and
X2, comparing the original curves with the curves obtained
from the inpainted images. As an overall conclusion, we
can say that the approximation is highly accurate, especially
for the first two linecuts (I versus q and I versus qz), while
it diminishes slightly as the percentage of missing pixels
increases. We observe that the I versus χ linecut presents
the highest sensitivity with respect to the amount of missing
information, which is more apparent near the peak and in

the tails of the intensity curves for both images. In fact,
the peak corresponds to the integrated intensity of the pix-
els around column 1 680 between rows 630-670, while the
tail corresponds to the integrated intensity around row 440
between columns 1 440-1 460 (Fig. 2). A close inspec-
tion of the randomly masked images shown in Figures 3c,d
reveals that there is a large amount of missing pixels, effec-
tively greater than 50%, concentrated in the correspond-
ing areas. This inhibits the inpainting of the images in
these specific areas, resulting in an increased approximation
error.

The above observations are consistent with the entries
of Table 3, which compares the corresponding MSRE (%)
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Figure 6

Linecuts of the original and inpainted (using MCA) GIXD images a) X1, b) X2 for randomly distributed missing pixels.

TABLE 2

Mean Squared Relative approximation Error (MSRE) (%) between the original and reconstructed linecuts, using MCA, FoE and PDE inpainting
methods, for images X1, X2 with randomly distributed missing pixels (the standard deviation of the error is shown in parentheses)

X1 X2

Linecut
Missing pixels (%) Missing pixels (%)

Method 20% 30% 40% 50% 20% 30% 40% 50%

I versus q

MCA 3.35 × 10−5 5.24 × 10−5 1.25 × 10−4 5.45 × 10−4 0.0019 0.0061 0.0028 0.0047

(7.46 × 10−5) (1.17 × 10−4) (2.75 × 10−4) (0.0012) (0.0049) (0.0083) (0.0084) (0.013)

FoE 7.89 × 10−4 4.12 × 10−4 0.0011 0.0012 0.0024 0.0026 0.0031 0.0039

(9.27 × 10−4) (0.0031) (0.0020) (0.0034) (0.0065) (0.0071) (0.0058) (0.0056)

PDE 3.38 × 10−4 3.55 × 10−4 5.14 × 10−4 0.0015 0.0020 0.0039 0.0029 0.0065

(7.04 × 10−4) (7.47 × 10−4) (0.0011) (0.0031) (0.0050) (0.0052) (0.0077) (0.0202)

I versus qz

MCA 0.0020 0.0031 0.0080 0.0375 0.0880 0.0951 0.1183 0.2035

(0.0045) (0.0074) (0.0186) (0.0689) (0.1622) (0.1683) (0.2247) (0.36)

FoE 0.0281 0.0342 0.0412 0.0435 0.0943 0.0962 0.1120 0.2398

(0.0511) (0.0610) (0.0752) (0.0771) (0.1722) (0.1734) (0.1670) (0.1642)

PDE 0.0268 0.0277 0.0339 0.0890 0.0885 0.0926 0.1123 0.2875

(0.0471) (0.0501) (0.0612) (0.1610) (0.1622) (0.1752) (0.2051) (0.8968)

I versus χ

MCA 1.32 × 10−4 2.50 × 10−4 6.03 × 10−4 0.0589 0.0569 0.0584 0.0572 0.0811

(1.57 × 10−4) (3.83 × 10−4) (7.62 × 10−4) (0.7151) (0.4892) (0.4686) (0.4725) (0.5854)

FoE 0.0490 0.0520 0.0591 0.0712 0.0572 0.0593 0.0669 0.0905

(0.7100) (0.7290) (0.7311) (0.7500) (0.4892) (0.4922) (0.4902) (0.4706)

PDE 0.0587 0.0610 0.0640 0.1671 0.0601 0.0625 0.0634 0.1329

(0.7300) (0.7320) (0.7501) (1.5100) (0.4892) (0.4967) (0.5224) (1.0618)
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a)

b)

Figure 7

Inpainted (random lines mask) images a) X1, b) X2 using MCA for randomly distributed lines of missing pixels (20%, 50%).

values for the two GIXD images, along with the associated
standard deviation of the approximation errors, for the
MCA, FoE and PDE inpainting methods. As in the case
of randomly burned pixels, the approximation accuracy is
extremely high, especially for the smoother image X1 and
for the first two linecuts, while, as we expected, it decreases
slightly as the number of missing pixels increases. More-
over, we can see that MCA achieves a more accurate recon-
struction of the linecuts in most of the cases, when compared
with FoE and PDE, while its performance is very close to
FoE and PDE for the cases where they resulted in a lower
MSRE. Finally, by comparing the corresponding entries in
Tables 2 and 3, we conclude that inpainting GIXD images

in case of randomly missing lines is more demanding than
inpainting when randomly distributed pixels are missing.
Focusing on MCA, as we suggest in the next section, this
reduction in reconstruction accuracy can be alleviated by
incorporating additional sparsifying transforms, such as the
ridgelet transform, which is more efficient in extracting
meaningful information from the neighboring pixels across
straight lines and edges. This is another important advan-
tage of MCA, that is, the ability to improve the inpainting
accuracy by incorporating more efficient sparsifying trans-
formations, which are able to extract additional structural
components. On the other hand, such an improvement is
impossible with methods like FoE or PDE.
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Figure 8

Linecuts of the original and inpainted (using MCA) GIXD images a) X1, b) X2a for randomly distributed lines of missing pixels.

TABLE 3

Mean Squared Relative approximation Error (MSRE) (%) between the original and reconstructed linecuts, using MCA, FoE and PDE inpainting
methods, for images X1 a), X2 b) with missing pixels across randomly distributed lines (the standard deviation of the error is shown in parentheses)

X1 X2

Linecut
Missing pixels (%) Missing pixels (%)

Method 20% 30% 40% 50% 20% 30% 40% 50%

I versus q

MCA 5.36 × 10−4 7.41 × 10−4 8.32 × 10−4 0.0140 0.0025 0.0032 0.0040 0.0185

(0.0011) (0.0015) (0.0019) (0.0500) (0.0065) (0.0078) (0.011) (0.0977)

FoE 4.47 × 10−4 7.40 × 10−4 7.79 × 10−4 0.0450 0.0023 0.0033 0.0039 0.0219

(0.0024) (0.0018) (0.0015) (0.0400) (0.0064) (0.0058) (0.0056) (0.0067)

PDE 5.39 × 10−4 6.60 × 10−4 0.0011 0.0153 0.0027 0.0033 0.0056 0.0372

(0.0010) (0.0012) (0.0023) (0.0271) (0.0075) (0.0073) (0.0136) (0.1010)

I versus qz

MCA 0.0315 0.0467 0.0623 0.1918 0.0987 0.1315 0.1525 0.3518

(0.0651) (0.0950) (0.1412) (0.6474) (0.1924) (0.2852) (0.3030) (1.48)

FoE 0.0395 0.0420 0.0662 0.3001 0.0994 0.1199 0.1483 0.3702

(0.0700) (0.0610) (0.0753) (0.7211) (0.1744) (0.1676) (0.1658) (0.1643)

PDE 0.0321 0.0492 0.0818 0.2351 0.1027 0.1357 0.1977 0.3826

(0.0573) (0.1189) (0.2072) (0.6798) (0.2577) (0.7375) (0.4981) (1.2608)

I versus χ

MCA 0.0381 0.0604 0.0619 1.6500 0.0616 0.2303 0.6640 0.9388

(0.3704) (0.7219) (0.7308) (1.3207) (0.88) (0.5817) (1.5218) (1.511)

FoE 0.0510 0.0590 0.0632 1.2900 0.0688 0.2287 0.7431 1.1042

(0.7220) (0.7310) (0.7401) (0.9812) (0.4897) (0.4894) (0.5102) (0.4912)

PDE 0.0662 0.0712 0.0740 2.4521 0.0678 0.2073 0.7588 1.2207

(0.5614) (0.7318) (0.7301) (2.9019) (0.4891) (0.7357) (1.3044) (1.2608)
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CONCLUSIONS AND FUTURE WORK

In this study, we exploited the efficiency of the recently
introduced MCA algorithm for the decomposition of
images in distinct morphological components, based on the
achieved sparsity in appropriate over-complete redundant
transform domains, with our objective being to solve the
problem of recovering the missing information in corrupted
GIXD images due to potential malfunction of the detectors.

The experimental evaluation using high-resolution GIXD
images of thin polythiophene-based films, showed that the
proposed approach is highly efficient in recovering the miss-
ing information in the form of either randomly burned pix-
els, or whole burned rows, even at the order of 50% of the
total number of pixels. This led to the derivation of accurate
intensity 1-D plots (linecuts) from the recovered inpainted
images, that will later allow for correct data interpretation.
This result can be of high impact in scattering and imaging
techniques applied for materials characterization, since it
indicates that the proposed MCA-based inpainting approach
weakens the necessity for long acquisition times or repeating
experiments, especially in synchrotron-based experiments,
related to inferior detector performance during the acquisi-
tion process.

In the present work, we employed the UDWT and the
curvelet transform as the most appropriate domains for the
representation of the isotropic, as well as the anisotropic
features, which appear in GIXD data. However, the experi-
mental evaluation showed a smoothing effect when a GIXD
image presents noise-like features, which may decrease
the estimation accuracy of the corresponding linecuts. We
expect that the inclusion of additional transforms to cap-
ture more features, such as the noiselet, the ridgelet or the
recently introduced shearlet transform [47], which best suit
noise-like features and edges, respectively, will improve the
inpainting performance and subsequently the more accurate
extraction of the linecuts that are of interest to us. Moreover,
in all these cases, the sparsifying transforms are fixed. How-
ever, recent works have shown that, instead of deploying a
predefined set of transforms, the use of learned sparsify-
ing dictionaries [7, 8], which adapt to the inherent image
structures, often result in a superior reconstruction perfor-
mance. Thus, the extension of the MCA inpainting frame-
work in a joint dictionary learning and reconstruction frame-
work would be also of great importance.
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