Gapsets and numerical semigroups

Shalom Eliahou, Jean Fromentin

To cite this version:

Shalom Eliahou, Jean Fromentin. Gapsets and numerical semigroups. 2018. hal-01933259

HAL Id: hal-01933259
https://hal.science/hal-01933259
Preprint submitted on 23 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GAPSETS AND NUMERICAL SEMIGROUPS

SHALOM ELIAHOU AND JEAN FROMENTIN

Abstract

For $g \geq 0$, let n_{g} denote the number of numerical semigroups of genus g. A conjecture by Maria Bras-Amorós in 2008 states that the inequality $n_{g} \geq n_{g-1}+n_{g-2}$ should hold for all $g \geq 2$. Here we show that such an inequality holds for the very large subtree of numerical semigroups satisfying $c \leq 3 m$, where c and m are the conductor and multiplicity, respectively. Our proof is given in the more flexible setting of gapsets, i.e. complements in \mathbb{N} of numerical semigroups.

1. Introduction

Denote $\mathbb{N}=\{0,1,2,3, \ldots\}$ and $\mathbb{N}_{+}=\mathbb{N} \backslash\{0\}=\{1,2,3, \ldots\}$. For $a, b \in$ \mathbb{Z}, let $[a, b]=\{z \in \mathbb{Z} \mid a \leq z \leq b\}$ and $[a, \infty[=\{z \in \mathbb{Z} \mid a \leq z\}$ denote the integer intervals they span. A numerical semigroup is a subset $S \subseteq \mathbb{N}$ containing 0 , stable under addition and with finite complement in \mathbb{N}. Equivalently, it is a subset $S \subseteq \mathbb{N}$ of the form $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle=\mathbb{N} a_{1}+\cdots+\mathbb{N} a_{n}$ for some globally coprime positive integers a_{1}, \ldots, a_{n}.

For a numerical semigroup $S \subseteq \mathbb{N}$, its gaps are the elements of $\mathbb{N} \backslash S$, its genus is $g=|\mathbb{N} \backslash S|$, its multiplicity is $m=\min S \backslash\{0\}$, its Frobenius number is $f=\max \mathbb{Z} \backslash S$, its conductor is $c=f+1$, and its embedding dimension, usually denoted e, is the least number of generators of S, i.e. the least n such that $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$. Note that the conductor c of S satisfies $c+\mathbb{N} \subseteq S$, and is minimal with respect to this property since $c-1=f \notin S$.

Given $g \geq 0$, the number n_{g} of numerical semigroups of genus g is finite, as easily seen. The values of n_{g} for $g=0, \ldots, 15$ are as follows:

$$
1,1,2,4,7,12,23,39,67,118,204,343,592,1001,1693,2857 .
$$

In 2008, Maria Bras-Amorós made some remarkable conjectures concerning the growth of n_{g}. In particular, she conjectured that

$$
\begin{equation*}
n_{g} \geq n_{g-1}+n_{g-2} \tag{1}
\end{equation*}
$$

for all $g \geq 2$. This conjecture is widely open. Indeed, even the weaker inequality $n_{g} \geq n_{g-1}$, whose validity has been settled by Alex Zhai [22] for all sufficiently large g, remains to be proved for all $g \geq 1$. In that same paper, Zhai showed that 'most' numerical semigroups S satisfy $c \leq 3 m$,
where c and m are the conductor and multiplicity of S, respectively. For a more precise statement, let us denote

$$
\begin{aligned}
n_{g}^{\prime}= & \text { the number of numerical semigroups } S \\
& \text { of genus } g \text { satisfying } c \leq 3 m .
\end{aligned}
$$

Zhai showed then that $\lim _{g \rightarrow \infty} n_{g}^{\prime} / n_{g}=1$, as had been earlier conjectured by Yufei Zhao [23]. The values of n_{g}^{\prime} for $g=0, \ldots, 15$ are as follows:

$$
1,1,2,4,6,11,20,33,57,99,168,287,487,824,1395,2351
$$

In this paper, we show that the conjectured inequality (1) holds for n_{g}^{\prime}. Even more so, we shall prove the following bounds on n_{g}^{\prime} for all $g \geq 3$:

$$
\begin{equation*}
n_{g-1}^{\prime}+n_{g-2}^{\prime} \leq n_{g}^{\prime} \leq n_{g-1}^{\prime}+n_{g-2}^{\prime}+n_{g-3}^{\prime}, \tag{2}
\end{equation*}
$$

the strongest partial result so far towards (1).
The contents of this paper are as follows. In Section 2, we recall the necessary background, including the tree of numerical semigroups, and we introduce the depth, a key parameter for numerical semigroups which had no specific name yet. In Section 3, we introduce gapsets, i.e. complements in \mathbb{N} of numerical semigroups, and gapset filtrations. We also introduce m-extensions and m-filtrations to facilitate their study. In Section 4, we consider the case of depth at most 2, i.e. where $c \leq 2 m$. Sections 5 and 6 are the heart of the paper, where we use the setting of gapsets to establish the left and right inequalities in (2), respectively. In Section 7, we show that the tree of numerical semigroups may be naturally embedded in a richer graph whose new edges played a key role towards establishing (2). Finally, in Section 8 we propose some related conjectures and announce some forthcoming results on gapsets of small multiplicity. An Appendix gives the exact values of n_{g}^{\prime} for $g=1, \ldots, 60$.

2. BACKGROUND

Numerical semigroups $S \subseteq \mathbb{N}$ may be defined in two equivalent yet quite distinct ways.

Definition 2.1.

(1) As cofinite submonoids of \mathbb{N}. That is, as subsets $S \subseteq \mathbb{N}$ containing 0 , stable under addition and with finite complement $\mathbb{N} \backslash S$.
(2) As subsets of \mathbb{N} of the form $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle=\mathbb{N} a_{1}+\cdots+\mathbb{N} a_{n}$, where $a_{1}, \ldots, a_{n} \in \mathbb{N}_{+}$and $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$.

For most numerical semigroups, going from one description to the other one is computationally costly. That is, the description of S as $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ does not easily yield $\mathbb{N} \backslash S$ - think of the Frobenius problem - nor conversely.
2.1. Counting numerical semigroups by genus. Given $g \geq 0$, the number n_{g} of numerical semigroups of genus g is finite, as easily seen. As mentioned above, the values of n_{g} for $g=0, \ldots, 15$ are as follows:

$$
1,1,2,4,7,12,23,39,67,118,204,343,592,1001,1693,2857
$$

In 2006, Maria Bras-Amorós pushed the computation of this sequence up to $g=50$ and came up with beautiful conjectures about its growth [1].

Conjecture 2.2. The following probably hold.
(5) $\lim _{g \rightarrow \infty} n_{g} / n_{g-1}=(1+\sqrt{5}) / 2$.

As (3) is still widely open, a weaker version has been formally proposed, possibly first in [11], even though the problem was already informally mentioned in [23] for instance.

Conjecture 2.3. The inequality $n_{g} \geq n_{g-1}$ should hold for all $g \geq 1$.
Zhai [22] showed that $n_{g} \geq n_{g-1}$ does indeed hold for all sufficiently large g, but whether it holds for all $g \geq 1$ remains open at the time of writing. See [12] for a nice survey on related questions.

2.2. The depth.

Definition 2.4. Let S be a numerical semigroup of multiplicity m and conductor c. We call depth of S the integer $q=\lceil c / m\rceil$, and we denote it by depth (S).

The only numerical semigroup of depth 0 is $S=\mathbb{N}$. Since $c \geq m$ if $S \neq \mathbb{N}$, the numerical semigroups of depth 1 are exactly those for which $c=m$, i.e. those of the form

$$
S=\{0\} \cup[m, \infty[
$$

for some $m \geq 2$. These specific numerical semigroups are called ordinary in the current literature, but a more appropriate and descriptive term would be superficial.

The depth is an important parameter of numerical semigroups, even though it wasn't specifically named before the present paper. For instance, among various partial results, Wilf's conjecture has been shown to hold for numerical semigroups of depth $q=2$ in [11] and in the more demanding case $q=3$ in [6]. Moroever, near-misses in Wilf's conjecture have been constructed for depth $q \geq 4$ and embedding dimension 3 in [4], and for depth $q=4$ and arbitrary large embedding dimension in [7]. Zhao showed that the
number of numerical semigroups of genus g and depth $q \leq 2$ is equal to the Fibonacci number F_{g+1} [23]. More importantly for this paper, Zhao conjectured in [23], and Zhai proved in [22], that 'most' numerical semigroups are of depth $q \leq 3$. More precisely, that among all numerical semigroups of genus g, the proportion of those of depth $q \leq 3$ tends to 1 as g tends to infinity. This phenomenon is illustrated in Figure 1 below.
2.3. The tree of numerical semigroups. The set of all numerical semigroups may be organized into a tree \mathcal{T}, rooted at $\mathbb{N}=\langle 1\rangle$ of genus 0 , and where for all $g \geq 0$, the g th level of \mathcal{T} consists of all n_{g} numerical semigroups of genus g. The construction of \mathcal{T} is as follows [16, 1]. Given a numerical semigroup S of genus $g \geq 1$, its parent is $\hat{S}=S \cup\{f\}$ where f is the Frobenius number of S. Then \hat{S} is also a numerical semigroup, of genus $g-1$. Here are the first five levels of \mathcal{T}.

This illustrates the data $\left(n_{0}, n_{1}, n_{2}, n_{3}, n_{4}\right)=(1,1,2,4,7)$ given earlier.
As an illustration of Zhai's result that 'most' numerical semigroups are of depth $q \leq 3$, Figure 1 displays the first 12 levels of \mathcal{T}, where the numerical semigroups of depth $q \leq 3$ and $q \geq 4$ are represented by black dots and smaller gray dots, respectively. The bottom line consists of $n_{11}=343$ dots, among which there are 287 black ones.

3. GAPSETS

Definition 3.1. A gapset is a finite set $G \subset \mathbb{N}_{+}$satisfying the following property: for all $z \in G$, if $z=x+y$ with $x, y \in \mathbb{N}_{+}$, then $x \in G$ or $y \in G$.

Notice the similarity of this definition with that of a prime ideal P in a ring R, where for any $z \in P$, any decomposition $z=x y$ with $x, y \in R$ implies $x \in P$ or $y \in P$.

Figure 1. The first 12 levels of \mathcal{T}. Black dots correspond to depth $q \leq 3$.

Remark 3.2. It follows from the definition that a gapset G is nothing else than the set of gaps of a numerical semigroup S, where $S=\mathbb{N} \backslash G$.

One of our purposes here is to show that thinking in terms of gapsets rather than numerical semigroups proper may lead to advances on the latter. In particular, this is what originally led us to the present partial results on the Bras-Amorós conjecture $n_{g} \geq n_{g-1}+n_{g-2}$. Indeed, as will become clear in this paper, gapsets may be manipulated and transformed in ways which are not so conveniently expressible on the level of numerical semigroups.

We now transfer in a natural way some terminology from numerical semigroups to gapsets.

Definition 3.3. Let $G \subset \mathbb{N}_{+}$be a gapset. The multiplicity of G is the smallest integer $m \geq 1$ such that $m \notin G$, the Frobenius number of G is $f=\max G$ if $G \neq \emptyset$ and $f=-1$ otherwise, the conductor of G is $c=f+1$, the genus of G is $g=\operatorname{card}(G)$ and the depth of G is $q=\lceil c / m\rceil$.

That is, the multiplicity, Frobenius number, conductor, genus and depth of a nonempty gapset G coincide with the corresponding numbers of its associated numerical semigroup $S=\mathbb{N} \backslash G$.
3.1. Revisiting \mathcal{T} in terms of gapsets. In order to reconstruct the tree \mathcal{T} of numerical semigroups in the setting of gapsets, we need the following lemma.

Lemma 3.4. Every initial segment of a gapset is a gapset.
Proof. Let G be a gapset. Let $t \in \mathbb{N}_{+}$and $G^{\prime}=G \cap[1, t]$. We claim that G^{\prime} is a gapset. Let $z \in G^{\prime}$, and assume $z=x+y$ with $1 \leq x \leq y$. Since $z \in G$,
we have $\{x, y\} \cap G \neq \emptyset$, whence $\{x, y\} \cap G^{\prime} \neq \emptyset$ since $x, y \leq z \leq t$. Therefore G^{\prime} is a gapset, as claimed.

In particular, if G is a nonempty gapset, then $G \backslash\{\max G\}$ is still a gapset. Plainly, designating the latter as the parent of the former exactly captures the parenthood in \mathcal{T}. This gives the following figure which is much easier to understand than the above classical one.

Conversely, the children of a gapset G in \mathcal{T} are exactly those gapsets H such that $H=G \sqcup\{a\}$ for some $a>\max G$. This is a finite set, since if G is of multiplicity m and conductor c, then any child $H=G \sqcup\{a\}$ of G satisfies $c \leq a \leq m+c-1$; for if $a \geq c+m$, then $G \sqcup\{a\}$ cannot be a gapset as it contains $a=m+(a-m)$, but neither m nor $a-m$ since $a-m \geq c>\max G$.

3.2. The canonical partition.

Lemma 3.5. Let G be a gapset of multiplicity m. Then

$$
\begin{aligned}
{[1, m-1] } & \subseteq G, \\
G \cap m \mathbb{N} & =0 .
\end{aligned}
$$

Proof. By definition of the multiplicity, G contains $[1, m-1]$ but not m. Let $a \geq 2$ be an integer. The formula $a m=m+(a-1) m$ and induction on a imply that $a m \notin G$.

This motivates the following notation and definition.
Notation 3.6. Let G be a gapset of multiplicity m. We denote $G_{0}=[1, m-1]$ and, more generally,

$$
\begin{equation*}
G_{i}=G \cap[i m+1,(i+1) m-1] \quad \text { for all } i \geq 0 . \tag{6}
\end{equation*}
$$

Proposition 3.7. Let G be a gapset of multiplicity m and depth q. Let G_{i} be defined as in (6). Then

$$
\begin{equation*}
G=G_{0} \sqcup G_{1} \sqcup \cdots \sqcup G_{q-1} \tag{7}
\end{equation*}
$$

and $G_{q-1} \neq 0$. Moreover $G_{i+1} \subseteq m+G_{i}$ for all $i \geq 0$.
Proof. As $G \cap m \mathbb{N}=\emptyset$, it follows that G is the disjoint union of the G_{i} for $i \geq 0$. Let c be the conductor of G. Then $G \subseteq[1, c-1]$. Since $(q-1) m<$ $c \leq q m$ by definition of q, it follows that $G_{i}=\emptyset$ for $i \geq q$, whence (7). Let $f=c-1$. Since $f \in G$ and $f \geq(q-1) m+1$, it follows that $f \in G_{q-1}$.

It remains to show that $G_{i+1} \subseteq m+G_{i}$ for all $i \geq 0$. Let $x \in G_{i+1}$. Since $G_{i+1} \subseteq[(i+1) m+1,(i+2) m-1]$, we have

$$
x-m \in[i m+1,(i+1) m-1] .
$$

Now $x-m \in G$ since $x=m+(x-m)$ and $m \notin G$. So $x-m \in G_{i}$.
Definition 3.8. Let G be a gapset. The canonical partition of G is the partition $G=G_{0} \sqcup G_{1} \sqcup \cdots \sqcup G_{q-1}$ given by (7).

Remark 3.9. The multiplicity m, genus g and depth q of a gapset G may be read off from its canonical partition $G=\sqcup_{i} G_{i}$ as follows :

$$
\begin{aligned}
m & =\max \left(G_{0}\right)+1 \\
g & =\sum_{i}\left|G_{i}\right| \\
q & =\text { the number of nonempty } G_{i} .
\end{aligned}
$$

3.3. On m-extensions and m-filtrations. We shall need to consider somewhat more general finite subsets of \mathbb{N}_{+}than gapsets proper.

Definition 3.10. Let $m \in \mathbb{N}_{+}$. An m-extension is a finite set $A \subset \mathbb{N}_{+}$containing $[1, m-1]$ and admitting a partition

$$
\begin{equation*}
A=A_{0} \sqcup A_{1} \sqcup \cdots \sqcup A_{t} \tag{8}
\end{equation*}
$$

for some $t \geq 0$, where $A_{0}=[1, m-1]$ and $A_{i+1} \subseteq m+A_{i}$ for all $i \geq 0$.
In particular, an m-extension A satisfies $A \cap m \mathbb{N}=\emptyset$. Moreover, the above conditions on the A_{i} imply

$$
\begin{equation*}
A_{i}=A \cap[i m+1,(i+1) m-1] \tag{9}
\end{equation*}
$$

for all $i \geq 0$, whence the A_{i} are uniquely determined by A.
Remark 3.11. Every gapset of multiplicity m is an m-extension. This follows from Proposition 3.7.

Closely linked is the notion of m-filtration.

Definition 3.12. Let $m \in \mathbb{N}_{+}$. An m-filtration is a finite sequence $F=$ $\left(F_{0}, F_{1}, \ldots, F_{t}\right)$ of nonincreasing subsets of \mathbb{N}_{+}such that

$$
F_{0}=[1, m-1] \supseteq F_{1} \supseteq \cdots \supseteq F_{t}
$$

For $m \in \mathbb{N}_{+}$, there is a straightforward bijection between m-extensions and m-partitions.

Proposition 3.13. Let $A=A_{0} \sqcup A_{1} \sqcup \cdots \sqcup A_{t}$ be an m-extension. Set $F_{i}=$ - im $+A_{i}$ for all i. Then $\left(F_{0}, F_{1}, \ldots, F_{t}\right)$ is an m-filtration. Conversely, let $\left(F_{0}, F_{1}, \ldots, F_{t}\right)$ be an m-filtration. Set $A_{i}=i m+F_{i}$ for all i, and let A be the union of the A_{i}. Then A is an m-extension.

Proof. We have $F_{i}=-i m+A_{i}$ if and only if $A_{i}=i m+F_{i}$.
Notation 3.14. If A is an m-extension, we denote by $F=\varphi(A)$ its associated m-filtration. Conversely, if F is an m-filtration, we denote by $A=\tau(F)$ its associated m-extension.

By the above proposition, the maps φ and τ are inverse to each other.

3.4. Gapset filtrations.

Definition 3.15. Let $G \subset \mathbb{N}_{+}$be a gapset of multiplicity m. The gapset filtration associated to G is the m-filtration $F=\varphi(G)$.

By Remark 3.11, every gapset G of multiplicity m is an m-extension, whence $\varphi(G)$ is well-defined.

Concretely, let G be a gapset of multiplicity m and depth q. As in (6), let $G_{i}=G \cap[i m+1,(i+1) m-1]$ for all $i \geq 0$, so that $G_{0}=[1, m-1]$ and

$$
G=G_{0} \sqcup \cdots \sqcup G_{q-1} .
$$

The associated m-filtration $F=\varphi(G)$ is then given by $F=\left(F_{0}, \ldots, F_{q-1}\right)$ where $F_{i}=-i m+G_{i}$ for all $i \geq 0$.

We now transfer some terminology from gapsets to gapset filtrations.
Definition 3.16. Let F be a gapset filtration. Its multiplicity, genus and depth are defined as those of its corresponding gapset $G=\tau(F)$.

Let $F=\left(F_{0}, F_{1}, \ldots, F_{q-1}\right)$ be a gapset filtration, and let $G=\tau(F)=\cup_{i} G_{i}$ be the corresponding gapset. It follows from Remark 3.9 and the equality $\left|F_{i}\right|=\left|G_{i}\right|$ for all i, that the genus of F is equal to $\left|F_{0}\right|+\cdots+\left|F_{q-1}\right|$ and that its depth is equal to the number of nonzero F_{i}.
3.5. An example: the case of genus 6. For illustration purposes, here are the 23 numerical semigroups or gapsets of genus 6 given in two different ways.

- With minimal generators:

$$
\begin{aligned}
& \langle 2,13\rangle ;\langle 3,7\rangle ;\langle 3,8,13\rangle ;\langle 3,10,11\rangle ;\langle 4,5\rangle ;\langle 4,6,9\rangle ;\langle 4,6,11,13\rangle ;\langle 4,7,9\rangle ; \\
& \langle 4,7,10,13\rangle ;\langle 4,9,10,11\rangle ;\langle 5,6,7\rangle ;\langle 5,6,8\rangle ;\langle 5,6,9,13\rangle ;\langle 5,7,8,9\rangle ;\langle 5,7,8,11\rangle ; \\
& \langle 5,7,9,11,13\rangle ;\langle 5,8,9,11,12\rangle ;\langle 6,7,8,9,10\rangle ;\langle 6,7,8,9,11\rangle ;\langle 6,7,8,10,11\rangle ; \\
& \langle 6,7,9,10,11\rangle ;\langle 6,8,9,10,11,13\rangle ;\langle 7,8,9,10,11,12,13\rangle .
\end{aligned}
$$

- With the associated gapset filtration:

$$
\begin{aligned}
& (1)^{6} ;(12)^{2}(2)^{2} ;(12)^{2}(1)^{2} ;(12)^{3} ;(123)(23)(3) ;(123)(13)(3) ;(123)(13)(1) ; \\
& (123)(12)(2) ;(123)(12)(1) ;(123)^{2} ;(1234)(34) ;(1234)(24) ;(1234)(23) ; \\
& (1234)(1)^{2} ;(1234)(14) ;(1234)(13) ;(1234)(12) ;(12345)(5) ;(12345)(4) ; \\
& (12345)(3) ;(12345)(2) ;(12345)(1) ;(123456) .
\end{aligned}
$$

The above notation is self-explanatory. For instance, the third element $(12)^{2}(1)^{2}$ represents the filtration $F=(\{1,2\},\{1,2\},\{1\},\{1\})$ of multiplicity 3 , corresponding to the gapset $G=\{1,2\} \cup\{4,5\} \cup\{7\} \cup\{10\}$ and the numerical semigroup $S=\mathbb{N} \backslash G=\{0,3,6,8,9,11,12,13, \ldots\}=\langle 3,8,13\rangle$.

Remark 3.17. Both descriptions of a numerical semigroup S, namely with minimal generators and with the associated gapset filtration, reveal its multiplicity m. The first one reveals its embedding dimension e, while the second one reveals its Frobenius number f, its genus g and its depth q.
3.6. Some notation. We shall denote by Γ the set of all gapsets, and by $\Gamma(g)$ the subset of all gapsets of genus g. Similarly, we shall denote by \mathcal{F} the set of all gapset filtrations, and by $\mathcal{F}(g)$ the subset of all gapset filtrations of genus g. Of course, the above maps φ and τ provide bijections between $\Gamma(g)$ and $\mathcal{F}(g)$ for all $g \geq 0$. Thus, we have

$$
n_{g}=|\Gamma(g)|=|\mathcal{F}(g)|
$$

for all $g \geq 0$.
Furthermore, given $b \in \mathbb{N}_{+}$, we shall denote by $\Gamma(q \leq b)$ the subset of all gapsets of depth $q \leq b$, and by $\mathcal{F}(q \leq b)$ the corresponding subset for gapset filtrations. For a fixed genus, we shall denote by $\Gamma(g, q \leq b)$ and $\mathcal{F}(g, q \leq b)$ the subsets of $\Gamma(q \leq b)$ and $\mathcal{F}(q \leq b)$ of elements of genus g, respectively.

The case $b=3$ is of special importance here. Thus, as in the Introduction, we set

$$
n_{g}^{\prime}=|\Gamma(g, q \leq 3)|=|\mathcal{F}(g, q \leq 3)|
$$

for all $g \geq 0$.

4. THE CASE $q \leq 2$

Zhao established that the number of numerical semigroups of genus $g \geq 0$ and depth $q \leq 2$ is equal to the Fibonacci number F_{g+1} [23]. His proof, based on counting arguments, uses formulas expressing the Fibonacci numbers as sums of binomial coefficients. Here we prove Zhao's result bijectively, without counting.

Lemma 4.1. Let $m \geq 1$. Every m-filtration $\left(F_{0}, F_{1}\right)$ is a gapset filtration of multiplicity m and depth $q \leq 2$, and conversely.

Proof. Let $F=\left(F_{0}, F_{1}\right)$ be an m-filtration. Thus $F_{0}=[1, m-1]$ and $F_{1} \subseteq F_{0}$. Let $G=\tau(F)=G_{0} \cup G_{1}$, i.e. $G_{0}=F_{0}$ and $G_{1}=m+F_{1}$. Let $z \in G$. Assume $z=x+y$ with $x \leq y$ positive integers. If $z \in G_{0}$ then $x, y \in G_{0}$. If $z \in G_{1}$, then $z \leq 2 m-1$, whence $x \leq m-1$ and so $x \in G_{0}$. Therefore G is a gapset, of depth $q \leq 2$, and $F=\varphi(G)$ is a gapset filtration. The converse holds by definition.

Proposition 4.2. For all $g \geq 2$, we have

$$
\begin{equation*}
|\mathcal{F}(g, q \leq 2)|=|\mathcal{F}(g-1, q \leq 2)|+|\mathcal{F}(g-2, q \leq 2)| . \tag{10}
\end{equation*}
$$

Proof. Let $F \in \mathcal{F}(g, q \leq 2)$. Let $m \geq 1$ be its multiplicity. Then $F=\left(F_{0}, F_{1}\right)$ where $F_{0}=[1, m-1]$ and $F_{1} \subseteq F_{0}$. We have $g=\left|F_{0}\right|+\left|F_{1}\right|$.

- If $g=0$ then $F_{0}=F_{1}=\emptyset$, corresponding to the case $m=1$. Thus $|\mathcal{F}(0, q \leq 2)|=1$.
- If $g=1$ then $F_{0}=\{1\}$ and $F_{1}=\emptyset$, so that $|\mathcal{F}(1, q \leq 2)|=1$.
- If $g=2$, then either $F_{0}=[1,2], F_{1}=\emptyset$ or else $F_{0}=F_{1}=\{1\}$.

Hence $|\mathcal{F}(2, q \leq 2)|=2$ and (10) holds for $g=2$.

- Assume now $g \geq 3$. As $\left|F_{0}\right|+\left|F_{1}\right|=g$, we have $\left|F_{0}\right| \geq 2$, whence $m \geq 3$ since $F_{0}=[1, m-1]$.
.. If $\max \left(F_{1}\right) \leq m-2$, let $F_{0}^{\prime}=F_{0} \backslash\{m-1\}=[1, m-2], F_{1}^{\prime}=F_{1}$ and $F^{\prime}=\left(F_{0}^{\prime}, F_{1}^{\prime}\right)$. Then F^{\prime} is a gapset filtration by Lemma 4.1, of genus $g-1$. That is, $F^{\prime} \in \mathcal{F}(g-1, q \leq 2)$.
.. If $\max \left(F_{1}\right)=m-1$, let $F_{i}^{\prime \prime}=F_{i} \backslash\{m-1\}$ for $i=0,1$, and let $F^{\prime \prime}=$ $\left(F_{0}^{\prime \prime}, F_{1}^{\prime \prime}\right)$. Then $F^{\prime \prime} \in \mathcal{F}(g-2, q \leq 2)$ by Lemma 4.1.

Clearly the maps $F \mapsto F^{\prime}$ and $F \mapsto F^{\prime \prime}$, where applicable, are one-to-one, and their respective domains cover the whole of $\mathcal{F}(g, q \leq 2)$. It follows that

$$
|\mathcal{F}(g, q \leq 2)| \leq|\mathcal{F}(g-1, q \leq 2)|+|\mathcal{F}(g-2, q \leq 2)| .
$$

Conversely, let $F=\left(F_{0}, F_{1}\right)$ be a gapset filtration of depth $q \leq 2$. Let m be its multiplicity, so that $F_{0}=[1, m-1]$. Let

$$
\widehat{F}_{0}=F_{0} \cup\{m\}, \widehat{F}_{1}=F_{1} \cup\{m\}, \widehat{F}=\left(\widehat{F}_{0}, F_{1}\right), \widehat{\widehat{F}}=\left(\widehat{F}_{0}, \widehat{F}_{1}\right) .
$$

Then both \widehat{F} and $\widehat{\widehat{F}}$ are gapset filtrations by Lemma 4.1. Moreover, we have $\operatorname{genus}(\widehat{F})=\operatorname{genus}(F)+1$ and genus $(\widehat{\widehat{F}})=\operatorname{genus}(F)+2$. Finally, the maps $F \mapsto \widehat{F}$ and $F \mapsto \widehat{\widehat{F}}$ are one-to-one and have disjoint images in $\mathcal{F}(q \leq 2)$, since gapset filtrations of the form $\widehat{\widehat{F}}$ are characterized by the property that their two pieces have the same maximal element m. Therefore

$$
|\mathcal{F}(g, q \leq 2)| \geq|\mathcal{F}(g-1, q \leq 2)|+|\mathcal{F}(g-2, q \leq 2)|
$$

and the proof is complete.
Corollary 4.3. For all $g \geq 0$, we have $|\mathcal{F}(g, q \leq 2)|=\mathrm{F}_{g+1}$, where F_{n} denote the nth Fibonacci number.

Proof. The formula holds for $g=0,1$. By (10), the numbers $|\mathcal{F}(g, q \leq 2)|$ satisfy the same recurrence relation as the Fibonacci numbers. Hence the formula holds for all $g \geq 0$.

5. A LOWER BOUND ON n_{g}^{\prime}

Recall that we denote by \mathcal{F} the set of all gapsets, and by $\mathcal{F}(g)$ the subset of all those of genus g. Moreover, given a set \mathcal{C} of conditions, we denote by $\mathcal{F}(\mathcal{C})$ and $\mathcal{F}(g, \mathcal{C})$ the subset of elements of \mathcal{F} and $\mathcal{F}(g)$ satisfying \mathcal{C}, respectively.

Similar constructions as for $q \leq 2$ will work for $q \leq 3$. Thus, we shall define two self-maps on $\mathcal{F}(q \leq 3)$ which increase the multiplicity by 1 , and the genus by 1 and 2 , respectively.

Notation 5.1. Let $m \in \mathbb{N}_{+}$, and let $F=\left(F_{0}, F_{1}, F_{2}\right)$ be an m-filtration of length at most 3 , so that $F_{0}=[1, m-1] \supseteq F_{1} \supseteq F_{2}$. We denote

$$
\begin{aligned}
& \alpha_{1}(F)=\left(F_{0} \sqcup\{m\}, F_{1}, F_{2}\right), \\
& \alpha_{2}(F)=\left(F_{0} \sqcup\{m\}, F_{1} \sqcup\{m\}, F_{2}\right) .
\end{aligned}
$$

Then both $\alpha_{1}(F), \alpha_{2}(F)$ are $(m+1)$-filtrations, as their first part is $[1, m]$.
Proposition 5.2. Let $F=\left(F_{0}, F_{1}, F_{2}\right)$ be a gapset filtration of genus g. Then $\alpha_{1}(F), \alpha_{2}(F)$ are gapset filtrations of genus $g+1, g+2$, respectively.

Proof. Let m be the multiplicity of F, so that $F_{0}=[1, m-1]$. Let

$$
G=\tau(F)=G_{0} \sqcup G_{1} \sqcup G_{2}
$$

be the corresponding gapset, i.e. with $G_{1}=m+F_{1}$ and $G_{2}=2 m+F_{2}$. We have $G_{1} \subseteq[m+1,2 m-1]$ and $G_{2} \subseteq[2 m+1,3 m-1]$.

Let $H=H_{0} \sqcup H_{1} \sqcup H_{2}$ be the $(m+1)$-extension corresponding to $\alpha_{1}(F)$, i.e. $H=\tau\left(\alpha_{1}(F)\right)$. Then

$$
\begin{aligned}
& H_{0}=F_{0} \sqcup\{m\}=[1, m], \\
& H_{1}=(m+1)+F_{1}, \\
& H_{2}=2(m+1)+F_{2},
\end{aligned}
$$

so that $H_{1}=1+G_{1}, H_{2}=2+G_{2}$. It follows that

$$
\begin{align*}
& H_{1} \subseteq[m+2,2 m] \tag{11}\\
& H_{2} \subseteq[2 m+3,3 m+1] \tag{12}
\end{align*}
$$

Note that $|G|=g$ and $|H|=g+1$. We claim that H is a gapset. Let $z \in H$, and assume $z=x+y$ with x, y integers such that $1 \leq x \leq y$. We need show

$$
\begin{equation*}
x \in H \text { or } y \in H . \tag{13}
\end{equation*}
$$

- If $z \in H_{0}$, then $x, y \in H_{0}$ as well and we are done.
- Assume $z \in H_{1}$. Then $z \leq 2 m$ by (11). Hence $x \leq m$, i.e. $x \in H_{0}$ and we are done.
- Finally, assume $z \in H_{2}$. Then $z \leq 3 m+1$ by (12). If $x \leq m$, then $x \in H_{0}$ and we are done. Assume now $x \geq m+1$. Then $y \leq 2 m$ since $z \leq 3 m+1$. Consider

$$
z^{\prime}=z-2=(x-1)+(y-1)
$$

Then $z^{\prime} \in G_{2}$ by construction. Since G is a gapset, it follows that $x-1 \in G$ or $y-1 \in G$. More precisely, since $m \leq x-1 \leq y-1 \leq 2 m-1$, we have $x-1 \in G_{1}$ or $y-1 \in G-1$. Hence $x \in H_{1}$ or $y \in H_{1}$ and so (13) again holds, as desired.

Let now H^{\prime} be the $(m+1)$-extension corresponding to the filtration $\alpha_{2}(F)$, i.e. $H^{\prime}=\tau\left(\alpha_{2}(F)\right)$. Then $H^{\prime}=H \cup\{2 m+1\}$. Since $2 m+1 \notin H$, we have $\left|H^{\prime}\right|=|H|+1=g+2$. We have already shown that H is a gapset. In order to show that H^{\prime} also is, it remains to show that for any integer decomposition $2 m+1=x+y$ with $1 \leq x \leq y$, we have $x \in H^{\prime}$ or $y \in H^{\prime}$. But this is easy, since then $x \leq m$ and so $x \in H^{\prime}$.

We conclude, as claimed, that $\alpha_{1}(F), \alpha_{2}(F)$ are gapset filtrations of genus $g+1, g+2$, respectively. Both are of depth $q \leq 3$ and multiplicity $m+1$, since they contain $[1, m]$ but not $m+1$.

Note that the corresponding statement is no longer true in general for depth $q \geq 4$. For instance, $(1)^{4}$ is a gapset filtration of multiplicity 2 and depth 4 , but $(12)(1)^{3}$ is no longer a gapset filtration, since its associated set $G=\tau\left((12)(1)^{3}\right)=\{1,2\} \sqcup\{4\} \sqcup\{7\} \sqcup\{10\}$ contains $10=5+5$ but not 5 and therefore is not a gapset.

Figure 2. Disjoint embeddings of levels 5,6 into level 7 of \mathcal{T}^{\prime}.
The above result implies that α_{1}, α_{2} induce two well-defined injective maps

$$
\alpha_{1}, \alpha_{2}: \mathcal{F}(q \leq 3) \rightarrow \mathcal{F}(q \leq 3)
$$

Proposition 5.3. We have $\operatorname{Im}\left(\alpha_{1}\right) \cap \operatorname{Im}\left(\alpha_{2}\right)=\emptyset$.
Proof. Let $F=\left(F_{0}, F_{1}, F_{2}\right) \in \mathcal{F}(q \leq 3)$. It follows from the definition of the maps α_{i} that if $F \in \operatorname{Im}\left(\alpha_{1}\right)$, then $\max F_{0}>\max F_{1}$, whereas if $F \in \operatorname{Im}\left(\alpha_{2}\right)$, then $\max F_{0}=\max F_{1}$. Therefore F cannot belong to both.
Corollary 5.4. For all $g \geq 2$, we have $n_{g}^{\prime} \geq n_{g-1}^{\prime}+n_{g-2}^{\prime}$.
Proof. Indeed, the above results imply that, for $g \geq 2$, the set $\mathcal{F}(g, q \leq 3)$ contains disjoint copies of $\mathcal{F}(g-1, q \leq 3)$ and $\mathcal{F}(g-2, q \leq 3)$. Whence the inequality $|\mathcal{F}(g, q \leq 3)| \geq|\mathcal{F}(g-1, q \leq 3)|+|\mathcal{F}(g-2, q \leq 3)|$.

Corollary 5.4 and its proof are illustrated in Figure 2. Let $\mathcal{T}^{\prime}=\mathcal{F}(q \leq 3)$ considered as a subtree of \mathcal{T}. Then \mathcal{T}^{\prime} has n_{g}^{\prime} vertices at level g for all $g \geq 0$. Figure 2 shows the levels $g=5,6,7$ of \mathcal{T}^{\prime}. There are $n_{5}^{\prime}=11$ vertices pictured • at level 5 , and $n_{6}^{\prime}=20$ vertices pictured • at level 6 . Level 7 of \mathcal{T}^{\prime} is seen to contain disjoint copies of levels 5 and 6 , plus two more vertices pictured \bigcirc, thereby accounting for all $n_{7}^{\prime}=33$ vertices at that level.

Remark 5.5. Replacing $q \leq 3$ by $q=4$ in Corollary 5.4, the corresponding inequality seems to hold for all $g \geq 2$, except for $g=5$ since the values of $|\mathcal{F}(g, q=4)|$ for $g=3,4,5$ are $0,1,0$. By contrast, for $q=5$, the corresponding inequality almost completely fails, at least apparently, as we conjecture that

$$
|\mathcal{F}(g, q=5)|<|\mathcal{F}(g-1, q=5)|+|\mathcal{F}(g-2, q=5)|
$$

holds for all $g \geq 21$.
Nevertheless, replacing $q=d$ by $q \leq d$ as in Corollary 5.4 for $d=3$, we have the following conjecture.

Conjecture 5.6. For all $d, g \geq 2$, we have

$$
|\mathcal{F}(g, q \leq d)| \geq|\mathcal{F}(g-1, q \leq d)|+|\mathcal{F}(g-2, q \leq d)|
$$

This conjecture may be seen as a refinement of the conjecture $n_{g} \geq$ $n_{g-1}+n_{g-2}$ for all $g \geq 2$. Corollaries 4.3 and 5.4 show that it holds for $d=2$ and $d=3$, respectively.

6. AN UPPER BOUND ON n_{g}^{\prime}

Having just proved the lower bound $n_{g}^{\prime} \geq n_{g-1}^{\prime}+n_{g-2}^{\prime}$ for all $g \geq 2$, we now establish the upper bound

$$
n_{g}^{\prime} \leq n_{g-1}^{\prime}+n_{g-2}^{\prime}+n_{g-3}^{\prime}
$$

for all $g \geq 3$.
6.1. The images of α_{1}, α_{2}. We first determine the respective images in $\mathcal{F}(g, q \leq 3)$ of the maps α_{1}, α_{2}.

Proposition 6.1. Let $F=\left(F_{0}, F_{1}, F_{2}\right) \in \mathcal{F}(g, q \leq 3)$ with $g \geq 2$. Then

$$
\begin{aligned}
& F \in \operatorname{Im}\left(\alpha_{1}\right) \quad \Longleftrightarrow \max F_{0}>\max F_{1} \\
& F \in \operatorname{Im}\left(\alpha_{2}\right) \quad \Longleftrightarrow \max F_{0}=\max F_{1}>\max F_{2}
\end{aligned}
$$

Proof. Let $F=\left(F_{0}, F_{1}, F_{2}\right)$ be a gapset filtration of genus g. By construction of the map α_{i}, the stated condition for F to belong to $\operatorname{Im}\left(\alpha_{i}\right)$ is necessary. We now prove that it is sufficient. Let $m \geq 2$ be the multiplicity of F, so that

$$
[1, m-1]=F_{0} \supseteq F_{1} \supseteq F_{2} .
$$

Thus $\max F_{0}=m-1$, and we have two cases to consider:
Case 1. $\max F_{1}<m-1$.
Case 2. $\max F_{2}<\max F_{1}=m-1$.
Thus max $F_{2} \leq m-2$ in both cases. We claim that $F \in \operatorname{Im}\left(\alpha_{1}\right)$ in Case 1 and $F \in \operatorname{Im}\left(\alpha_{2}\right)$ in Case 2 .

Let $G=\tau(F)=G_{0} \cup G_{1} \cup G_{2}$, where $G_{i}=i m+F_{i}$ for $i=0,1,2$. Then G is a gapset by hypothesis.

Consider the $(m-1)$-filtration $F^{\prime}=\left(F_{0}^{\prime}, F_{1}^{\prime}, F_{2}^{\prime}\right)$, where

$$
F_{0}^{\prime}=F_{0} \backslash\{m-1\}=[1, m-2], \quad F_{1}^{\prime}=F_{1} \backslash\{m-1\}, \quad F_{2}^{\prime}=F_{2} .
$$

Note that $F_{1}^{\prime}=F_{1}$ in Case 1. Let G^{\prime} be the corresponding $(m-1)$-extension, i.e. $G^{\prime}=\tau\left(F^{\prime}\right)=G_{0}^{\prime} \cup G_{1}^{\prime} \cup G_{2}^{\prime}$, where $G_{i}^{\prime}=i(m-1)+F_{i}^{\prime}$ for $i=0,1,2$. That is, we have

$$
G_{0}^{\prime}=F_{0}^{\prime}=[1, m-2], \quad G_{1}^{\prime}=(m-1)+F_{1}^{\prime}, \quad G_{2}^{\prime}=2(m-1)+F_{2} .
$$

Note that $\left|G^{\prime}\right|=g-1$ in Case 1 and $\left|G^{\prime}\right|=g-2$ in Case 2. We claim that G^{\prime} is a gapset in both cases.

To start with, it follows from Lemma 4.1 that $G_{0}^{\prime} \cup G_{1}^{\prime}$ is a gapset of depth at most 2 . Let now $z \in G_{2}^{\prime}$, and let $z=x+y$ with $1 \leq x \leq y$. We must show that x or y belongs to G^{\prime}.

- If $x \leq m-2$ then $x \in F_{0}^{\prime}=G_{0}^{\prime} \subseteq G^{\prime}$ and we are done in this case.
- Assume now $x \geq m-1$. Since $z \in G_{2}^{\prime}=2(m-1)+F_{2}$, we have $z=$ $2(m-1)+t$ with $t \in F_{2}$. Since $\max F_{2} \leq m-2$ in both cases, we have $z \leq 3 m-4$. Since $x+y=z$ and $x \geq m-1$, it follows that $y \leq 2 m-3$. Thus so far, we have

$$
m-1 \leq x \leq y \leq 2 m-3 .
$$

Now $(x+1)+(y+1)=z+2=2 m+t$, and $2 m+t \in G_{2}$ since $t \in F_{2}$. Therefore $x+1$ or $y+1$ belongs to G since G is a gapset. It follows that $x+1$ or $y+1$ belongs to G_{1}, as $m \leq x+1 \leq y+1 \leq 2 m-2$ and $\max G_{0}=m-1$, $\min G_{2} \geq 2 m+1$. Therefore x or y belongs to $G_{1}-1=\left(m+F_{1}\right)-1=$ $(m-1)+F_{1}$.

- In Case 1, we have $F_{1}^{\prime}=F_{1}$, thus x or y belongs to $(m-1)+F_{1}^{\prime}=G_{1}^{\prime} \subseteq$ G^{\prime} and we are done in this case. We conclude that F^{\prime} is a gapset filtration on genus $g-1$, and $F=\alpha_{1}\left(F^{\prime}\right)$ by construction, so that $F \in \operatorname{Im}\left(\alpha_{1}\right)$.
- In Case 2, we have $F_{1}^{\prime}=F_{1} \backslash\{m-1\}$. Now since $x \leq y \leq 2 m-3=$ $(m-1)+(m-2)$, it follows that x or y in fact belongs to $(m-1)+F_{1} \backslash$ $\{m-1\}=(m-1)+F_{1}^{\prime}=G_{1}^{\prime}$. Whence x or y belongs to G^{\prime} as desired. We conclude here again that F^{\prime} is a gapset filtration, now of genus $g-2$, and $F=\alpha_{2}\left(F^{\prime \prime}\right)$ by construction, so that $F \in \operatorname{Im}\left(\alpha_{2}\right)$.

6.2. Trimming the maximal elements.

Proposition 6.2. Let $F=\left(F_{0}, F_{1}, F_{2}\right)$ be a gapset filtration of multiplicity $m+1 \geq 2$ and depth 3, so that $F_{0}=[1, m] \supseteq F_{1} \supseteq F_{2} \neq 0$. Let $a_{i}=\max F_{i}$ and $F_{i}^{\prime}=F_{i} \backslash\left\{a_{i}\right\}$ for all i. Let

$$
F^{\prime}=\left(F_{0}^{\prime}, F_{1}^{\prime}, F_{2}^{\prime}\right)
$$

Then F^{\prime} is a gapset filtration.
Proof. We have $m=a_{0} \geq a_{1} \geq a_{2} \geq 1$. Let $G=\tau(F)$ and $G^{\prime}=\tau\left(F^{\prime}\right)$. Then $G=G_{0} \sqcup G_{1} \sqcup G_{2}$ and $G^{\prime}=G_{0}^{\prime} \sqcup G_{1}^{\prime} \sqcup G_{2}^{\prime}$, where

$$
\begin{aligned}
G_{i} & =i(m+1)+F_{i}, \\
G_{i}^{\prime} & =i m+F_{i}^{\prime}
\end{aligned}
$$

for $0 \leq i \leq 2$ by construction. By hypothesis G is a gapset, and we claim that G^{\prime} also is. If $F_{2}^{\prime}=\emptyset$, the claim is true since then $F^{\prime}=\left(F_{0}^{\prime}, F_{1}^{\prime}\right)$ is of length at most 2.

Assume now $F_{2}^{\prime} \neq \emptyset$. Let $z \in G_{2}^{\prime}$. Then $z=2 m+b$ for some $b \in F_{2}^{\prime}$, with $b<a_{2} \leq m$ by construction. Assume $z=x+y$ for some integers $1 \leq x \leq y$. It suffices to show $\{x, y\} \cap G^{\prime} \neq \emptyset$ in order to conclude the proof.

- If $x \leq m-1$, we are done since then $x \in G_{0}^{\prime}=F_{0}^{\prime}=[1, m-1]$.
- Assume now $x \geq m$. Since $x+y=z=2 m+b \leq 3 m-1$, it follows that $y \leq 2 m-1$. We have $z+2=2(m+1)+b \in G_{2}$. Since G is a gapset and $z+2=(x+1)+(y+1)$, it follows that $\{x+1, y+1\} \cap G \neq 0$. More precisely, since $\max G_{0}=m, \min G_{2} \geq 2 m+3$ and $m+1 \leq x+1 \leq y+1 \leq$ $2 m$, we have $\{x+1, y+1\} \cap G_{1} \neq \emptyset$. Subtracting $m+1$ yields

$$
\begin{equation*}
\{x-m, y-m\} \cap F_{1} \neq \emptyset \tag{14}
\end{equation*}
$$

If $\{x-m, y-m\} \cap F_{1}^{\prime} \neq \emptyset$, we are done since then $\{x, y\} \cap G_{1}^{\prime} \neq \emptyset$. Assume now $\{x-m, y-m\} \cap F_{1}^{\prime}=\emptyset$. Then (14) implies $\{x-m, y-m\} \cap F_{1}=\left\{a_{1}\right\}$. Therefore either $x-m=a_{1}$ or $y-m=a_{1}$, whence $y-m \geq a_{1}$ since $y \geq x$. But then

$$
2 m+b=z=x+y \geq x+a_{1}+m
$$

Hence $m+b \geq x+a_{1}$. This implies $x \leq m+\left(b-a_{1}\right)<m$ since $b<a_{2} \leq a_{1}$ as noted earlier, a contradiction with the current case $x \geq m$. Hence the hypothesis $\{x-m, y-m\} \cap F_{1}^{\prime}=\emptyset$ is absurd. Therefore $\{x, y\} \cap G_{1}^{\prime} \neq \emptyset$ and the proof is complete.

The above result no longer holds in general for depth $q \geq 4$. The smallest gapset filtration for which suppressing the max of the pieces fails to preserve the gapset property is $(123)(13)^{3}$. This corresponds to the gapset $\{1,2,3\} \cup\{5,7\} \cup\{9,11\} \cup\{13,15\}$. Suppressing the max's yields the filtration $(12)(1)^{3}$. It corresponds to the set $\{1,2\} \cup\{4\} \cup\{7\} \cup\{10\}$ which is not a gapset since it contains $10=5+5$ but not 5 .

Corollary 6.3. Let $\left(F_{0}, F_{1}, F_{2}\right)$ be a gapset filtration such that $\max F_{0}=$ $\max F_{1}=\max F_{2}=m$. Let $F_{i}^{\prime}=F_{i} \backslash\{m\}$. Then $\left(F_{0}^{\prime}, F_{1}^{\prime}, F_{2}^{\prime}\right)$ is a gapset filtration.

Proof. Follows as a special case of the above proposition.
6.3. Main result. We are now in a position to state and prove our main estimates of n_{g}^{\prime}.

Theorem 6.4. Let n_{g}^{\prime} denote the number of gapsets of genus g and depth $q \leq 3$. Then

$$
n_{g-1}^{\prime}+n_{g-2}^{\prime} \leq n_{g}^{\prime} \leq n_{g-1}^{\prime}+n_{g-2}^{\prime}+n_{g-3}^{\prime}
$$

for all $g \geq 3$.
Proof. The lower bound has been established in Corollary 5.4. We now prove the upper bound. The statement holds for $g=3,4,5$. Let $g \geq 6$, and
set $X=\mathcal{F}(g, q \leq 3)$. Consider the partition $X=X_{1} \sqcup X_{2} \sqcup X_{3}$, where for $F=\left(F_{0}, F_{1}, F_{2}\right) \in X$, we set

- $F \in X_{1} \Longleftrightarrow \max \left(F_{0}\right)>\max \left(F_{1}\right)$,
- $F \in X_{2} \Longleftrightarrow \max \left(F_{0}\right)=\max \left(F_{1}\right)>\max \left(F_{2}\right)$,
- $F \in X_{3} \Longleftrightarrow \max \left(F_{0}\right)=\max \left(F_{1}\right)=\max \left(F_{2}\right)$.

It follows from Proposition 6.1 that $F \in X_{1}$ if and only if $F \in \operatorname{Im}\left(\alpha_{1}\right)$, and $F \in X_{2}$ if and only if $F \in \operatorname{Im}\left(\alpha_{2}\right)$. Thus $\left|X_{1}\right|=n_{g-1}^{\prime},\left|X_{2}\right|=n_{g-2}^{\prime}$. Moreover, it follows from Corollary 6.3 that X_{3} may be embedded into $\mathcal{F}(g-3, q \leq 3)$, by removing the common max of F_{0}, F_{1}, F_{2}. Whence

$$
\left|X \backslash\left(X_{1} \sqcup X_{2}\right)\right| \leq|\mathcal{F}(g-3, q \leq 3)|=n_{g-3}^{\prime}
$$

and the proof is complete.
Recall that the tribonacci sequence is the integer sequence $\left(\mathrm{T}_{n}\right)_{n \geq 0}$ defined recursively by $\mathrm{T}_{0}=0, \mathrm{~T}_{1}=1, \mathrm{~T}_{2}=1$ and $\mathrm{T}_{n}=\mathrm{T}_{n-1}+\mathrm{T}_{n-2}+\mathrm{T}_{n-3}$ for all $n \geq 3$. See e.g. Wikipedia [20]. The first few terms of this sequence are

$$
0,1,1,2,4,7,13,24,44,81,149,274,504,927,1705, \ldots
$$

In analogy with the Fibonacci sequence, there is an exact formula for T_{n} in terms of the three roots of the polynomial $x^{3}-x^{2}-x-1$. The growth rate of this sequence is given by $\mathrm{T}_{n} / T_{n-1} \rightarrow t \sim 1.839$ as $n \rightarrow \infty$, where

$$
t=\frac{1+\sqrt[3]{19+3 \sqrt{33}}+\sqrt[3]{19-3 \sqrt{33}}}{3}
$$

is the only real root of $x^{3}-x^{2}-x-1$ and is called the tribonacci constant.
Corollary 6.5. For all $g \geq 3$, we have

$$
2 \mathrm{~F}_{g} \leq n_{g}^{\prime} \leq \mathrm{T}_{g+1}
$$

Note that the claimed inequality $n_{g}^{\prime} \geq 2 \mathrm{~F}_{g}$ is a strengthening of the inequality $n_{g} \geq 2 \mathrm{~F}_{g}$ proved in [2].
Proof. We have $\left(n_{2}^{\prime}, n_{4}^{\prime}\right)=(2,4)=\left(2 \mathrm{~F}_{2}, 2 \mathrm{~F}_{3}\right)$. Since $n_{g+2}^{\prime} \geq n_{g+1}^{\prime}+n_{g}^{\prime}$ and $\mathrm{F}_{g+2}=\mathrm{F}_{g+1}+\mathrm{F}_{g}$ for all $g \geq 0$, the inequality $n_{g}^{\prime} \geq 2 \mathrm{~F}_{g}$ follows by induction on g.

As for the upper bound, we have $\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}\right)=(1,2,4)=\left(\mathrm{T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}\right)$. By Theorem 6.4 and the recurrence relation of the T_{n}, the inequality $n_{g}^{\prime} \leq \mathrm{T}_{g+1}$ again follows by induction on g.

Going to higher genus yields better estimates.
Corollary 6.6. For all $g \geq 58$, we have

$$
7.8 \mathrm{~F}_{g} \leq n_{g}^{\prime} \leq \frac{7}{1000} \mathrm{~T}_{g+1}
$$

Proof. We have

$$
\begin{aligned}
\left(n_{58}^{\prime}, n_{59}^{\prime}, n_{60}^{\prime}\right) & =(4615547228454,7504199621406,12197944701688) \\
\left(\mathrm{F}_{58}, \mathrm{~F}_{59}, \mathrm{~F}_{60}\right) & =(591286729879,956722026041,1548008755920) \\
\left(\mathrm{T}_{58}, \mathrm{~T}_{59}, \mathrm{~T}_{60}\right) & =(752145307699165,1383410902447554,2544489349890656)
\end{aligned}
$$

The stated inequalities hold for $g=58,59,60$ and hence for all $g \geq 58$ by Theorem 6.4 and the recurrence relations of the Fibonacci and the tribonacci numbers. In fact, for the lower bound we have the slightly better estimate

$$
\begin{equation*}
n_{g}^{\prime} \geq 7.84 \mathrm{~F}_{g} \tag{15}
\end{equation*}
$$

for all $g \geq 59$, since it holds for $g=59,60$.
Corollary 6.7. For all $g \geq 59$, we have

$$
\begin{equation*}
n_{g} \geq 7.84 \mathrm{~F}_{g} \tag{16}
\end{equation*}
$$

Proof. Follows from the inequality $n_{g} \geq n_{g}^{\prime}$ and (15).

As far as we know, inequality (16) is the best currently available lower bound on n_{g} for large g.

7. THE GAPSETS GRAPH

In this section, we show that the tree \mathcal{T} is naturally embedded in a larger graph, which is easy to describe in terms of gapsets, or gapset filtrations, and which was actually discovered in this language.

Definition 7.1. Let F, F^{\prime} be gapset filtrations of genus g, g^{\prime} respectively, where $F=\left(F_{0}, \ldots, F_{q-1}\right), F^{\prime}=\left(F_{0}^{\prime}, \ldots, F_{q^{\prime}-1}^{\prime}\right)$. We put an edge between F, F^{\prime} if

- $g^{\prime}=g+1$
- F^{\prime} is a refinement of F, i.e. if $F_{i}^{\prime} \supseteq F_{i}$ for all i.

Clearly, all edges of the original tree \mathcal{T} remain edges in the above new sense. But now new edges appear. In the figure below, the new edges are the dotted ones.

Remark 7.2. While the original tree \mathcal{T} has many leaves, i.e. vertices of degree 1, this is no longer the case in our graph: every vertex has at least one child, as easily seen.

Note also that the injective maps described in preceding sections use the new edges of this graph, not those of its subtree \mathcal{T}.

8. Going further

Here we characterize gapset filtrations of multiplicity 3 and 4, respectively. The proofs will appear in a subsequent paper using more tools. We also formulate two conjectures both implying $n_{g+1} \geq n_{g}$ for all $g \geq 0$.

8.1. The case $m=3$.

Theorem 8.1. Let $a \geq 1, b \geq 0$. Then

- $(12)^{a}(1)^{b}$ is a gapset filtration if and only if $b \leq a+1$
- $(12)^{a}(2)^{b}$ is a gapset filtration if and only if $b \leq a$.

Corollary 8.2. For all $g \geq 1$, there is an explicit injection

$$
\mathcal{F}(g, m=3) \longrightarrow \mathcal{F}(g+1, m=3) .
$$

8.2. The case $m=4$.

Theorem 8.3. Let $a \geq 1, b, c \geq 0$. Then

- $(123)^{a}(12)^{b}(1)^{c}$ is a gapset filtration $\Longleftrightarrow b, c \leq a+1$
- $(123)^{a}(12)^{b}(2)^{c}$ is a gapset filtration $\Longleftrightarrow b+c \leq a+1, c \leq a+b$
- $(123)^{a}(13)^{b}(1)^{c}$ is a gapset filtration $\Longleftrightarrow c \leq a+1$
- $(123)^{a}(13)^{b}(3)^{c}$ is a gapset filtration $\Longleftrightarrow c \leq a$
- $(123)^{a}(23)^{b}(2)^{c}$ is a gapset filtration $\Longleftrightarrow b+c \leq a$
- $(123)^{a}(23)^{b}(3)^{c}$ is a gapset filtration $\Longleftrightarrow b, c \leq a$.

Corollary 8.4. For all $g \geq 1$, there is an explicit injection

$$
\mathcal{F}(g, m=4) \longrightarrow \mathcal{F}(g+1, m=4) .
$$

Here is a hopefully temporary paradox. The subtrees of \mathcal{T} for $m=3$ and for $m=4$ grow pretty slowly, but proving their growth via Theorems 8.1 and 8.3 and their corollaries is relatively easy and will be done in a forthcoming paper. On the other hand, computations show that the larger m is, the more vigorous the growth of the corresponding subtree is. However, proving that growth is still an open problem.
8.3. Two conjectures. We conclude this paper with two conjectures which would both imply Conjecture 2.3, namely $n_{g+1} \geq n_{g}$ for all $g \geq 0$. The first one would further confirm that 'most' numerical semigroups are of depth $q \leq 3$.

Conjecture 8.5. One has $n_{g+1}^{\prime} \geq 1.38 n_{g}$ for all $g \geq 1$, and $n_{g+1}^{\prime} \geq 1.5 n_{g}$ for all $g \geq 49$.

The available data, namely the values of n_{g}^{\prime} for $1 \leq g \leq 60$ given in the Appendix and the values of n_{g} given in [9], show that Conjecture 8.5 holds for all $1 \leq g \leq 59$.

Indeed, for $1 \leq g \leq 59$, the minimum of n_{g+1}^{\prime} / n_{g} is found to be attained at $g=18$, for which we have $n_{19}^{\prime} / n_{18} \sim 1.3806341$. For $1 \leq g \leq 5$, the values of n_{g+1}^{\prime} / n_{g} are

$$
2,2,1.5,1+4 / 7,1+2 / 3
$$

respectively, and yield $n_{g+1}^{\prime} / n_{g} \geq 1.5$ in this range. A graphical representation of n_{g+1}^{\prime} / n_{g} in the range $6 \leq g \leq 59$ is given in Figure 3. The available data shows that $n_{g+1}^{\prime} / n_{g} \geq 1.5$ holds for all $49 \leq g \leq 59$, and most probably beyond as well.

Our second conjecture states that the growth of the number of vertices of given genus should hold for many infinite subtrees of \mathcal{T}.

Conjecture 8.6. Let S be a numerical semigroup such that the subtree $\mathcal{T}(S)$ of \mathcal{T} rooted at S is infinite. Then the successive levels of $\mathcal{T}(S)$ have nondecreasing cardinalities.

An interesting particular case is that of $S_{m}=\{0\} \cup[m, \infty[$. The conjecture seems to hold for S_{m} and any $m \geq 2$. Since every numerical semigroup $S \neq \mathbb{N}$ is a descendant of some S_{m} with $m \geq 2$, the validity of the above conjecture for S_{m} for all $m \geq 2$ would imply the conjecture $n_{g} \geq n_{g-1}$ for

Figure 3. The quotient n_{g+1}^{\prime} / n_{g} for $6 \leq g \leq 59$
all $g \geq 1$. The cases $m=3,4,5$ have been established in [10] with computational methods. Our characterization above for $m=3,4$ yields a simpler proof in these two cases. Finally, it would be very interesting to determine the asymptotic growth rate of these particular subtrees $\mathcal{T}\left(S_{m}\right)$.

9. APPENDIX

Here is the sequence of n_{g}^{\prime} for $g=1, \ldots, 60$, computed using the fast algorithms developped in [9] and made on CALCULCO, the high performance computing platform of our university [3].
$1,2,4,6,11,20,33,57,99,168,287,487,824,1395$, 2351, 3954, 6636, 11116, 18593, 31042, 51780, 86223, 143317, 237936, 394532, 653420, 1080981, 1786328, 2948836, 4863266, 8013802, 13194529, 21707242, 35684639, 58618136, 96221845, 157840886, 258749944, 423906805, 694076610, 1135816798, 1857750672, 3037078893, 4962738376, 8105674930, 13233250642, 21595419304, 35227607540, 57443335681, 93635242237, 152577300884, 248541429293, 404736945777, 658898299876, 1072361202701, 1744802234628, 2838171714880, 4615547228454, $7504199621406,12197944701688$.

Figure 4. The sequence of n_{g}^{\prime} for $g=1, \ldots, 60$

References

[1] M. Bras-Amorós, Fibonacci-like behavior of the number of numerical semigroups of a given genus, Semigroup Forum 76 (2008) 379-384.
[2] M. Bras-Amorós, Bounds on the number of numerical semigroups of a given genus, J. Pure Appl. Algebra 213 (2009) 997-1001.
[3] CALCULCO, a high performance computing platform supported by SCoSI/ULCO (Service COmmun du Système d'Information de l'Université du Littoral Côte d'Opale).
[4] M. Delgado, On a question of Eliahou and a conjecture of Wilf. Math. Z. 288 (2018) 595-627.
[5] M. Delgado, P.A. García-Sánchez and J. Morais, "Numericalsgps": a GAP package on numerical semigroups. http://www.gap-system.org/ Packages/numericalsgps.html
[6] S. Eliahou, Wilf's conjecture and Macaulay's theorem, J. Eur. Math. Soc. 20 (2018) 2105-2129. DOI 10.4171/JEMS/807.
[7] S. Eliahou and J. Fromentin, Near-misses in Wilf's conjecture, Semigroup Forum (2018). DOI: 10.1007/s00233-018-9926-5.
[8] R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup Forum 35 (1987) 63-83.
[9] J. Fromentin and F. Hivert, Exploring the tree of numerical semigroups, Math. Comp. 85 (2016) 2553-2568.
[10] P. A. García-Sánchez, D. Marín-Aragón and A. M. Robles-Pérez, The tree of numerical semigroups with low multiplicity, arXiv:1803.06879 [math.CO] (2018).
[11] N. KAPLAN, Counting numerical semigroups by genus and some cases of a question of Wilf, J. Pure Appl. Algebra 216 (2012) 1016-1032.
[12] N. Kaplan, Counting numerical semigroups. Amer. Math. Monthly 124 (2017) 862-875.
[13] A. Moscariello and A. Sammartano, On a conjecture by Wilf about the Frobenius number, Math. Z. 280 (2015) 47-53.
[14] J.L. Ramírez Alfonsín, The Diophantine Frobenius problem. Oxford Lecture Series in Mathematics and its Applications 30, Oxford University Press, Oxford, 2005.
[15] J.C. Rosales and P.A. García-Sánchez, Numerical semigroups. Developments in Mathematics, 20. Springer, New York, 2009.
[16] J.C. Rosales, P.A. García-Sánchez, J.I. García-García and J.A. Jiménez MADRID, The oversemigroups of a numerical semigroup, Semigroup Forum 67 (2003) 145-158.
[17] J.C. Rosales, P.A. García-Sánchez, J.I. García-García and J.A. Jiménez Madrid, Fundamental gaps in numerical semigroups, J. Pure Appl. Algebra 189 (2004) 301-313.
[18] E.S. Selmer, On a linear Diophantine problem of Frobenius, J. Reine Angew. Math. 293/294 (1977) 1-17.
[19] J.J. Sylvester, Mathematical questions with their solutions, Educational Times 41 (1884) 21.
[20] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_ numbers\#Tribonacci_numbers
[21] H. Wilf, A circle-of-lights algorithm for the money-changing problem, Amer. Math. Monthly 85 (1978) 562-565.
[22] A. ZHAI, Fibonacci-like growth of numerical semigroups of a given genus, Semigroup Forum 86 (2013) 634-662.
[23] Y. ZHAO, Constructing numerical semigroups of a given genus, Semigroup Forum 80 (2010) 242-254. http://dx.doi.org/10.1007/s00233-009-9190-9.

Shalom Eliahou, Univ. Littoral Côte d’ Opale, EA 2597 - LMPA - Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville, F-62228
Calais, France and CNRS, FR 2956, France
E-mail address: eliahou@univ-littoral.fr
Jean Fromentin, Univ. Littoral Côte d’Opale, EA 2597 - LMPA - Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville, F-62228 Calais, France and CNRS, FR 2956, France

E-mail address: fromentin@math.cnrs.fr

