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GAPSETS AND NUMERICAL SEMIGROUPS

SHALOM ELIAHOU AND JEAN FROMENTIN

ABSTRACT. For g ≥ 0, let ng denote the number of numerical semi-
groups of genus g. A conjecture by Maria Bras-Amorós in 2008 states
that the inequality ng ≥ ng−1 +ng−2 should hold for all g ≥ 2. Here we
show that such an inequality holds for the very large subtree of numeri-
cal semigroups satisfying c ≤ 3m, where c and m are the conductor and
multiplicity, respectively. Our proof is given in the more flexible setting
of gapsets, i.e. complements in N of numerical semigroups.

1. INTRODUCTION

Denote N= {0,1,2,3, . . .} and N+ = N\{0}= {1,2,3, . . .}. For a,b ∈
Z, let [a,b] = {z∈Z | a≤ z≤ b} and [a,∞[= {z∈Z | a≤ z} denote the inte-
ger intervals they span. A numerical semigroup is a subset S⊆N containing
0, stable under addition and with finite complement in N. Equivalently, it
is a subset S ⊆ N of the form S = 〈a1, . . . ,an〉 = Na1 + · · ·+Nan for some
globally coprime positive integers a1, . . . ,an.

For a numerical semigroup S ⊆ N, its gaps are the elements of N\S, its
genus is g = |N\S|, its multiplicity is m =minS\{0}, its Frobenius number
is f = maxZ\S, its conductor is c = f +1, and its embedding dimension,
usually denoted e, is the least number of generators of S, i.e. the least n such
that S = 〈a1, . . . ,an〉. Note that the conductor c of S satisfies c+N⊆ S, and
is minimal with respect to this property since c−1 = f /∈ S.

Given g≥ 0, the number ng of numerical semigroups of genus g is finite,
as easily seen. The values of ng for g = 0, . . . ,15 are as follows:

1,1,2,4,7,12,23,39,67,118,204,343,592,1001,1693,2857.

In 2008, Maria Bras-Amorós made some remarkable conjectures concern-
ing the growth of ng. In particular, she conjectured that

(1) ng ≥ ng−1 +ng−2

for all g ≥ 2. This conjecture is widely open. Indeed, even the weaker
inequality ng ≥ ng−1, whose validity has been settled by Alex Zhai [22]
for all sufficiently large g, remains to be proved for all g ≥ 1. In that same
paper, Zhai showed that ‘most’ numerical semigroups S satisfy c ≤ 3m,
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where c and m are the conductor and multiplicity of S, respectively. For a
more precise statement, let us denote

n′g = the number of numerical semigroups S
of genus g satisfying c≤ 3m.

Zhai showed then that limg→∞ n′g/ng = 1, as had been earlier conjectured
by Yufei Zhao [23]. The values of n′g for g = 0, . . . ,15 are as follows:

1,1,2,4,6,11,20,33,57,99,168,287,487,824,1395,2351.

In this paper, we show that the conjectured inequality (1) holds for n′g.
Even more so, we shall prove the following bounds on n′g for all g≥ 3:

(2) n′g−1 +n′g−2 ≤ n′g ≤ n′g−1 +n′g−2 +n′g−3,

the strongest partial result so far towards (1).
The contents of this paper are as follows. In Section 2, we recall the

necessary background, including the tree of numerical semigroups, and we
introduce the depth, a key parameter for numerical semigroups which had
no specific name yet. In Section 3, we introduce gapsets, i.e. complements
in N of numerical semigroups, and gapset filtrations. We also introduce
m-extensions and m-filtrations to facilitate their study. In Section 4, we
consider the case of depth at most 2, i.e. where c ≤ 2m. Sections 5 and 6
are the heart of the paper, where we use the setting of gapsets to establish
the left and right inequalities in (2), respectively. In Section 7, we show that
the tree of numerical semigroups may be naturally embedded in a richer
graph whose new edges played a key role towards establishing (2). Fi-
nally, in Section 8 we propose some related conjectures and announce some
forthcoming results on gapsets of small multiplicity. An Appendix gives the
exact values of n′g for g = 1, . . . ,60.

2. BACKGROUND

Numerical semigroups S⊆ N may be defined in two equivalent yet quite
distinct ways.

Definition 2.1.
(1) As cofinite submonoids of N. That is, as subsets S ⊆ N containing

0, stable under addition and with finite complement N\S.
(2) As subsets of N of the form S = 〈a1, . . . ,an〉 = Na1 + · · ·+Nan,

where a1, . . . ,an ∈ N+ and gcd(a1, . . . ,an) = 1.

For most numerical semigroups, going from one description to the other
one is computationally costly. That is, the description of S as S= 〈a1, . . . ,an〉
does not easily yield N\S - think of the Frobenius problem - nor conversely.
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2.1. Counting numerical semigroups by genus. Given g ≥ 0, the num-
ber ng of numerical semigroups of genus g is finite, as easily seen. As
mentioned above, the values of ng for g = 0, . . . ,15 are as follows:

1,1,2,4,7,12,23,39,67,118,204,343,592,1001,1693,2857.

In 2006, Maria Bras-Amorós pushed the computation of this sequence up
to g = 50 and came up with beautiful conjectures about its growth [1].

Conjecture 2.2. The following probably hold.

ng ≥ ng−1 +ng−2 for all g≥ 2,(3)

lim
g→∞

(ng−1 +ng−2)/ng = 1,(4)

lim
g→∞

ng/ng−1 = (1+
√

5)/2.(5)

As (3) is still widely open, a weaker version has been formally proposed,
possibly first in [11], even though the problem was already informally men-
tioned in [23] for instance.

Conjecture 2.3. The inequality ng ≥ ng−1 should hold for all g≥ 1.

Zhai [22] showed that ng≥ ng−1 does indeed hold for all sufficiently large
g, but whether it holds for all g≥ 1 remains open at the time of writing. See
[12] for a nice survey on related questions.

2.2. The depth.

Definition 2.4. Let S be a numerical semigroup of multiplicity m and con-
ductor c. We call depth of S the integer q = dc/me, and we denote it by
depth(S).

The only numerical semigroup of depth 0 is S =N. Since c≥m if S 6=N,
the numerical semigroups of depth 1 are exactly those for which c = m, i.e.
those of the form

S = {0}∪ [m,∞[

for some m ≥ 2. These specific numerical semigroups are called ordinary
in the current literature, but a more appropriate and descriptive term would
be superficial.

The depth is an important parameter of numerical semigroups, even though
it wasn’t specifically named before the present paper. For instance, among
various partial results, Wilf’s conjecture has been shown to hold for numer-
ical semigroups of depth q = 2 in [11] and in the more demanding case
q = 3 in [6]. Moroever, near-misses in Wilf’s conjecture have been con-
structed for depth q ≥ 4 and embedding dimension 3 in [4], and for depth
q= 4 and arbitrary large embedding dimension in [7]. Zhao showed that the
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number of numerical semigroups of genus g and depth q≤ 2 is equal to the
Fibonacci number Fg+1 [23]. More importantly for this paper, Zhao con-
jectured in [23], and Zhai proved in [22], that ‘most’ numerical semigroups
are of depth q ≤ 3. More precisely, that among all numerical semigroups
of genus g, the proportion of those of depth q ≤ 3 tends to 1 as g tends to
infinity. This phenomenon is illustrated in Figure 1 below.

2.3. The tree of numerical semigroups. The set of all numerical semi-
groups may be organized into a tree T , rooted at N = 〈1〉 of genus 0, and
where for all g ≥ 0, the gth level of T consists of all ng numerical semi-
groups of genus g. The construction of T is as follows [16, 1]. Given a
numerical semigroup S of genus g≥ 1, its parent is Ŝ = S∪{ f} where f is
the Frobenius number of S. Then Ŝ is also a numerical semigroup, of genus
g−1. Here are the first five levels of T .

〈1〉

〈2,3〉

〈3,4,5〉 〈2,5〉

〈4,5,6,7〉 〈3,5,7〉 〈3,4〉 〈2,7〉

〈5,6,7,8,9〉 〈4,6,7,9〉 〈4,5,7〉 〈4,5,6〉 〈3,7,8〉 〈3,5〉 〈2,9〉

This illustrates the data (n0,n1,n2,n3,n4) = (1,1,2,4,7) given earlier.

As an illustration of Zhai’s result that ‘most’ numerical semigroups are of
depth q≤ 3, Figure 1 displays the first 12 levels of T , where the numerical
semigroups of depth q ≤ 3 and q ≥ 4 are represented by black dots and
smaller gray dots, respectively. The bottom line consists of n11 = 343 dots,
among which there are 287 black ones.

3. GAPSETS

Definition 3.1. A gapset is a finite set G⊂N+ satisfying the following prop-
erty: for all z ∈ G, if z = x+ y with x,y ∈ N+, then x ∈ G or y ∈ G.

Notice the similarity of this definition with that of a prime ideal P in a
ring R, where for any z ∈ P, any decomposition z = xy with x,y ∈ R implies
x ∈ P or y ∈ P.
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FIGURE 1. The first 12 levels of T . Black dots correspond
to depth q≤ 3.

Remark 3.2. It follows from the definition that a gapset G is nothing else
than the set of gaps of a numerical semigroup S, where S = N\G.

One of our purposes here is to show that thinking in terms of gapsets
rather than numerical semigroups proper may lead to advances on the latter.
In particular, this is what originally led us to the present partial results on
the Bras-Amorós conjecture ng≥ ng−1+ng−2. Indeed, as will become clear
in this paper, gapsets may be manipulated and transformed in ways which
are not so conveniently expressible on the level of numerical semigroups.

We now transfer in a natural way some terminology from numerical semi-
groups to gapsets.

Definition 3.3. Let G⊂N+ be a gapset. The multiplicity of G is the small-
est integer m≥ 1 such that m /∈G, the Frobenius number of G is f = maxG
if G 6= /0 and f =−1 otherwise, the conductor of G is c = f +1, the genus
of G is g = card(G) and the depth of G is q = dc/me.

That is, the multiplicity, Frobenius number, conductor, genus and depth
of a nonempty gapset G coincide with the corresponding numbers of its
associated numerical semigroup S = N\G.

3.1. Revisiting T in terms of gapsets. In order to reconstruct the tree T
of numerical semigroups in the setting of gapsets, we need the following
lemma.

Lemma 3.4. Every initial segment of a gapset is a gapset.

Proof. Let G be a gapset. Let t ∈ N+ and G′ = G∩ [1, t]. We claim that G′

is a gapset. Let z ∈ G′, and assume z = x+ y with 1 ≤ x ≤ y. Since z ∈ G,
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we have {x,y}∩G 6= /0, whence {x,y}∩G′ 6= /0 since x,y≤ z≤ t. Therefore
G′ is a gapset, as claimed. �

In particular, if G is a nonempty gapset, then G\{maxG} is still a gapset.
Plainly, designating the latter as the parent of the former exactly captures
the parenthood in T . This gives the following figure which is much easier
to understand than the above classical one.

/0

1

12 13

123 124 125 135

1234 1235 1236 1237 1245 1247 1357

Conversely, the children of a gapset G in T are exactly those gapsets H
such that H = Gt{a} for some a > maxG. This is a finite set, since if G is
of multiplicity m and conductor c, then any child H = Gt{a} of G satisfies
c ≤ a ≤ m+ c− 1; for if a ≥ c+m, then Gt{a} cannot be a gapset as it
contains a = m+(a−m), but neither m nor a−m since a−m≥ c > maxG.

3.2. The canonical partition.

Lemma 3.5. Let G be a gapset of multiplicity m. Then

[1,m−1] ⊆ G,

G∩mN = /0.

Proof. By definition of the multiplicity, G contains [1,m−1] but not m. Let
a ≥ 2 be an integer. The formula am = m+(a− 1)m and induction on a
imply that am /∈ G. �

This motivates the following notation and definition.

Notation 3.6. Let G be a gapset of multiplicity m. We denote G0 = [1,m−1]
and, more generally,

(6) Gi = G∩ [im+1,(i+1)m−1] for all i≥ 0.
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Proposition 3.7. Let G be a gapset of multiplicity m and depth q. Let Gi be
defined as in (6). Then

(7) G = G0tG1t·· ·tGq−1

and Gq−1 6= /0. Moreover Gi+1 ⊆ m+Gi for all i≥ 0.

Proof. As G∩mN = /0, it follows that G is the disjoint union of the Gi for
i ≥ 0. Let c be the conductor of G. Then G ⊆ [1,c−1]. Since (q−1)m <
c ≤ qm by definition of q, it follows that Gi = /0 for i ≥ q, whence (7). Let
f = c−1. Since f ∈ G and f ≥ (q−1)m+1, it follows that f ∈ Gq−1.

It remains to show that Gi+1 ⊆ m+Gi for all i≥ 0. Let x ∈ Gi+1. Since
Gi+1 ⊆ [(i+1)m+1,(i+2)m−1], we have

x−m ∈ [im+1,(i+1)m−1].

Now x−m ∈ G since x = m+(x−m) and m /∈ G. So x−m ∈ Gi. �

Definition 3.8. Let G be a gapset. The canonical partition of G is the parti-
tion G = G0tG1t·· ·tGq−1 given by (7).

Remark 3.9. The multiplicity m, genus g and depth q of a gapset G may be
read off from its canonical partition G = tiGi as follows :

m = max(G0)+1,
g = ∑

i
|Gi|,

q = the number of nonempty Gi.

3.3. On m-extensions and m-filtrations. We shall need to consider some-
what more general finite subsets of N+ than gapsets proper.

Definition 3.10. Let m ∈ N+. An m-extension is a finite set A ⊂ N+ con-
taining [1,m−1] and admitting a partition

(8) A = A0tA1t·· ·tAt

for some t ≥ 0, where A0 = [1,m−1] and Ai+1 ⊆ m+Ai for all i≥ 0.

In particular, an m-extension A satisfies A∩mN= /0. Moreover, the above
conditions on the Ai imply

(9) Ai = A∩ [im+1,(i+1)m−1]

for all i≥ 0, whence the Ai are uniquely determined by A.

Remark 3.11. Every gapset of multiplicity m is an m-extension. This fol-
lows from Proposition 3.7.

Closely linked is the notion of m-filtration.
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Definition 3.12. Let m ∈ N+. An m-filtration is a finite sequence F =
(F0,F1, . . . ,Ft) of nonincreasing subsets of N+ such that

F0 = [1,m−1]⊇ F1 ⊇ ·· · ⊇ Ft .

For m ∈ N+, there is a straightforward bijection between m-extensions
and m-partitions.

Proposition 3.13. Let A = A0 tA1 t ·· · tAt be an m-extension. Set Fi =
−im+Ai for all i. Then (F0,F1, . . . ,Ft) is an m-filtration. Conversely, let
(F0,F1, . . . ,Ft) be an m-filtration. Set Ai = im+Fi for all i, and let A be the
union of the Ai. Then A is an m-extension.

Proof. We have Fi =−im+Ai if and only if Ai = im+Fi. �

Notation 3.14. If A is an m-extension, we denote by F =ϕ(A) its associated
m-filtration. Conversely, if F is an m-filtration, we denote by A = τ(F) its
associated m-extension.

By the above proposition, the maps ϕ and τ are inverse to each other.

3.4. Gapset filtrations.

Definition 3.15. Let G ⊂ N+ be a gapset of multiplicity m. The gapset
filtration associated to G is the m-filtration F = ϕ(G).

By Remark 3.11, every gapset G of multiplicity m is an m-extension,
whence ϕ(G) is well-defined.

Concretely, let G be a gapset of multiplicity m and depth q. As in (6), let
Gi = G∩ [im+1,(i+1)m−1] for all i≥ 0, so that G0 = [1,m−1] and

G = G0t·· ·tGq−1.

The associated m-filtration F = ϕ(G) is then given by F = (F0, . . . ,Fq−1)
where Fi =−im+Gi for all i≥ 0.

We now transfer some terminology from gapsets to gapset filtrations.

Definition 3.16. Let F be a gapset filtration. Its multiplicity, genus and
depth are defined as those of its corresponding gapset G = τ(F).

Let F = (F0,F1, . . . ,Fq−1) be a gapset filtration, and let G = τ(F) = ∪iGi
be the corresponding gapset. It follows from Remark 3.9 and the equality
|Fi|= |Gi| for all i, that the genus of F is equal to |F0|+ · · ·+ |Fq−1| and that
its depth is equal to the number of nonzero Fi.
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3.5. An example: the case of genus 6. For illustration purposes, here are
the 23 numerical semigroups or gapsets of genus 6 given in two different
ways.

• With minimal generators:

〈2,13〉;〈3,7〉;〈3,8,13〉;〈3,10,11〉;〈4,5〉;〈4,6,9〉;〈4,6,11,13〉;〈4,7,9〉;
〈4,7,10,13〉;〈4,9,10,11〉;〈5,6,7〉;〈5,6,8〉;〈5,6,9,13〉;〈5,7,8,9〉;〈5,7,8,11〉;
〈5,7,9,11,13〉;〈5,8,9,11,12〉;〈6,7,8,9,10〉;〈6,7,8,9,11〉;〈6,7,8,10,11〉;
〈6,7,9,10,11〉;〈6,8,9,10,11,13〉;〈7,8,9,10,11,12,13〉.

• With the associated gapset filtration:

(1)6;(12)2(2)2;(12)2(1)2;(12)3;(123)(23)(3);(123)(13)(3);(123)(13)(1);

(123)(12)(2);(123)(12)(1);(123)2;(1234)(34);(1234)(24);(1234)(23);

(1234)(1)2;(1234)(14);(1234)(13);(1234)(12);(12345)(5);(12345)(4);

(12345)(3);(12345)(2);(12345)(1);(123456).

The above notation is self-explanatory. For instance, the third element
(12)2(1)2 represents the filtration F = ({1,2},{1,2},{1},{1}) of multi-
plicity 3, corresponding to the gapset G = {1,2}∪{4,5}∪{7}∪{10} and
the numerical semigroup S=N\G= {0,3,6,8,9,11,12,13, . . .}= 〈3,8,13〉.

Remark 3.17. Both descriptions of a numerical semigroup S, namely with
minimal generators and with the associated gapset filtration, reveal its mul-
tiplicity m. The first one reveals its embedding dimension e, while the sec-
ond one reveals its Frobenius number f , its genus g and its depth q.

3.6. Some notation. We shall denote by Γ the set of all gapsets, and by
Γ(g) the subset of all gapsets of genus g. Similarly, we shall denote by
F the set of all gapset filtrations, and by F (g) the subset of all gapset
filtrations of genus g. Of course, the above maps ϕ and τ provide bijections
between Γ(g) and F (g) for all g≥ 0. Thus, we have

ng = |Γ(g)| = |F (g)|

for all g≥ 0.
Furthermore, given b ∈ N+, we shall denote by Γ(q ≤ b) the subset of

all gapsets of depth q ≤ b, and by F (q ≤ b) the corresponding subset for
gapset filtrations. For a fixed genus, we shall denote by Γ(g,q ≤ b) and
F (g,q ≤ b) the subsets of Γ(q ≤ b) and F (q ≤ b) of elements of genus g,
respectively.
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The case b= 3 is of special importance here. Thus, as in the Introduction,
we set

n′g = |Γ(g,q≤ 3)| = |F (g,q≤ 3)|
for all g≥ 0.

4. THE CASE q≤ 2

Zhao established that the number of numerical semigroups of genus g≥ 0
and depth q ≤ 2 is equal to the Fibonacci number Fg+1 [23]. His proof,
based on counting arguments, uses formulas expressing the Fibonacci num-
bers as sums of binomial coefficients. Here we prove Zhao’s result bijec-
tively, without counting.

Lemma 4.1. Let m ≥ 1. Every m-filtration (F0,F1) is a gapset filtration of
multiplicity m and depth q≤ 2, and conversely.

Proof. Let F = (F0,F1) be an m-filtration. Thus F0 = [1,m−1] and F1⊆ F0.
Let G = τ(F) = G0∪G1, i.e. G0 = F0 and G1 = m+F1. Let z ∈G. Assume
z = x+ y with x ≤ y positive integers. If z ∈ G0 then x,y ∈ G0. If z ∈ G1,
then z≤ 2m−1, whence x≤ m−1 and so x ∈ G0. Therefore G is a gapset,
of depth q ≤ 2, and F = ϕ(G) is a gapset filtration. The converse holds by
definition. �

Proposition 4.2. For all g≥ 2, we have

(10) |F (g,q≤ 2)| = |F (g−1,q≤ 2)|+ |F (g−2,q≤ 2)|.

Proof. Let F ∈F (g,q≤ 2). Let m≥ 1 be its multiplicity. Then F = (F0,F1)
where F0 = [1,m−1] and F1 ⊆ F0. We have g = |F0|+ |F1|.
• If g = 0 then F0 = F1 = /0, corresponding to the case m = 1. Thus
|F (0,q≤ 2)|= 1.
• If g = 1 then F0 = {1} and F1 = /0, so that |F (1,q≤ 2)|= 1.
• If g = 2, then either F0 = [1,2],F1 = /0 or else F0 = F1 = {1}.
Hence |F (2,q≤ 2)|= 2 and (10) holds for g = 2.
• Assume now g≥ 3. As |F0|+ |F1|= g, we have |F0| ≥ 2, whence m≥ 3

since F0 = [1,m−1].
•• If max(F1) ≤ m− 2, let F ′0 = F0 \ {m− 1} = [1,m− 2], F ′1 = F1 and

F ′ = (F ′0,F
′
1). Then F ′ is a gapset filtration by Lemma 4.1, of genus g−1.

That is, F ′ ∈ F (g−1,q≤ 2).
•• If max(F1) = m− 1, let F ′′i = Fi \ {m− 1} for i = 0,1, and let F ′′ =

(F ′′0 ,F
′′
1 ). Then F ′′ ∈ F (g−2,q≤ 2) by Lemma 4.1.

Clearly the maps F 7→ F ′ and F 7→ F ′′, where applicable, are one-to-one,
and their respective domains cover the whole of F (g,q≤ 2). It follows that

|F (g,q≤ 2)| ≤ |F (g−1,q≤ 2)|+ |F (g−2,q≤ 2)|.
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Conversely, let F = (F0,F1) be a gapset filtration of depth q ≤ 2. Let m
be its multiplicity, so that F0 = [1,m−1]. Let

F̂0 = F0∪{m}, F̂1 = F1∪{m}, F̂ = (F̂0,F1),
̂̂F = (F̂0, F̂1).

Then both F̂ and ̂̂F are gapset filtrations by Lemma 4.1. Moreover, we have

genus(F̂) = genus(F)+1 and genus( ̂̂F) = genus(F)+2. Finally, the maps

F 7→ F̂ and F 7→ ̂̂F are one-to-one and have disjoint images in F (q ≤ 2),

since gapset filtrations of the form ̂̂F are characterized by the property that
their two pieces have the same maximal element m. Therefore

|F (g,q≤ 2)| ≥ |F (g−1,q≤ 2)|+ |F (g−2,q≤ 2)|

and the proof is complete. �

Corollary 4.3. For all g ≥ 0, we have |F (g,q ≤ 2)| = Fg+1, where Fn de-
note the nth Fibonacci number.

Proof. The formula holds for g = 0,1. By (10), the numbers |F (g,q ≤ 2)|
satisfy the same recurrence relation as the Fibonacci numbers. Hence the
formula holds for all g≥ 0. �

5. A LOWER BOUND ON n′g

Recall that we denote by F the set of all gapsets, and by F (g) the subset
of all those of genus g. Moreover, given a set C of conditions, we denote
by F (C ) and F (g,C ) the subset of elements of F and F (g) satisfying C ,
respectively.

Similar constructions as for q ≤ 2 will work for q ≤ 3. Thus, we shall
define two self-maps on F (q≤ 3) which increase the multiplicity by 1, and
the genus by 1 and 2, respectively.

Notation 5.1. Let m ∈ N+, and let F = (F0,F1,F2) be an m-filtration of
length at most 3, so that F0 = [1,m−1]⊇ F1 ⊇ F2. We denote

α1(F) = (F0t{m},F1,F2),

α2(F) = (F0t{m},F1t{m},F2).

Then both α1(F),α2(F) are (m+1)-filtrations, as their first part is [1,m].

Proposition 5.2. Let F = (F0,F1,F2) be a gapset filtration of genus g. Then
α1(F),α2(F) are gapset filtrations of genus g+1,g+2, respectively.

Proof. Let m be the multiplicity of F , so that F0 = [1,m−1]. Let

G = τ(F) = G0tG1tG2
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be the corresponding gapset, i.e. with G1 = m+F1 and G2 = 2m+F2. We
have G1 ⊆ [m+1,2m−1] and G2 ⊆ [2m+1,3m−1].

Let H = H0tH1tH2 be the (m+1)-extension corresponding to α1(F),
i.e. H = τ(α1(F)). Then

H0 = F0t{m}= [1,m],
H1 = (m+1)+F1,
H2 = 2(m+1)+F2,

so that H1 = 1+G1, H2 = 2+G2. It follows that

H1 ⊆ [m+2,2m],(11)
H2 ⊆ [2m+3,3m+1].(12)

Note that |G|= g and |H|= g+1. We claim that H is a gapset. Let z ∈ H,
and assume z = x+ y with x,y integers such that 1≤ x≤ y. We need show

(13) x ∈ H or y ∈ H.

• If z ∈ H0, then x,y ∈ H0 as well and we are done.
• Assume z ∈ H1. Then z ≤ 2m by (11). Hence x ≤ m, i.e. x ∈ H0 and we
are done.
• Finally, assume z ∈ H2. Then z ≤ 3m+ 1 by (12). If x ≤ m, then x ∈ H0
and we are done. Assume now x ≥ m+1. Then y ≤ 2m since z ≤ 3m+1.
Consider

z′ = z−2 = (x−1)+(y−1).
Then z′ ∈ G2 by construction. Since G is a gapset, it follows that x−1 ∈ G
or y− 1 ∈ G. More precisely, since m ≤ x− 1 ≤ y− 1 ≤ 2m− 1, we have
x−1∈G1 or y−1∈G−1. Hence x∈H1 or y∈H1 and so (13) again holds,
as desired.

Let now H ′ be the (m+1)-extension corresponding to the filtration α2(F),
i.e. H ′ = τ(α2(F)). Then H ′ = H ∪{2m+1}. Since 2m+1 /∈ H, we have
|H ′|= |H|+1 = g+2. We have already shown that H is a gapset. In order
to show that H ′ also is, it remains to show that for any integer decomposi-
tion 2m+ 1 = x+ y with 1 ≤ x ≤ y, we have x ∈ H ′ or y ∈ H ′. But this is
easy, since then x≤ m and so x ∈ H ′.

We conclude, as claimed, that α1(F),α2(F) are gapset filtrations of genus
g+ 1,g+ 2, respectively. Both are of depth q ≤ 3 and multiplicity m+ 1,
since they contain [1,m] but not m+1. �

Note that the corresponding statement is no longer true in general for
depth q ≥ 4. For instance, (1)4 is a gapset filtration of multiplicity 2 and
depth 4, but (12)(1)3 is no longer a gapset filtration, since its associated set
G = τ((12)(1)3) = {1,2}t{4}t{7}t{10} contains 10 = 5+5 but not 5
and therefore is not a gapset.
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FIGURE 2. Disjoint embeddings of levels 5,6 into level 7 of T ′.

The above result implies that α1,α2 induce two well-defined injective
maps

α1,α2 : F (q≤ 3)→ F (q≤ 3).

Proposition 5.3. We have Im(α1)∩ Im(α2) = /0.

Proof. Let F = (F0,F1,F2)∈F (q≤ 3). It follows from the definition of the
maps αi that if F ∈ Im(α1), then maxF0 > maxF1, whereas if F ∈ Im(α2),
then maxF0 = maxF1. Therefore F cannot belong to both. �

Corollary 5.4. For all g≥ 2, we have n′g ≥ n′g−1 +n′g−2.

Proof. Indeed, the above results imply that, for g ≥ 2, the set F (g,q ≤ 3)
contains disjoint copies of F (g− 1,q ≤ 3) and F (g− 2,q ≤ 3). Whence
the inequality |F (g,q≤ 3)| ≥ |F (g−1,q≤ 3)|+ |F (g−2,q≤ 3)|. �

Corollary 5.4 and its proof are illustrated in Figure 2. Let T ′ = F (q≤ 3)
considered as a subtree of T . Then T ′ has n′g vertices at level g for all
g ≥ 0. Figure 2 shows the levels g = 5,6,7 of T ′. There are n′5 = 11
vertices pictured at level 5, and n′6 = 20 vertices pictured at level 6.
Level 7 of T ′ is seen to contain disjoint copies of levels 5 and 6, plus two
more vertices pictured , thereby accounting for all n′7 = 33 vertices at that
level.

Remark 5.5. Replacing q≤ 3 by q = 4 in Corollary 5.4, the corresponding
inequality seems to hold for all g ≥ 2, except for g = 5 since the values
of |F (g,q = 4)| for g = 3,4,5 are 0,1,0. By contrast, for q = 5, the cor-
responding inequality almost completely fails, at least apparently, as we
conjecture that

|F (g,q = 5)| < |F (g−1,q = 5)|+ |F (g−2,q = 5)|
holds for all g≥ 21.

Nevertheless, replacing q = d by q≤ d as in Corollary 5.4 for d = 3, we
have the following conjecture.
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Conjecture 5.6. For all d,g≥ 2, we have

|F (g,q≤ d)| ≥ |F (g−1,q≤ d)|+ |F (g−2,q≤ d)|.

This conjecture may be seen as a refinement of the conjecture ng ≥
ng−1 + ng−2 for all g ≥ 2. Corollaries 4.3 and 5.4 show that it holds for
d = 2 and d = 3, respectively.

6. AN UPPER BOUND ON n′g

Having just proved the lower bound n′g ≥ n′g−1 + n′g−2 for all g ≥ 2, we
now establish the upper bound

n′g ≤ n′g−1 +n′g−2 +n′g−3

for all g≥ 3.

6.1. The images of α1,α2. We first determine the respective images in
F (g,q≤ 3) of the maps α1,α2.

Proposition 6.1. Let F = (F0,F1,F2) ∈ F (g,q≤ 3) with g≥ 2. Then

F ∈ Im(α1) ⇐⇒ maxF0 > maxF1,

F ∈ Im(α2) ⇐⇒ maxF0 = maxF1 > maxF2.

Proof. Let F = (F0,F1,F2) be a gapset filtration of genus g. By construction
of the map αi, the stated condition for F to belong to Im(αi) is necessary.
We now prove that it is sufficient. Let m ≥ 2 be the multiplicity of F , so
that

[1,m−1] = F0 ⊇ F1 ⊇ F2.

Thus maxF0 = m−1, and we have two cases to consider:
Case 1. maxF1 < m−1.
Case 2. maxF2 < maxF1 = m−1.

Thus maxF2 ≤ m− 2 in both cases. We claim that F ∈ Im(α1) in Case 1
and F ∈ Im(α2) in Case 2.

Let G = τ(F) = G0∪G1∪G2, where Gi = im+Fi for i = 0,1,2. Then G
is a gapset by hypothesis.

Consider the (m−1)-filtration F ′ = (F ′0,F
′
1,F

′
2), where

F ′0 = F0 \{m−1}= [1,m−2], F ′1 = F1 \{m−1}, F ′2 = F2.

Note that F ′1 = F1 in Case 1. Let G′ be the corresponding (m−1)-extension,
i.e. G′= τ(F ′)=G′0∪G′1∪G′2, where G′i = i(m−1)+F ′i for i= 0,1,2. That
is, we have

G′0 = F ′0 = [1,m−2], G′1 = (m−1)+F ′1, G′2 = 2(m−1)+F2.
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Note that |G′| = g−1 in Case 1 and |G′| = g−2 in Case 2. We claim that
G′ is a gapset in both cases.

To start with, it follows from Lemma 4.1 that G′0∪G′1 is a gapset of depth
at most 2. Let now z ∈ G′2, and let z = x+ y with 1≤ x≤ y. We must show
that x or y belongs to G′.
• If x≤ m−2 then x ∈ F ′0 = G′0 ⊆ G′ and we are done in this case.
• Assume now x ≥ m− 1. Since z ∈ G′2 = 2(m− 1)+F2, we have z =

2(m− 1) + t with t ∈ F2. Since maxF2 ≤ m− 2 in both cases, we have
z≤ 3m−4. Since x+y = z and x≥m−1, it follows that y≤ 2m−3. Thus
so far, we have

m−1≤ x≤ y≤ 2m−3.
Now (x + 1) + (y + 1) = z + 2 = 2m + t, and 2m + t ∈ G2 since t ∈ F2.
Therefore x+1 or y+1 belongs to G since G is a gapset. It follows that x+1
or y+1 belongs to G1, as m≤ x+1≤ y+1≤ 2m−2 and maxG0 = m−1,
minG2 ≥ 2m+ 1. Therefore x or y belongs to G1− 1 = (m+F1)− 1 =
(m−1)+F1.
• In Case 1, we have F ′1 = F1, thus x or y belongs to (m−1)+F ′1 = G′1 ⊆

G′ and we are done in this case. We conclude that F ′ is a gapset filtration
on genus g−1, and F = α1(F ′) by construction, so that F ∈ Im(α1).
• In Case 2, we have F ′1 = F1 \ {m− 1}. Now since x ≤ y ≤ 2m− 3 =

(m− 1)+ (m− 2), it follows that x or y in fact belongs to (m− 1)+F1 \
{m−1}= (m−1)+F ′1 = G′1. Whence x or y belongs to G′ as desired. We
conclude here again that F ′ is a gapset filtration, now of genus g− 2, and
F = α2(F ′′) by construction, so that F ∈ Im(α2). �

6.2. Trimming the maximal elements.

Proposition 6.2. Let F = (F0,F1,F2) be a gapset filtration of multiplicity
m+ 1 ≥ 2 and depth 3, so that F0 = [1,m] ⊇ F1 ⊇ F2 6= /0. Let ai = maxFi
and F ′i = Fi \{ai} for all i. Let

F ′ = (F ′0,F
′
1,F

′
2).

Then F ′ is a gapset filtration.

Proof. We have m = a0 ≥ a1 ≥ a2 ≥ 1. Let G = τ(F) and G′ = τ(F ′). Then
G = G0tG1tG2 and G′ = G′0tG′1tG′2, where

Gi = i(m+1)+Fi,

G′i = im+F ′i
for 0 ≤ i ≤ 2 by construction. By hypothesis G is a gapset, and we claim
that G′ also is. If F ′2 = /0, the claim is true since then F ′ = (F ′0,F

′
1) is of

length at most 2.
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Assume now F ′2 6= /0. Let z ∈ G′2. Then z = 2m+b for some b ∈ F ′2, with
b < a2 ≤m by construction. Assume z = x+y for some integers 1≤ x≤ y.
It suffices to show {x,y}∩G′ 6= /0 in order to conclude the proof.
• If x≤ m−1, we are done since then x ∈ G′0 = F ′0 = [1,m−1].
• Assume now x ≥ m. Since x+ y = z = 2m+ b ≤ 3m− 1, it follows

that y ≤ 2m− 1. We have z+ 2 = 2(m+ 1)+ b ∈ G2. Since G is a gapset
and z+ 2 = (x+ 1)+ (y+ 1), it follows that {x+ 1,y+ 1}∩G 6= /0. More
precisely, since maxG0 = m, minG2 ≥ 2m+3 and m+1≤ x+1≤ y+1≤
2m, we have {x+1,y+1}∩G1 6= /0. Subtracting m+1 yields

(14) {x−m,y−m}∩F1 6= /0.

If {x−m,y−m}∩F ′1 6= /0, we are done since then {x,y}∩G′1 6= /0. Assume
now {x−m,y−m}∩F ′1 = /0. Then (14) implies {x−m,y−m}∩F1 = {a1}.
Therefore either x−m = a1 or y−m = a1, whence y−m≥ a1 since y≥ x.
But then

2m+b = z = x+ y≥ x+a1 +m.

Hence m+b≥ x+a1. This implies x≤m+(b−a1)< m since b < a2 ≤ a1
as noted earlier, a contradiction with the current case x ≥ m. Hence the
hypothesis {x−m,y−m}∩F ′1 = /0 is absurd. Therefore {x,y}∩G′1 6= /0 and
the proof is complete. �

The above result no longer holds in general for depth q ≥ 4. The small-
est gapset filtration for which suppressing the max of the pieces fails to
preserve the gapset property is (123)(13)3. This corresponds to the gapset
{1,2,3}∪{5,7}∪{9,11}∪{13,15}. Suppressing the max’s yields the fil-
tration (12)(1)3. It corresponds to the set {1,2}∪{4}∪{7}∪{10} which
is not a gapset since it contains 10 = 5+5 but not 5.

Corollary 6.3. Let (F0,F1,F2) be a gapset filtration such that maxF0 =
maxF1 = maxF2 = m. Let F ′i = Fi \ {m}. Then (F ′0,F

′
1,F

′
2) is a gapset

filtration.

Proof. Follows as a special case of the above proposition. �

6.3. Main result. We are now in a position to state and prove our main
estimates of n′g.

Theorem 6.4. Let n′g denote the number of gapsets of genus g and depth
q≤ 3. Then

n′g−1 +n′g−2 ≤ n′g ≤ n′g−1 +n′g−2 +n′g−3

for all g≥ 3.

Proof. The lower bound has been established in Corollary 5.4. We now
prove the upper bound. The statement holds for g = 3,4,5. Let g ≥ 6, and
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set X = F (g,q ≤ 3). Consider the partition X = X1 tX2 tX3, where for
F = (F0,F1,F2) ∈ X , we set

• F ∈ X1 ⇐⇒ max(F0)> max(F1),
• F ∈ X2 ⇐⇒ max(F0) = max(F1)> max(F2),
• F ∈ X3 ⇐⇒ max(F0) = max(F1) = max(F2).

It follows from Proposition 6.1 that F ∈ X1 if and only if F ∈ Im(α1), and
F ∈ X2 if and only if F ∈ Im(α2). Thus |X1|= n′g−1, |X2|= n′g−2. Moreover,
it follows from Corollary 6.3 that X3 may be embedded into F (g−3,q≤ 3),
by removing the common max of F0,F1,F2. Whence

|X \ (X1tX2)| ≤ |F (g−3,q≤ 3)|= n′g−3

and the proof is complete. �

Recall that the tribonacci sequence is the integer sequence (Tn)n≥0 de-
fined recursively by T0 = 0, T1 = 1, T2 = 1 and Tn = Tn−1+Tn−2+Tn−3
for all n≥ 3. See e.g. Wikipedia [20]. The first few terms of this sequence
are

0,1,1,2,4,7,13,24,44,81,149,274,504,927,1705, . . .
In analogy with the Fibonacci sequence, there is an exact formula for Tn in
terms of the three roots of the polynomial x3− x2− x−1. The growth rate
of this sequence is given by Tn /Tn−1→ t ∼ 1.839 as n→ ∞, where

t =
1+ 3

√
19+3

√
33+ 3

√
19−3

√
33

3
is the only real root of x3− x2− x−1 and is called the tribonacci constant.

Corollary 6.5. For all g≥ 3, we have

2Fg ≤ n′g ≤ Tg+1 .

Note that the claimed inequality n′g ≥ 2Fg is a strengthening of the in-
equality ng ≥ 2Fg proved in [2].

Proof. We have (n′2,n
′
4) = (2,4) = (2F2,2F3). Since n′g+2 ≥ n′g+1+n′g and

Fg+2 = Fg+1+Fg for all g≥ 0, the inequality n′g≥ 2Fg follows by induction
on g.

As for the upper bound, we have (n′1,n
′
2,n
′
3) = (1,2,4) = (T2,T3,T4). By

Theorem 6.4 and the recurrence relation of the Tn, the inequality n′g ≤ Tg+1
again follows by induction on g. �

Going to higher genus yields better estimates.

Corollary 6.6. For all g≥ 58, we have

7.8Fg ≤ n′g ≤
7

1000
Tg+1 .
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Proof. We have

(n′58,n
′
59,n

′
60) = (4615547228454,7504199621406,12197944701688)

(F58,F59,F60) = (591286729879,956722026041,1548008755920)
(T58,T59,T60) = (752145307699165,1383410902447554,2544489349890656).

The stated inequalities hold for g = 58,59,60 and hence for all g ≥ 58 by
Theorem 6.4 and the recurrence relations of the Fibonacci and the tribonacci
numbers. In fact, for the lower bound we have the slightly better estimate

(15) n′g ≥ 7.84Fg

for all g≥ 59, since it holds for g = 59,60. �

Corollary 6.7. For all g≥ 59, we have

(16) ng ≥ 7.84Fg .

Proof. Follows from the inequality ng ≥ n′g and (15). �

As far as we know, inequality (16) is the best currently available lower
bound on ng for large g.

7. THE GAPSETS GRAPH

In this section, we show that the tree T is naturally embedded in a larger
graph, which is easy to describe in terms of gapsets, or gapset filtrations,
and which was actually discovered in this language.

Definition 7.1. Let F,F ′ be gapset filtrations of genus g,g′ respectively,
where F = (F0, . . . ,Fq−1), F ′ = (F ′0, . . . ,F

′
q′−1). We put an edge between

F,F ′ if

• g′ = g+1
• F ′ is a refinement of F, i.e. if F ′i ⊇ Fi for all i.

Clearly, all edges of the original tree T remain edges in the above new
sense. But now new edges appear. In the figure below, the new edges are
the dotted ones.
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/0

(1)

(12) (1)(1)

(123) (12)(1) (12)(2) (1)(1)(1)

(1234) (123)(1) (123)(2) (123)(3) (12)(12) (12)(1)(1) (1)(1)(1)(1)

Remark 7.2. While the original tree T has many leaves, i.e. vertices of
degree 1, this is no longer the case in our graph: every vertex has at least
one child, as easily seen.

Note also that the injective maps described in preceding sections use the
new edges of this graph, not those of its subtree T .

8. GOING FURTHER

Here we characterize gapset filtrations of multiplicity 3 and 4, respec-
tively. The proofs will appear in a subsequent paper using more tools. We
also formulate two conjectures both implying ng+1 ≥ ng for all g≥ 0.

8.1. The case m = 3.

Theorem 8.1. Let a≥ 1,b≥ 0. Then
• (12)a(1)b is a gapset filtration if and only if b≤ a+1
• (12)a(2)b is a gapset filtration if and only if b≤ a.

Corollary 8.2. For all g≥ 1, there is an explicit injection

F (g,m = 3)−→ F (g+1,m = 3).

8.2. The case m = 4.

Theorem 8.3. Let a≥ 1,b,c≥ 0. Then
• (123)a(12)b(1)c is a gapset filtration ⇐⇒ b,c≤ a+1
• (123)a(12)b(2)c is a gapset filtration ⇐⇒ b+c≤ a+1, c≤ a+b
• (123)a(13)b(1)c is a gapset filtration ⇐⇒ c≤ a+1
• (123)a(13)b(3)c is a gapset filtration ⇐⇒ c≤ a
• (123)a(23)b(2)c is a gapset filtration ⇐⇒ b+ c≤ a
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• (123)a(23)b(3)c is a gapset filtration ⇐⇒ b,c≤ a.

Corollary 8.4. For all g≥ 1, there is an explicit injection

F (g,m = 4)−→ F (g+1,m = 4).

Here is a hopefully temporary paradox. The subtrees of T for m = 3 and
for m= 4 grow pretty slowly, but proving their growth via Theorems 8.1 and
8.3 and their corollaries is relatively easy and will be done in a forthcoming
paper. On the other hand, computations show that the larger m is, the more
vigorous the growth of the corresponding subtree is. However, proving that
growth is still an open problem.

8.3. Two conjectures. We conclude this paper with two conjectures which
would both imply Conjecture 2.3, namely ng+1 ≥ ng for all g≥ 0. The first
one would further confirm that ‘most’ numerical semigroups are of depth
q≤ 3.

Conjecture 8.5. One has n′g+1 ≥ 1.38ng for all g ≥ 1, and n′g+1 ≥ 1.5ng
for all g≥ 49.

The available data, namely the values of n′g for 1 ≤ g ≤ 60 given in the
Appendix and the values of ng given in [9], show that Conjecture 8.5 holds
for all 1≤ g≤ 59.

Indeed, for 1 ≤ g ≤ 59, the minimum of n′g+1/ng is found to be attained
at g = 18, for which we have n′19/n18 ∼ 1.3806341. For 1 ≤ g ≤ 5, the
values of n′g+1/ng are

2, 2, 1.5, 1+4/7, 1+2/3,

respectively, and yield n′g+1/ng ≥ 1.5 in this range. A graphical representa-
tion of n′g+1/ng in the range 6≤ g≤ 59 is given in Figure 3. The available
data shows that n′g+1/ng ≥ 1.5 holds for all 49≤ g≤ 59, and most probably
beyond as well.

Our second conjecture states that the growth of the number of vertices of
given genus should hold for many infinite subtrees of T .

Conjecture 8.6. Let S be a numerical semigroup such that the subtree T (S)
of T rooted at S is infinite. Then the successive levels of T (S) have non-
decreasing cardinalities.

An interesting particular case is that of Sm = {0}∪ [m,∞[. The conjec-
ture seems to hold for Sm and any m≥ 2. Since every numerical semigroup
S 6= N is a descendant of some Sm with m ≥ 2, the validity of the above
conjecture for Sm for all m ≥ 2 would imply the conjecture ng ≥ ng−1 for
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FIGURE 3. The quotient n′g+1/ng for 6≤ g≤ 59

all g ≥ 1. The cases m = 3,4,5 have been established in [10] with compu-
tational methods. Our characterization above for m = 3,4 yields a simpler
proof in these two cases. Finally, it would be very interesting to determine
the asymptotic growth rate of these particular subtrees T (Sm).

9. APPENDIX

Here is the sequence of n′g for g= 1, . . . ,60, computed using the fast algo-
rithms developped in [9] and made on CALCULCO, the high performance
computing platform of our university [3].

1, 2, 4, 6, 11, 20, 33, 57, 99, 168, 287, 487, 824, 1395,
2351, 3954, 6636, 11116, 18593, 31042, 51780, 86223,
143317, 237936, 394532, 653420, 1080981, 1786328,
2948836, 4863266, 8013802, 13194529, 21707242, 35684639,
58618136, 96221845, 157840886, 258749944, 423906805,
694076610, 1135816798, 1857750672, 3037078893,
4962738376, 8105674930, 13233250642, 21595419304,
35227607540, 57443335681, 93635242237, 152577300884,
248541429293, 404736945777, 658898299876, 1072361202701,
1744802234628, 2838171714880, 4615547228454,
7504199621406, 12197944701688.

FIGURE 4. The sequence of n′g for g = 1, . . . ,60
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