Supplementary Information

1) Molecular adsorption with internal and external limitations
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The first step is to express those expressions by replacing the fractional surface coverage and the

concentration by their steady state value in addition to the perturbation performed.
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Those expressions are first used in the mass balances at the pellet scale yielding Equation 6 and

Equation 7.
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with boundary conditions:
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Then Laplace transform is used:
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Resolution of Equation 6 (accounting for boundary conditions) leads to:
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A similar method applied to the mass balance at the reactor scale leads to:
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The transfer function of the whole reactor is thus:
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The expression of B(s) is then developed in the frequency domain (with s = jw). The calculation

steps are detailed below.
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As coth(x + jy) = m—;xgg, it follows:
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Accounting for Equation 14 and Equation 15:
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The expression of B(jw) can finally be written as:
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Thus the gain and phase shift can be expressed respectively as:
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2) Dissociative adsorption without internal and external limitations

The following reaction is considered:

The mass balance for the reactant in the gas phase is given by combining equations (2), (3) and (4)

and neglecting concentration gradients in the film and inside the pores (V r, C; = Cl.g):
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The inlet and outlet concentrations of A, oscillate around the steady state. The concentration and the

fractional surface coverage are expressed as their value at the steady state plus a perturbation term.
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Amplitudes for the oscillations are supposed to be small to comply with linear conditions. As a

consequence, terms in A? are neglected.

A Laplace transform is performed on the mass balances in adsorbed phase and in the fluid phase

(external + internal), respectively:

—SAB, = 2k, 0552 AC,, + 4k, CS055A0, + 4k_y (1 — 65%)A0, Equation 25

leading to:
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The transfer function of the whole reactor system in the frequency domain becomes:
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Then the expressions for the gain and the phase lag are:
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3) Dissociative adsorption with internal and external limitations

The mass balances in this case are the following:
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The same development as for molecular adsorption is performed, but:
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4) Effect of the individual rate constants for reversible molecular adsorption
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Fig. S1. Sensitivity of the phase shift vs. frequency
curves (analytical solution with input data of Table 3).

The adsorption and desorption rate constants are

increased by 5, 10 and 20%. K remains constant.
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Fig. S2. Sensitivity of the gain vs. frequency curves
(analytical solution with input data of Table 3). The

adsorption and desorption rate constants are

increased by 5, 10 and 20%. K remains constant.

5) Effect of the particle radius for several effective diffusivity values

The effect of the particle radius, in the case of a molecular adsorption with internal diffusion

limitation, has been studied. Three values of the diffusion coefficient (in the classical range) have set

to thoroughly analyze the effect of grinding the catalyst on the dynamic reactor response. The

corresponding plots are displayed in Figure S3 to Figure S8. In those cases, the gas-solid mass transfer

coefficient has been settled to 10 m s™ in order to neglect the influence of this parameter.

With Deff = 10_6m2.s_1 H
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Fig. S3. Evolution of the gain as a function of the
frequency for conditions of Table 3, but variable

particle radius and D,pr = 107°m?.s7%.
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Fig. S5. Evolution of the gain as a function of the
frequency for conditions of Table 3, but variable

particle radius and D,pr = 1077m?%.s™%.
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Fig. S4. Evolution of the phase shift as a function of

the frequency for conditions of Table 3, but variable

particle radius and Dsr = 107°m?.s7%.
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Fig. S6. Evolution of the phase shift as a function of

the frequency for conditions of Table 3, but variable

particle radius and Dsr = 107"m?.s7%
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Fig. $8. Evolution of the phase shift as a function of the

frequency for conditions of Table 3, but variable particle

radius and Depp = 1078m? 571

6) Step response experiments for ethylene adsorption
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Fig. S9. Step responses from pure Ar to a mixture of
Ar, CF4, C,H, at 25, 35 & 50°C. The tests were

performed three times at each temperature.

Temperature Moles of C,H, K (Pa™)
adsorbed

25°C 2.9x107 9.5x10°°

35°C 1.8x10°° 5.7x10°°

50°C 1.5x10°° 4.6x10°°
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Fig. S10. Back-switch of step-response experiments in
Fig. S9. The tests were performed three times at each

temperature.

Moles of C,H, K (Pa™)
desorbed

2.4x107° 7.6x107°
1.7x107 5.5x10°
1.1x107 3.3x10°°
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From the adsorption equilibrium constants given above an adsorption enthalpy of -19.5 and -24.1

kJ/mol is obtained for the forward and backward switch respectively.
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