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Abstract. We present a new inversion formula for a weighted conical Radon
transform modelling Compton camera data. The formula exploits a large proportion
of the acquired events and is easy to implement into fast algorithms. We give for it
two equivalent formulations relying on known properties of the two-dimensional Radon
transform and we test a semi-iterative algorithm for one of them. From a practical
point of view, methods robust to measurement noise and to low number of events are
required. We show that adding a constraint on the total variation of the final image
strongly improves the results. We illustrate our arguments with Monte-Carlo simulated
data in both low and realistic noise configurations.
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1. Introduction

The recent interest in the conical Radon transforms was driven by the development of
Compton cameras for medical and homeland security imaging applications. The idea of
using Compton scattering of γ-rays as a mean to detect their incoming direction and to
exploit this information for imaging was first proposed in the early 1970s independently
by two groups, Schönfelder et al [1] and Todd et al [2] in the fields of γ-ray astronomy
and nuclear medicine, respectively. This new technology was successfully implemented
in the COMPton TELescope COMPTEL, born in 1991 on a satellite Compton Gamma-
Ray Observatory for nine years. Other projects of cameras boarded on stratospheric
balloon flights were realized since then. The first tests for nuclear medicine application
were reported in 1983 by Singh and Doria [3]. With the technological progress, medical
applications could in a near future benefit from the large acceptance angle and the large
energy spectrum allowed by the Compton imaging devices. Nowadays, the application
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fields of Compton cameras were extended to imaging in homeland security and nuclear
decommissioning ([4, 5, 6, 7]).

The guiding thread of this study is to keep as close as possible to real applications,
where the incompleteness of the data set and the acquisition noise reduce the quality of
the images. Section 2 is devoted to the introduction of the main concepts employed in the
paper. It contains a brief presentation of the Compton camera followed by a short state-
of-the-art on conical Radon transforms, an introduction to total variation denoising ([8])
and to the Simultaneous Iterative Reconstruction Technique (SIRT, [9]). In section 3 we
derive an inversion formula for a class of weighted conical Radon transforms, for cones
with vertices in a plane (the scatterer) and arbitrary axis directions and half-opening
angles. The filtered backprojection inversion formula we propose is closely related to
the one derived in [10]. We propose three methods for the numerical computation of
the inverse, two of them being analytic and the third semi-iterative. As the noise and
the low number of acquired events lead to poor reconstructed images, the three of them
are associated with total variation denoising or regularization. Finally we evaluate the
methods with Monte-Carlo simulated data reproducing the acquisition of a complex
shaped source with a finite-size detector. Two levels of uncertainties on the position
and energy measurements are considered in the simulation. Section 4 describes the
data, generated with a Monte-Carlo software from nuclear physics. In section 5 we
show some numerical examples. We demonstrate that the methods can reconstruct the
images from statistically distributed counts, but with a resolution depending on the
geometry of acquisition and on the noise level.

2. Introduction to Compton camera imaging and to total variation
denoising

In this section we introduce the principle of Compton camera imaging and we give
a concise state-of-the-art on conical Radon transforms and their inverses. We also
recall some widely used techniques that will be used in the next sections. They are
respectively the Simultaneous Iterative Reconstruction Technique (SIRT, [9]) that is
largely employed for tomographic reconstruction and the total variation (TV) denoising
methodology originally introduced by Rudin et al in [8].

2.1. Compton scattering and conical projections

In nuclear medicine imaging Compton cameras might eventually surpass the collimated
Anger cameras and allow either reduction of the radio-tracer dose injected to the patient
or reduction of the acquisition time ([11]). In other medical applications where γ imaging
serves to the monitoring of the treatment, the number of emitted photons is too small to
allow three dimensional imaging with collimated cameras. Additionally, the collimators
hardly cope with a large energy spectrum. For this reasons, applications as treatment
monitoring in proton therapy or selective internal radiation therapy are even of more
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interest but also more challenging (see e.g., [12, 13, 14, 15, 16]).

Figure 1: Inelastic scattering of a photon on an electron. A part of the energy of the
photon is transferred to the electron and the last one is ejected from the atom’s shell.
In the simplistic model of the electron at rest the two angles, β and ϕ, are uniquelly
determined by the energies.

Compton cameras detect γ rays that interact with the detector at least twice. The
first interaction should be a Compton scattering, where a part of the energy of the ray
is transferred to the recoiling electron (see figure 1). The last one deposits its energy in
the detector, making possible to identify its position V1 and to measure the energy E1

lost by the photon. The γ particle should further interact at least once at some point
V2. When the energies E1 of the recoiled electron and E0 of the γ ray are known, the
scattering angle may be deduced through the formula

cos β = 1− mec
2E1

(E0 − E1)E0
, (1)

with me the mass of the electron at rest and c the speed of the light. In the absence of
noise, the point where the gamma ray was emitted lies on the surface of the cone having
vertex at V1, axis directed by the unitary vector Ω = −−→V2V1/‖

−−→
V2V1‖ and half-opening

angle β. Here ‖ ‖ denotes the usual Euclidean norm of a vector in the three-dimensional
space. As a consequence, data acquired with a Compton camera having ideal position
and energy resolutions use to be modelled as integrals of the weighted intensity of the
source on conical surfaces. These models are gathered under the name of weighted
conical Radon transforms, cone transforms or Compton transforms.

2.2. The weighted conical Radon transform

More precisely, the weighted conical Radon transform use to be defined as follows. For
some given cone, let us denote α ∈ [0, π] and δ ∈ (−π, π] the polar and azimuthal angles
of the axis direction Ω, u ∈ R3 the vector of coordinates of its vertex and β ∈ (0, π) its
half-opening angle. The cone may then be defined as the set

C(u, α, δ, β) = {v ∈ R3 : (v− u).Ω = ‖v− u‖ cos β}, (2)
and the projection associated to it as

C d
α,δ,βf(u) =

∫
C(u,α,δ,β)

f(v) 1
‖v− u‖d

dv, (3)
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Figure 2: Schematic representation of a Compton camera composed of a scatterer (green)
and an absorber (blue). The source is represented as the word RADON. Photons emitted
from the source are first scattered then absorbed in the detector, and the position where
they were emitted can only be determined at this stage as belonging to a conical surface.

where f is the intensity function and d use to be an integer. The weighted conical
Radon transform of a function f integrable with respect to the measure ‖v − u‖−ddv
over almost all cones with parameters in some manifold M ∈ R3×[0, π]×(−π, π]×(0, π),
is the application

(u, α, δ, β) ∈M 7→ C d
α,δ,βf(u). (4)

A first restriction to some M may be imposed by the integrability condition. A second
restriction comes from the particularity of the conical Radon transform to be redundant,
since the dimension of the data space is larger than the dimension of the image space.
Consequently, its inversion requires to select a sub-set from the data and, when possible,
to average several inverses in order to reduce the noise.

In the last years some inversion methods accompanied by adapted selection
techniques were developed. In [17], Basko et al have shown that the three-dimensional
Radon projections on planes containing a given point can be calculated from the set
of projections on cones having the vertex at that point, arbitrary axis direction and
given constant half-opening angle. Cone-beam projections (also called divergent-beam
projections) can be evaluated from conical projections having the same vertex (see e.g.,
the works of L. Parra [18] and Tomitani and Hirasawa [19]). Detectors placed on a line
were considered by Jung and Moon in [20].

The projections on cones with axes perpendicular to some surface provide a
complete set. Inversion formulas in such configurations were given by Cree and Bones
[21] and M. Haltmeier [22] for the plane, Schiefeneder and Haltmeier [23] for the
sphere, S. Moon [24] for surfaces of revolution and Moon and Haltmeier [25] for the
cylinder. Inversion methods that restrict the useful set of projections to cones with axes
perpendicular on a manifold will generally neglect a large part of the acquired data and
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thus provide very noisy images. A particular case where they may be of interest is the
one of small detectors that move around the patient (see e.g., [26]). Such detectors can
anyway measure projections only for small values of α.

When the values of the projections are known for single axis direction and half-
opening angle but for all vertices u ∈ R3, the mapping (4) can be seen as a convolution
of f with a distribution supported on the cone. Deconvolution formulas were given
by Gouia-Zarrad and Ambartsoumian ([27]), F. Terzioglu ([28]) and V. Palamodov
([29]). The inconvenient of this approach for the application to Compton camera is that
measurements are required in all points of the space, including inside the source. This
is obviously impossible to realize since the detectors are always placed outside the body.
The methods proposed by B. Smith ([30]), Kuchment and Terzioglu ([31, 32]), Terzioglu
et al ([33]) and one of the methods given by V. Palamodov in [29] allow to select the
points of some manifold M ⊂ R3 that do not intersect the source. The manifolds M

are characterised by some admissibility (see [31, 32]) or completness (see [30]) conditions
that are very similar to each other, with specificities related to the inversion formula.

Connected to the topic we discuss here is the inversion of the cumulative (or
compound) conical Radon transform addressed e.g., in [34] by Nguyen and Truong.
This transform arises in nuclear medicine imaging when one wants to make an image
with the photons scattered inside the patient. The differences in the inversion methods
are however important and the problem is more complicated in the sense that the
projections are not measured individually.

2.3. Conical Radon transform for cones with vertices in a plane

A slightly different class of weighted conical transforms was analysed in [35] under the
name of Compton transforms. Their specificity is to employ a weight different from (3),
weight that accounts for the incident angle of the incoming particle, and to consider
the set of cones with vertices in a plane. Two transforms from the class differ either by
the polar angle α or by the half-opening angle β and can be averaged together for noise
variance reduction as shown in [10]. The main result of [35] is the central-slice theorem
from section 4.1, proving the invertibility of the transform. Derived afterwards in [10],
the associated filtered back-projection formula benefits from a relative simplicity and
also from the fact that conical projections with axis directions not orthogonal to the
detector are allowed.

To ensure uniqueness of the inverse, it is assumed that all the projections on
cones with vertices in some given plane are measured. This completeness condition
is obviously not verified in practice. The method can still give reasonably good results
for Monte-Carlo simulated data, providing addition of some smoothing. In [10], this
was obtained by frequency damping. In this paper we propose to use total variation
either for denoising the solution or as a regularization step associated with an iterative
algorithm.
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2.4. Total variation regularization

Originally proposed by Rudin et al in [8], total variation penalty function is
recommended for denoising piecewise constant images, as it promotes smoothness
while still conserving sharp edges. Total variation may also improve tomographic
reconstruction of images from low-dose acquisitions (see e.g., [36]), or from limited-
angle data (see e.g., [37, 38]).

We suppose without loose of generality that the volume is a cube divided in N3

voxels, rearranged in a vector g, and we note X = R3N . The volume is transformed
through a linear map of matrix R and the measurements p are noisy realizations of Rg.
We search for g solution of the regularized problem:

arg min
g∈X

{1
2‖Rg− p‖2

2 + µTV (g)
}
, (5)

with µ ≥ 0 the regularization parameter and TV the total variation norm. For Ω an
open subset of R3, the total variation of a function g ∈ L1(Ω) is defined by:

TV (g) = sup
{∫

Ω
g(x)div (ϕ(x))dx : ϕ ∈ C1

c (Ω;R3), ‖ϕ(x)‖ ≤ 1 ∀x ∈ Ω
}
. (6)

If g has gradient ∇g ∈ L1(Ω), then TV (g) =
∫

Ω ‖∇g(x)‖dx. The discrete form of the
total variation uses to be written as:

TV (g) =
∑

1≤i,j,k≤N
‖(∇g)i,j,k‖, (7)

and is not differentiable in zero. Let us put Y = (R3)3N . An equivalent expression for
the discrete total variation is:

TV (g) = sup {〈ϕ,∇g〉Y : ϕ ∈ Y such that ‖ϕi,j,k‖ ≤ 1 for all 1 ≤ i, j, k ≤ N} , (8)

where 〈ϕ,ψ〉Y = ∑
i,j,k(

∑3
`=1 ϕ

`
i,j,kψ

`
i,j,k) is the Euclidean dot product in Y . With the

appropriate definition of the discrete divergence, 〈ϕ,∇g〉Y = −〈divϕ,g〉X . In this work
we rely on the notations from [39], and we apply the Chambolle’s algorithm proposed
therein to solve the denoising problem when R is the identity matrix.

When R is not the identity matrix a splitting approach can be used, with a gradient
descent step that decreases the value of the data fidelity term ‖Rg − p‖2 and a TV-
denoising step that smooths the solution. This approach was previously applied by Beck
and Teboulle in [40] for deconvolution problems and the gradient descent algorithm was
used for the first task. When R stands for the discrete Radon transform, the SIRT
algorithm may be applied. SIRT may be considered as a weighted gradient descent
algorithm with more stable results.

2.5. The SIRT algorithm for the inversion of the Radon transform

In this paper we make use of the iterative inversion of the Radon transform. The
Simultaneous Iterative Reconstruction Technique (SIRT, [9]) is one of the algorithms
widely employed for this task. Let R be the system matrix describing the discrete Radon
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transform in 2D or the X-ray transform in 3D, p the vector of data and g the vector
containing all the voxels of the volume we wish to reconstruct. The SIRT algorithm
starts from an initial guess g(0) that may be taken as the null vector or the filtered
back-projection solution then iterates following the formula:

g(k+1) = g(k) − λ
(
R∗
[
Rg(k) − p

R1

])
/ (R∗1) , (9)

where λ is a descent step, 1 is a vector of ones and R∗ is the Hermitian conjugate
of R. The divisions of vectors is done component-wise. In all our numerical tests we
take λ = 0.2. The SIRT algorithm may give reconstructions more precise than the
filtered back-projection, but when the data is very noisy a regularization of the solution
is necessary. The best way to introduce this regularization is to add it as a penalty term
in the minimization problem, as explained in section 2.4.

3. Theoretical and numerical inversion of the conical Radon transform

In this section we give an analytic inversion formula for the transform defined in equation
(3) for d = 1, where the integral of the intensity of the source is weighted by the inverse
of the distance from the source point to the vertex of the cone. We propose three
equivalent formulations for the inverse and discuss them from a numerical and discrete
point of view. One of the methods we propose is semi-iterative, in the sense that a part
of the computation, aiming to transform the Compton data in two-dimensional Radon
data, is done analytically. Then an iterative algorithm alternating SIRT ([9]) iterations
and TV denoising is applied in order to calculate a regularized inverse of the Radon
transform. The other methods are analytical and based on the commutativity of the
Radon transform with differentiation.

3.1. Discussion on the Compton camera data modelling

We consider in this work cameras with planar detectors (see figure 2). In the scope
of a simpler presentation and without losing generality, hereafter we consider a camera
containing a single scatterer layer placed at altitude zs = 0 and an absorber placed at
some altitude za < 0. When the scatterer has several layers, a conical transform should
be defined for each layer. The intensity f is then calculated as the mean of their inverses.
We suppose that the probabilities for an incident γ ray to be Compton scattered in the
first detector and then completely absorbed in the second detector are both equal to one,
so that these probabilities do not appear in the model. The differential cross section of
a γ photon having initial energy E0 and scattered by an angle β, is given by the Klein-
Nishina formula ([41]), and is denoted by K(β,E0). For a given cone, let u ∈ R2 × {0}
be the position vector of the vertex and Ω = (sinα cos δ, sinα sin δ, cosα) the direction
vector of its axis, where α and δ are its polar and azimuthal angles (see figure 3 (a)).

When a source of γ particles having intensity distribution represented by a function
f : R3 → R is observed by a Compton camera, the fraction of events recorded with
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parameters (u, α, δ, β) was considered in [35] proportional to

Cα,δ,βf(u) = K(β,E0) cosα
∫
C(u,α,δ,β)

f(v) cos θdv

= K(β,E0) cosα
∫
C(u,α,δ,β)

f(v) z

‖v− u‖
dv,

(10)

where v = (x, y, z) is a vector from R3 and θ is the polar angle of the vector v− u.
The factors cos θ and cosα from (10) account for the arbitrary incidence angle of the γ
ray on the scatterer and absorber, respectively. For any given parameters α, δ, β, with
α ∈ [0, π], β ∈ (0, π) and δ ∈ (−π, π], the function Cα,δ,βf : R2 × {0} → R was called in
[35] a Compton projection of f (see figure 3 (b)). In order to keep the apelation from
[35] and to distinguish it from other conical Radon transforms from the literature, the
integral transform C operating on functions f : R3 → R is hereafter referred to as the
Compton transform.

(a) (b)

Figure 3: (a) Parameterization of the Compton cone. (b) Construction of the Compton
projection Cα,δ,β. The Compton projection is the image drawn on the surface of the
scatterer by the vertices of the cones with parameters α, δ, β that intersect the source.
The intensity of the print is the integral from (10).

In figure 4 are represented a deterministic Compton projection and its counterpart
from a Monte-Carlo simulation. The source is a small sphere. The deterministic
projection from (a) was calculated in each pixel of the scatterer following equation
(10). In (b) a Compton camera acquisition with a small spherical source emitting γ

photons was simulated with the software MEGAlib (The Medium-Energy Gamma-ray
Astronomy library, [42]), software based on the nuclear physics simulation library Geant4
[43]. The simulation in figure 4 accounts for Doppler broadening i.e., small errors on
the measured energies produced when the photon is scattered on an electron which is
not at rest. In this example, the positions of the hits and the sum of energies are exact.

In (10) the weight cos θ only accounts for the incidence angle of the γ ray on the
scatterer. In a series of papers (see e.g., [44]), Wilderman et al suggested that the
weight should also depend on the distance ‖v − u‖ through the solid angle subtended
by the element of detector at the source. The model,

C ∗α,δ,βf(u) = K(β,E0)
∫
C(u,α,δ,β)

f(v) cos θ
‖v− u‖2dv, (11)
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(a) (b)

Figure 4: Example of Compton projections of a small spherical source. In (a)
the projection is calculated deterministically following (10). In (b) a Monte Carlo
simulation of the same detector-source configuration is shown. The model serving for
the deterministic projection (a) only approximatelly describes the data in (b).

was recently validated against Monte-Carlo simulations ([45]). As the source is supposed
to lie in the half-space z > 0, the function f is zero for values of v close to u. Thus
there is no singularity in the expression under the integral (11). As we shall show in
section 3.2, the inversion formula given in [10] for (10) can be adapted easily to d = 1
and the transform

C 1
α,δ,βf(u) = K(β,E0)

∫
C(u,α,δ,β)

f(v) 1
‖v− u‖

dv, (12)

which is closer to the model suggested by the Monte Carlo simulations and in practice
seems to give better results.

3.2. Inversion of the conical Radon transform

In this section we derive a formula allowing to calculate the source intensity from the
conical Radon projections (12). To avoid technical difficulties throughout the following,
we assume f to be Schwartz function supported in the upper half space.

Let (e1, e2, e3) be the standard basis of R3. The vectors d1 = (cos δ, sin δ, 0),
d2 = (− sin δ, cos δ, 0) and e3 also form an orthonormal basis of R3, defining a reference
frame Otsz obtained by rotation of Oxyz about the Oz axis. Let us consider the cone
C(u0, α, δ, β) with u0 = t0d1 + s0d2. Since the source belongs to the half-space z > 0,
for a single-layer scatterer one should always have α ∈

[
0, π2

)
. No restriction apply on

δ, which is taken in the interval (−π, π]. Physically, the Compton angle β can take any
value in (0, π). However the parametrization we choose hereafter for the cone constrains
to keep only the Compton projections with α+β < π

2 , leading to a selection of the cones
that intersect the scatterer in a single point, the vertex. For such admissible values of
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α and β one has cos2 α− sin2 β > 0. We define:

a(α, β) = sin β cos β
cos2 α− sin2 β

, (13)

b(α, β) = sin β√
cos2 α− sin2 β

, (14)

c(α, β) = sinα cosα
cos2 α− sin2 β

. (15)

The intersection of the cone with a horizontal plane at some given altitude z > 0
is an ellipse that may be described by the parametric equation:{

t = t0 + zc(α, β) +za(α, β) cosϕ
s = s0 +zb(α, β) sinϕ , ϕ ∈ (−π, π]. (16)

With the cone thought of as a stack of ellipses, its parametric equation may then
be readily obtained. The surface integral (12) at a point from the scatterer having
coordinates u0 = t0d1 + s0d2, may then be expressed as
C 1
α,δ,βf(t0d1 + s0d2) = K(β,E0)b(α, β)
×
∫ ∞

0

∫ 2π

0
f((t0 + zc(α, β) + za(α, β) cosϕ)d1 + (s0 + zb(α, β) sinϕ)d2 + ze3)dϕdz.

(17)

Hereafter we make use of the two-dimensional Radon transform, that associates to a
function g : R2 → R with bounded support a set indexed on the parameter δ ∈ (−π, π]
of line integrals Rδ, defined as:

∀ s ∈ R, Rδg(s) =
∫ ∞
−∞

g(s cos δ + t sin δ, s sin δ − t cos δ)dt. (18)

We note fz : (x, y) ∈ R2 7→ f(x, y, z) ∈ R the restriction of f to some horizontal plane.
For τ ≥ 0 and δ ∈ (−π, π], we define the integral transform given for all s ∈ R by:

Pτ,δf(s) = τ
∫ ∞

0

∫ π

−π
Rδ+ π

2
fz(s+ zτ sinϕ)dϕdz. (19)

Simple calculations starting from (17) and (18) allow to show that the transforms P

and C 1 are related to each other by

Pτ,δ = 1
K(β,E0)Rδ+ π

2
C 1
α,δ,β, (20)

whenever τ = b(α, β). The transform P produces a data set included in a three
dimensional space, indexed by τ > 0, δ ∈ (−π, π] and s ∈ R. The required data set may
be further reduced by taking into account the identity

Rδ+ π
2
C 1
α,δ+π,β = Rδ+ π

2
C 1
α,δ,β, (21)

meaning that from the point of view of the transform P, the projections C 1
α,δ+π,β and

C 1
α,δ,β share the same information.

Taking the Fourier transform in (19) leads to:

P̂τ,δf(σ) = 2πτ
∫ ∞

0
R̂δ+ π

2
fz(σ)J0(2πzτσ)dz, (22)
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where J0 is the zero-order Bessel function of the first kind. Then, by the projection-slice
theorem applied to the Radon projection and for d2 = (− sin δ, cos δ, 0) we get:

P̂τ,δf(σ) = 2πτ
∫ ∞

0

1
z
f̂z(σd2)J0(2πzτσ)zdz. (23)

In (23), fz = 0 for z close to the origin. Formulas (22), (23) are valid for all Schwartz
functions f supported in the upper half space and both appearing integrals are absolutely
convergent. We recognize in (23) the Hankel transform of f̂z/z. Finally the inversion of
the Hankel transform leads to

f̂z(σd2) = 2πzσ2
∫ ∞

0
P̂τ,δf(σ)J0(2πzτσ)dτ, (24)

and to the reconstruction formula:

f(x, y, z) = 2πz
∫ π

0

∫ ∞
0

(∫ ∞
−∞

P̂τ,δf(σ)J0(2πzτσ)|σ|3e2iπσ(−x sin δ+y cos δ)dσ
)
dτdδ. (25)

Note that when b(α, β) = τ > 0, either α or β may be calculated from (14) as
function of the other parameter through the relation:

τ cosα =
√

1 + τ 2 sin β, (26)

since both applications β ∈
(

0, π2 − α
)
7→ b(α, β) ∈ R∗+, for some given α ∈

[
0, π2

)
, and

α ∈
[
0, π2 − β

)
7→ b(α, β) ∈ R∗+, for some given β ∈

(
0, π2 − α

)
, are one-to-one. This

means that in (25), the projections Pτ,δ can be calculated as the mean of an infinity of
conical projections, one for each polar angle α or one for each Compton angle β.

Numerically, the reconstruction can be done slice by slice (following the direction
orthogonal to the camera) as follows. The Radon projections of the Compton projections
are filtered in the Fourier domain with a filter depending on the parameter τ , related
to the cone pattern generating the projection, and on the altitude z. The filtered
projections are then integrated on τ then back-projected on lines in each horizontal
slice. The filtering in the Fourier domain relies on the evaluation of the Bessel function
J0 on a grid sufficiently fine to avoid aliasing as much as possible. Consequently, zero-
padding of the projections is necessary implying intensive use of the memory when all
projections are processed simultaneously.

The evaluation of the reconstruction formula may produce very noisy results as
the reconstruction filter |σ|3 amplifies the noise in the data while emphasizing high
frequencies. A practical yet insufficient solution is the damping of the higher frequencies
during the reconstruction. Some post-filtering remains necessary and may be obtained
by total variation denoising.

3.3. Alternative formulations of the inverse Compton transform

In a tempered distribution sense the Bessel function σ 7→ J0(2πzτσ) is the Fourier
transform of

kz,τ (s) = 1
2π

2rect
(

s
2zτ

)
√

(zτ)2 − s2
, (27)
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where rect denotes the rectangular function. With ramp the impulse response of the
ramp filter σ 7→ |σ|, the filtered projections may be rewritten as:∫ ∞
−∞

P̂τ,δf(σ)J0(2πzτσ)|σ|3e2iπσv.d2dσ = − 1
(2π)2 (Pτ,δ ? kz,τ ? ramp)′′ (v.d2). (28)

With the notation gz,τ,δ = Pτ,δ ? kz,τ we then have∫ ∞
−∞

P̂τ,δf(σ)J0(2πzτσ)|σ|2e2iπσ(v.d2)dδ = − 1
(2π)2 (gz,τ,δ ? ramp)′′(v.d2). (29)

The function gz,τ,δ may be calculated either in the temporal or the frequency domain.
The first alternative seems preferable, because the highly oscillatory Bessel function
requires a high sampling rate to limit aliasing as much as possible (see figures 5 and
6). This frequency domain sampling may be obtained by zero-padding the projections
Pτ,δ.

Figure 5: Inverse Fourier transform of the discretized Bessel function (blue line)
compared to kz,τ (red line).

Let us now put for each s ∈ R,

pz(s, δ) = z
∫ ∞

0
gz,τ,δ(s)dτ. (30)

From (29) we then deduce that∫ ∞
0

(∫ ∞
−∞

P̂τ,δf(σ)J0(2πzτσ)|σ|3e2iπσ(v.d2)dδ
)
dτ = − 1

(2π)2z
(pz(·, δ)?ramp)′′(v.d2),(31)

and finally from (25) we obtain

f(x, y, z) = − 1
2π

(
R−1

[
∂2pz
∂s2

])
(x, y), (32)

where R−1 is the two-dimensional inverse Radon transform. We have thus shown that
the image of the source may be reconstructed slice by slice as the inverse of the two-
dimensional Radon transform, from synthetic Radon projections calculated by post-
processing the Compton projections. From a numerical point of view, formula (32) has
several advantages:
(i) It gives the possibility to use iterative methods combined with advanced filtering

for the inversion of the Radon transform, still conserving a fast method compared
to direct use of iterative methods on the raw Compton data;
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(a) raw projection Pτ,δ (b) second derivative of filtered projection gz,τ,δ

Figure 6: (a) Example of projection Pτ,δ, i.e., Radon projection of the Compton
projection, for a source composed of three points. (b) Its filtered versions g′′z,τ,δ for
some arbitrary value z, with the convolution calculated in the frequency domain (blue
doted line) and in the time domain (red continuous line). The oscillations due to aliasing
that may be observed in the right-hand image are important, but this is not always the
case. Aliasing is more visible for large values of zτ . Since they are attenuated by the
usual smoothing of projections in the reconstruction process, the influence of the filtering
domain may finally have little impact on the images.

(ii) It has lower memory requirements when the convolution with the filter k is done
in the time domain compared to Fourier domain convolution with the highly-
oscillating Bessel function;

(iii) It makes use of a more precise calculation of the filtered projections gz,τ,δ which are
no more subject to aliasing. An example is shown in figure 6.

In our experiments, only the first point appeared as important. The third point had
little impact on the results, but this observation may be biased by the small distance
we put between the source and the detector.

3.3.1. Semi-iterative inversion of the Compton transform
The images obtained from (32) may be denoised with a total variation filtering. However,
post-filtering increases the projection errors and a better approach is to apply an iterative
algorithm to the regularized problem as explained at the end of section 2.4. In this
case we choose to solve a problem of type (5). Following the procedure described in
section 2.4, SIRT steps are alternated with total variation denoising steps completed
with the Chambolle’s algorithm from [39]. If λ is the descent step of SIRT and µ is the
regularization parameter multiplying the TV norm in (5), the parameter of the total
variation denoising should be taken equal to the product λµ.

3.3.2. Analytic solution written as a second derivative
In (32) the back-projection is preceded by the differentiation of the projections. The
derivative is calculated by finite differences and this operation induces some circular
blurring in the reconstructed images.
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The commutativity of the Radon transform with derivatives is a classical result (see
e.g., [46]). For any g : R2 7→ R sufficiently smooth,

Rδ (∂1g) = (cos δ)(Rδg)′ and Rδ (∂2g) = (sin δ)(Rδg)′.

and when ∆ = ∂11 + ∂22 is the Laplace operator,

Rδ (∆g) = (Rδg)′′.

We thus may rewrite (32) as

f(x, y, z) = − 1
2π∆(R−1pz)(x, y). (33)

In the continuous case this formula is equivalent to (32) and thus to (25). In the discrete
case the equivalence do not hold any more and formula (33) may produce less blurry
images. Numerically, the Laplacian can be calculated by finite differences. In this work
we used the del2 function from MATLAB.

4. Description of the data

We generated Compton camera data with the Monte-Carlo simulation software
MEGAlib (The Medium-Energy Gamma-ray Astronomy library) described in [42]. This
software is composed of several modules, and is based on the Geant4 library [43]. The
COSIMA module allows to simulate the interactions between the particles and the
matter. The output consists in a list of interactions for each individual photon and for
the secondary particles produced during these interactions. The ordering of the hits
in the sequence is currently available only in simulations, as the time resolution of the
detectors is too poor. In a real acquisition, the camera would provide a set of (not
ordered) interactions and specific algorithms are required to reconstruct the sequence
of hits.

The Monte-Carlo data may then be analysed with one of the two modules SIVAN
and REVAN. The first one retrieves the ideal positions of the hits and the exact energies
of the secondary particles. Only Doppler broadening may affect the measurements.
Additionally the order of the interactions is known in this case and the vertex and axis
of the cone are thus the true ones. When the data are processed with REVAN, errors
are added both on positions and energies. These errors reverberate on the value of the
scattering angle, on the position of the vertex and on the direction of the axis of the
cone. The order of the interactions is determined based on kinematics considerations
and may be erroneous. The first hit is eventually wrongly identified and leads to a
miss-positioning of the vertex of the cone. The same may hold for the second hit, with
consequences on the axis direction.

4.1. Influence of the errors on the angular parameters

The errors on the angular parameters of the Compton cone have important consequences
on the reconstructed images regardless the algorithm. For instance in figure 7 we show
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iterative Maximum Likelihood Expectation-Maximization (MLEM) reconstructions
from deterministic projections of three identical point-like sources. The algorithm was
originally adapted to Compton camera imaging by Wilderman et al in [44] and here we
use the implementation from [14]. In (a) the projections are simulated with α = 2.5°
and reconstructed as they were acquired at α = 0°. In (b), the projections for β = 10°
and β = 15° are summed together then reconstructed as they were taken at β = 12.5°.
In both cases the intensities of the sources are different after reconstruction and the
blur increases as we move further from the detector. Whilst the errors on α produced
in this experiment only an elongation of the source, the influence of the errors on β is
more critical.

(a) (b)

Figure 7: Image reconstructed with the Maximum Likelihood Expectation-
Maximization algorithm (MLEM) from projections with (a) an error of 2.5° on the
axis inclination α and (b) an error of 2.5° on the Compton scattering angle β (see text
for details). Twenty iterations of the MLEM algorithm were runned.

Figure 7 shows that the artefacts in the vertical direction are not specific to analytic
reconstruction. They are not necessarily related to an erroneous modelling of the data
since in this example the model from which the data is generated is perfectly known.
Elongation of the source in the direction orthogonal to the camera is usual in Compton
camera imaging and is often related to the small solid angle subtended by the detector
at a point from the source. As it is produced by a loss of projections, it could be
assimilated to a ”limited angle” artefact. In this example the camera was designed to
be relatively large and close to the sources. We shall thus conclude that data binning
strongly reinforces the artefacts in the vertical direction.

4.2. Compton camera simulated data

For the purpose of evaluation of the analytic methods we simulated a Compton camera
composed of six Silicon scatterer layers and one absorber composed of LaBr3 crystals.
Each layer has dimensions 30 × 30 × 0.2 cm3 and the absorber is composed of 1282

crystals arranged in a 73 cm-side square. Each crystal has dimensions 0.5×0.5×4 cm3.
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The scatterers are placed with the centres at altitudes z ∈ {−5,−6, . . . ,−10} and the
absorber at z = −22.

For the noisy data, the spatial resolution in the scatterer is about 1 mm. In the
absorber, the hit is always considered at the center of a crystal. The energy errors are
randomly drawn from Gaussian distributions. In the scatterer its standard deviation is
1 keV. In the absorber, the standard deviation depends on the measured energy. For
instance its value is 11.4 keV at 511 keV.

Figure 8: The reference image - one slice from a 1 cm thick source representing the word
RADON.

The non-uniform source intensity has the form of the word RADON, with a
thickness of 1 cm in the third direction (see figure 8). A total number of 109 γ-
particles was emitted with energies 511 keV. After discarding not Compton and not
reconstructible events (see conditions on the angles α and β in section §3.2), about
17 × 106 reconstructible events were selected in the ideal case and about 8.1 × 106 in
the realistic case.

The data were grouped in a five-dimensional array. The dimensions correspond to
the layer, the azimuthal angle α, the polar angle δ, the parameter τ and the coordinate
s in the Radon projection of the Compton projection Pτ,δ. The resulting array had
6 × 45 × 90 × 45 × 170 elements. The higher the sampling density for the angular
parameters, the better the reconstructed image should be as the sampling errors produce
blur and artefacts that are much more severe than in imaging modalities based on line
projections (see figure 7).

5. Results and discussions

Volumes having 120 × 120 × 33 cubic voxels with side of 2.5 mm were reconstructed
from ideal and noisy data. The resolution in the direction perpendicular to the camera
is known to be worse than in slices parallel to it. We thus considered two situations
where the word was placed either parallel to the camera or orthogonal to it. We also
tested a reduction of the number of counts by a factor ten.

We compare three reconstruction methods: analytic stands for equation (32),
Laplacian stands for (33) and semi-iterative stands for the algorithm described in
paragraph 3.3.1.
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5.1. Resolution in slices parallel to the detector

In this test we place the word-shaped source parallel to the detector with the center at
altitude z = 0. The central slice is thus at 5 cm from the detector.

The first example is made with ideal data. We recall that ideal data include however
some errors on energies induced by Doppler broadening and also statistical errors coming
from the random generation of particles in the source. Even in this case, the noise in
the reconstructed images is consequent as it may be seen in figure 9. Some denoising is
necessary and we suggest that TV denoising would be a good choice in order to preserve
the sharp edges of the source.

(a) analytic (b) Laplacian

Figure 9: Central slices from the word-shaped source placed parallel to the detector.
The data are processed with SIVAN, meaning that only mild noise is considered (see
text for details). The analytic and Laplacian methods give similar and noisy results.

Figure 10 shows on the left and center the central cuts of the same volumes as
in figure 9 but after TV denoising. On the right is shown the TV-regularized SIRT
reconstruction. The results for the three methods are very similar although the analytic
reconstruction is slightly blurry (see letters R and O).

(a) analytic (µ = 0.2) (b) Laplacian (µ = 0.05) (c) semi-iterative (µ = 0.01)

Figure 10: The source is placed parallel to the detector and the collected events are
ideal except the Doppler broadening. Central slices from the word-shaped source after
TV denoising. For the semi-iterative method the result is shown after 30 iterations.

The evolution of the errors for the semi-iterative method is shown in figure 11 for
the central slice. The figures of merit are the cost function from equation (5) displayed
in blue and the root mean square error displayed in red. The iterations are started from
the analytic solution.

When a realistic noise is added to the data, in practice by treating the output of
the simulation with the module REVAN, the results are largely degraded but the shape
of the letters is almost conserved (see figure 12). It should be noted however that the
size of the voxel is here of (2.5 mm)3 which is very low when we know that the spatial
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Figure 11: Evolution of the errors with the number of iterations for the regularized
semi-iterative method. Ideal data, as produced in the output of the SIVAN module.

resolution currently obtained with collimated detectors in medical SPECT imaging is
close to 5 mm. Some degradation factors as attenuation in the patient and random
coincidences were not considered in our experiment.

(a) analytic (µ = 0.12) (b) Laplacian (µ = 0.05) (c) semi-iterative (µ = 0.01)

Figure 12: Realistic data and TV denoising for the word-shaped source placed parallel
to the detector. For the semi-iterative method the result is shown after 30 iterations.

Figure 13 shows the evolution of the errors for the semi-iterative method with
realistic data.

Figure 13: Evolution of the errors with the number of iterations for the regularized semi-
iterative method. Realistic data, as produced in the output of the REVAN module.

5.2. Low statistics acquisition

The quantity of available data has a strong influence on the noise as it is shown in figure
14. The image is reconstructed from a sub-set of 1.6×106 ideal events taken from the
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previous simulation (thus about one tenth of the sample).

Figure 14: Low statistics reconstruction from ideal data, with the analytic formula.

Again, imposing low total variation to the reconstructed image helps to strongly
improve the result. It may be noted in figure 15 that in this case the methods Laplacian
and semi-iterative seem to outweigh the analytic method and to give sharper results.

(a) analytic (µ = 0.15) (b) Laplacian (µ = 0.07) (c) semi-iterative (µ = 0.02)

Figure 15: Low statistics acquisition. Central slices from the word-shaped source placed
parallel to the detector after TV denoising. The data are processed with SIVAN. For
the semi-iterative method the result is shown after 20 iterations.

5.3. Resolution in slices perpendicular to the detector

In this test we place the word-shaped source perpendicular to the detector. The bottom
of the source is at 3 cm from the up-most scatterer. The central slice refers in this case
to y = 0 and this slice is thus perpendicular to the detector, too. A blurring in the
vertical direction can be observed. This blurring is usual in Compton camera imaging
regardless the reconstruction method and uses to be attributed to projections loss due
to the finite size of the detector. At our knowledge, the only theoretical study on the
artifact produced by the data incompletness is the one from [29], where a ”plume”-
shaped artifact is mentionned but under the convolutional conical Radon transform
model. In section 4.1 we showed that the measurement errors and the binning are
additional degradation factors. The relative influence the geometry and the errors on
the angular parameters may have is an important question not yet elucidated.

The first test is done with ideal data and the results are displayed in figure 16. Let
us mention that even ideal data are affected by the Doppler broadening that induce
errors on the Compton angle. Those errors have a bell-shaped distribution with full
width at half maximum of a few degrees, the exact value depending on the material and
on the temperature. None of the methods presented here could retrieve the shape of
the source when realistic data was used. The result is in all cases blurry and noisy and
only the rough location of the word can be established. Again, the results from figure
17 show that the analytic method give the blurriest results.
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(a) analytic (µ = 0.15) (b) Laplacian (µ = 0.04) (c) semi-iterative (µ = 0.01)

Figure 16: Word perpendicular to the camera and ideal data from SIVAN output.
Central slices after TV denoising of the volume. For the semi-iterative method the
result is shown after 20 iterations.

(a) analytic (µ = 0.15) (b) Laplacian (µ = 0.04) (c) semi-iterative (µ = 0.01)

Figure 17: Word perpendicular to the camera and realistic data from REVAN output.
Central slices after TV denoising of the volume. For the semi-iterative method the result
is shown after 30 iterations.

6. Conclusions

The purpose of this work is to push the limit of the attainable resolution in Compton
camera imaging. We developed an inverse for a conical Radon transform and we tested
three implementations for its numerical calculation. We demonstrated that imposing low
total variation to the reconstructed volume strongly improves the result even when the
level of the noise in the image is high. The results given by the three methods were very
similar for ideal high statistics data. When the quality of the data drops, the Laplacian
method, where the derivation is applied to the volume instead of the projections, and
the semi-iterative method gave slightly better results in terms of sharpness. The best
solution both in time spent in the reconstruction and quality of the image seems to be the
Laplacian method. In the less favourable situation where the resolution in the vertical
direction is tested with noisy data we did not succeeded to reconstruct an acceptable
image of the source. The errors on the axes directions, on the half-opening angle and
on the sequence of interactions, cumulated with the approximations induced by the
binning, prevent reconstructing a source with small details as the one we chose for our
tests. It should be noted however that we did not applied here clever data processing,
consisting e.g., to select only events that have deposited in the detector a total energy
close to the known initial energy of the photon. Our idea was to explore the limits of
the methods, and in some situations the initial energy is unknown.
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