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The present wok provides a comparative study on the numerical solution of the dynamic population balance equation (PBE) for batch particulate processes undergoing simultaneous particle aggregation, growth and nucleation. The general PBE was numerically solved using three different techniques namely, the Galerkin on finite elements method (GFEM), the generalized method of moments (GMOM) and the stochastic Monte Carlo (MC) method. Numerical simulations were carried out over a wide range of variation of particle aggregation and growth rate models. The performance of the selected techniques was assessed in terms of their numerical accuracy and computational requirements. The numerical results revealed that, in general, the GFEM provides more accurate predictions of the particle size distribution (PSD) than the other two methods, however, at the expense of more computational effort and time. On the other hand, the GMOM yields very accurate predictions of selected moments of the distribution and has minimal computational requirements. However, its main disadvantage is related to its inherent difficulty in reconstructing the original distribution using a finite set of calculated moments.

Finally, stochastic MC simulations can provide very accurate predictions of both PSD and its corresponding moments while the MC computational requirements are, in general, lower than those required for the GFEM.

Introduction

The dynamic evolution of the particle size distribution (PSD) in particulate processes is commonly obtained via the solution of the population balance equation (PBE) [START_REF] Ramkrishna | Population Balances: Theory and Applications to Particulate Systems in Engineering[END_REF]. In Parts I, II and III of this series [START_REF] Alexopoulos | Part I: Dynamic Evolution of the Particle Size Distribution in Particulate Processes Undergoing Combined Particle Growth and Aggregation[END_REF][START_REF] Alexopoulos | Part I: Dynamic Evolution of the Particle Size Distribution in Particulate Processes Undergoing Combined Particle Growth and Aggregation[END_REF][START_REF] Roussos | Part III: Dynamic evolution of the particle size distribution in batch and continuous particulate processes: A Galerkin on finite elements approach[END_REF], a comprehensive study on the numerical solution of the dynamic PBE for batch and continuous particulate processes was presented. The PBE was solved using continuous (i.e., Galerkin and orthogonal collocation on finite elements) and sectional (i.e., discretized PBE of [START_REF] Litster | Adjustable Discretized Population Balance for Growth and Aggregation[END_REF] numerical methods. In general, Galerkin and orthogonal collocation on finite element methods [START_REF] Gelbard | Numerical solution of the dynamical equation for particulate systems[END_REF][START_REF] Erasmus | Numerical treatment of the population balance equation using a spline-Galerkin method[END_REF]Nicmanis andHounslow 1996 and1998;[START_REF] Mantzaris | Numerical solution of multi-variable cell population balance models. III. element methods[END_REF][START_REF] Mahoney | Efficient solution of population balance equations with discontinuities by finite elements[END_REF][START_REF] Rigopoulos | Finite-Element Scheme for Solution of the Dynamic Population Balance Equation[END_REF][START_REF] Sandu | A Framework for the Numerical Treatment of Aerosol Dynamics[END_REF] exhibit good numerical performance when applied to processes undergoing simultaneous particle aggregation, growth and nucleation. However, increased computational times and special programming skills are often required for their implementation. Sectional PBE methods are faster and easier to implement but are not sufficiently accurate, especially, for strongly size-dependent particle aggregation rate kernels (Kumar and Ramkrishna, 1996 a,b ; Roussos, 2004). Furthermore, the finite-difference expressions, typically employed to describe particle growth [START_REF] Hounslow | A Discretized Population Balance for Continuous Systems at Steady State[END_REF]Marchall et al., 1988;[START_REF] David | Crystallization and precipitation kinetics-IV. Kinetic model for adipic acid crystallization[END_REF], are likely to introduce numerical instabilities due to diffusion and dispersion errors [START_REF] Lapidus | Numerical Solution of partial differential equations in science and engineering[END_REF][START_REF] Gelbard | Modelling multi-component aerosol particle growth by vapor condensation[END_REF][START_REF] Kostoglou | Evaluation of numerical methods for simulating an evolving particle size distribution in growth processes[END_REF][START_REF] Kumar | On the Solution of Population Balance Equations by Discretization-III. Simultaneous Nucleation[END_REF]. Finally, they are not sufficiently accurate when applied to processes with large growth rates [START_REF] Alexopoulos | Part I: Dynamic Evolution of the Particle Size Distribution in Particulate Processes Undergoing Combined Particle Growth and Aggregation[END_REF]. These issues can be dealt with the application of moving grid methods [START_REF] Kumar | On the Solution of Population Balance Equations by Discretization-III. Simultaneous Nucleation[END_REF]. These methods have been proved extremely efficient when applied to problems involving particle growth, in the absence of any fixed-volume particle source term [START_REF] Roussos | Dynamic Evolution of PSD in Continuous Flow Processes: A Comparative Study of Fixed and Moving Grid Numerical Techniques[END_REF].

An attractive alternative approach to sectional and finite element (FE) methods is to calculate some selected moments of the distribution instead of the whole distribution. The essential condition for the application of the method of moments (MOM) is that the resulting moment differential equations are in a closed form. Thus, based on the selection of the moment closure technique, the various numerical methods can be divided into: (i) methods in which a specific form of the distribution is assumed [START_REF] Hulburt | Some Problems in Particle technology[END_REF][START_REF] Lee | Conservation of particle size distribution parameters during Brownian coagulation[END_REF][START_REF] Tsang | Comparison of different numerical schemes for condensational growth[END_REF][START_REF] Williams | Aerosol science: Theory and practice (with special application to the nuclear industry)[END_REF][START_REF] Madras | Time evolution to similarity solutions for polymer degradation[END_REF], (ii) interpolative closure methods [START_REF] Frenklach | Aerosol dynamics modeling using the method of moments[END_REF][START_REF] Frenklach | Method of moments with interpolative closure[END_REF][START_REF] Diemer | A moment methodology for coagulation and breakage problems: Part 2-Moment models and distribution reconstruction[END_REF][START_REF] Alexiadis | Extension of the method of moments for population balances involving fractional moments and application to a typical agglomeration problem[END_REF] and (iii) generalized moment methods (McGraw, 1997; Barrett and Webb, 1998; Piskunov and Golubev, 1999 and 2002; Marchisio et al, 2003 a, b ; [START_REF] Upadhyay | Evaluation of 1-point quadrature approximation in QMOM for combined growth laws[END_REF]. The moment methods are characterized by minimal computational requirements and, consequently, are suitable for use with CFD codes (Marchisio et al., 2003 c ; [START_REF] Wang | CFD simulations of aggregation and breakage processes in laminar Taylor-Couette flow[END_REF]) and higher dimensional problems [START_REF] Wright | Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering of particle populations[END_REF][START_REF] Rosner | Bivariate moments simulation of coagulating and sintering nanoparticles in flames[END_REF][START_REF] Mcgraw | Chemically resolved aerosol dynamics for internal mixtures by the quadrature method of moments[END_REF][START_REF] Yoon | Representation of generally mixed multivariate aerosols by the quadrature method of moments: I. Statistical foundation[END_REF][START_REF] Marchisio | Solution of population balance equations using the direct quadrature method of moments[END_REF]. Several comparative studies on the various methods of moments as well as with other numerical techniques have been presented by [START_REF] Mcgraw | Description of aerosol dynamics by the quadrature method of moments[END_REF], Barett and Webb (1998), Piskunov et al. (2002) and Kostoglou and[START_REF] Kostoglou | An assessment of low-order methods for solving the breakage equation[END_REF][START_REF] Roussos | Development of numerical methods for the solution of population balances: Application to batch and continuous particulate processes[END_REF].

Contrary to sectional and FE methods, the computational requirements of the MOM are substantially lower due to the limited number of moment differential equations needed to be solved. However, this results in a less detailed description of the distribution. The reconstruction of a distribution by a finite number of moments is known in the literature as the inversion or Stieltjes problem. The main difficulty with this problem derives from the fact that a number of distributions can possess the same moments [START_REF] Mcgraw | Properties and evolution of aerosols with size distributions having identical moments[END_REF][START_REF] White | Particle size distributions that cannot be distinguished by their integral moments[END_REF]). However, the potential non-uniqueness of the reconstructed distribution does not always pose a serious problem since, in many applications, key properties of interest (e.g., number and volume average particle diameters, total particle surface area, etc.) can be determined using only the leading moments of the distribution [START_REF] Vigil | On the stability of coagulation-fragmentation population balances[END_REF][START_REF] Smit | Aggregation and gelation -I. Analytical solutions for CST and batch operations[END_REF][START_REF] Cadwell | Induced nucleation of carbon dust in red giant stars[END_REF][START_REF] Mcgraw | Optical properties of atmospheric aerosols from moments of the particle size distribution[END_REF][START_REF] Wright | Retrieval of optical properties of atmospheric aerosols from moments of the particle size distribution[END_REF][START_REF] Friedlander | Smoke, Dust, and Haze Fundamentals of Aerosol Dynamics[END_REF].

The dynamic evolution of the PSD in a particulate process can also be obtained via stochastic Monte Carlo (MC) simulations. [START_REF] Spielman | A Monte Carlo Treatment of Reacting and Coalescing Dispersed Phase Systems[END_REF] were the first to employ a MC approach to study the effect of particle coalescence in a two-phase particulate reactive system in backmix reactors. Later, [START_REF] Shah | Simulation of Particulate Systems Using the Concept of the Interval of Quiescence[END_REF] developed a general MC algorithm for time varying particulate processes. In 1981, Ramkrishna established the precise mathematical connection between population balances and the MC approach. In MC simulations, the dynamic evolution of PSD is inferred by the properties of a finite number of sampled particles. Based on the method employed for the determination of the sampling time step, MC simulations can be distinguished into time-driven and event-driven ones. In time-driven MC simulations [START_REF] Domilovskii | A Monte Carlo Simulation of Coagulation Processes[END_REF][START_REF] Liffman | A direct simulation Monte Carlo method for cluster coagulation[END_REF][START_REF] Debry | A stochastic approach for the numerical simulation of the general dynamics equation for aerosols[END_REF], the time step is explicitly specified and, subsequently, a number of particle events (e.g., growth, aggregation) are carried out during the assigned time interval. On the other hand, in event-driven MC simulations [START_REF] Tandon | Monte Carlo Simulation of Particle Aggregation and Simultaneous Restructuring[END_REF][START_REF] Kruis | Direct Simulation Monte Carlo Method for Particle Coagulation and Aggregation[END_REF][START_REF] Efendiev | Hydrid Monte Carlo method for simulation of twocomponent aerosol coagulation and phase segregation[END_REF], a single event is first selected and, subsequently, the time required for its occurrence is calculated based on a known event probability.

In order to preserve the statistical accuracy and, at the same time, keep the computational time of a MC simulation low, the number of sampled particles at each discrete time interval must be maintained within some specified bounds (e.g., 10 3 to 10 6 particles). In the open literature, several approaches have been proposed to satisfy the above particle number requirements. In the constant-number approach [START_REF] Smith | Constant-number Monte Carlo simulation of population balances[END_REF], the total number of particles is kept constant throughout the simulation by using a random particle addition process when a successful particle aggregation event occurs and a random particle removal process when new particles are generated due to particle nucleation or particle breakage. In another approach [START_REF] Kruis | Direct Simulation Monte Carlo Method for Particle Coagulation and Aggregation[END_REF] and [START_REF] Maisels | Direct simulation Monte Carlo for simultaneous nucleation, coagulation, and surface growth in dispersed systems[END_REF], the particle population is duplicated when the total number of particles in the sample population has been reduced to 50% of its initial value.

Finally, Zhao et al. (2005 a,b ) assumed a number of fictitious particles in addition to the original particle population. The total number of fictitious particles remained constant throughout the simulation by adjusting, at each time step, properly calculated weights, accounting for the number of real particles that each fictitious particle represented. Although MC simulations can be, sometimes, time-consuming, they offer several specific advantages when applied to the solution of the general PBE. First, they provide information about the history of each particle in the population and second, their implementation to higher dimensional problems can be easily realized [START_REF] Gooch | Monte Carlo Simulation of Size-Enlargement Mechanisms in Crystallization[END_REF][START_REF] Tandon | Monte Carlo Simulation of Particle Aggregation and Simultaneous Restructuring[END_REF][START_REF] Rosner | Multivariate Population Balances via Moment and Monte Carlo Simulation Methods: An Important Sol Reaction Engineering Bivariate Example and "Mixed" Moments for the Estimation of Deposition, Scavenging, and Optical Properties for Populations of Nonspherical Suspended Particles[END_REF].

In the present study, the general PBE is solved for batch particulate processes using the generalized method of moments (GMOM) and a stochastic MC algorithm. The performance of the two methods, in terms of numerical accuracy and computational requirements, is directly compared with that of Galerkin on finite elements method (GFEM) [START_REF] Roussos | Part III: Dynamic evolution of the particle size distribution in batch and continuous particulate processes: A Galerkin on finite elements approach[END_REF], for batch particulate processes undergoing particle aggregation, growth and nucleation.

The Population Balance Equation

The general population balance equation for a batch particulate system can be written as follows [START_REF] Hulburt | Some Problems in Particle technology[END_REF][START_REF] Ramkrishna | The status of population balances[END_REF]:

G(V)n(V, t) n(V, t) B(V) D(V) S(V, t) t V + = - + (1) 
where n(V,t)dV denotes the number of particles per unit volume in the size range [V, V+dV].

G(V) and S(V,t) are the particle volume growth rate and the particle nucleation rate, respectively.

The terms B(V) and D(V) represent the corresponding particle "birth" and "death" rates due to aggregation, and are defined by the following integrals:

( ) ( ) ( ) ( ) V / 2 0 B V β V U, U n V U, t n U, t dU = - - (2) ( ) ( ) ( ) ( ) 0 D V n V, t β V, U n U, t dU = (3)
where β(V,U) is an aggregation rate kernel for particles of volumes V and U. In general, Eq.

(1) will satisfy the following initial condition:

( ) ( ) 0 n V,0 n V = (4)
where n0(V) is the initial number density function. If the value of the number density function at the minimum particle volume, n(Vmin, t), is known, the corresponding boundary condition for Eq.

(1) takes the following form:

( ) ( ) min 1 n V ,t n t = (5)

The Generalized Method of Moments.

According to the method of moments, the general PBE, Eq. ( 1), is recast into a system of nonlinear integro-differential equations describing the dynamic evolution of the distribution moments. The k th dimensionless moment of the distribution, mk, can be defined in terms of n(V,t):

( ) ( ) k k k 0 0 0 m V n V, t dV N V = ; k = 0, 1, 2,… (6) 
where N0 and V0 are some characteristic values of the distribution.

Subsequently, all the terms in Eq. ( 1) are multiplied by the quantity ( )

k 1 0 0 V / V N -.
The resulting equation is then integrated over the volume domain 0, . As can easily be shown, the dynamic evolution of the k th moment of the distribution will be given by the following integrodifferential equation [START_REF] Mcgraw | Description of aerosol dynamics by the quadrature method of moments[END_REF][START_REF] Williams | Aerosol science: Theory and practice (with special application to the nuclear industry)[END_REF][START_REF] Alexiadis | Extension of the method of moments for population balances involving fractional moments and application to a typical agglomeration problem[END_REF]:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 k k 1 0 0 0 k k k k 0 0 0 k m t N V k V G V n V, t dV 1 V U V U β V, U n V, t n U, t dU dV V S V, t dV 2 [ ] • - - = + + - - + (7) 
The main difficulty with the numerical solution of Eq. ( 7) originates from the integral terms that must be expressed in terms of a closed set of moments, so that Eq. ( 7) can be integrated in time. As discussed in the introduction, the closure of the moment equations can be achieved either by assuming a specific form for the distribution or using special interpolation techniques.

In the generalized method of the moments (GMOM), originally introduced by [START_REF] Piskunov | Generalized approximation for the solution of the kinetic coagulation equation[END_REF] and [START_REF] Kostoglou | An assessment of low-order methods for solving the breakage equation[END_REF], the requirement for the exact closure of the moment equations is replaced by an approximate quadrature-based closure condition.

Accordingly, the unknown distribution is approximated by a series of Dirac delta functions.

( )

q N i i i 1 n V,t w δ V V = - (8) 
Nq, wi and Vi denote the order of the quadrature approximation and the quadrature rule weights and abscissas, respectively. By substituting Eq. (8) into Eqs. ( 6) and ( 7), the following moment equations are obtained:

( ) q N k k k i i 0 0 q i 1 m w V N V ; k 0,1, 2,..., 2N 1 = = = - (9) ( ) ( ) ( ) q N 1 k k 1 0 0 i i i i 1 k m t N V k V G V w [ • - - = = + ( ) ( ) ( ) q q N N k k k i j i j i j i j k i 1 j 1 1 V V V V β V ,V w w S t 2 ] = = + - - + (10) 
The term ( ) k S t represents the contribution of the particle nucleation rate function to the k th moment equation. The above system of differential equations (10) describes the evolution of any q 2N moments of the distribution. Note that, at each time step, the weights, wi, and the abscissas, Vi, must be determined so that Eq. ( 9) is satisfied within some specified limits.

The combined system of Eqs. ( 9) and (10) can be advanced in time by a number of different approaches. According to Piskunov and Golubev (2002), the abscissas, Vi, are first selected as roots of a polynomial whose coefficients can be appropriately determined. Subsequently, the weights wi are calculated from Eq. ( 9) in terms of the values of mk and Vi. Although this approach reduces the nonlinear system of algebraic equations ( 9) into a linear one, the method is computationally inefficient. Moreover, the calculated roots, Vi, of the polynomial can sometimes take negative values. Kostoglou and[START_REF] Kostoglou | An assessment of low-order methods for solving the breakage equation[END_REF][START_REF] Roussos | Development of numerical methods for the solution of population balances: Application to batch and continuous particulate processes[END_REF]) employed an iterative Newton-Raphson approach to calculate the abscissas, Vi, and weights, wi. However, it was found in the present study that the convergence of the Newton-Raphson method is not always guaranteed, especially, for high-order quadrature approximations (i.e., Nq>3) and long aggregation times (e.g., τa>200, where τa is a dimensionless aggregation time, see section 3).

McGraw (1997) proposed a more efficient approach, the so-called quadrature method of moments (QMOM), for the estimation of the values of Vi and wi. In the QMOM, the nonlinear system of moment equations ( 9) is transformed into an eigenvector-eigenvalue problem, using the product-difference algorithm [START_REF] Gordon | Error bounds in equilibrium statistical mechanics[END_REF] based on the theory of canonical moments [START_REF] Dette | The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis[END_REF]. Although Piskunov and Golubev (2002) and Kostoglou and[START_REF] Kostoglou | An assessment of low-order methods for solving the breakage equation[END_REF][START_REF] Roussos | Development of numerical methods for the solution of population balances: Application to batch and continuous particulate processes[END_REF] reported that the QMOM formulation cannot be extended to any arbitrary values of Nq and becomes problematic for values of Nq > 3, this was not found to be the case in the present study. Marchisio et al. (2003 a, b and c ) and [START_REF] Wang | CFD simulations of aggregation and breakage processes in laminar Taylor-Couette flow[END_REF] presented a general formulation of the QMOM and tested the accuracy of the method for particulate processes undergoing simultaneous particle aggregation and breakage for values of Nq = 2, 3 and 4. Furthermore, based on the results of the present study, it was concluded that the product-difference algorithm can be successfully applied with higher order quadrature approximations provided that the values of the moments do not exceed the limit set by the programming environment (e.g., 10 308 in a 32-bit operating system). Moreover, it was found that the product-difference algorithm does become illconditioned for values of Nq higher than 8 or 9. However, it should be noted that for values of Nq higher than 3 or 4 no significant improvement in the accuracy of the calculated moments was observed. In fact, it was found that the calculated values of the low-order moments (i.e., k 4 )

were identical for all tested values of Nq from 3 to 7.

The main drawback of the QMOM is that the product-difference algorithm is not compatible with any arbitrary choice of the moment order, k. In fact, the values of k must satisfy the following condition w.r.t the order of the quadrature approximation, Nq:

( )

q k i 1 / q ; i 1, 2,..., 2N = - = ( 11 
)
where q is a positive integer. Note that for values of q 1 Eqs. ( 9) and ( 10) must be transformed into an appropriate form w.r.t the co-ordinate variable (e.g., particle diameter for q = 3) so that the fractional moments of the distribution can be calculated [START_REF] Wang | CFD simulations of aggregation and breakage processes in laminar Taylor-Couette flow[END_REF]. A second drawback of the QMOM is that the product-difference algorithm cannot be applied to higher dimensional problems. Despite the fact that alternative techniques have been proposed for the calculation of the abscissas and weights in two dimensional problems [START_REF] Wright | Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering of particle populations[END_REF][START_REF] Rosner | Bivariate moments simulation of coagulating and sintering nanoparticles in flames[END_REF], the bivariate QMOM loses its simplicity and efficiency as compared to its onedimensional implementation.

To overcome the above two limitations of the QMOM, [START_REF] Fan | Application of the direct quadrature method of moments to polydisperse, gas-solid fluidized beds[END_REF] and [START_REF] Marchisio | Solution of population balance equations using the direct quadrature method of moments[END_REF] proposed an alternative formulation, the so-called direct quadrature method of moments (DQMOM). In the DQMOM, the quadrature abscissas and weights are directly determined from the solution of the following system of differential equations:

q j j q j N j dw d P ; P ; j = 1, 2,...,N dt dt + = = V ( 12 
)
where j j j

V w = V . For integer moments (i.e., k = 0, 1,…,2Nq-1), [START_REF] Fan | Application of the direct quadrature method of moments to polydisperse, gas-solid fluidized beds[END_REF] and [START_REF] Marchisio | Solution of population balance equations using the direct quadrature method of moments[END_REF] described a detailed approach for the calculation of the 2Nq elements of the vector q T 1 2 2N P , P ,..., P = P .

In the present study, a more general formulation was developed, based on an arbitrary choice of the moments. Let = 1 2 M M M be a ( )

q q 2N
2N matrix with elements defined by the following equations:

( ) ( ) ( ) ( ) ( ) k i k i 1 1 j 2 j q q ij ij M 1 k i V ; M k i V ; i 1, 2,..., 2N ; j 1, 2,..., N - = - = = = (13) 
where k(i) can take any desired, even negative, values. Accordingly, the 2Nq elements of vector

[P] are calculated from the solution of the following system of linear algebraic equations:

= M P F ( 14 
)
where the vector

( ) ( ) ( ) q T k 1 k 2 k 2N F , F ,..., F = F
contains the 2Nq elements expressed in terms of the particle growth, aggregation and nucleation contributions to the k th moment:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) q q q N 1 k i 1 k 0 0 i i i k i i 1 N N k i k i k i i j i j i j i j k i i 1 j 1 F N V k i V G V w 1 V V V V β V ,V w w S t 2 [ ] - - = = = = + + - - + (15)
Reconstruction of the distribution. The calculation of the continuous form of the distribution from a finite set of moments is in general a very difficult problem. A common approach to this problem is to assume a series approximation of the distribution with coefficients expressed in terms of the calculated moments. Exponential and modified gamma function series have been proposed by [START_REF] Baldyga | Closure Method for Precipitation in Inhomogeneous Turbulence[END_REF] and [START_REF] Diemer | A moment methodology for coagulation and breakage problems: Part 2-Moment models and distribution reconstruction[END_REF] while Laguerre and associated Laguerre polynomial series have also been employed [START_REF] Hulburt | Some Problems in Particle technology[END_REF][START_REF] Randolph | Theory of Particulate Processes[END_REF][START_REF] Mcgraw | Description of aerosol dynamics by the quadrature method of moments[END_REF]. However, it must be noted that the best results are obtained when some a-priori insight on the form of the distribution is available either from theory or experimentation.

In the present work, it was assumed that the unknown number density function could be approximated by a series of exponential functions:

( ) ( ) c N i i i 1 n V, t a exp b V = - (16) 
In the present study, the value of Nc was selected to be equal to either 1or 2. Accordingly, the unknown coefficients ai and bi were determined via the minimization of the following objective function

( ) ( ) ( ) ( ) ( ) m N 2 rec. cal. rec. k i k i k i i 1 J m m m = = - (17) 
using a an appropriate non-linear parameter estimator (e.g., NPSOL). The terms

( ) cal. k i m and ( ) rec. k i m
in the above equation denote the numerically calculated moments of the distribution by the GMOM and the moments of the reconstructed distribution, respectively (see Eq. ( 16)). For the later case, one can easily show that the values of the reconstructed moments, ( ) rec. k i m , will be given by the following analytical equation:

( ) ( ) ( ) c N k i 1 rec. i i k i i 1 m a Γ k i 1 b + = = + ( 18 
)
where Γ(x) is the gamma function.

To estimate the unknown parameters for Nc = 2 (i.e., a1, a2, b1 and b2) in Eq. ( 16), a set of four target moments were selected (i.e., Nm = 4 and k(i)=0, 0.5, 1 and 2 ). Although the choice of the objective function (see Eq. ( 17)) and the selection of the target moments can affect the values of the estimated parameters, such an optimization analysis was not carried out in the present study.

It should be noted that for long aggregation times, the convergence of the non-linear estimator can become extremely difficult. Moreover, for values of c N 2 , the non-linear estimator resulted in highly correlated parameter estimates. For particle growth systems, Eq. ( 16) was multiplied by a Heaviside step function,

( ) ( ) min V V t = -

H

, to account for the time-varying minimum particle volume, Vmin(t). Furthermore, for processes undergoing particle nucleation, the number density function (see Eq. ( 16)) was assumed to consist of two individual distributions. The first distribution represented the newly nucleated particles while the second one accounted for the dynamic evolution of the distribution due to particle growth and aggregation. As a result, an additional exponential term, aV exp( bV) -, was added to Eq. ( 16) to account for the first distribution. In this case, the total number of estimated parameters was increased by two.

Monte-Carlo Simulations.

The stochastic Monte Carlo (MC) method is based on the principle that the dynamic evolution of an extremely large population of particles, Np(t), (e.g., 10 20 ) can be followed by tracking down the relevant particle events (i.e., growth, aggregation, nucleation) occurring in a smaller population of sample particles, Ns(t), (e.g., 10 4 ). The MC algorithm employed in the present study is schematically depicted in Fig. 1. Initially, the particle volume domain is divided into a number of discrete volume intervals using a logarithmic discretization rule. Subsequently, each particle in the sample population is assigned to a randomly selected volume, Vi, so that the particle array at time zero closely represents the initial particle size distribution. In general, the volume, Vi, assigned to a particle in the sample population, is specified so that the cumulative number of particles in the size range [0,Vi] is equal to a randomly selected fraction of the total particle number:

( ) ( ) i V i is 0 0 n V, 0 dV κ n V, 0 dV κ N (0) = = ( 19 
)
where κi is a randomly generated number in the range [0,1] and Ns(0) is the total number of sample particles at time zero. Once all the particles in the sample population have been assigned

to randomly selected volumes, the MC algorithm is initiated and the effects of particle aggregation, growth and nucleation mechanisms on the dynamic evolution of the particle population are stochastically simulated in a series of consecutive variable-duration time steps.

For problems involving only particle aggregation, the discrete time interval can be determined in terms of the number of aggregation events, Nagg, that take place [START_REF] Gooch | Monte Carlo Simulation of Size-Enlargement Mechanisms in Crystallization[END_REF]. Note that the error introduced in the calculation of the time interval by the above discrete approach can be substantially reduced, at the cost of a small increase in computational time, by selecting a small value for Nagg (e.g., at the limit, one event per time step). According to the above procedure, the time required for the occurrence of Nagg events, Δt, will be given by the following equation:

( ) ( )

0 0 0 1 m m 0 m 0 t B V D V dV dm - - = - (20) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 p p s s p s m t m t m t t N t N t t N t N t t N t / N t = - + = - + = - + (21) 
where m0(t) and Δm0(t) denote the total number of particles and the change in the total number of particles due to aggregation. Similarly, Ns(t) and s s s

ΔN (t) N (t) N (t Δt) = - + denote the
number and the change in the number of particles in the sample population due to the occurrence of Nagg aggregation events in the time interval, Δt. In the absence of particle aggregation, the time step does not need to be explicitly calculated via Eq. ( 20) and, therefore, it can be arbitrarily set in the MC algorithm.

To simulate the occurrence of a particle aggregation event, two particles of volumes V and U are randomly selected from the sample population. Following the developments of [START_REF] Garcia | A Monte Carlo Simulation of Coagulation[END_REF], an aggregation event is assumed to be successful if the following condition is satisfied:

( ) max j β V,U /β κ ( 22 
)
where βmax is the maximum value of the particle aggregation kernel and κj is a randomly generated number in the range [0,1]. If the above probability criterion is met, the two randomly selected particles are removed from the sample population and a new particle of combined volume (V+U) is added to the sample while the total number of particles in the sample, Ns(t), is reduced by one. In the opposite case, (i.e., if Eq. ( 22) is not satisfied), two new particles are randomly selected and the whole procedure is repeated till the number of specified aggregation events, Nagg, has been completed (see Figure 1).

In the presence of a particle growth mechanism, the volume of each particle in the sample population is increased from V to V by taking into account the integral of the particle growth rate function, G(V), over the time interval, Δt.

( )

t t t V V G V dt + = + (23)
Finally, in the presence of a particle nucleation mechanism, a procedure similar to that employed for the reconstruction of the initial distribution is applied. Thus, at each time step, known numbers of new particles, (i.e., calculated in terms of the particle nucleation rate function), having a specified distribution, are added to both total and sample populations.

Refreshing of the particle sample. In processes involving particle aggregation, as the MC algorithm advances in time, the number of particles in the sample is constantly reduced. In fact, after a certain time (i.e., after (Ns(0)-1) aggregation events) the total number of particles in the sample is reduced to a single particle. As a consequence, the statistical accuracy of the simulation is gradually lost. In order to deal with this problem the number of particles in the sample needs to be restored to its initial value, Ns(0). Thus, when the particle number reaches a predetermined lower bound (i.e., s

A s N (t) f N (0) =
), new particles of appropriate sizes are added into the various discrete volume bins in such a way so that the sample and the total particle distributions are preserved. This is achieved by the following simple procedure.

Let Vj,tot be the total particle volume in the sample bin [Vj, Vj+1] at time t, where b j = 0,1,2...,N . That is,

j n j,tot j,i j,i i 1 V V N = =
where Vj,i and Nj,i are the volume and the number of the "i" particles in the volume interval [Vj,Vj+1], respectively, and nj denotes the number of different sizes of particles in the selected volume interval. Let Nj,tot be the total number of particles in the sample bin [Vj, Vj+1] at time t (i.e., j n j,tot j,i i 1

N N = =
) and fA a number fraction parameter varying from 1 to 0. To ensure that the form of the distribution does not change during the particle refreshing procedure, the volumes assigned to the new particles, added to the interval [Vj, Vj+1], must satisfy the following condition:

( ) ( )

j,ref j,tot A A j,ref V V 1 f / f N = - (24) 
where ( )

j,ref j,tot A A N INT N 1 f /f = -
is the number of particles added to the volume interval (where the symbol INT denotes the integer part of the result). The above refreshing procedure does not alter the information gathered from the precedent particle events (e.g., aggregation, growth, etc.) and allows the algorithm to be carried on, theoretically, for very long simulation times, while keeping the statistical error within acceptable limits.

In processes involving particle nucleation, the number of particles in the sample population is constantly increased. This increase in the number of particles raises the computational demands of the MC algorithm and, therefore, the number of particles in the sample needs to be kept below a predetermined upper limit (i.e., fN % w.r.t. the initial number Ns(0)). Thus, when the number of particles in the sample reaches the specified upper limit, particles are randomly removed from the sample, so that the total number of particles, Ns(t), is restored down to its initial value, Ns(0), while the current form of the sample distribution is preserved.

To calculate the number density function, n(V, t), in the original particle population, the following equation is employed:

( ) ( ) ( ) ( ) j p s j,tot j 1 j n V ,t N t / N t / V V + = - (25) 

Results and Discussion

Detailed numerical simulations were carried out for several batch particulate processes undergoing particle aggregation, growth and nucleation. Several particle aggregation rate functions (i.e., constant, sum and Brownian aggregation kernels) and particle growth rate functions (i.e., size independent and size dependent) were considered. The particle nucleation rate function was assumed to follow an exponential, size-dependent functional form (i.e., ( ) ( ) ( )

0s 0s 0s S V, t N V exp V V = -
, where N0s and V0s are some characteristic values of the distribution). Finally, in most cases studied, the initial number density function, n(V, 0), was assumed to follow an exponential dependence with respect to the particle volume, ( ) ( ) ( )

0 0 0 n V, 0 N / V exp V / V = - (26) 
However, in one case, it was assumed that n(V, 0) followed a Gaussian-distribution, that is:

( ) ( ) ( ) 1 2 2 0 n V,0 σ 2π exp (V V ) / 2σ - = -- (27) 
As in Parts I, II and III of this series, the following dimensionless aggregation, τa, and growth, τg, time constants were defined:

0 γ a 0 0 g v 0 0 τ β V N t ; τ tG (V )/V = = ( 28 
)
where β0, N0 and V0, are some characteristic values of the aggregation rate constant, particle number and particle volume, respectively.

In Tables 1, 2 and 3, the numerical performance of the GMOM and MC methods (i.e., in terms of accuracy, stability, computational requirements) is examined in comparison with that of Galerkin on finite elements method (GFEM). It should be noted that in Part III of this series, it was shown that the GFEM results (i.e., the calculated distributions and their respective moments)

were found to be in excellent agreement with available analytical solutions [START_REF] Ramabhadran | Dynamics of Aerosol Coagulation and Condensation[END_REF]. Note that the simulation times are only given for the GFEM and MC method since the simulation time for the GMOM was always less than one second for a P4 2.7 GHz PC system. In these tables, simulation results are presented for four different cases: i) constant particle aggregation; ii) combined constant particle aggregation and constant particle growth; iii) combined constant particle aggregation and linear particle growth; and iv) combined constant particle aggregation, constant particle growth and exponential particle nucleation. As can be seen, the percent errors in the MC calculated zeroth and first order moments of the distribution are less than 2.76% and 2.37%, respectively, from the corresponding analytical solutions, for all cases studied (see Table 2). Moreover, the maximum values of the corresponding percent errors in the GMOM calculated moments are less than 2.61% and 0.86% (see Table 3).

From the results of Tables 1, 2 and 3 one can conclude that both methods (i.e., MC and GMOM) can be employed to calculate the PSD moments with very high accuracy. Moreover, the computational effort is in general lower than that required for the GFEM. In what follows, detailed simulation results on the dynamic evolution of the volume density function, obtained by the MC method and GFEM, are presented for various test cases and are directly compared to those obtained by the GFEM.

Pure Aggregation Processes

For particulate processes undergoing constant particle aggregation (i.e., β(V,U) = β0), the discrete time interval in the MC simulations (see Eq. ( 20)) will be given by the following equation:

0 0 0 1 m m 2 0 0 0 0 0 0 0 0 m 1 t m dm 2 m / m (m m ) 2 - - = - = - (29) 
( )

0 0 0 m m 1 0 0 0 1 0 0 1 0 0 m m t m m dm ln m m m - - = - = - (30) 
In Fig. 5, the distributions calculated by the GFEM and MC method are depicted for two different values of the dimensionless aggregation time (i.e., τa=3 and τa=6). Apparently, there is an excellent agreement in the results obtained by the two methods. However, the percent errors in the GFEM calculated zeroth and first order moments are significantly higher than the corresponding values obtained by the MC method and the GMOM (see case 4.2 in Tables 1,2 and 3).

For particulate processes following a Brownian particle aggregation mechanism ( ) ( ) ( )

1 3 1 3 0 (i.e., β V,U = β 4 V/U + U/V +2 )
, the discrete time interval in the MC simulation will be given by the following equation:

( ) ( ) ( ) ( )( ) ( ) ( ) 0 0 0 1 m m 2 0 0 1 / 3 1 / 3 0 m 1/ 2 1/ 2 1/ 2 0 0 1 / 3 1 / 3 0 0 1 / 3 1 / 3 1 / 3 1 / 3 t m m m dm 4 4 arctan m m m arctan m m m m m m - - - - - - - - = - + = = - - (31) 
In Fig. 6, the calculated distributions by the MC method and the GFEM are plotted for three different values of the dimensionless aggregation time (i.e., τa=1, τa= 10and τa=10 2 ). In this case, no analytical expressions for the moments of the distribution are available. Therefore, the calculated by the GFEM moments, using an adequately large number of node points (i.e., ne = 100 and np = 3), were used as reference values. As a result, percent errors in the moments reported in Tables 1, 2 and 3, are only indicative of the performance characteristics of the MC and GMOM (see cases 5.1 and 5.2)

Combined Aggregation and Growth Processes

For batch particulate processes undergoing combined constant particle aggregation and constant particle growth (i.e., GV(V)=G0), the discrete time interval in the MC simulation will be given by the same equation employed for the pure constant particle aggregation case (see Eq. ( 29)). In Fig. 7, the distributions calculated by the MC method for different values of the particle refreshing parameter, fA%, are compared with the GFEM distribution calculated for τa=10 and τg=1. Along with the information provided in Table 2, one can easily notice that the accuracy of the MC method is very high for all values of fA. On the other hand, the CPU time strongly depends on the selected value of fA as depicted in the inset diagram of Fig. 7.

In Fig. 8, the calculated distributions by the MC method and the GFEM are depicted for two values of the dimensionless time constant τg (i.e., τg=1 and τg=10) and τa=10 2 . As can be seen, there is an excellent agreement between the calculated distributions as well as their corresponding moments (see cases 7.1 and 7.2 in Tables 1, 2 and3).

For processes undergoing combined constant particle aggregation and a linear particle growth (i.e., GV(V)=G0V.), the discrete time interval for the MC simulation will be given by Eq. ( 29) as well. In Fig. 9, the calculated distributions by the two methods (i.e., MC and GFEM) are illustrated for τa=10 and two different values of τg=1 and 10. In Tables 1, 2 and 3, the percent errors in the m0 and m1 moments are shown for the three different methods (i.e., GFEM, MC and GMOM, see cases 8.1 and 8.2). Notice that the first moment, m1, calculated by the GMOM, is slightly more accurate than those calculated by the GFEM and MC method.

For batch particulate processes with a sum particle aggregation kernel and a linear particle growth rate function, the discrete time interval in the MC algorithm will be given by Eq. ( 30).

The calculated distributions by the GFE and MC methods are depicted in Fig. 10 for two different sets of values of the characteristic time constants (i.e., τa=3, τg=1 and τa=3, τg=2). This case is highly demanding in computational time, especially, for the GFEM (see cases 9.1 and 9.2 in Tables 1 and2). The calculated distributions by the two methods are in very good agreement despite the large oscillations displayed by the MC method at the low and high volume regions of the distribution. It should be noted that the calculated moments by the MC method and the GMOM are very accurate (see Tables 2 and3, cases 9.1 and 9.2). On the other hand, the percent errors in the GFEM calculated moments are rather significant (see Table 1, cases 9.1 and 9.2)

Combined Growth, Aggregation and Nucleation Processes

For batch particulate processes undergoing combined constant particle growth and an exponential nucleation rate function (i.e., S(V)=N0s/V0s exp(-V/V0)), the discrete time interval in MC algorithm can arbitrarily be set. In Fig. 11, the calculated distributions by the two methods are depicted for two values of the dimensionless particle growth time (i.e., τg=1, τg=10). From the comparison of the calculated distributions and the results of Tables 1 and2 (see cases 10.1 and 10.2), it becomes apparent that both methods (i.e., MC and GFEM) produce very accurate results.

Fig. 12 depicts the calculated distributions by the GFE and the MC methods for a particulate process having a linear particle growth rate and an exponential particle nucleation mechanism (see cases 11.1 and 11.2 in Tables 1, 2 and3). As can be seen, the distributions as well as the corresponding moments calculated by the three methods are in excellent agreement.

Finally, for batch particulate processes undergoing simultaneously constant particle aggregation, constant particle growth and exponential particle nucleation, the discrete time interval in the MC algorithm will be given by Eq. ( 29). In Fig. 13, the distributions calculated by the two methods, (i.e., GFEM and MC) are shown for two sets of the dimensionless time constants (i.e., τa=1, τg=1 and τa=1, τg=10). Apparently, there is an excellent agreement in the calculated distributions and respective moments (see also Tables 1 and2, cases 12.1 and 12.2).

Reconstruction of the Distribution

In Fig. 14-17, the GMOM reconstructed distributions, using the approach described in subsection 2.1, are depicted for various test cases. In Fig. 14 the calculated and reconstructed distributions are depicted for a pure constant particle aggregation process. In Fig. 15 the calculated and reconstructed distributions are shown for a particle process undergoing combined constant particle aggregation and constant particle growth. In Fig. 16 the calculated and reconstructed distributions are depicted for a particle process undergoing combined constant particle aggregation and linear particle growth. Finally, in Fig. 17 the calculated and reconstructed distributions are depicted for a particle process undergoing combined constant particle aggregation, constant particle growth and exponential particle nucleation. In all cases, four moments (namely m0, m0.5, m1 and m2) were employed in the reconstruction of the whole distribution following the procedure described in detail in subsection 2.1.

As can be seen, in the absence of particle nucleation, the reconstructed distributions are in very good agreement with those calculated by the GFEM (see Figs. 14,15 and 16). However, in the presence of particle nucleation, the reconstructed distribution deviates from that calculated by the GFEM, especially, near the volume region where the two separate distributions (i.e., the one corresponding to the freshly nucleated particles and the second corresponding to the growing particles) are added together. This means that the selected approximation model (see Eq. ( 16))

cannot accurately describe the dynamic evolution of the number density function.

CONCLUSIONS

In this work, an efficient Monte Carlo algorithm was described for the solution of the PBE for batch particulate processes. Periodical refreshment of the sample particle population was employed to minimize numerical errors associated with the MC method. Simulation results obtained on a variety of particulate processes, proved the robustness and accuracy of the MC method, even for very long particle aggregation and particle growth times (i.e., 6 a g τ 10 , τ 10 ).

The distributions calculated by the MC method were in excellent agreement with those obtained by the GFEM. It was found that the accuracy of the MC method was dependent on the number of sampled particles, which had to be kept within certain limits (e.g., 10 4 -10 6 ) so that an accurate solution of the PBE could be obtained while keeping the simulation time low.

The GMOM was also employed for the solution of the PBE for batch particulate processes and was proved to be extremely fast and accurate for calculating the moments of the distributions.

The main disadvantage of the GMOM is associated with its the inherent difficulty in reconstructing the unknown distribution from a finite set of moments.

A set of four moments (i.e., m0, m0.5, m1 and m2) was used to reconstruct the distribution, assuming that the unknown distribution can be approximated by a sum of exponential terms. The reconstructed distributions were in very good agreement with those obtained by the GFEM for the cases of pure particle aggregation and combined aggregation and growth. In the presence of an exponential particle nucleation, some deviations were observed in the low-volume regime of the reconstructed distribution, primarily due to the selected form of the approximated distribution. ((U/V) 1/3 +(V/U) 1/3 +2) GFEM (ne = 50, np = 3), MC (Np(0) = 10 8 , Ns(0) = 10 5 , fA = 40%). GFEM (ne = 50, np = 3,), MC (Np(0) = 10 8 , Ns(0) = 10 5 , fN = 1000%).

Figure 12. Comparison of dynamic PSDs for linear particle growth and exponential particle nucleation for N0s = 10 2 and V0s = 0.1: G(V) = G0 V, S(V) = N0s/V0s exp(-V/V0s).

GFEM (ne = 50, np = 3,), MC (Np(0) = 10 8 , Ns(0) = 10 5 , fN = 1000%).

Figure 13. Comparison of dynamic PSDs for constant particle aggregation, constant particle growth and exponential particle nucleation at τa =1 and for N0s = 10 2 and V0s = 0.1: 
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 2 Figure 2. Effect of the number of particles in the sample Ns(t) on the accuracy of the MC simulations for constant particle aggregation: β(U,V) = β0. MC (Np(0) = 10 8 , Ns(0) = 10 3 -10 6 , fA = 30%).

Figure 3 .

 3 Figure 3. Comparison of dynamic PSDs for constant particle aggregation: β(U,V) = β0.GFEM (ne = 20 and 40, np = 3), MC (Np(0) = 10 8 , Ns(0) = 10 5 , fA = 30%).

Figure 4 .

 4 Figure 4. Comparison of dynamic PSDs for constant particle aggregation: β(U,V) = β0. Gaussian I.C (μ = 1, σ = 0.2). GFEM (ne = 60 and 70, np = 3), MC (Np(0) = 10 8 , Ns(0) = 10 5 , fA = 50%).

Figure 5 .

 5 Figure 5. Comparison of dynamic PSDs for sum particle aggregation: β(U,V) = β0 (U+V).GFEM (ne = 40 and 60, np = 3), MC (Np(0) = 10 8 , Ns(0) = 10 5 , fA = 30%).
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 6 Figure 6. Comparison of dynamic PSDs for brownian particle aggregation: β(U,V) = β0/4

Figure 7 .

 7 Figure 7. Effect of particle refreshing percentage, fA %, on the accuracy and CPU time of the MC simulations for constant particle aggregation and constant particle growth at τa =10 and τg =1: β(U,V) = β0 , G(V) = G0.. MC (Np(0) = 10 8 , Ns(0) = 10 5 , fA = 10% -80%).
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 8 Figure 8. Comparison of dynamic PSDs for constant particle aggregation and constant particle growth at τa =10 2 : β(U,V) = β0 , G(V) = G0. GFEM (ne = 50, np = 3), MC (Np(0) = 10 8 , Ns(0) = 10 5 , fA = 30%).
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 9 Figure 9. Comparison of dynamic PSDs for constant particle aggregation and linear particle growth at τa =10: β(U,V) = β0, G(V) = G0 V. GFEM (ne = 50 and 60, np = 3), MC (Np(0) = 10 8 , Ns(0) = 5 10 4 , fA = 50%).

Figure 10 .

 10 Figure 10. Comparison of dynamic PSDs for sum particle aggregation and linear particle growth at τa =3: β(U,V) = β0 (U+V), G(V) = G0 V. GFEM (ne = 60 and 70, np = 3), MC (Np(0) = 10 8 , Ns(0) = 5 10 4 , fA = 50%).
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 11 Figure 11. Comparison of dynamic PSDs for constant particle growth and exponential particle nucleation for N0s = 10 2 and V0s = 0.1: G(V) = G0, S(V) = N0s/V0s exp(-V/V0s).

  V) = N0s/V0s exp(-V/V0s). GFEM (ne = 50, np = 3), MC (Np(0) = 10 8 , Ns(0) = 10 5 , fN = 1000%).
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 14 Figure 14. Comparison of dynamic PSDs calculated with the use of the GMOM for constant particle aggregation: β(U,V) = β0. GFEM (ne = 40, np = 3).
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 15 Figure 15. Comparison of dynamic PSDs calculated with the use of the GMOM for constant particle aggregation and constant particle growth at τa =10 2 : β(U,V) = β0 , G(V) = G0. GFEM (ne = 50, np = 3).
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 16 Figure 16. Comparison of dynamic PSDs calculated with the use of the GMOM for constant particle aggregation and linear particle growth at τa =10: β(U,V) = β0, G(V) = G0 V. GFEM (ne = 50 and 60, np = 3).
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 17 Figure17. Comparison of dynamic PSDs calculated with the use of the GMOM for constant particle aggregation, constant particle growth and exponential particle nucleation at τa =1 and for N0s = 10 2 and V0s = 0.1: β(U,V) = β0, G(V) = G0 V, S(V) = N0s/V0s exp(-V/V0s). GFEM (ne = 50, np = 3).
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Table 1 .

 1 Simulation times and percent errors in the GFEM calculated zeroth and first order moments of the distribution for various batch particulate processes.

	Case	Aggregation kernel	Growth rate model	Time, τα	Time, τg	m0	m1	Error in m0 c	Error in m1 c	CPU time, sec
	2.1	β0				-			10 3	0	1.9957 10 -3	1.0010	0.02 %	0.10 %	52.0
	2.2	β0				-			10 6	0	1.9991 10 -6	1.0041	0.04 %	0.41 %	51.7
	3.1 a	β0				-				1	0	6.6508 10 -1 9.9511 10 -1	0.24 %	0.49 %	185.1
	3.2 a	β0				-			10	0	1.6645 10 -1 9.9860 10 -1	0.13 %	0.14 %	191.4
	4.1	β 0(V+U)			-				3	0	4.8898 10 -2	1.0124	1.79 %	1.24 %	99.7
	4.2	β 0 (V+U)			-				6	0	2.3175 10 -3	1.0166	6.51 %	1.66 %	196.8
	5.1	βBr				-				1	0	6.4646 10 -1	1.0001	0.002 % d 0.009 % d	189.1
	5.2	βBr				-			100	0	1.8283 10 -2	1.0004	0.004 % d 0.035 % d	213.7
	7.1	β0				G0			100	1	1.960710 -2	1.0795	0.00 %	0.08 %	523.7
	7.2	β0				G0			100	10	1.9611 10 -2	1.7937	0.02 %	0.41 %	687.5
	8.1	β0			G0V		10	1	1.6665 10 -1	2.7205	0.01 %	0.08 %	568.6
	8.2	β0			G0V		10	10	1.6680 10 -1 2.2228 10 4	0.08 %	0.91 %	3843.9
	9.1	β0(U+V)		G0V			3	1	4.9426 10 -3	2.8731	14.36 %	5.70 %	4262.2
	9.2	β 0(U+V)		G0V			3	2	7.7891 10 -5	3.0825	13.13 %	58.28 %	4534.8
	10.1 b	-				G0				0	1	99.9960	62.002	0.004 %	0.81 %	11.1
	10.2 b	-				G0				0	10	99.9960	521.02	0.004 %	1.11 %	14.2
	11.1 b	-			G0V			0	1	99.921	19.908	0.08 %	0.04 %	14.7
	11.2 b	-			G0V			0	10	99.930	44086.0	0.07 %	0.08 %	25.5
	12.1 b	β0				G0				1	1	14.0720	23.980	0.50 %	0.37 %	214.0
	12.2 b	β0				G0				1	10	14.0720	140.68	0.50 %	0.54 %	1700.0
	Error in moments	j Δm m =	num j	-	m	analyt j	/ m	analyt j

a With Gauss-type initial distribution.

b Combined with exponential nucleation. c

Table 2 .

 2 Simulation times and percent errors in the MC calculated zeroth and first order moments of the distribution for various batch particulate processes.

	Case	Aggregation kernel	Growth rate model	Time, τα	Time, τg	m0	m1	Error in m0 c	Error in m1 c	CPU time, sec
	1.1	β0 (Ns(0)=10 3 )			-			10 6	0	1.9989 10 -6 1.0122076	0.00 %	1.22 %	0.06
	1.2	β0 (Ns(0)=10 5 )			-			10 6	0	1.9999 10 -6 9.9797 10 -1	0.00 %	0.20 %	6.7
	1.3	β0 (Ns(0)=10 6 )			-			10 6	0	1.9999 10 -6 1.0010927	0.00 %	0.11 %	80.2
	2.1	β0				-			10 3	0	1.9959 10 -2	1.000579	0.00 %	0.06 %	3.1
	2.2	β0				-			10 6	0	1.9999 10 -6 9.9797 10 -1	0.00 %	0.20 %	6.7
	3.1 a	β0				-				1	0	6.6666 10 -1 1.0000832	0.001 %	0.008 %	3.9
	3.2 a	β 0				-			10	0	1.6666 10 -1 1.0000832	0.004 %	0.008 %	4.4
	4.1	β 0(V+U)			-				3	0	4.9700 10 -2 1.0005796	0.17 %	0.06 %	10. 7
	4.2	β 0(V+U)			-				6	0	2.4701 10 -3 1.0005796	0.35 %	0.06 %	137.1
	5.1	βBr				-				1	0	6.4655 10 -1 1.0005796	0.02 %	0.06 %	2.5
	5.2	βBr				-			100	0	1.825 10 -2	1.0005796	0.18 %	0.05 %	33.4
	6.1	β0 (fA=10 %)			G0			10	1	1.6666 10 -1	1.356308	0.00 %	0.151 %	67.4
	6.2	β0(fA=60 %)			G0			10	1	1.6666 10 -1	1.356241	0.00 %	0.155 %	163.2
	7.1	β0				G0			100	1	1.9608 10 -2 1.0792141	0.00 %	0.05 %	305.0
	7.2	β0				G0			100	10	1.9608 10 -2 1.7869251	0.00 %	0.03 %	301.2
	8.1	β0			G0V		10	1	1.6666 10 -1 2.7244302	0.00 %	0.22 %	432.9
	8.2	β0			G0V		10	10	1.6666 10 -1 22071.519	0.00 %	0.19 %	432.4
	9.1	β0(U+V)		G0V			3	1	5.6370 10 -3 2.7306993	2.33 %	0.46 %	441.4
	9.2	β 0(U+V)		G0V			3	2	6.6946 10 -5 7.4106634	2.76 %	0.29 %	1576.0
	10.1 b	-				G0				0	1	100.1775	61.321818	0.18 %	0.29 %	74.6
	10.2 b	-				G0				0	10	100.1775	511.8738	0.18 %	0.13 %	74.7
	11.1 b	-			G0V			0	1	100.1775	19.78475	0.18 %	0.58 %	247.4
	11.2 b	-			G0V			0	10	100.1775	43549.85	0.18 %	1.14 %	247.5
	12.1 b	β 0				G 0				1	1	13.80145	23.327031	2.41 %	2.37 %	408.3
	12.2 b	β 0				G 0				1	10	13.80145	137.41476	2.41 %	1.79 %	412.8
	a With Gauss-type initial distribution.		
	Error in moments	j Δm m =	num j	-	m	analyt j	/ m	analyt j

b Combined with exponential nucleation. c

Table 3 .

 3 Percent errors in the GMOM calculated zeroth and first order moments of the distribution for various batch particulate processes (Nq = 3).

	Case	Aggregation kernel	Growth rate model	Time, τα	Time, τg	m0	m1	Error in m0 c	Error in m1 c
	2.1	β0				-			10 3	0	1.9961 10 -3	1.000048	0.005 %	0.005 %
	2.2	β0				-			10 6	0	2.0197 10 -6	1.000048	0.98 %	0.005 %
	3.1 a	β0				-			1	0	6.6859 10 -1	1.008590	0.29 %	0.86 %
	3.2 a	β0				-			10	0	1.6679 10 -1	1.008590	0.07 %	0.86 %
	4.1	β 0(V+U)				-			3	0	4.9733 10 -2	1.000048	0.11 %	0.005 %
	4.2	β 0(V+U)				-			6	0	2.4757 10 -3	1.000048	0.12 %	0.005 %
	5.1	β Br				-			1	0	6.5623 10 -1	1.000048	1.51 %	0.004 %
	5.2	βBr				-				0	1.8761 10 -2	1.000048	2.61 %	2 10 -4 %
	7.1	β0			G0			100	1	1.9608 10 -2	1.078666	0.001 %	0.003 %
	7.2	β0			G0			100	10	1.9607 10 -2	1.786228	0.004 %	0.008 %
	8.1	β0			G0V			10	1	1.6664 10 -1	2.718412	0.02 %	0.005 %
	8.2	β0			G0V			10	10	1.6664 10 -1	2.2027 10 4	0.02 %	0.002 %
	9.1	β0(U+V)			G0V			3	1	5.7645 10 -3	2.718412	0.12 %	0.005 %
	9.2	β 0(U+V)			G0V			3	2	6.8753 10 -5	7.389401	0.14 %	0.005 %
	10.1 b	-			G0			0	1	100.010	61.5040	0.01 %	0.005 %
	10.2 b	-			G0			0	10	100.010	511.040	0.01 %	0.14 %
	11.1 b	-			G0V			0	1	100.010	19.901	0.01 %	0.005 %
	11.2 b	-			G0V			0	10	100.010	44121.0	0.01 %	0.16 %
	12.1 b	β0			G0			1	1	14.0719	23.82287	0.50 %	0.29 %
	12.2 b	β0			G0			1	10	14.0719	139.2283	0.50 %	0.50 %
		j Δm m =	num j	-	m	analyt j	/ m	analyt j

a With Gauss-type initial distribution.

b Combined with exponential nucleation.

c Error in moments

d Calculated using (ne = 50, np = 3) and compared with (ne = 100, np = 3)

Fig. 2 depicts the effect of the initial number of particles in the sample population, Ns(0), on the volume density function, calculated by the MC method, for a relatively long aggregation time, τa=10 6 . It is evident that as the value of Ns(0) increases the resolution of the distribution is improved over a longer volume range. Table 2 presents the effect of Ns(0) on the simulation time. It is evident that for values of Ns(0) above a certain limit (e.g., 10 5 ), the achieved improvement in the calculation of m1 decreases significantly while the simulation time increases dramatically. Note that the error in m0 is equal to zero since in the MC simulation the initial number of particles is always preserved. It is interesting to note that as the value of Ns(0) increases the calculated distribution extends over a broader volume range since the sampling of particles in the low and high volume regimes of the distribution increases.

In Fig. 3, the MC calculated distribution is compared with that obtained by the GFEM for two different values of the dimensionless aggregation time (i.e., τa=10 3 and τa=10 6 ). The calculated distributions as well as the calculated moments by both methods (see Tables 1 and2) are in excellent agreement. It is important to point out that although several other implementations of the MC method have been reported in the literature (i.e., Zhao et al, 2005 a,b ), it is the first time that MC results are reported for such long aggregation times. Furthermore, it should be noted that, in all cases, the distributions calculated by the MC algorithm were the outcome of a single simulation run.

In Fig. 4, the distributions calculated by MC and GFEM are depicted for two values of the dimensionless aggregation time (i.e., τa=1 and τa=10), and for an initial Gaussian density function: ( ) ( )

. Note that both methods are capable of predicting very accurately the multiple picks appearing in the small-volume region of the distribution.

For particulate processes with a sum particle aggregation kernel (i.e., β(V,U)=β0 (V+U)), the estimation of the discrete time interval in the MC algorithm will be given by the following equation: