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Abstract The thermoelastic responses of a cracked TATB polycrystal is modeled using Fourier-based numerical
computations and linear homogenization estimates. The numerical method is based on a Fourier scheme previously
investigated (Gasnier et al., 2018) and the homogenization schemes include a new self-consistent estimate recently
developed for cracked polycrystals. The effect of various populations of intergranular and transgranular microcracks
are compared, with special attention to thermal behavior in the percolating regime. A model of micro-cracks is
proposed for the TATB material in its initial state and the variations of the volumetric expansion coefficient of the
TATB polycrystal under thermal cycles, during cooling and heating, are interpreted.
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1 Introduction
Although obviously used for their detonation properties, explosives must also keep their integrity during their
lifespan, when submitted to normal life loads (cyclic thermal loading, vibration, etc.) or to accidental ones (impacts,
fire breakouts, etc.) Their thermomechanical behavior is therefore a crucial issue.

This is especially the case for a particular class of explosives, based on 1,3,5-triamino-2,4,6-trinitrobenzene
(TATB), a powerful but highly stable explosive molecule that provides exceptional safety properties. As most
explosives, TATB is an organic molecular crystal, with the P1̄ triclinic symmetry (Cady and Larson, 1965), and
comes as a yellow powder from synthesis. But as it decomposes before melting, it cannot be cast, and is instead
manufactured by coating a TATB powder by a small amount of a polymer and isostatically pressing the coated
powder at a pressure of several hundreds of MPa. The resulting slightly porous isotropic solid is therefore a TATB
polycrystal jointed by the polymer that acts as a binder between TATB grains. This material is of the quasi-brittle
kind, with a mechanical response somewhat comparable to that of concrete or rocks. It softens by microcracking,
and under ordinary stress triaxiality, failure occurs at 1-2% longitudinal strain in uniaxial (stress) compression.

Besides, thermal expansion of TATB-based pressed explosives is an important engineering issue because, de-
pending upon the thermal loading, it may be irreversible and result in dilatancy and an increase of porosity. This
so called “ratchet growth” phenomenon has received considerable attention, because the safety characteristics of
this class of energetic materials depend partly on porosity (see for example Dallman and Wackerle, 1993).

In their seminal work, Rizzo et al. (1981) performed a large number of cyclic thermal expansion experiments
on pressed TATB-based materials with various binders, and even on binder-free pressed TATB. Their first and
most important finding was that the thermal expansion of these various materials is indeed irreversible, although
the TATB crystal undergoes purely reversible thermal expansion (Kolb and Rizzo, 1979; Sun et al., 2010), and
that their volumetric thermal expansion coefficient is smaller than that of the TATB single crystal. The thermal
expansion of the latter being strongly anisotropic, they concluded that this phenomenon should be attributed to
the growth of internal stresses with temperature variations in the randomly oriented polycrystal, as is the case in
polycrystalline graphite (Naum and Jun, 1970; Delannay et al., 2014), for instance.

The interpretation proposed by Rizzo et al. (1981) involving microstructural considerations, it appears straight-
forward to conduct microstructure-level simulations. Gee et al. (2007) and Maiti et al. (2008) performed mesoscale
(i.e. grain scale) calculations using a molecular based computational tool. Accounting for the anisotropic thermoe-
lastic behavior of the TATB single crystal, a grain-binder fracture model and a simplified, though three-dimensional,
representation of the microstructure, they were able to reproduce the ratchet growth phenomenon qualitatively, and
showed additionally that no dilatancy is predicted if the thermal expansion anisotropy of the TATB single crystal
is not accounted for. Luscher et al. (2015) employed the standard self-consistent model to predict the thermal
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expansion coefficients of (textured) TATB pressed uniaxially with no binder. These authors performed a purely
thermoelastic parametric study of the effects of grain aspect ratio and porosity, and found that the self-consistent
model allows predicting pronounced effective texture-induced thermal expansion anisotropy, and found that the
porosity has a non negligible influence on this effect.

The present authors undertook recently (Ambos et al., 2015; Gasnier et al., 2015b) an effort to develop a
microstructure-level Fourier-based homogenization framework applied to the above-described TATB-based mate-
rial. A virtual microstructure model reproducing quantitatively the grain size and shape distributions or the real
material was first developed, and used for FFT thermoelastic homogenization using published data for TATB single
crystal properties (Bedrov et al., 2009; Kolb and Rizzo, 1979; Sun et al., 2010). The calculations were shown to
overestimate the overall elastic properties by a large amount with respect to experimental measurements.

As shown below (see Section 2.1), this discrepancy is likely to be due to the presence of a pre-existing population
of microcracks in the pristine material. Besides, it is shown in Section 2.2 that high and low temperature thermal
cycles probably induce microcracking of different natures. The effect of populations of microcracks must therefore
be investigated, in order to make progress in the understanding of the material in its pristine state and of the
nature of microcracks induced by thermal cycling. This is the purpose of the present paper within the same FFT
framework, but in the restricted context of general isotropy, owing on the one hand to the isotropic manufacturing
process of the considered material, and on the other hand to the non directional character of thermal loading,
provided that the experiments be performed sufficiently slowly to neglect thermal gradients in the samples.

The FFT method not being well adapted to accounting for zero-volume objects such as cracks, the expected
computational biases have been thoroughly studied (see the companion paper Gasnier et al., 2018). It is shown how
some strong biases can be avoided, especially regarding the orientation of a crack with respect to the voxel grid,
and how the effect of the finite volume of cracks can be corrected, thus providing a low resource demanding and
mesh-free full-field homogenization method to study the influence of microcracking on the thermoelastic effective
properties of the material at stake.

This article is organized as follows. Section 2 gives a brief insight into the response of the material under
uniaxial, triaxial and hydrostatic cyclic compression, and a detailed account of its response under high and low
temperature cyclic thermal loading. Section 3 describes the virtual microstructures, TATB single crystal behavior,
and the homogenization framework. Sections 5 and 6 give computational results for randomly oriented microcracks
and for the case of correlated microcrack and crystallographic orientations. Sections 7 and 8 discuss the results
and conclude the paper, respectively.

2 Experimental
The material has been described in detail previously (Ambos et al., 2015; Gasnier et al., 2015b). In brief, it consists
in a TATB polycrystal jointed by around 5% (vol.) of an amorphous binder, glassy at ordinary temperature, and
containing a few percent residual porosity. The average grain size (i.e. equivalent diameter) is around 40 µm, the
largest ones being close to 100 µm. One of the most striking features is the pronounced non convexity of most
TATB grains. In its initial state, this material contains a few intra- and transgranular microcracks. However, high
magnification cannot be achieved with scanning electron microscopy because it tends to decompose if the energy
density of the electron beam is too high. Therefore, we have not been able to distinguish eventual intergranular
microcracks from grain boundaries by optical or scanning electron microscopy.

2.1 Mechanical response
This material has been thoroughly characterized under uniaxial compression and tension, at various temperatures
and strain rates, and under triaxial and hydrostatic compression at various confining pressures. For illustration
purposes, Fig. 1 compares the mechanical response of the material under uniaxial cyclic compression (black curve)
and triaxial cyclic compression at 200 MPa confining pressure (grey curve). For legibility, the strain range [−0.02;
0.01] has been enlarged in the inset. Strains are positive in tension. From the uniaxial compression curve, Young’s
and transverse moduli can be measured in the narrow linear zone, yielding bulk and shear moduli of 7.2 and 2.7
GPa respectively.

Fig. 2a illustrates the result of hydrostatic cyclic compression. Pressure is increased at 1 MPa.s−1, up to 100
MPa, then decreased to zero at the same rate. After an uncontrolled time lag of a few minutes, the pressure is
increased again to 200 MPa, and seven cycles are performed to maximum pressures of 100, 200, 300, 400, 600, 800
and 950 MPa.

As illustrated by Fig. 2a (the cycles at 800 and 950 MPa maximum pressure being omitted for legibility), the
pressure-volumetric strain cycles are not reversible, and the material compacts progressively as pressure increases.
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Figure 1: Principal stress difference |σ1 − σ2| versus logarithmic longitudinal or transverse strain ε for uniaxial
cyclic compression (in black) and triaxial compression (in grey). Negative strains are recorded by the longitudinal
gauges, positive ones by the transverse gauges. The inset is a magnification of the [−0.02; 0.01] strain range.

The maximum compaction represents less than half the total porosity, and is reached at 600 MPa, the 800 and
950 MPa cycles being almost reversible. For each cycle, as indicated in Fig. 2a, the initial slopes of loading and
unloading are evaluated. The first one represents the effect of compaction (i.e. porosity reduction) on the zero-
pressure bulk modulus, while the second one adds the effect of pressure, i.e. nonlinear elasticity, assuming reversible
unloading.

The results are shown in Fig. 2b. Within the accuracy of the experiment, the zero-pressure bulk modulus
is not influenced significantly by the compaction process. The high-pressure bulk modulus, on the other hand,
increases rapidly between 100 and 600 MPa, then reaches a linear asymptote. The latter is interpreted as the effect
of nonlinear elasticity, since no measurable compaction occurs above 600 MPa. The asymptote has the following
linear form implying the well-known Murnaghan pressure-volume relationship (Murnaghan, 1951):

K(P ) ≡ ∂P

∂εkk
= K0 + kP, (1)

with K0 = 14.5 GPa and k = 5. This approximation holds to a very good approximation between 950 and 600
MPa, but not for lower pressures, for which the bulk modulus decreases much more rapidly. This is interpreted
as the consequence of the presence of internal surfaces, i.e. microcracks, open at low pressure and closed at high
pressure.

2.2 Thermal expansion response
2.2.1 The high temperature case

A thermal expansion experiment (Ambos et al., 2015) was first performed on an Adamel-Lhomargy DI-21 horizontal
dilatometer above room temperature (Fig. 3a). A 5 × 5 × 50 mm sample was submitted to two heating-cooling
cycles to 140◦C at ±10 ◦C per hour to guarantee minimum temperature gradients. The maximum temperature
(140 ◦C) was chosen to be above the glass temperature of the binder (∼100 ◦C).

The thermogram of Fig. 3a, in which heating phases are plotted in grey and cooling ones in black for legibility,
displays several linear zones, referenced 1–8. Their corresponding slopes are gathered in Table 1.

During the first heating phase, linearity is lost early, at ∼45◦C. Once the glass transition exceeded, thermal
expansion increases dramatically. The irreversible character of the process in this zone is demonstrated by the
non correspondence between heating and cooling phases. The two cooling phases being strictly parallel, they can
reasonably be assumed as reversible. Moreover, the slopes of zones 4, 5 and 8 are very close, suggesting that phase
5 is also reversible. It can be concluded that most of the irreversible thermal expansion (or “ratchet growth”) takes
place above the glass transition temperature, although a small part occurs below (see Section 2.2.3). In the linear
zones labeled 2 and 6, the irreversible dilatancy phenomenon occurs. Therefore, the corresponding slopes are not
thermodynamic (i.e. reversible) thermal expansion coefficients, but only indicate phases of constant rate dilatancy.
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(a) (b)

Figure 2: (a) Pressure P vs volumetric strain εv recorded in hydrostatic cyclic compression. For legibility, the
cycles at 800 and 950 MPa maximum pressure are omitted. (b) Loading and unloading slopes K versus pressure
P defined in (a) vs the maximum pressure of the corresponding cycle.

In the sequel, the denomination of “expansion coefficient” will be used as an abbreviation for thermodynamic
volumetric thermal expansion coefficient.

The expansion coefficient of the beginning of the first heating phase (labeled 1 in Table 1) corresponds to that
of the initial material in its glassy regime, and has a value of 1.442 × 10-4 K-1. The expansion coefficient of the
material in the glassy regime but after ratchet growth (linear phases labeled 4, 5 and 8 respectively) takes an
average value of 1.827 × 10-4 K-1, representing a ∼ 25% increase. Above the glass transition temperature (linear
zones labeled 3 and 7), the average (thermodynamic) expansion coefficient is 3.461 × 10-4 K-1, which is almost
twice the glassy value.

During the first heating-cooling cycle, a dilatancy (measured at 50◦C) of 0.58% occurs, while the total dilatancy
after the second thermal cycle is 0.73%. This is consistent with the well documented fact that dilatancy reaches a
temperature-dependent asymptotic value for constant maximum temperature thermal cycling. Note that this also
suggests that dilatancy is a time dependent process. This was verified by performing an experiment at a higher
heating rate (not shown).

Table 1: Thermal expansion coefficients (in 10−4 K−1) corresponding to the linear zones of the thermogram of
Fig. 3a.

linear zone slope phase linear zone slope phase
1 1.442 1st heating 5 1.794 2nd heating
2 4.644 1st heating 6 3.972 2nd heating
3 3.490 1st cooling 7 3.432 2nd cooling
4 1.835 1st cooling 8 1.851 2nd cooling

2.2.2 The low temperature case

A second experiment was performed at low temperature (see Fig. 4), with the 5 × 5 × 50 mm geometry, and the
same rate of ±10 ◦C per hour (Gasnier et al., 2015b). The sample was submitted to four cooling-heating cycles
from 40◦C down to 0, −25, −50 and −75◦C.

The cooling phase of the first cycle is almost linear, referenced 1 in Fig. 4a, with a corresponding expansion
coefficient of 1.434 × 10−4 K−1, down to ∼ 5 ◦C. Below this temperature threshold, irreversible evolutions are
observed. The beginning of re-heating is linear, illustrated by the dashed line referenced 3, associated to a lower
expansion coefficient. The slope of the heating phases then increases up to the initial slope (dashed line referenced
2). Although the initial slope is recovered, a small dilatancy is recorded at the end of each cycle. To fix ideas,
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Figure 3: Thermal longitudinal strain ε versus temperature T for cyclic thermal loading above room temperature.
The dashed lines correspond to linear zones of the thermogram, referred to through numbers (see text). Grey lines:
heating; Black lines: cooling.

at the end of the last cycle, the dilatancy is only 8.7 × 10−4 (i.e. less than 0.1% volumetric strain). Finally, the
beginning of the cooling phase of each cycle coincides very well with the heating phase of the previous cycle, except
for the last cycle, for which a slight difference is noticed.

Table 2 gathers the expansion coefficients measured in the linear zone of the re-heating phase of each cycle,
and compares them to those measured in the linear zone of the beginning of each re-cooling phase. As illustrated
in Fig. 4b, the expansion coefficient of the beginning of re-heating phases decreases monotonically, whereas that of
the beginning of the cooling phases remains constant to a good approximation.

Table 2: Volumic thermal expansion coefficients (in 10−4 K−1) corresponding to the linear zones of the re-heating
and cooling zones of the thermogram of Fig. 4.

cycle heating slope cooling slope
1 1.389 1.434
2 1.233 1.443
3 1.113 1.447
4 1.020 1.418

2.2.3 The sub-glass transition case

A complementary experiment was performed with a more recent and accurate dilatometer (dual sample Netzsch
DIL 402 SE), to investigate the nonlinearity observed below the glass transition temperature. The sample geometry
was identical as above, as was the loading rate. The sample was submitted to heating-cooling cycles from ambient
temperature to maximum temperatures of 40, 60, 70, 80 and 90 ◦C, just below the glass transition temperature,
and to a final cooling–heating cycle to −30 ◦C.

Fig. 5 shows the resulting global thermogram. A few limited artifacts are observed as undulations on the
thermogram, and are due to a liquid nitrogen shortage perturbing the thermal control. The first three cycles are
reversible, superimposed and virtually indistinguishable. A slight nonlinearity is noticed, compatible with a linear
dependence of the expansion coefficient on temperature.

Between 70 ◦C and the glass transition, a slight irreversibility is observed. This finding is comparable to
those observed in Fig. 3a, except that no variation in the expansion coefficients is noticed. Their average value is
1.476 × 10−4 K−1, in the range [20; 50◦C] with a maximum deviation of 8×10−6 K−1, and heating and cooling
curves are strictly parallel in the same range. Also notice that the unloading phase of the cycle at 80 ◦C is very
close to the heating phase of the following cyle, up to 80 ◦C, enforcing once again the reversibility of cooling.

The dilatancies are 2.5 × 10−4 for the cycle at 80 ◦C, and 5.6 × 10−4 for the cycle at 90 ◦C. These values, lower
than 0.1% volumetric strain, are to be compared to those recorded at 140 ◦C (see Fig. 3a), namely 7.3 × 10−3.
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(a) (b)

Figure 4: (a) Thermal longitudinal strain ε versus temperature T under cyclic thermal loading at low temperature.
The dashed lines correspond to linear zones of the thermogram, referred to through numbers (see text). Black
lines: first and third cycles; grey lines: second and fourth cycles. (b) Volumetric thermal expansion coefficients α
measured in the linear phases of each cycle of the thermal experiment of Fig. 4a versus minimum temperature of
each cycle. Filled symbols and dashed line: cooling; open symbols and dotted line: heating.

Finally, the last cycle at −30 ◦C exhibits a similar phenomenology as in Fig. 4a, namely a loss of linearity and
a decrease of the expansion coefficient, measured here at 1.237 × 10−4 K−1. The loss of linearity was observed at
∼ 5 ◦C in the former case, ∼ 25 ◦C in the present case.

2.2.4 Discussion

The above-described experimental results provide a wealth of information. First of all, the results illustrated in
Figs. 3a, 4a and 5 provide close values of 1.442 × 10−4 K−1, 1.434 × 10−4 K−1 and 1.476 × 10−4 K−1 respectively
for the expansion coefficient of the material in its initial state. These values are significantly lower than that of the
TATB single crystal (1.875 × 10−4 K−1, see Section 3.2 for details), consistently with the observations of Rizzo
et al. (1981).

The thermal experiments show that the reversibility domain is limited to [5; 70 ◦C] approximately, at least at
±10 ◦C per hour. The behavior is slightly nonlinear, which could be due to the nonlinear thermal expansion of
the TATB crystal, to that of the binder, or to both. Outside this domain, the thermal behavior is irreversible and
strongly nonlinear but in a quite different fashion for high or low temperature loadings.

In the high temperature range, two cases should be distinguished. Between ∼ 70 ◦C and the glass transition,
dilatancy (hence ratchet growth) occurs, but has no measurable effect on the expansion coefficient. The dilatancies
measured in this range are lower than 10−3. Exceeding the glass transition induces approximately a doubling of
the (thermodynamic) expansion coefficient. After thermal cycling, strong dilatancy and a ∼ 25% increase of the
glassy expansion coefficient are observed.

In the low temperature case, the main feature is the marked decrease of the expansion coefficient, followed
by its rapid increase upon re-heating when approaching room temperature. A parallel can be drawn between this
behavior and the mechanical response of quasi-brittle materials (see Fig. 6), which display tensile stiffness softening
and stiffness recovery, attributed to the unilateral behavior of microcracks, upon reverse loading. Of course, the
parallel is not complete, since mechanically-induced microcracking in quasi-brittle materials is highly directional
while, due to the manufacturing process and thermal loading, the present material remains macroscopically isotropic
throughout the thermal loading process.

Nevertheless, it may be used in a heuristic fashion to suggest that cooling at sufficiently low temperatures
induces microcracking, whose opening provokes a decrease of the expansion coefficient and whose progressive
closure occurs with the thermal load removal, thus explaining the initial expansion coefficient recovery. The small
residual dilatancy observed after thermal cycling can likewise be interpreted as the effect of slightly incomplete
microcrack closure.

Within the material, individual grains are supposedly randomly oriented. Since the latter displays strongly
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Figure 5: Thermal longitudinal strain ε versus temperature T under cyclic thermal loading between ambient and
the glass transition temperature. The first three cycles (up to 70◦C) are superimposed, reversible, and virtually
indistinguishable.

anisotropic thermal expansion, the material response upon thermal loading should depend strongly on the binder
properties and on the grain-binder bond strength.

In the low temperature case, the glassy binder is hard, and assuming high strength grain-binder bonds, the
scenario put forward by Rizzo et al. (1981) suggests that internal stresses should build up and hinder partially the
thermal expansion of individual grains, thus resulting in a macroscopic expansion coefficient lower than that of the
single crystal. The binder then acts as a stress transmitter between grains. As the thermal load increases, so do
internal stresses, and local fracture may eventually occur, be it debonding or grain fracture. In its glassy state, the
binder remains very hard and is not likely to deform substantially, although plastic yielding cannot be ruled out.
Hence, the material should behave essentially in an elastic fashion, thus explaining the very low level of dilatancy
after the thermal load removal.

In the high temperature case, conversely, the binder softens and melts at the glass transition, then deforms
massively, possibly cavitating, or debonds from the grains, to accommodate the displacement jumps at grains
boundaries induced by the free anisotropic thermal expansion of grains, no longer hindered by internal stresses.
Upon cooling, the binder hardens back at the glass transition, and freezes the material, including the newly created
porosity. It should be remarked that in this case, the glass transition temperature becomes the new stress free
state, from which internal stresses begin again to build up upon cooling.

In any case, internal stresses build up whether by cooling or by heating, both inducing damage. At this stage,
whether microcracking is inter- or transgranular remains an open question, to be investigated in the following via
microstructure level simulations. But considering the difference in response at high and low temperature, it seems
likely that different mechanisms be involved.

3 Methodology and input data
3.1 Methodology
As stated in Section 1, previous FFT calculations (Ambos et al., 2015; Gasnier et al., 2015b) performed on the
assumedly perfectly bonded TATB polycrystal yielded a strong overestimation of the bulk and shear overall moduli.
The above described experimental results and the following discussion suggest (i) that the pristine material contains
open microcracks, (ii) that thermal cycling induces microcracking, and (iii) that high and low temperature might
produce microcracks of different kinds. Besides (see Gasnier et al., 2015b), the predicted overall volumetric thermal
expansion coefficient coincides with the experimentally measured one of the pristine material if the thermal data
of Sun et al. (2010) are used, but is strongly overestimated with those of Kolb and Rizzo (1979).

The objective of the present work is therefore to investigate all these different issues with a single tool, namely
FFT-based homogenization on microstructures parametrized by the density of the populations of microcracks that
they contain. Since the nature of the latter remains unknown, calculations will be performed on microstructures
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(a) (b)

Figure 6: Parallel between (a) the thermal strain vs temperature low temperature cyclic response of the present ma-
terial and (b) the stress-strain response of an idealized quasi-brittle material under tension and reverse compression.
Cooling and loading in grey, re-heating and unloading in black.

containing either intergranular or transgranular microcracks. The case of intragranular ones is not considered here,
for the sake of computational cost. As only the overall thermoelastic properties are sought, the investigation is
performed in the context of linear (anisotropic) thermoelasticity for TATB. The presence of binder and porosity
are disregarded, as an exploratory work showed that, within a purely thermoelastic context, their account yields
only minor changes in the overall moduli (Gasnier et al., 2018). Finally, only the thermal data of Sun et al. (2010)
will be used, this being justified a posteriori in Section 7.

3.2 TATB single crystal thermoelasticity
The linear thermoelastic law addressed in the present work takes the classical form:

σ(x) = C(x) : [ε(x)−α(x)∆T (x)] . (2)

where σ(x) and ε(x) are the stress and strain fields respectively, and ∆T (x) is the local temperature increase,
whereas C(x) and α(x) are the elastic stiffness and thermal expansion tensors evaluated at point x, but piecewise
constant.

The TATB crystal is triclinic (system P 1̄ with two molecules per cell), and has cell parameters a = 9.01 Å,
b = 9.028 Å and c = 6.812 Å, and cell angles α = 108.59◦, β = 91.82◦ and γ = 119.97◦ (Cady and Larson,
1965). The TATB molecules being essentially planar, they establish hydrogen bonds between adjacent nitro-
(NO2) and amino- (NH2) groups and assemble in graphitic planes, themselves only weakly bonded by van der
Waals interactions.

The elastic moduli used in the present work for the TATB crystal are those obtained by Bedrov et al. (2009)
via molecular dynamics computations:

CT =


65.7 18.5 4.0 −0.2 −1.0 1.0

62.0 5.0 0.6 −0.5 1.0
18.3 0.2 −0.4 −0.4

1.4 0.1 0.3
sym 0.68 0.4

21.6

 [GPa], (3)

where CT is expressed in the system (e1, e2, e3) for which e1 is aligned with the cell parameter a, e2 lies in the
(a, b) plane, and e3 = e1 ∧ e2. Eq. (3) uses the Voigt notation:

(σ11, σ22, σ33, σ23, σ13, σ12)t = CT ·
[
(ε11, ε22, ε33, 2ε23, 2ε13, 2ε12)t − (αT

11, α
T
22, α

T
33, 2αT

23, 2αT
13, 2αT

12)t∆T
]
. (4)

Some level of crystal symmetries is most often required to apply analytical homogenization methods. When
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needed, the following hexagonal approximation of (3) will be used:

CT ≈ CH =


63.9 18.5 4.5 0 0 0

63.9 4.5 0 0 0
18.3 0 0 0

1.04 0 0
sym 1.04 0

22.7

 [GPa], (5)

The form above amounts to the “Euclidean projection” as given by Moakher and Norris (2006), except for the
moduli 11, 22, 12 and 66. The latter have been computed by keeping CT

12 = CH
12 and enforcing the same response

to hydrostatic strain loading, i.e. the mean of the elastic moduli of CT and CH in the top-left quadrant are equal.
The Euclidean projection provides the slightly different moduli C12 = 19.0 and C11 = 63.3.

The thermal expansion coefficients used in the present work for TATB are derived from the X-ray diffraction
measurements of Sun et al. (2010):

αT =

 12.29 −0.95 19.41
9.022 −37.39

sym 166.2

× 10−6K−1. (6)

Earlier X-ray diffraction measurements of Kolb and Rizzo (1979) yield sensibly different values, and will not be
considered herein. Again, the following transverse-isotropic approximation will be used when needed:

αT ≈ αH =

 10.66 0 0
10.66 0

sym 166.2

× 10−6K−1. (7)

No eigen value has been computed in the above approximation. Instead, we simply kept αT
33, averaged αT

11 and
αT

22 and replaced other coefficients by 0. This simple approach has been followed to ensure that tensors CH and
αH have the same axis of symmetry in the hexagonal approximation, a condition for applying most analytical
homogenization schemes.

Eqs. (3) and (6) show very strong anisotropy of the single crystal thermoelastic behavior, illustrated by a ratio
of more than 15 between CT

66 and the other two shear moduli, and between αT
33 and the other two principal thermal

expansion coefficients. Note also that the elastic moduli in (3) are close to that of a tensor of hexagonal symmetry
with stiff “transverse” Young modulus along directions 1 and 2, and soft normal Young modulus along direction 3.
This is also true for thermal expansion, although the component αT

23 cannot be totally neglected.
The data of Sun et al. (2010) display a moderate nonlinearity in the thermal expansion of the crystal cell

parameter c. Its thermal expansion coefficient (1/c)∂c/∂T is 1.493 × 10 −4 K−1 at 20 ◦C, and 1.692 × 10−4 K−1

at 140 ◦C, representing a 13% increase. This nonlinearity could at least partly explain that observed in the
macroscopic thermal expansion experiments of Section 2.2.3.

3.3 Homogenization
Rotation tensors are used to determine the local elastic moduli and thermal dilation components in each grain.
More precisely, we set:

Cij,kl(x) = RiI(x)RjJ(x)RkK(x)RlL(x)CT
IJ,KL, αij(x) = RiI(x)RjJ(x)αT

IJ , (8)

where CT and αT are the stiffness and thermal expansion tensors (3) and (6), which are expressed in the coordinates
system of the laboratory, and R is a constant-per-grain rotation tensor. Its rotation angle is uniformly-distributed
in the interval [0;π] and its axis is oriented uniformly on the sphere. Furthermore, the rotation tensors of different
grains are uncorrelated:

E [R(x)⊗R(y)] = E [R(x)]⊗ E [R(y)] , x and y lie in different grains. (9)

where E[·] designates expected values. This simplifying assumption is used to alleviate the lack of experimental
data on the field R(x). The polycrystaline material has been pressed from an initial powder in a process that likely
involves plastic deformation. Thus, a correlation presumably exists between the crystal directions and geometrical
features of the grains such as elongation, in contrast with (9). This effect is neglected in the present study.
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The macroscopic loading is specified by periodic boundary conditions prescribed on a computational domain Ω
containing L× L× L voxels, and by an average strain ε and thermal loading ∆T :

ε#, σ · n−#, 〈ε(x)〉 = ε, 〈∆T (x)〉 = ∆T , (10)

where 〈·〉 denotes a spatial average over Ω, # denotes periodicity with elementary cell Ω, −# anti-periodicity, and
n is the normal along the boundary of Ω. In the rest of this work, we neglect thermal fluctuations and identify
∆T (x) with ∆T . Furthermore, small-strain and quasi-static equilibrium is assumed at any step during loading,
i.e.:

εij(x) = (1/2) [∂iuj(x) + ∂jui(x)] , ∂iσij(x) ≡ 0, (11)

where u(x) is the (non-periodic) displacement vector field. The effective stiffness tensor C̃ and thermal expan-
sion tensor α̃ of the polycrystal relate the mean strain and stress response as:

σ = C̃ :
(
ε− α̃∆T

)
. (12)

The effective properties are determined, in general, by applying six independent strain loadings (ε 6= 0, ∆T = 0)
and one thermal loading (ε = 0, ∆T 6= 0). In the present study, all microstructure models are macroscopically
isotropic and we restrict ourselves to the following hydrostatic and simple-shear strain loadings, and purely-thermal
loading:

εij = δij , ∆T = 0, (13a)
εij = δi1δj2 + δi2δj1, ∆T = 0, (13b)
εij = 0, ∆T = 1. (13c)

The values of the overall strain loadings (100%) need not be realistic since linear behavior is assumed. The above
conditions provide respectively the effective bulk and shear moduli κ̃ and µ̃, and the effective volumetric expansion
coefficient α̃V = tr(α̃).

The equations for the local (2) and effective response (12) read, in terms of the compliance tensors S(x) =
C−1(x) and S̃ = C̃−1:

ε(x) = S(x) : σ(x) +α(x)∆T , ε = S̃ : σ + α̃∆T . (14)

Compliance rather than stiffness tensors will be used whenever they provide simpler expressions. The compliance
tensor of hexagonal crystals with axis of symmetry along e3 has the following form:

SH =


1/Ep −νp/Ep −νpz/Ep 0 0 0

1/Ep −νpz/Ep 0 0 0
1/Ez 0 0 0

1/Gzp 0 0
sym 1/Gzp 0

2 (1 + νp) /Ep

 , (15)

where Ep is the Young modulus along directions e1 and e2, Ez along e3, Gzp the shear modulus in planes parallel
to e3 and νp, νpz are Poisson coefficients. The form (15) refers to the following Voigt notation:

(ε11, ε22, ε33, 2ε23, 2ε13, 2ε12)t = S · (σ11, σ22, σ33, σ23, σ13, σ12)t + (α11, α22, α33, 2α23, 2α13, 2α12)t∆T (16)

For the TATB crystal, the following values of Ep = 57.9 GPa, Ez = 17.8 GPa, Gzp = 1.0 GPa, νp = 0.28, νpz = 0.18
are computed from the approximate transversely isotropic elastic tensor given in Eq. (5). The contrast of properties
in the in-plane and out-of-plane directions is about Ep/Ez ≈ 3.3 in terms of Young moduli and S44/S66 ≈ 47 in
terms of shear moduli.

3.4 Probabilistic microstructure models
Two types of polycrystal morphology are considered for the grains. Our main model is an “anisotropic Johnson–
Mehl” tessellation, denoted (JM), which contains non-convex grains and is representative of the grains’s granulom-
etry and eccentricity distributions (Gasnier et al., 2015b,a). It is based on an underlying set of germs that follows
a Poisson point process in time and space, as in the classical Johnson–Mehl model, but also uses an anisotropic
“ellipsoidal” distance function attached to each germ that monitors the grains mean elongation. In addition, we
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also consider the standard Voronoi tessellation, denoted (V). The Voronoi model (Stoyan et al., 1995; Ferenc and
Néda, 2007) is based on a Poisson point process for the germs, and uses the Euclidean distance.

In the following, cracks are modeled by a set of thin, porous inclusions. In doing so, we assume that all cracks
are open. In particular they offer no resistance to tangential slip. Inside cracks we set, accordingly, C(x) = 0,
σ(x) = 0 and α(x) = 0. Cracks have a small but strictly-positive width w. The latter takes on values ranging
from 1 to 7 voxels.

Both intergranular and transgranular cracks are considered. Intergranular cracks, which occur along the inter-
face separating two adjacent grains, are planar for the Voronoi model and non-planar for the Johnson–Mehl model.
Transgranular cracks, defined by the intersection of a grain and a plane, are planar irrespective of the tessellation
model, but may not be simply connected in the Johnson–Mehl tessellation. In the following, polycrystal models
with intergranular cracks are denoted (JM-I) for the Johnson–Mehl tessellation and (V-I) for the Voronoi tessella-
tion. Similarly, models with transgranular cracks are denoted (JM-T) and (V-T). Simulations of the (JM-I) and
(JM-T) models are visible in Figs. 7a and b. In the four models, the presence of a crack at a point x in the domain,
or the cracks’s direction, is uncorrelated to the local crystal orientation at point x.

The underlying probabilistic models for inter and transgranular cracks are as follows. Transgranular cracks are
simulated using Poisson planes. These planes are generated by a point, which follows a homogeneous Poisson point
process in Ω, and a random direction, taken uniformly on the sphere. A grain that intersects a given plane is then
chosen randomly, resulting in a transgranular crack in that grain. Here again, the same probability is assigned to
all grains intersected by the plane. The probabilty of intersection with a plane increases with the grain’s size.

(a) (b) (c)

Figure 7: 2D sections of an anisotropic Johnson–Mehl tessellation with (a) intergranular and (b) transgranular
cracks (black), denoted JMA-I and JMA-T respectively. Discretization: 5123 voxels and w = 4 voxels. The cracks
take 10% (JMA-I) and 4% (JMA-T) of all voxels. (c) 2D section of a binary Johnson–Mehl tessellation, obtained
by replacing the grains in (a) by an homogeneous matrix.

To simulate intergranular cracks, we first determine all grain faces, identified by couples of adjacent grains.
Cracks are implemented by selecting randomly a face. In this process, each face is assigned the same probability,
so that cracks are as likely to occur along faces with high and low surface areas. In order to explore the effect of
crystal anisotropy, we also introduce “binary” models of (JM-I) and (V-I) made of cracks embedded in an isotropic
homogeneous matrix. These models amount to replace the grains by a homogeneous matrix while keeping all
intergranular cracks intact (see Fig. 7c). Therefore the models do not contain any tessellation of space, but only a
signature, through its cracks population. We denote them (JM-IB) for the Johnson–Mehl tessellation and (V-IB)
for the Voronoi one. In the following, the elastic moduli of the matrix in the two models will be chosen equal to
that of the uncracked polycrystal media, (JM) or (V) resulting in an isotropic macroscopic behavior.

To carry out full-field micromechanical computations, we discretize random realizations of the microstructure
models on regularly-spaced grids containing L3 voxels. First, we identify each voxel by its center x in the continuum
space, and assign it a grain label G. Second, we discretize the cracks. Intergranular cracks CI and transgranular
cracks CT are determined each as a set of voxel centers:

CI =
{
x : |x− y| ≤ w/2, |x− y′| ≤ w/2, y ∈ G, y′ ∈ G′

}
, (17a)

CT = {x ∈ G; d(x; Π) ≤ w/2} , (17b)

where G, G′ are grains, Π is a random Poisson plane and d(x; Π) is the distance from point x to Π.
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The two models of cracks, intergranular and transgranular, each depend on one parameter. Populations of
intergranular cracks are monitored by the probability that a crack is present along a grain face, and populations
of transgranular cracks by the density of Poisson planes. These two parameters are not employed in this work.
Instead we use the dimensionless cracks-density parameter η defined by Budiansky and O’Connell (1976):

η = 2N
π

〈
A2/P

〉
I,T , (18)

where A and P are the surface area and perimeter of a crack, N is the mean number of cracks per unit volume and
〈·〉I,T denotes an average over all intergranular or transgranular cracks. To avoid the cumbersome computations
that would be necessary to apply (18) to cracks CI and CT , we use the following specialized formula, obtained for
elliptical cracks of major axis a and minor axis b:

η = πN
2

〈
ab2

E (k)

〉
I,T

k =
√

1− b2/a2, (19)

where k the ellipse’s eccentricity and E(k) =
∫ π/2

0 dθ
√

1− k2 sin2 θ refers to the complete elliptic integral of the
second kind. In practice, the semi-axis a and b entering (19) are evaluated using 3D inertia moments. Table 3
gives average values for the larger, middle and lower semi-axis, for two realizations of models (V-I) and (JM-I). As
expected, the two largest semi-axis, used to compute η, are significantly higher than the third one. The length of
the latter, smaller than w/2, shows that the cracks’s thickness, resulting from the discretization, is different from
w. This is because the number of voxels that are at a distance less than w from a given point is a step function.
Obviously these discretization effects are most important for small values of w, typically in the range [0.5; 5].

All numerical computations undertaken below are carried out using two random realizations of each model, on
grids containing M3 = 5123 voxels. The number of grains is about 1400 in the Voronoi tessellation and about 2800
in the Johson-Mehl tessellation. We follow Ambos et al. (2015) and use the norm of the stress divergence vector
as convergence criterion, with error criterion set to 10−4.

Table 3: Mean values of the three semi-axis c ≤ b ≤ a of the equivalent ellipsoids of cracks present in two
realizations of models (V-I) and (JM-I). Values are given in voxels. The width of the cracks is w = 4 voxels and
the cracks-density parameter is η ≈ 0.56 (JM-I) and η ≈ 0.48 (V-I).

Model 〈a〉I 〈b〉I 〈c〉I
V-I 24.0 14.5 1.5
JM-I 18.5 9.3 1.5

The loss of connectivity of the solid phase is essential for understanding the mechanical properties of intergran-
ular and transgranular models. This percolation threshold is given for model (V-I) as a proportion of about 8.2%
of intact grain facets by Jerauld et al. (1984), i.e. 91.8% of cracked facets. To validate our model, we carry out
numerical simulations of model (V-I) with increasing proportion of cracked facets equal to 90%, 92% and 94%.
For simplicity, the realizations are obtained using the same Voronoi tessellation but independently choosen cracked
facets. The number of percolating microstructures is found to be 1, 6 and 10 over 10 realizations for 90%, 92% and
94% of cracked facets, respectively, in agreement with Jerauld et al. (1984). For model (JM-I), we find a number of
percolating configurations equal to 0, 6 and 10 over 10 microstructures, for a proportion of cracked facets equal to
92%, 94% and 96%, respectively. The crack density near the percolation threshold, computed when the proportion
of cracked facets is 92% (V-I) and 94% (JM-I), gives the rough estimate η ≈ 0.46 (V-I) and η ≈ 0.61 (JM-I) at
percolation. This suggests a higher percolation threshold for the intergranular Johnson–Mehl models (JM-I) and
(JM-IB) compared to their Voronoi counterparts (V-I) and (V-IB), both in terms of the proportion of cracked grain
facets and crack-density parameter.

No percolation threshold occurs for the transgranular crack models (JM-T) or (V-T), i.e. the solid phase is
macroscopically connected when η is finite. In particular, percolating paths are guaranteed to exist in the vicinity
of grain boundaries, where the crack tips are located.

4 Homogenized thermoelastic properties of cracked polycrystals
4.1 Self-consistent schemes and bounds
Many self-consistent schemes and bounds of interest to this study apply to either a cracked body that is otherwise
homogeneous and isotropic, or to uncracked polycrystals. We combine the two types of methods to take into account

12



(a) (b) (c)

Figure 8: Schematic 2D view of the analytical estimates’s underlying assumption. Cracks in black and grain
boundaries in grey. (a): SC, NIA, HS. (b): SC′; (c): SC-TW.

both crystal anisotropy and cracks. For the elastic properties of uncracked polycrystals, we use Berryman’s self-
consistent scheme (Berryman, 2005). In the case of hexagonal symmetry of the crystal, the method consists in
solving the system of three unknowns G, K, and ξ:

3GV = CH
33 + CH

11 − 2CH
13 − CH

66, 6(K + 2G)ξ = G(9K + 8G),
9KV = CH

33 + 2CH
11 + 2CH

12 + 4CH
13, 3KV ξ = 3(GV + ξ)K − CH

33
(
CH

11 + CH
66
)

+
(
CH

13
)2
,

5
G+ ξ

=
KV + 4

3G(
K + 4

3G
)

(GV + ξ)
+ 2
CH

44 + ξ
+ 2
CH

66 + ξ
, (20)

where G is the effective shear modulus, K the effective bulk modulus, ξ is an auxiliary variable and the CH
ij refer

to the hexagonal approximation to the TATB stiffness tensor (5). Although the TATB is better approached by a
monoclinic symmetry, most methods developed for this class of polycrystals are bounds (Watt, 1980) rather than
estimates, and are not considered hereafter. Also, the effective volumetric thermal expansion coefficient α̃V of a
polycrystal with hexagonal symmetry is given exactly by the formula of Hashin (1984):

α̃V = α̃11 + α̃22 + α̃33 = αH
V + (αH

33 − αH
11)1/K̃ − SH

iikk

SH
ii33 − SH

ii11
, (21)

where αH
V = αH

11 +αH
22 +αH

33, K̃ = 1/S̃iikk is the polycrystal’s effective bulk modulus, SH =
(
CH)−1 the compliance

tensor of the TATB, and αH the hexagonal approximation (7) of the TATB dilation coefficients. For the uncracked
TATB polycrystal, Eqs. (20) and (21) give K = K̃ ≈ 16.98 GPa, G ≈ 6.85 GPa and α̃V ≈ 1.49× 10−4 K−1.

Cracks are taken into account by several means. We first consider the self-consistent estimate of O’Connell and
Budiansky (1974) and Budiansky and O’Connell (1976) which applies to a homogeneous isotropic body containing
randomly-oriented cracks. Budiansky and O’Connell consider elliptical cracks with arbitrary aspect ratio but
remark that their estimate is nearly insensitive to aspect ratio. Hereafter we use the formula obtained for disks,
which is determined by the following:

KSC

K
= 1− 16

9
1− ν2

SC
1− 2νSC

η, η = 45
16

(ν − νSC)(2− νSC)
(1− ν2

SC) [10ν − νSC(1 + 3ν)] ,
GSC

G
= 1− 32

45
(1− νSC)(5− νSC)

2− νSC
η, (22)

where νSC is the effective Poisson ratio, KSC and GSC the effective bulk and shear moduli. The matrix’s Poisson
ratio ν, bulk and shear moduli K and G, are obtained from (20). The number of crack per unit volume is
monitored by 0 ≤ η <∞ (Eq. 19). This method amounts to assume scale separation between the grains and a set
of randomly-oriented cracks, at a higher length scale (see schematic view 8a).

We also consider the Mori-Tanaka estimate (Benveniste, 1987), equivalent to the “non-interacting approxi-
mation” (Kachanov, 1992) in which the effects of each crack on the compliance moduli are summed up, corre-
sponding to a dilute approximation. These methods have been designed as a way to take into account “shielding
effects” (Grechka and Kachanov, 2006), a situation that occurs when multiple nearby cracks cancel or reduce each
other’s softening effect. The estimates take the form:

K

KNIA
= 1 + 16

9
1− ν2

1− 2ν η,
G

GNIA
= 1 + 32

45
(1− ν)(5− ν)

2− ν η, (23)
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where KNIA is the effective bulk modulus, GNIA the effective shear modulus. The Poisson coefficient ν, and the
elastic moduli G and K are obtained from (20), assuming scale separation. We denote this homogenization scheme
(NIA).

We also combine Berryman’s estimate (20) with the Hashin-Shtrikman-type bound (Ponte Castañeda andWillis,
1995):

KHS

K
= 1− 48η(1− ν2)

27(1− 2ν) + 16η(1 + ν)2 ,
GHS

G
= 1− 480η(1− ν)(5− ν)

675(2− ν) + 64η(4− 5ν)(5− ν) , (24)

which gives the bulk modulus KHS and shear modulus GHS of a cracked body as a function of the elastic shear
modulus G, bulk modulus K and Poisson coefficient ν of the matrix. We denote (HS) the combination of the
above formula with (20). Unlike methods (SC) and (NIA), formula (24) are exact upper-bounds for certain classes
of materials containing randomly-oriented cracks with particular “ellipsoidal” form for the spatial correlations
functions. For a cracked homogeneous body, the bounds require η ≤ 3/(4π) ≈ 0.239. This method does not
provide bounds anymore when combined with Berryman’s self-consistent estimate.

The self-consistent estimate proposed by Willot et al. (2018) for isotropic media containing cracks is also
examined. This estimate reduces to a system of two cubic equations for the bulk and shear moduli of the cracked
body, not recalled here for conciseness. Again, the bulk and shear moduli of the uncracked medium are provided
by Berryman’s estimate (20). This method is denoted (SC′-ISO).

In the dilute cracks-density limit η → 0, the four methods (SC), (NIA), (SC′-ISO) and (HS) coincide up to
first-order in η. This first-order correction is an exact result obtained for a set of isolated disk-shaped cracks
embedded in a homogeneous, isotropic body (Kachanov, 1992). Except for method (NIA), all methods predict
a (finite) percolation threshold in terms of the crack-density parameter η (we refer to Willot et al., 2018 for a
discussion of percolation thresholds).

It is straightforward to extend methods (SC), (SC′-ISO), (NIA) and (HS) to thermal loadings. A general result
states that the thermal expansion tensor of a homogeneous body is unchanged in the presence of pores (Rosen and
Hashin, 1970). If scale separation between the grains and cracks is to be assumed, the effective thermal expansion
coefficient α̃V does not depend on the crack density η. The value of α̃V for all three methods (SC), (SC′-ISO),
(NIA) and (HS) is therefore provided by Eq. (21). In this equation, the value of K̃ is given by Berryman’s estimate
for the uncracked polycrystal (Eq. 20). In the present case, the macroscopic thermal response depends on the
density of cracks, because of the coupling between cracks and crystal anisotropy.

The self-consistent scheme developed for polycrystals with hexagonal symmetry containing cracks (Willot et al.,
2018), denoted (SC′) hereafter, is also considered. Unlike methods (SC), (SC′-ISO), (NIA) and (HS), this approach
does not assume scale separation between the grains and the cracks. Instead, cracks and grains are considered as
inhomogeneities of similar size embedded in the effective medium (see schematic view 8b).

In the rest of this work we also use the upper and lower bounds α±V for the volumetric thermal expansion
coefficient αV available for microstructures with an arbitrary number of phases and triclinic anisotropy (Gibiansky
and Torquato, 1997):

α±V
3 =

B2Ku(K̃ −Km)−B1(Ku − K̃)±
√

Ψ(K̃ −Km)(Ku − K̃)
K̃(Ku −Km)

, (25)

Ψ = 2(C1 + C2)(Ku −Km)−B2
1 − 2KuB1B2 −KmKuB

2
2 , 9B1 = −〈α(x)〉 : Ca : I,

3B2 = 〈C(x) : α(x)〉 : Sa : I, 18C1 = 〈α(x) : C(x) : α(x)〉 − 〈α(x)〉 : Ca : 〈α(x)〉, Ku = (I : Sa : I)−1

18C2 = −〈α(x) : C(x)〉 : Sa : 〈α(x) : C(x)〉, Ca = 〈S(x)〉−1,Sa = 〈C(x)〉−1, 9Km = I : Ca : I,

where Iij,kl = (1/2)(δikδjl + δilδjk) is the fourth-rank unit tensor, δ the Kronecker delta symbol, and averages of
C(x), S(x), α(x) and of their tensorial products are taken over the spatial domain. The expressions above are
readily computed for hexagonal polycrystals containing pores. Taking C = CH, α = αH, and pores with zero
volume fraction (cracks), one obtains, after some algebra:

α±V = 3CH
iiklα

H
kl

CH
jjmm

± |αH
33 − αH

11|
√

2
(
CH

11iiC
H
33kk

CH
jjmm

− CH
1133

)1/2(
1
K̃
− 9
CH
jjmm

)1/2

. (26)

Fig. 9 illustrates the predictions of the bounds for the cracked hexagonal approximation of the TATB polycrystal
(solid blue lines). Bounds for the hexagonal uncracked polycrystal (black line) reduce to Hashin’s formula (21),
whereas the bounds obtained for the uncracked polycrystal with triclinic anisotropy are represented in red. When
cracks are present, the effective bulk modulus K̃ takes on values ranging from 0 to Hill’s upper bound. The
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Figure 9: Effective thermal expansion coefficient α̃V as a function of the effective bulk modulus K̃. Solid lines:
Gibiansky and Torquato’s upper and lower bounds (Gibiansky and Torquato, 1997) for the uncracked TATB
polycrystal with triclinic anisotropy (red), Hashin formula (21) for hexagonal polycrystals (black), upper and lower
bounds (26) for the cracked TATB polycrystal, with hexagonal approximation (blue).

difference between the upper and lower bounds for α̃V increases as the effective bulk modulus decreases. In the
limit K̃ → 0, the two bounds tend to ±∞. This behavior is similar to that obtained by Sigmund and Torquato
(1997) for media made of pores and of two solid phases.

5 Thermoelastic response of cracked polycrystals: FFT results
5.1 Relative error: effect of voxel-discretization
In this section, we evaluate the accuracy of the FFT estimates of the effective properties of cracked polycrystals.
Use is made of the “backward and forward” (FFT-BF) (Willot and Pellegrini, 2008) and “rotated” (FFT-R) (Willot,
2015) Fourier schemes. The reader is referred to our companion paper (Gasnier et al., 2018) for a discussion on the
Fourier discretization schemes in media involving cracks. We consider the Johnson–Mehl model with transgranular
cracks JM-T. The crack-density parameter η in model (JM-T) takes on 5 different values in the range [0.033;
0.35]. As shown in other works (Ambos et al., 2014, 2015; Gasnier et al., 2015b), the accuracy of the method for
polycrystals without cracks is most influenced by the representativity of the microstructure, i.e. the number of
grains. For models containing cracks however, the apparent moduli are sensitive to the thickness w of the cracks.
This is especially true when dealing with random tessellations in 3D, where the cracks aspect ratio (thickness over
length) cannot be as small as in ideal microstructures made of relatively few cracks.

The influence of w on the effective bulk moduli K̃, G̃ and thermal expansion coefficient α̃V is represented
in Fig. 10 as a function of w. Symbols denote FFT data points with scheme FFT-BF (black signs) and FFT-R
(colored symbols). Solid lines are linear fit of the FFT data points for w ≥ 2. FFT results for the elastic moduli
indeed show a linear decrease with respect to the thickness value w ≥ 2 at fixed η (Figs. 10a and 10b). When
w = 1 voxel, methods (FFT-R) and (FFT-BF) overestimate the elastic moduli. This is an effect of certain cracks
that are ill-oriented with respect to the grid, and crudely discretized, allowing traction components to be partially
transmitted across the crack. We refer to Gasnier et al. (2018) for a discussion of this effect for isolated cracks
oriented parallel and transverse to the grid. Accordingly, we do not use the fine discretization w = 1 and choose
w = 2. We also carry out all computations with (FFT-BF). The error estimate can be computed by comparing
FFT numerical values for w = 2 and w → 0+, estimated by a linear fit for the FFT data point w ≥ 2 (Fig. 10,
solid black lines). The difference between the two values increases from 0.03% (η = 0.033) to 0.8% (η = 0.35) for
α̃V , from 1.1% (η = 0.033) to 15% (η = 0.35) for G̃ and from 1.3% (η = 0.033) to 10% (η = 0.35) for K̃. Elastic
moduli are underestimated whereas the volumetric dilation coefficient is very slightly overestimated, due to the
cracks finite thickness. Accordingly, except for the prediction of α̃V at low crack density values, the effect of the
cracks’s thickness discretization predominates over the volume representativeness. Note that, although the presence
of voids or cracks does not influence the effective thermal expansion coefficient of a homogeneous body (Rosen and
Hashin, 1970), this is not so, in general, for inhomogeneous bodies containing cracks such as polycrystals.
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Figure 10: Influence of the crack width parameter w (in voxels unit length) on the effective elastic moduli (a-b)
and thermal expansion coefficient (c) in a polycrystal (model JM-T) with transgranular cracks. Symbols: FFT
data points using method FFT-BF (color symbols) and FFT-R (black signs), for various values of the crack density
parameter η. Solid lines: linear fit in the range w ≥ 2.

5.2 Intergranular vs. transgranular cracks
Results for the elastic moduli of models (V-I), (JM-I), (V-T) and (JM-T) are shown in Fig. 11. Solid lines of
various colors represent the analytical estimates (NIA), (HS), (SC) and (SC′), whereas FFT data points are shown
by symbols (green: intergranular cracks, black: transgranular cracks). It appears that all cracked media have
the same bulk modulus in the dilute crack-density limit η � 1. Also, the analytical estimates, including (SC′),
predict the same finite slope ∂K̃/∂η at η = 0+ (dotted line, embedded graph in Fig. 11a). The non-interacting
approximation (NIA) gives the stiffest responses, which are not realistic for the transgranular and intergranular
models. Methods (SC), (HS) and (SC′) provide a bulk modulus close to that obtained for the two transgranular
models (JM-T) and (V-T), except at higher crack density (η ≥ 0.45). In this regime, method (HS) predicts a softer
response, at fixed η, than Fourier computations, for the transgranular models. Overall the tessellation model has a
small impact on the bulk modulus, although Johnson–Mehl tessellations show stiffer properties than Voronoi’s. For
intergranular crack models, this effect is linked to the percolation threshold ηc of model (V-I), lower than that of
model (JM-I). The values of the thresholds are about ηc ≈ 0.46 (V-I) and ηc ≈ 0.61 (JM-I) (Section 3.4). Likewise,
models with transgranular cracks JM-T and V-T (black symbols), which do not exhibit a percolation threshold,
have the stiffest response.

The situation is significantly different regarding the shear modulus (see Fig. 11b). The slope at η = 0 is about
−33 GPa for intergranular and transgranular models (see embedded graph). This slope is quite lower than that
given by methods (NIA), (HS) and (SC) which predict −9.3 GPa. Thus, contrarily to the bulk modulus case,
crystal anisotropy has a weakening effect on the shear modulus in the dilute crack-density regime. Method (SC′)
predicts a slope of about −15.1 GPa, and a weakening effect in the dilute regime due to crystal anisotropy. As
expected, the value for the slope obtained by FFT is not recovered by (SC′), which does not take into account
the exact local interaction between cracks and crystals. Nevertheless for crack density parameter in the range
0 ≤ η ≤ 0.6, method (SC′) provides the best estimate for the shear modulus and the correct concavity.

The effective thermal expansion coefficient α̃V is represented in Fig. 12 as a function of the crack density
η. When η = 0, α̃V is very close to the value 1.49 × 10−4 K−1 provided by Hashin’s formula (Eq. 21). For the
intergranular crack models (JM-T) and (V-T), the thermal expansion coefficient shows a slight increase with respect
to η in the entire range 0 ≤ η ≤ 0.6 (black symbols, Fig. 12). The same behavior is observed for intergranular cracks
models (JM-I) and (V-I) up to η ≈ 0.3. At higher crack density η ≥ 0.3, a percolating behavior appears, highlighted
by the strong increase of α̃V with respect to η (model JM-T, represented by green circles). This increase is not
predicted by models (NIA), (SC) or (HS) (black solid line, Fig. 12). The self-consistent method (SC′) predicts an
increase with respect to η while overestimating the effects of the cracks in the domain η ≤ 0.3. At small crack
density η ≤ 0.1, the effects of cracks are amplified by a factor of about 2 by method (SC′) compared to FFT
predictions (models V-T and V-I, embedded graph, Fig. 12). FFT data points for models (V-I) and (V-T) also
suggest that the function α̃V is concave at moderate crack density η ≤ 0.3, consistently with SC′. The bounds (26)
(brown solid line, Fig. 12), give widely overestimated expansion coefficient α̃V , but predict that α̃V is smaller than
α̃H
V ≈ 1.87 10−4 at η = 0.
The FFT point closest to the percolation threshold is found at η ≈ 0.56 for model JM-I (Fig. 12). Contrarily
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Figure 11: Bulk modulus K̃ (a) and shear modulus G̃ (b) of cracked polycrystals as a function of the crack
density η. Symbols: FFT results for the Johnson–Mehl (JM, circles) and Voronoi tessellations (V, triangles) with
intergranular (green) or transgranular cracks (black). Solid lines: linear homogenization theories. Orange: “non-
interacting approximation” (NIA); Black: Hashin-Shtrikman-type bound (HS); Blue: self-consistent estimate for
a homogeneous matrix (SC); Violet: self-consistent estimate for cracked hexagonal polycrystals (SC′); Top-right
graphs (embedded): dilute crack density η < 0.1. Dashed line: tangent line for K̃ at η = 0, common to SC, NIA
and HS.

to other FFT data points, a single realization, rather than two realizations, is used here. The FFT estimate for
the other realization was discarded because the crystals were found not to be connected. Indeed, the effective
thermal expansion is estimated by the formula α̃V = −σm/(K̃∆T ) which can not be used beyond the percolation
threshold. FFT data for the effective thermal expansion coefficient of the non-percolating realization at η ≈ 0.56
gives α̃V ≈ 1.89×10−4 K−1 which is close to αH

V ≈ 1.88×10−4 K−1. It is notable that method SC′ predicts exactly
α̃V → αH

V at percolation (Willot et al., 2018). Despite the very good agreement, however, additional numerical
investigations are required to determine the exact nature of α̃V for integranular models in the percolation limit.

5.3 Effect of crystal anisotropy
The effect of crystal anisotropy is now examined taking advantage of the “binary” models (JM-IB) and (JM-TB)
where the crystals have been replaced by the already-homogenized effective matrix. The effective thermal expansion
coefficient of binary media predicted by FFT does not depend on η (not shown), consistently with the exact solution
for binary media.

The effective bulk and shear moduli are represented in Fig. 13a and 13b, respectively, as a function of the crack
density η. FFT data points for the binary models are represented with the symbols × (intergranular cracks) and
+ (transgranular cracks). Binary microstructures have noticeably stiffer elastic moduli than their polycrystalline
counterparts. The increase of the effective bulk modulus in particular is much more pronounced when intergranular
cracks are concerned (see JM-I vs. JM-IB, Fig. 13a) than for transgranular cracks (JM-T vs. JM-TB, same figure).
This is such that the bulk modulus of the binary model with intergranular cracks (JM-IB) is higher than with
transgranular cracks (model JM-TB), whereas the order is reversed for non-binary models (JM-I) and (JM-T).

The concavity of the curves for the shear modulus G̃ of the binary models (JM-IB) and (JM-TB) is much less
pronounced than that of the polycrystal models (symbols + and × vs. squares and circles, Fig. 13b). Also, the
binary models display the same behavior in the dilute crack-density limit η → 0 as that predicted by the estimates
(NIA), (HS) and (SC) (embedded graph, Fig. 13b). This is not surprising as these homogenization schemes apply
to binary media. Estimate (SC′) is represented in Fig. 13 as solid violet lines, and (SC′-ISO) as dotted violet lines.

5.4 Experimental vs. numerical results
Using FFT data points for models (JM-I) and (JM-T) (Fig. 11) we find the density of cracks in each model that
allows one to recover the experimentally-observed bulk and shear moduli (K̃ = 7.2, G̃ = 2.7). For model (JM-I), on
the one hand, we obtain similar crack density values η = 0.18 for K̃ and η = 0.24 for G̃. For model (JM-T), on the
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Figure 12: Continuation of Fig. 11: volumetric thermal expansion coefficient α̃V . Embedded graph: enlargement
in the region η ≤ 0.3 for models (V-T) and (V-I), based on the Voronoi tessellation. Brown solid line: Gibiansky-
Torquato upper-bound (VAR).

other hand, one has η = 0.25 for K̃ and η = 0.44 for G̃. Thus, model (JM-I), i.e. a material containing intergranular
cracks, appears as the best candidate for modeling the TATB-based material in its initial state. FFT computations
are also consistent with the measured volumetric thermal expansion coefficient α̃V = 1.45 × 10−4 K−1, although
this value is not sensitive to the presence of cracks.

We emphasize that the FFT data overestimate the role of the cracks (see Section 5.1). Furthermore, the porosity
and the binder are not taken into account. This rough analysis should be complemented by taking into account the
weakening effects of both. Nevertheless, the results obtained so far cannot explain the decrease of the volumetric
thermal expansion coefficient down to 1.02× 10−4 K−1 observed under cooling (Table 2). In the next section, we
explore additional models of cracked polycrystals in order to recover and interpret the experimental data.

6 Polycrystals with cracks correlated to crystallographic orientations
Correlations are now introduced between the cracks’s directions and crystallographic orientations, in an effort to
simulate more realistic models. Such correlations have been observed in alloys and metals for intergranular (Craw-
ford and Was, 1992; Rath and Bernstein, 1971; King et al., 2008) as well as transgranular cracks (Bernstein, 1970).
Transgranular cracks are considered in Section 6.1 and intergranular cracks in Section 6.2.

6.1 Transgranular crack models
Consider two models of transgranular cracks where cracks are oriented along the “weak-plane”, i.e. normal to
direction e3 of the local TATB crystal (see Eq. 3), and, for comparison, a “stiff-plane” model where the normal to
the cracks lies in the (e1, e2) plane. We denote the weak-plane model with Johnson–Mehl tessellation (JM-TW)
and that with Voronoi tessellation (V-TW). The stiff-plane models are likewise denoted (JM-TS) and (V-TS).

Models (JM-TW) and (JM-TS) are generated as follows. First, a grain is picked randomly and uniformly among
all grains. Second, a point is selected at random in the grain, uniformly in space. For voxelized microstructures,
this is done by selecting a voxel in the grain, each voxel being assigned the same probability. In both models
(JM-TW) and (JM-TS), the crack passes through the selected point. The normal to the crack is given by the
lattice direction e3 for weakest plane models. For stiff plane models, it is selected randomly and uniformly in a
disc contained in the (e1, e2) plane. In contrast to the transgranular model (JM-T), cracks in models (JM-TS) or
(JM-TW) are as likely to occur in large grains as they are in the smaller ones. However, cracks are not uniformly
distributed inside a grain because of the method used to select a point. In grains with regular, nearly convex shape,
cracks appear more frequently inside a central region. In addition, an analysis of the cracks configuration near
the grains boundary show that none of the models (JM-TW), (V-TW), (JM-TS) or (V-TS) presents a percolation
threshold for the polycrystalline matrix. Like previously, numerical computations are carried out using the FFT
method on 5123 voxel grids and apparent properties are averaged over two realizations. We refer to Fig. 14 for an
example of a FFT computation with model (JM-TW). The same procedure is followed for the Voronoi tessellation
(models V-TW and V-TS).
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Figure 13: Effect of crystal anisotropy on the bulk (a) and shear (b) moduli of cracked media. Squares and
circles: FFT results for the Johnson–Mehl polycrystal with intergranular (green) and transgranular cracks (black);
Signs (+) and (×): polycrystalline matrix replaced by an homogeneous isotropic medium. Solid lines: linear
homogenization theories. Orange: non-interacting approximation (NIA); Black: Hashin-Shtrikman-type bound
(HS); Blue: self-consistent estimate (SC); Violet: self-consistent estimate (SC′) for cracked hexagonal polycrystals.
Dottted line: self-consistent estimate (SC′) in the case of isotropic grains, marked SC′ (ISO). Embedded graph
(top-right): dilute crack density η < 0.1.

We also introduce a homogenization scheme relevant to the weak-plane model, which is given by the estimate
for an uncracked polycrystal (Eq. 20) with the elastic moduli of the TATB replaced by transversely-isotropic grains
that account for the presence of weak-plane cracks. These moduli are computed using the Eshelby tensor for an
isolated penny-shaped crack embedded in a crystal with transversely-isotropic properties, and axis of symmetry
normal to the crack, derived by Sevostianov et al. (2005). Accordingly, we replace the tensor components CH

ij in
Eq. (20) by the components of the following tensor:

CTW =
(
SH + ηH

)−1
, (27)

where SH is the hexagonal approximation of the compliance tensor of the TATB and H is given by (refering to the
Voigt notation 3 and 4, with e3 normal to the crack):

H33 = 8
3

√
CH

33
(
CH

11
)2
/CH

44 + 2CH
11
√
CH

33C
H
11 − CH

13C
H
11
(
2 + CH

13/C
H
44
)

CH
33C

H
11 −

(
CH

13
)2 , H66 = 2(H11 −H12), (28a)

H44 = H55 =
(

3
16

√
CH

66C
H
44 +

√
CH

11/C
H
33

2H33

)−1

, H11 = H22 = H12 = H13 = 0. (28b)

The expression above is given by Sevostianov et al. (2005) in a slightly different form.
As in methods (SC), (NIA) or (HS), the thermal expansion coefficient α̃V relevant to (SC-TW) is estimated

using Hashin’s formula (21). In the polycrystal, each grain now contains a population of weak-plane microcracks
at a small scale, hence, following (27), tensor SH is replaced by SH + ηH in (21). We denote this self-consistent
estimate by (SC-TW). Method (SC-TW) assumes that the cracks are much smaller than the grains and oriented
along the crystal weakest-plane in each grain, enhancing the crystal anisotropy (see Fig. 8c).

Numerical results for the elastic moduli are presented in Fig. 15. The weak and stiff transgranular models are
compared to models (JM-T) and (V-T). As expected, FFT data points show a significantly stiffer response for the
weak-plane model (black symbols in Fig. 15) than with other transgranular models (purple and orange symbols
in Fig. 15). The stiff-plane model (orange symbols) yields elastic moduli that are very close to the uncorrelated
models (JM-T) and (V-T) whereas the effect of the tessellation (JM vs. V) appears to be negligible. The bulk
modulus K̃ has a slightly different slope in the dilute crack density limit η → 0 depending on the estimate. The
self-consistent method (SC′) gives a slope of about −78.0 GPa whereas (SC-TW) predicts −109.0 GPa (note that
the two curves cross each other at around η = 0.09, see Fig. 15a, embedded graph). FFT data for (JM-TW) and
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Figure 14: Johnson–Mehl model with “weakest-plane” trangranular cracks (JM-TW) under shear loading εxy =
εyx = 10%: 2D cut along the (x, y)-plane of the undeformed (a) and deformed microstructure (b). Cracks in white,
grains in yellow, orange, red and black.

(V-TW) do not predict such crossing, however recall that method (SC-TW) relies on the assumption that the
cracks are entirely embedded in the same crystal which is not the case of the transgranular crack models.

To validate the numerical results, we carried out one additional FFT computation using a model similar to (JM-
TW) with cracks diameter smaller by a factor 5 compared to the grains (model JM-TW′, black star in Fig. 15a),
in an effort to generate a structure closer to that represented in Fig. 8c. We also computed the same estimate
as (SC-TW) for ellipsoidal voids that mimic cracks with finite thickness. This is done by replacing, in method
(SC-TW), the tensor H (Eq. 27) by a formula valid for ellipsoids with finite thickness, provided by Sevostianov
et al. (2005). This expression is not provided here for conciseness. The volume fraction of the ellipsoid is chosen
equal to that used in the numerical computation. The curve is marked (SC-TW′) in Fig. 15a. It presents nearly
the same slope at η = 0 as the estimate (SC-TW). Also, the FFT data point for (JM-TW′) lies very close to the
curve (SC-TW′). This result shows that the difference observed between the FFT predictions for model (JM-TW)
or (V-TW) and the self-consistent estimate (SC-TW) can be attributed to two factors: the finite cracks thickness
in the FFT computations and the scale separation hypothesis in (SC-TW).

Results for the shear modulus (Fig. 15b) are similar to that obtained for the bulk modulus. The weak-plane
models (JM-TW) and (V-TW) exhibit the stiffest response. Self-consistent estimates present similar slopes at η = 0
for the weak-plane model SC-TW (−16.2 GPa) and for the transgranular model SC′ (−15.8 GPa) (embedded graph,
Fig. 15b). However, no crossing is observed for the two estimates.

The effective thermal expansion coefficient is plotted as a function of the crack density parameter in Fig. 16, for
all transgranular models. As for the bulk modulus, we compare the FFT prediction for model (JM-TW′) with the
self-consistent estimate (SC-TW′). The difference between the FFT result for (JM-TW′) and method (SC-TW′)
diminishes significantly compared to (JM-TW) and (SC-TW), validating our approach.

Data obtained for α̃V show that the thermal expansion coefficient is sensitive to the orientation of the cracks
with respect to the crystallographic lattice. Specifically, α̃V decreases when the density of transgranular cracks
oriented along the weak-plane of the TATB crystal increases (black symbols, Fig. 16). Conversely, stiff-plane cracks
induce an increase of the thermal expansion coefficient with respect to η (orange symbols). This behavior can be
interpreted using Hashin’s formula (21), which reads, for model (SC-TW):

α̃V = 3αH
11 + (αH

33 − αH
11)1/K̃ − 3SH

ii11
STW
ii33 − SH

ii11
, STW

ii33 = SH
ii33 +H33η, (29)

where, for the uncracked TATB, 1/K̃−3SH
ii11 > 0, STW

ii33 −SH
ii11 > 0 and αH

33−αH
11 > 0. Assume that the variations

of K̃ with respect to η can be neglected. Weak-plane cracks increase the anisotropy of the crystal, represented by
the denominator STW

ii33 − SH
ii11 of the second term on the r.h.s., lowering α̃V . The opposite effect is observed for

stiff-plane cracks, where the grains anisotropy is diminished.
FFT results for weak-plane transgranular cracks at η ≈ 0.7 is consistent with volumetric thermal expansion

data as low as 1.11× 10−4 K−1, measured during re-heating (Table 2). The lowest value 1.02× 10−4 K−1 requires
possibly larger crack density η > 0.7 that are difficult to compute numerically.
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Figure 15: Elastic moduli of weak-plane (black symbols) and stiff-plane (orange symbols) transgranular crack
models, as a function of the crack density parameter η, and compared to uncorrelated transgranular models (purple
symbols). Solid lines: self-consistent estimates (SC-TW), (SC-TW′) relevant to weak-plane cracked models and
(SC′). Embedded graphs: enlargement around small crack density.
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Figure 16: Continuation of Fig. 15: volumetric thermal expansion coefficient α̃V .

We now determine the limiting behavior of K̃ and α̃V when η →∞, predicted by method (SC-TW). We rewrite
Eqs. (20) in terms of the in-plane and out-of-plane Young moduli Ep and Ez of the hexagonal approximation of the
TATB crystal, the in-plane shear modulusGzp and the Poisson ratios νp and νpz (Eq. 15). Weak-plane transgranular
cracks lower the moduli Gzp and Ez while leaving Ep and Poisson ratios intact. An asymptotic expansion of the
estimate for (SC-TW) when Gzp → 0 and Ez → 0 leads to:

K̃ ∼ 4
3 G̃ ∼

√(
3E′z + 16G′zp

) 2Ep
9(7 + νp)

, (30)

where:
G′zp =

(
1
Gzp

+ ηH44

)−1
, E′z =

(
1
Ez

+ ηH33

)−1
, (31)

are the shear moduli and Young moduli weakened by the presence of transgranular cracks, obtained from (28) and
(27). For the TATB, H33 ≈ 0.63 GPa−1 and H44 ≈ 0.42 GPa−1. Thus, when G′zp � E′z, K̃ scales as:

K̃ ∼

√
2Ep

3H33(7 + νp)
1
√
η

+O(1/η). (32)
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The above regime holds in the region η0 � η � η1 with:

η0 = 1
EzH33

, η1 = 1/Gzp − 1/Ez
H33 −H44

, (33)

where we assumed that H33 > H44 as is the case for the TATB. When η � η1, E′z/G′zp ≈ H44/H33 and:

K̃ ∼

√(
3
H33

+ 16
H44

)
2Ep

9(7 + νp)
1
√
η

+O(1/η), . (34)

For the TATB crystal, there is less than two decades between η0 ≈ 0.09 or η1 ≈ 4.2, and regime (32) does not
occur. It is nevertheless visible as an inflexion point when K̃ is plotted as a function of η in log-log plot (Fig. 17,
solid blue line). To highlight this regime we have computed estimates of K̃ predicted by method (SC-TW) for a
crystal with amplified anisotropy (solid black line). This crystal has the same moduli as that of the TATB except
that Gzp is one hundred times smaller (equal to 0.0104 GPa). For this material, η0 ≈ 0.009, η1 ≈ 47 and the two
regimes (32) and (34) distinctly appear (Fig. 17, red and green dotted lines). Making use of (29), we obtain the
limiting behavior of α̃V when η →∞:

α̃V = 3αH
11 + αH

33 − αH
11√

η
×


√

3(7+νp)
2EpH33

, η0 � η � η1,√
9(7+νp)

2Ep(16H2
33/H44+3H33) , η1 � η,

(35)

The two regimes determined previously for K̃ appear in the next-to-leading order term for α̃V . The limiting value
α̃V → 3αH

11 as η →∞ in (35) is confirmed by the exact relationship (Benveniste, 1993):

α̃ : 〈σ(x)〉 = 〈αH(x) : σ(x)〉, (36)

valid for purely-elastic loading (∆T = 0). Indeed, let σ33 ≈ 0 in grains with symmetry axis e3 so that the traction
component normal to the crack vanishes. The r.h.s. of (36) then reads:

〈αH(x) : σ(x)〉 = 3αH
11σm = α̃V σm,

the material being subjected to hydrostatic stress loading σij = σmδij . Likewise, in a grain containing many
stiff-plane cracks oriented parallel to e3 (models V-TS and JM-TS), the stress components σ11 and σ22 approach
zero. A similar reasoning suggests the limiting value α̃V → 3αH

33 as η →∞ for the stiff-plane crack models (V-TS)
and (JM-TS). Remark that the limiting value α̃V → αH

V predicted by the self-consistent estimate SC′ for random
crack orientations (see Willot et al., 2018) lies in-between 3αH

11 and 3αH
33, so that the thermal response of a mixture

of randomly-oriented cracks is intermediate between that obtained for weak-plane and stiff-plane cracks.
For comparison purposes, FFT computations on a Voronoi polycrystal with the elastic moduli CTW in the

grains have been carried out, for crystals with amplified anisotropy (purple stars, Fig. 17). As in the self-consistent
estimate (SC-TW), the crystal’s anisotropy is increased to mimic the presence of weak-plane microcracks. The
FFT data points are very close to the (SC-TW) estimate (solid black line, Fig. 17) up to about η ≈ 2, in-between
the two regime changes predicted by (SC-TW). Yet they exhibit a different behavior than predicted by (SC-TW)
for η � η1, namely, the effective bulk modulus tends to the finite value K̃ ≈ 1.8 GPa, whereas the effective shear
modulus tends to the finite value G̃ ≈ 1.2 GPa when η →∞.

Keeping K̃ finite in Hashin’s formula (21) and using (31), one obtains the same limiting value α̃V → 3αH
11 when

η → ∞ as predicted by (SC-TW). However, the next-to-leading order term decreases as 1/η instead of 1/√η as
predicted by SC-TW (Eq. 35).

6.2 Intergranular cracks
In this section, we explore various intergranular crack models that, unlike models (JM-I) and (V-I), contain corre-
lations between the crack orientations and that of the surrounding crystals. More specifically, we try to reproduce
the results obtained for α̃V in Section 6.1 for weak-plane cracks using intergranular cracks. The situation is more
complicated for intergranular cracks where three local directions are present: the symmetry axis of the two grains
adjacent to the crack and the orientation of the grain boundary.

Two types of correlated intergranular cracks are introduced. In the first model, intergranular cracks are placed
along faces between adjacent grains with highest misorientations, irrespective of the grain boundary orientation.
This model is denoted (JM-IM) and (V-IM), for the Johnson–Mehl and Voronoi tessellations, respectively. The
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Figure 17: Effective bulk moduli of polycrystals with hexagonal symmetry. The grains’s anisotropy mimics the
presence of intragranular cracks oriented along the “weakest-plane” and the bulk moduli are plotted as a function of
the crack density η. Solid lines: self-consistent estimate (SC-TW) for the bulk modulus K̃ of the TATB polycrystal
(blue) and for the bulk modulus K̃a of a polycrystal with amplified anisotropy compared to the TATB (black, see
text). Brown: out-of-plane Young modulus E′z in grains with amplified anisotropy, provided by the non-interacting
approximation (Sevostianov et al., 2005) and used in method (SC-TW). Orange: in-plane shear modulus G′zp.
Dotted lines: asymptotic expansions (32) (green) and (34) (red) for K̃a and expansion (34) for K̃ (magenta).
Stars: FFT data points for the bulk modulus K̃a of the polycrystal with amplified anisotropy.

second model of intergranular cracks is opposite to (JM-IM) and (V-IM), in the sense that cracks are placed when
the misorientation between the two axis of symmetries of the surrounding crystals is small, and when the normal of
the boundary coincides with that direction. Accordingly, cracks in this model can be thought of as reproducing the
weak-plane model (V-TW) for intergranular cracks. This model is denoted (V-IC) and referred to as “correlated
model of intergranular cracks”. For simplicity, only the Voronoi tessellation is considered. Note that contrarily to
model (V-IC), the cracks orientation with respect to crystallography is not taken into account in models (JM-IM)
and (V-IM).

For simulating intergranular cracks along misoriented grains (models JM-IM and V-IM), we order the faces
from the highest to the lowest misorientation of their respective adjacent grains. Cracks are placed in the order of
misorientation, starting from the highest value. For models (JM-IM) and (V-IM) the misorientation is the angle
between the symmetry axis of the two adjacent grains. For models (JM-IC) and (V-IC), faces are ordered from
the lowest misorientation to the highest. The misorientation is the highest angle between any two axis among the
normal to the grain boundary and the axis of symmetry of the adjacent grains.

The elastic moduli for models (JM-IM) and (V-IM) show almost no difference with that of the uncorrelated
intergranular models (JM-I and V-I) (see Fig. 18, red and black symbols respectively). Model (JM-IM) displays
slightly stiffer effective moduli than model (V-I), like the uncorrelated models (JM-I) which shows a stiffer response
than (V-I) (Fig. 11). Our data indicates that the two models (JM-IM) and (V-IM) are also very close to (JM-
I) and (V-I) in terms of thermal expansion coefficient (Fig. 19). However, a decrease of the thermal expansion
coefficient α̃V with respect to the crack density is obtained for the model (V-IC) (Fig. 19, blue symbols). This
result confirms that correlations between the cracks and the crystallographic orientations lead to a decrease of the
thermal expansion coefficient. This behavior is observed when cracks are oriented along the weakest plane in the
local crystal (models JM-TW and V-TW) or along crystal boundaries that are parallel to the crystals’s weakest
planes (model V-IC). Yet, model (V-IC), contrarily to the misoriented models (V-IM) and (JM-IM) is difficult to
justify from a physical point of view, unless strong differences in grain-grain or grain-binder adhesion with TATB
plane orientation be invoked, as suggested by Xiao et al. (2005). At this point the presence of intergranular cracks
oriented along the weak-planes of the crystal (model JM-TW) appears as the most likely candidate for interpreting
the decrease of α̃V obtained experimentally.

Although this study has focused on effective properties, it is worth emphasizing that the local fields are very
sensitive to the cracks spatial distribution. Fig. 20 shows histograms for the strain component εxx(x) in the
connected component of the grains for five Johnson–Mehl tesselations with crack density η = 0.24: (JM-IB),
(JM-TS), (JM-T), (JM-I) and (JM-TW) and for the uncracked Johnson–Mehl tesselation (JM). Hydrostatic strain
loading 〈εm〉 = 100% is applied. For cracked media, the histograms present a cusp at εxx = 0 (incrusted graph,
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Figure 18: Bulk modulus K̃ (a) and shear modulus G̃ (b) of polycrystals with intergranular cracks as a function
of the crack density η. Black symbols: the presence of a crack is not correlated to the adjacent grains orientations;
Red: cracks occur in-between misoriented grains. Circles and diamonds: Johnson–Mehl tessellation; triangles:
Voronoi tessellation. Solid line: self-consistent estimate SC′ for cracked hexagonal polycrystals.
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Figure 19: Continuation of Fig. 18: volumetric thermal expansion coefficient α̃V . Squares: Voronoi tessellation
with “correlated” intergranular cracks model (V-IC).

top-left), whose study is beyond the scope of the present work.

7 Discussion
The most prominent result of this numerical study is that the elastic effective moduli decrease systematically and
monotonically with the density of any kind of microcracks, but that this is not the case for the effective thermal
expansion coefficient. The latter is unaffected if microcrack orientations are not correlated with crystallographic
ones, irrespective of the nature of microcracks (i.e. inter or transgranular).

A first conclusion can be drawn about the material in its initial state. We reported bulk and shear moduli
much lower than those of the perfect polycrystal, but nearly identical expansion coefficients (see Section 2). The
first finding indicates that microcracks are present in the material, and the second that they must be uncorrelated
to the crystal orientation.

The results show that it is possible to find a single microcrack density that allows matching elastic and thermal
expansion effective properties to experimental ones, but only in the case of intergranular microcracks. This density
is close to 0.2 in the Budiansky definition. Therefore, the second conclusion is that the material contains a
population of uncorrelated intergranular microcracks in its initial state, in other words that the polycrystal is
imperfectly bonded.
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Concerning the effect of thermal loading on the expansion coefficient, several conclusions may be drawn. First,
the only two candidate mechanisms inducing a decrease of the expansion coefficient are transgranular microcracking
along the graphitic planes of the TATB crystal and “correlated” intergranular debonding between grains of similar
orientations. Therefore, low-temperature damage is likely to follow one of these mechanisms.

In order to provide some experimental support to the above-described scenarios, a sample was cooled to
−100 ◦C during 24 h, then heated back to ambient temperature, cut and polished. An exploratory post-mortem
investigation using scanning electron microscopy was then conducted. Fig. 21 is an example of result, in which
some of the TATB grains display embedded arrays of parallel transgranular cracks, compatible with the correlated
transgranular microcracking scenario put forward above. Note that this is only an exploratory finding, that should
not be considered as definite. More involved observations are being conducted at present, including comparisons
with a fresh sample of the same batch. Also note that microcracks induced by the thermal load must close back
under thermal load removal, explaining the faint appearance of cracks in Fig. 21, in which the contrast is already
artificially enhanced. We were even able to monitor crack closure under the heating action of the electron beam.
Besides, intergranular cracks are quite difficult to discriminate from usual grain boundaries, so that no conclusion
can be drawn for this microcracking process. The only way to provide definite conclusions is to perform in situ
observations, i.e. during cooling. Such experiments are presently being designed and will be reported later.

Second, the damage process observed at high temperature but below the glass transition must be uncorrelated
microcracking since it induces no significant variation of the expansion coefficient. An uncorrelated transgranular
microcracking process appears unlikely, due to the difference between in-plane and out-of-plane molecular bond
strengths. Therefore, an intergranular uncorrelated microcracking process, i.e. debonding, is the most likely
candidate mechanism for this temperature range.

Third, crossing the glass transition temperature involves a dramatic decrease of the mechanical strength of the
binder, and even melting. Thus, on the one hand, no more stress is sustained by the material, and transgranular
cracking cannot occur. On the other hand, binder melting is equivalent, as a first approximation, to vanishing
of all intergranular strength, and the material behaves as a fully intergranular microcracked (or comminuted)
material. From a macroscopic viewpoint, this is equivalent to the situation when microcrack percolation occurs,
with accompanying bulk and shear moduli vanishing, and explains the increase of the expansion coefficient.

At this stage, the question of thermal expansion input data must be raised. All the preceding discussion assumes
that the single crystal thermal expansion data of Sun et al. (2010) are correct. Consider now the case where the data
of Kolb and Rizzo (1979) would be the correct ones. Then, the expansion coefficient of the perfect polycrystal would
be 2.44× 10−4 K −1 (Gasnier et al., 2015b), and the initial material could only contain weak plane transgranular
microcracks to retrieve the measured expansion coefficient. It would involve very large microcrack densities, and
much too low corresponding effective elastic properties. This scenario is therefore unlikely, which explains why the
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Figure 21: Example of scanning electron micrograph of a sample submitted to a thermal load to −100◦C during 24
hours, heated back to ambient temperature, vacuum impregnated with an epoxy resin, cut, polished and observed
with no metallization. Most of the grains appear foliated, containing very thin parallel lines (see blue line stacks),
consistent with intra- or transgranular microcracks lying in the graphitic plane of the grains. Notice that these
thin lines are parallel but not straight, which is attributed to the twin-like bands observed in most grains under
polarized light optical microscopy (see Ambos et al., 2015).

data in Kolb and Rizzo (1979) were discarded in the present work.

8 Conclusion
The proposed heuristic methodology allows one to infer microcrack location from experimental data, especially
thermal loading cycles in similar polycrystals. More precisely, the crystal should have hexagonal anisotropy and
strongly different thermal dilation coefficients in directions transverse or parallel to the plane of symmetry.

This study also shows that the nature of the cracks, either intergranular or transgranular, with orientations
parallel to the weak-plane in the crystal or random, yields quite different elastic moduli. The interplay between
crystal anisotropy and cracks can be accounted for, to some extent, by the self-consistent homogenization scheme
deviced for cracked polycrystals, when dealing with transgranular cracks with orientations uncorrelated to the
crystals. Analytical estimates are however unable to account for the full interaction between a crack and adjacent
grains, typically intergranular cracks, in contrast with full-field computations.
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