Antoine Giret

Emmanuel Néron

Yannick Kergosien
email: yannick.kergosien@univ-tours.fr

Solving a multi objective shortest path problem

Introduction

The shortest path problem is a well-known problem in combinatorial optimization [START_REF] Deo | Shortest-path algorithms: Taxonomy and annotation[END_REF].

Since the first studies [START_REF] Bellman | On a routing problem[END_REF] and [START_REF] Dijkstra | A note on two problems in connection with graphs[END_REF] -conducted more than 60 years ago -several variants of this problem are still being studied. The Multi-Objective Shortest Path (MOSP) problem is defined as follows: let G = (V, A) be a directed graph where V is the set of vertices and A the set of arcs. c k ij denotes the cost associated with the arc (i, j) ∈ A for the criterion k ∈ K, with K the set of criteria. We suppose that c k ij ≥ 0. The problem consists in finding a set of paths P from a source node s to a target node t minimizing several sum-type objectives functions. The result of the MOSP problem is a set of strictly nondominated paths also called Pareto front. An efficient label-correcting algorithm -called Label-Correcting with Dynamic update of Pareto Front (LCDPF) -is proposed to solve the MOSP problem. This work is an extension of [START_REF] Sauvanet | Search for the best compromise solution on Multiobjective shortest path problem[END_REF]. Computational experiments show that the LCDPF algorithm matchs or outperforms the recent algorithms in the literature.

Recent advances in MOSP with sum-type objectives

In 2010, [START_REF] Andrea | Speed-up of labelling algorithms for biobjective shortest path problems[END_REF] proposes a label-correcting and label-setting algorithm (bLSET) using an acceleration technique improving the efficiency of these types of algorithm. He showed that it is not always necessary to propagate a label to the target node to confirm that it is dominated. According to [START_REF] Demeyer | Speeding up Martins? algorithm for multiple objective shortest path problems[END_REF], bLSET algorithm presented the best computational times among labelling approaches proposed during this period. Recently, [START_REF] Duque | An exact method for the biobjective shorstest path problem for large-scale road networks[END_REF] proposed a new exact method, called Pulse algorithm, for the bi-objective shortest path problem and largescale road networks. Pulse algorithm is based on recursive method using pruning strategies that speed up the graph exploration. The results show that the proposed algorithm outperforms the bLSET algorithm on very-large scale instances from the DIMACS dataset.

In [START_REF] Antonio | A Dijkstra-like method computing all extreme supported non-dominated solutions of the biobjective shortest path problem[END_REF], the authors proposed a Dijkstra-like method generalizing the original method to only determine all extreme supported solutions of the bi-objective shortest path problem.

The authors proved that the running times of the proposed method are O(N(m+n log n)) with n is the number of nodes, m is the number of arcs and N is the number of extreme supported points in the outcome space. Finally, [START_REF] Machuca | Lower bound sets for biobjective shortest path problems[END_REF] proposed a lower bound set calculation method for the bi-objective shortest path problem. The proposed lower bounds aim to improve the N AM OA * method [START_REF] Mandow | Multiobjective A* search with consistent heuristics[END_REF] which is an exact generalization of an A * method to the multi-objective one-to-one problem.

The LCDPF algorithm

The LCDPF algorithm is composed of two phases, similarly to the general two-phase method introduced by [START_REF] Ulungu | The two phases method : An efficient procedure to solve biobjective combinatorial optimization problems[END_REF] for solving bi-objective problem. The first phase consists in two steps. The goal of the first step is to determine some initial solutions belonging to the final Pareto front (the supported solutions). The second step computes partial paths, from pertinent nodes of the graph to the target node, in order to deduce some upper and lower bounds. This step also allows to remove useless nodes from the graph (nodes for which none non-dominated path in the final Pareto front solution passes through them).

Both steps are based on a set of resolutions of reversed mono-objective shortest path problems using dijkstra's algorithm of [START_REF] Dijkstra | A note on two problems in connection with graphs[END_REF]. The second phase consists in finding all nondominated solutions by exploiting informations obtained in the previous phase. To do this, the proposed algorithm is based on a classical label-correcting algorithm which has been introduced in [START_REF] Martins | On a multicriteria shortest path problem[END_REF] and for which we developed additional improvements to make the algorithm more efficient. The main specificity of the LCDPF algorithm is that the final Pareto front is dynamically built all along the process and not necessary when the target node is reached. This dynamic update allows to obtain a better estimation of the final Pareto front during the search and so the classic techniques to prune labels (partial solutions) are more efficient.

Computational Experiments

In order to compare our results with benchmark algorithms solving the MOSP problem, computational experiments have been performed on instances from the 9 th DIMACS challenge. It consists of 3 graphs that represent New York City (264,346 nodes, 733,846 arcs), San Francisco Bay Area (321,270 nodes, 800,172 arcs) and the state of Florida (1,070,376 nodes, 2,712,798 arcs). For each comparison, we used the same pairs of source and target nodes. We developed our algorithm in C++ unsing the Boost Graph Library. Experiments are performed on a Linux machine with an Intel Xeon 2.67GHz, 8 cores and 8GB of RAM. First, we compared the LCDPF algorithm to the some adaptations of the NAMOA* algorithm proposed by [START_REF] Machuca | Lower bound sets for biobjective shortest path problems[END_REF] (KDLS) and for which they used the NYC graph. [START_REF] Machuca | Lower bound sets for biobjective shortest path problems[END_REF] Table 1 shows that execution times of algorithms proposed by [START_REF] Machuca | Lower bound sets for biobjective shortest path problems[END_REF] (with a time limit equals to 12h) are bigger than LCDPF algorithm. LCDPF algorithm may have an execution time of 12000 times faster than the best others algorithms. Computation times of LCDPF algorithm remain below the 5 second which is reasonable.

We also compared LCDPF algorithm to the bounded label-setting algorithm (blSET)

proposed by [START_REF] Andrea | Speed-up of labelling algorithms for biobjective shortest path problems[END_REF] and the Pulse algorithm proposed by [START_REF] Duque | An exact method for the biobjective shorstest path problem for large-scale road networks[END_REF]. As presented in [START_REF] Duque | An exact method for the biobjective shorstest path problem for large-scale road networks[END_REF], the 30 instances of each graph has been clustered into the same three equal sized groups, denoted S (small), M (medium) and L (large), based on the number of non-dominated solutions found in the Pareto front. Table 2 compares average execution times between blSET, Pulse and LCDPF algorithms. Table 2 shows that execution times of blSET algorithm are in average bigger than other algorithms. Regarding the Pulse and LCDPF algorithms, the Pulse algorithm is particularly efficient on instances with a small number of solutions. For these instances, LCDPF is in average 1 to 4 times less effective to find the entire Pareto front, but execution times remain reasonable (< 2 seconds). LCDPF algorithm is much more efficient than the two others on medium to large instances. Indeed, it is in average 20 times faster than the Pulse algorithm and 120 faster than the blSET algorithm.

Finally, we compared our algorithm to the Ratio-Labeling BSP (RLBSP) algorithm

proposed by [START_REF] Antonio | A Dijkstra-like method computing all extreme supported non-dominated solutions of the biobjective shortest path problem[END_REF] to find the supported extreme non-dominated solutions only. The authors also proposed a modified bi-objective label-setting algorithm for finding this type of solutions (called SLSET).

Table 1

 1

	com-

Table 1 :

 1 Comparison to

Table 2 :

 2 Table3compares execution times between RLBSP, SLSET and LCDPF* algorithms. LCDPF* algorithm is based on LCDPF algorithm that has been modified to find only the supported extreme non-dominated solutions. The results of Table3shows that LCDPF* algorithm has a better execution times in average than Comparison to[START_REF] Andrea | Speed-up of labelling algorithms for biobjective shortest path problems[END_REF] and[START_REF] Duque | An exact method for the biobjective shorstest path problem for large-scale road networks[END_REF]

	the others algorithms.							
		blSET	pulse	LCDPF	|S|				
	NY S	62,392.4	315.2	378	34.1				
	NY M	513,945.8	131,304	1,131	163				
	NY L	8,812,59.6 1,367,664 2,849.5 422.7		SLSET RLBSP LSDPF*
	BAY S	6,777.7	160.1	381	8.8	NY	16,450	2,300	791.9
	BAY M	61,950	9,326.7	484	57.2	BAY 10,720	1,980	536.9
	BAY L	317,432.3 105,549.2	2,302	171.8	FLA 119,170 12,800 1,878.4
	FLA S	330,122.3	349.8	1,389	14.7				
	FLA M	562,195.9 348,114.7	1,647	116.1				
	FLA L 2,627,432.9 888,586	3,045	552.3				

Table 3 :

 3 Comparison to[START_REF] Antonio | A Dijkstra-like method computing all extreme supported non-dominated solutions of the biobjective shortest path problem[END_REF] 5 ConclusionAn efficient label-correcting algorithm -called Label-Correcting with Dynamic update of Pareto Front (LCDPF) -is proposed to solve the MOSP problem. Even if the graph is large, the LCDPF algorithm is able to find all non-dominated solutions in a short computing time, compared to best benchmark algorithms for real road networks. It composes of best improvement techniques that we can find in the literature about this problem and it integrates new ones referred later as: (1) quickly update of the Pareto front during the search that allows to efficiently prune partial paths of the search space and (2) remove useless nodes from the graph in a preprocessing phase.