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1 Introduction

The shortest path problem is a well-known problem in combinatorial optimization [8].
Since the first studies [9] and [11] — conducted more than 60 years ago — several variants of
this problem are still being studied. The Multi-Objective Shortest Path (MOSP) problem
is defined as follows: let G = (V,.A) be a directed graph where V is the set of vertices
and A the set of arcs. cfj denotes the cost associated with the arc (i,j) € A for the
criterion k € IC, with KC the set of criteria. We suppose that cfj > 0. The problem consists
in finding a set of paths P from a source node s to a target node ¢ minimizing several
sum-type objectives functions. The result of the MOSP problem is a set of strictly non-
dominated paths also called Pareto front. An efficient label-correcting algorithm — called
Label-Correcting with Dynamic update of Pareto Front (LCDPF) — is proposed to solve
the MOSP problem. This work is an extension of [10]. Computational experiments show

that the LCDPF algorithm matchs or outperforms the recent algorithms in the literature.

2 Recent advances in MOSP with sum-type objectives

In 2010, [13] proposes a label-correcting and label-setting algorithm (bLSET) using an
acceleration technique improving the efficiency of these types of algorithm. He showed
that it is not always necessary to propagate a label to the target node to confirm that it is
dominated. According to [16], bLSET algorithm presented the best computational times
among labelling approaches proposed during this period. Recently, [14] proposed a new



exact method, called Pulse algorithm, for the bi-objective shortest path problem and large-
scale road networks. Pulse algorithm is based on recursive method using pruning strategies
that speed up the graph exploration. The results show that the proposed algorithm
outperforms the bLSET algorithm on very-large scale instances from the DIMACS dataset.
In [15], the authors proposed a Dijkstra-like method generalizing the original method to
only determine all extreme supported solutions of the bi-objective shortest path problem.
The authors proved that the running times of the proposed method are O(N(m+n log
n)) with n is the number of nodes, m is the number of arcs and N is the number of
extreme supported points in the outcome space. Finally, [17] proposed a lower bound
set calculation method for the bi-objective shortest path problem. The proposed lower
bounds aim to improve the N AM O Ax method [18] which is an exact generalization of an

Ax method to the multi-objective one-to-one problem.

3 The LCDPF algorithm

The LCDPF algorithm is composed of two phases, similarly to the general two-phase
method introduced by [12] for solving bi-objective problem. The first phase consists in
two steps. The goal of the first step is to determine some initial solutions belonging to
the final Pareto front (the supported solutions). The second step computes partial paths,
from pertinent nodes of the graph to the target node, in order to deduce some upper and
lower bounds. This step also allows to remove useless nodes from the graph (nodes for
which none non-dominated path in the final Pareto front solution passes through them).
Both steps are based on a set of resolutions of reversed mono-objective shortest path
problems using dijkstra’s algorithm of [11]. The second phase consists in finding all non-
dominated solutions by exploiting informations obtained in the previous phase. To do
this, the proposed algorithm is based on a classical label-correcting algorithm which has
been introduced in [19] and for which we developed additional improvements to make
the algorithm more efficient. The main specificity of the LCDPF algorithm is that the
final Pareto front is dynamically built all along the process and not necessary when the
target node is reached. This dynamic update allows to obtain a better estimation of the
final Pareto front during the search and so the classic techniques to prune labels (partial

solutions) are more efficient.

4 Computational Experiments

In order to compare our results with benchmark algorithms solving the MOSP problem,
computational experiments have been performed on instances from the 9** DIMACS chal-
lenge. It consists of 3 graphs that represent New York City (264,346 nodes, 733,846 arcs),
San Francisco Bay Area (321,270 nodes, 800,172 arcs) and the state of Florida (1,070,376



nodes, 2,712,798 arcs). For each comparison, we used the same pairs of source and target
nodes. We developed our algorithm in C++ unsing the Boost Graph Library. Experi-
ments are performed on a Linux machine with an Intel Xeon 2.67GHz, 8 cores and 8GB of
RAM. First, we compared the LCDPF algorithm to the some adaptations of the NAMOA*
algorithm proposed by [17] (KDLS) and for which they used the NYC graph. Table 1 com-
pares the better execution times among the algorithms proposed by [17] (columns KDLS)
and the execution times of LCDPF algorithm (column LCDPF'). The |S| column indicates

the number of non-dominated solutions on the Pareto front for each instance.

# | KDLS |LSDPF | |S| | # | KDLS |LSDPF | |S| | # | KDLS | LSDPF | |S]
1| 499.2 0.1 |1,089 | 8 - 2.1 7391 (15| 0.7 0.4 1

2 [21,363.7| 0.6 |1469| 9 | 33792 | 1.4 | 919 [ 1652014 | 4.4 |2034
3] 42 0.4 16 | 10| 722.7 2.0 | 774 || 1776682 0.9 |1724
4 - 3.9 |5121 | 11| 3465 0.5 | 631 | 18|1,1353| 0.4 | 1276
50157104 | 0.6 | 2451 12| 142724 | 2.0 |1573 19| - 1.5 | 4224
6 | 56974 | 1.2 | 1502 13|21,7822| 0.6 |3,046 20| - 1.9 | 3,262
7| 1207 0.4 | 272 || 14 | 18,6938 | 0.4 | 2957

Table 1: Comparison to [17]

Table 1 shows that execution times of algorithms proposed by [17] (with a time limit
equals to 12h) are bigger than LCDPF algorithm. LCDPF algorithm may have an exe-
cution time of 12000 times faster than the best others algorithms. Computation times of
LCDPF algorithm remain below the 5 second which is reasonable.

We also compared LCDPF algorithm to the bounded label-setting algorithm (bISET)
proposed by [13] and the Pulse algorithm proposed by [14]. As presented in [14], the 30
instances of each graph has been clustered into the same three equal sized groups, denoted
S (small), M (medium) and L (large), based on the number of non-dominated solutions
found in the Pareto front. Table 2 compares average execution times between bISET, Pulse
and LCDPF algorithms. Table 2 shows that execution times of bISET algorithm are in
average bigger than other algorithms. Regarding the Pulse and LCDPF algorithms, the
Pulse algorithm is particularly efficient on instances with a small number of solutions. For
these instances, LCDPF is in average 1 to 4 times less effective to find the entire Pareto
front, but execution times remain reasonable (< 2 seconds). LCDPF algorithm is much
more efficient than the two others on medium to large instances. Indeed, it is in average
20 times faster than the Pulse algorithm and 120 faster than the bISET algorithm.

Finally, we compared our algorithm to the Ratio-Labeling BSP (RLBSP) algorithm
proposed by [15] to find the supported extreme non-dominated solutions only. The au-
thors also proposed a modified bi-objective label-setting algorithm for finding this type
of solutions (called SLSET). Table 3 compares execution times between RLBSP, SLSET




and LCDPF* algorithms. LCDPF* algorithm is based on LCDPF algorithm that has
been modified to find only the supported extreme non-dominated solutions. The results

of Table 3 shows that LCDPF* algorithm has a better execution times in average than

the others algorithms.

bISET pulse LCDPF |S]

NY S 62,392.4 315.2 378 34.1

NY M | 513,945.8 131,304 1,131 163

NY L 8,812,59.6 | 1,367,664 | 2,849.5 || 422.7 SLSET | RLBSP | LSDPF*
BAY S 6,777.7 160.1 381 8.8 NY 16,450 2,300 791.9
BAY M 61,950 9,326.7 484 57.2 BAY | 10,720 1,980 536.9
BAY L 317,432.3 | 105,549.2 | 2,302 171.8 FLA | 119,170 | 12,800 | 1,878.4
FLA S 330,122.3 349.8 1,389 14.7 Table 3: Comparison to [15]

FLA M | 562,195.9 | 348,114.7 | 1,647 116.1

FLA L | 2,627,432.9 | 888,586 3,045 || 552.3

Table 2: Comparison to [13] and [14]

5 Conclusion

An efficient label-correcting algorithm — called Label-Correcting with Dynamic update of
Pareto Front (LCDPF) — is proposed to solve the MOSP problem. Even if the graph is
large, the LCDPF algorithm is able to find all non-dominated solutions in a short com-
puting time, compared to best benchmark algorithms for real road networks. It composes
of best improvement techniques that we can find in the literature about this problem and
it integrates new ones referred later as: (1) quickly update of the Pareto front during the
search that allows to efficiently prune partial paths of the search space and (2) remove

useless nodes from the graph in a preprocessing phase.
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