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This paper proposes an exact exponential algorithm for the single machine total tardiness problem. It exploits the structure of a basic branch-and-reduce framework based on the well known Lawler's decomposition property that solves the problem with worst-case complexity in time O * (3 n ) and polynomial space. The proposed algorithm, called branch-and-merge, is an improvement of the branch-and-reduce technique with the embedding of a node merging operation. Its time complexity converges to O * (2 n ) keeping the space complexity polynomial. This improves upon the best-known complexity result for this problem provided by dynamic programming across the subsets with O * (2 n ) worst-case time and space complexity. The branch-and-merge technique is likely to be generalized to other sequencing problems with similar decomposition properties.

Introduction

Since the beginning of this century, the design of exact exponential algorithms for NPhard problems has been attracting more and more researchers. Although the research in this area dates back to early 60s, the discovery of new design and analysis techniques has led to many new developments. The main motivation behind the rise of interest in this area is the study of the intrinsic complexity of NP-hard problems. In fact, since the dawn of computer science, some of these problems appeared to be solvable with a lower exponential complexity than others belonging to the same complexity class. For a survey on the most effective techniques in designing exact exponential algorithms, readers are kindly referred to Woeginger's paper [START_REF] Woeginger | Exact algorithms for NP-hard problems: a survey[END_REF] and to the book by Fomin and Kratsch [START_REF] Fomin | Exact exponential algorithms[END_REF].

In spite of the growing interest on exact exponential algorithms, few results are yet known on scheduling problems, see the survey of Lenté et al. [12]. Lenté et al. [11] introduced the so-called class of multiple constraint problems and showed that all problems fitting into that class could be tackled by means of the Sort & Search technique. Further, they showed that several known scheduling problems are part of that class. However, all these problems required assignment decisions only and none of them required the solution of a sequencing problem.

This paper focuses on a pure sequencing problem, the single machine total tardiness problem, denoted by 1|| T j . In this problem, a job set N = {1, 2, . . . , n} of n jobs must be scheduled on a single machine. For each job j, a processing time p j and a due date d j are defined. The problem asks for arranging the job set into a sequence S so as to minimize T (N, S) = n j=1 T j = n j=1 max{C jd j , 0}, where C j is the completion time of job j. The 1|| T j problem is NP-hard in the ordinary sense as shown by Du and Leung [START_REF] Du | Minimizing total tardiness on one machine is NP-hard[END_REF]. It has been extensively studied in the literature and many exact procedures [START_REF] Della Croce | A new decomposition approach for the single machine total tardiness scheduling problem[END_REF][START_REF] Lawler | A "Pseudopolynomial" Algorithm For Sequencing Jobs To Minimize Total Tardiness[END_REF]15,[START_REF] Szwarc | Algorithmic paradoxes of the single machine total tardiness problem[END_REF] have been proposed. The current state-of-the-art exact method of Szwarc et al. [START_REF] Szwarc | Algorithmic paradoxes of the single machine total tardiness problem[END_REF] dates back to 2001 and solves to optimality instances with up to 500 jobs. The complexity of this algorithm is analyzed by Shang et al. [18]. All these procedures are search tree approaches, but dynamic programming algorithms were also considered. On the one hand, a pseudo-polynomial dynamic programming algorithm was proposed by Lawler [START_REF] Lawler | A "Pseudopolynomial" Algorithm For Sequencing Jobs To Minimize Total Tardiness[END_REF] running with complexity O(n 4 p i ). On the other hand, the standard technique of doing dynamic programming across the subsets (see, for instance, Fomin and Kratsch [START_REF] Fomin | Exact exponential algorithms[END_REF]) applies and runs with complexity O(n 2 2 n ) both in time and in space. Latest theoretical developments for the problem, including both exact and heuristic approaches can be found in the recent survey of Koulamas [START_REF] Koulamas | The single-machine total tardiness scheduling problem: review and extensions[END_REF].

In the rest of the paper, the O * (•) notation [START_REF] Woeginger | Exact algorithms for NP-hard problems: a survey[END_REF], commonly used in the context of exact exponential algorithms, is used to measure worst-case complexities. Let T (•) be a superpolynomial and p(•) be a polynomial, both on integers. In what follows, for an integer n, we express running-time bounds of the form O(p(n)•T (n))) as O * (T (n)). We denote by T (n) the time required in the worst-case to exactly solve the considered combinatorial optimization problem of size n, i.e., the number of jobs in our context. As an example, the complexity of dynamic programming across the subsets for the total tardiness problem can be expressed as O * (2 n ). By the way, the number of jobs n may not be the only possible measure of the instance size. Other parameters can be chosen, based on which different complexity analysis can be conducted. For scheduling problems, some results can be found in Mnich and Wiese [14], Mnich and van Bevern [13] and Hermelin et al. [START_REF] Hermelin | New Algorithms for Minimizing the Weighted Number of Tardy Jobs On a Single Machine[END_REF].

To the authors' knowledge, there is no available exact algorithm for this problem running in O * (c n ) (c being a constant) time and polynomial space. Admittedly, one could possibly apply a divide-and-conquer approach [START_REF] Bodlaender | On Exact Algorithms for Treewidth[END_REF][START_REF] Gurevich | Expected computation time for the hamiltonian path problem[END_REF]. This would lead to an O * (4 n ) complexity in time requiring polynomial space. The aim of this work is to present an improved exact algorithm exploiting known decomposition properties of the problem. Different versions of the proposed approach are described in Section 2. A final version making use of a new technique called branch-and-merge that avoids the solution of several equivalent subinstances in the branching tree is presented in Section 3. We provide the algorithm for the worst-case scenario for the simplicity of presentation and we prove that its complexity tends to O * (2 n ) in time and polynomial in space. Finally, Section 4 concludes the paper with final remarks.

A Branch-and-Reduce approach

We recall here some basic properties of the total tardiness problem and introduces the notation used along the paper. Given the job set N = {1, 2, . . . , n}, let (1, 2, . . . , n) be a LPT (Longest Processing Time first) sequence, where i < j whenever p i > p j (or p i = p j and

d i ≤ d j ). Let also ([1], [2], . . . , [n]) be an EDD (Earliest Due Date first) sequence, where i < j whenever d [i] < d [j] (or d [i] = d [j] and p [i] ≤ p [j] ).
As the cost function is a regular performance measure, we know that in an optimal solution, the jobs are processed with no interruption starting from time zero. Let B j and A j be the sets of jobs that precede and follow job j in an optimal sequence that is being searched. Correspondingly, C j = k∈B j p k +p j . Similarly, if job j is assigned to position k, we denote by C j (k) the corresponding completion time and by B j (k) and A j (k) the sets of predecessors and successors of j, respectively.

The main known theoretical properties are the following.

Property 1. (Emmons [START_REF] Emmons | One-machine sequencing to minimize certain functions of job tardiness[END_REF]) Consider two jobs i and j with p i < p j . Then, i precedes j in an optimal schedule if d i ≤ max{d j , C j }, else j precedes i in an optimal schedule if

d i + p i > C j .
Property 2. (Lawler [START_REF] Lawler | A "Pseudopolynomial" Algorithm For Sequencing Jobs To Minimize Total Tardiness[END_REF]) Let job 1 in LPT order correspond to job [k] in EDD order. Then, job 1 can be set only in positions h ≥ k and the jobs preceding and following job 1 are uniquely determined as

B 1 (h) = {[1], [2], . . . , [k -1], [k + 1], . . . , [h]} and A 1 (h) = {[h + 1], . . . , [n]}.
Property 3. (Szward and Mukhopadhyay [START_REF] Szwarc | Decomposition of the single machine total tardiness problem[END_REF]) For any pair of adjacent positions (i, i + 1) that can be assigned to job 1, at least one of them can be eliminated.

In terms of complexity analysis, we recall (see, for instance, Eppstein [START_REF] Eppstein | Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction[END_REF]) that, if it is possible to bound above T (n) by a recurrence expression of the type

T (n) ≤ h i=1 T (n-r i )+ O(p(n)), then we have h i=1 T (n -r i ) + O(p(n)) = O * (α(r 1 , . . . , r h ) n ) where α(r 1 , . . . , r h ) is the largest root of the function f (x) = 1 -h i=1 x -r i .
A basic branch-and-reduce algorithm TTBR1 (Total Tardiness Branch-and-Reduce version 1) can be designed by exploiting Property 2, which allows to decompose the problem instance into two smaller subinstances when the position of the longest job l is given. The basic idea is to iteratively branch by assigning job l to every eligible branching position and correspondingly decompose the instance. Each time job l is assigned to a certain position i, two different subinstances are generated, corresponding to schedule the jobs before l (inducing subinstance B l (i)) or after l (inducing subinstance A l (i)), respectively. The algorithm operates by applying to any given job set S starting at time t function T T BR1(S, t) that computes the corresponding optimal solution. With this notation, the original instance is indicated by N = {1, ..., n} and the optimal solution is reached when function T T BR1(N, 0) is computed.

The algorithm proceeds by solving the subinstances along the branching tree according to a depth-first strategy and runs until all the leaves of the search tree have been reached. Finally, it provides the best solution found as an output. Algorithm 1 summarizes the structure of this approach, while Proposition 1 states its worst-case complexity.

Algorithm 1 Total Tardiness Branch-and-Reduce version 1 (TTBR1)

Input: S = {1, ..., n}, the set of jobs to be scheduled; t, the starting time of jobs in S.

1: function TTBR1(S, t)

2:
seqOpt ← the EDD sequence of jobs for i = 1 to n do 5:

Branch by assigning job to position i 6:

seqLeft← TTBR1(B (i), t)

7: seqRight← TTBR1(A (i), t + k∈B (i) p k + p ) 8:
seqCurrent← concatenation of seqLeft, and seqRight

9:

seqOpt← best solution between seqOpt and seqCurrent Proof. Whenever the longest job 1 is assigned to the first and the last position of the sequence, two subinstances of size (n -1) are generated. For each 2 ≤ i ≤ n -1, two subinstances with size (i-1) and (n-i) are generated. Hence, the total number of generated subinstances is 2n -2 and the time cost related to computing the best solution of size n starting from these subinstances is O(p(n)). This induces the following recurrence for the running time T (n) required by TTBR1:

T (n) = 2T (n -1) + 2T (n -2) + ... + 2T (2) + 2T (1) + O(p(n)) (1) 
By replacing n with (n -1), the following expression is derived:

T (n -1) = 2T (n -2) + ... + 2T (2) + 2T (1) + O(p(n -1)) (2) 
Expression 2 can be used to simplify the right hand side of expression 1 leading to:

T (n) = 3T (n -1) + O(p(n)) (3) 
that induces as complexity O * (3 n ). The space requirement is polynomial since the branching tree is explored according to a depth-first strategy.

An improved version of the algorithm is defined by taking into account Property 3, which state that for each pair of adjacent positions (i, i + 1), at least one of them can be discarded. The worst case occurs when the largest possible subinstances are kept, since otherwise the complexity is easy to be proved to be smaller. This corresponds to solving instances with size n -1, n -3, n -5, . . ., that arise by branching on positions i and ni + 1 with i odd. The resulting algorithm is referred to as TTBR2 (Total Tardiness Branch and Reduce version 2). Its structure is equal to the one of TTBR1 depicted in Algorithm 1, but lines 5-9 are executed only when l can be set on position i according to Property 3. The complexity of the algorithm is discussed in Proposition 2.

Proposition 2. Algorithm TTBR2 runs in O * ((1 + √ 2) n ) = O * (2.
4143 n ) time and polynomial space in the worst case.

Proof. The proof is close to that of Proposition 1. We refer to instances where n is odd, but the analysis for n even is substantially the same. The algorithm induces a recursion of the type:

T (n) = 2T (n -1) + 2T (n -3) + ... + 2T (4) + 2T (2) + O(p(n)) (4) 
as the worst case occurs when we keep the branches that induce the largest possible subinstances. Analogously to Proposition 1, we replace n with n -2 in the previous recurrence and we obtain:

T (n -2) = 2T (n -3) + 2T (n -5) + ... + 2T (4) + 2T (2) + O(p(n -2)) (5) 
Again, we plug the latter expression into the former one and obtain the recurrence:

T (n) = 2T (n -1) + T (n -2) + O(p(n)) (6) 
that induces as complexity

O * ((1 + √ 2) n ) = O * (2.4143 n ).
The space complexity is still polynomial.

A Branch-and-Merge Algorithm

In this section, we describe how to get an algorithm running with complexity arbitrarily close to O * (2 n ) in time and polynomial space by integrating a node-merging procedure into TTBR1. We recall that in TTBR1 the branching scheme is defined by assigning the longest unscheduled job to each available position and accordingly divide the instance into two subinstances. To facilitate the description of the algorithm, we focus on the scenario where the LPT sequence (1, ..., n) coincides with the EDD sequence ([1], ..., [n]), for convenience we write LP T = EDD. We provide the algorithmic details of the node-merging procedure on this scenario to facilitate its understanding. The resulting branch-and-merge algorithm has its time complexity tend to O * (2 n ). We prove by Lemma 6 that the case where LP T = EDD is the worst-case scenario, hence, it follows that the problem 1|| T i can be solved in time complexity tending to O * (2 n ). We leave to the reader the generalization of the node-merging procedure to the general case.

Figures 1 shows how an input instance {1, ..., n} is decomposed by the branching scheme of TTBR1. Each node is labelled by the corresponding subinstance P j (P denotes the input instance). Notice that from now on P j 1 ,j 2 ,...,j k , 1 ≤ k ≤ n, denotes the instance (corresponding to a node in the search tree) induced by the branching scheme of TTBR1 when the largest processing time job 1 is in position j 1 , the second largest processing time job 2 is in position j 2 and so on till the k-th largest processing time job k being placed in position j k .

P 1 :1{2, . To roughly illustrate the guiding idea of the merging technique introduced in this section, consider Figure 1. Noteworthy, nodes P 2 and P 1,2 are identical except for the initial subsequence (21 vs 12). This fact implies, in this particular case, that the problem of scheduling job set {3, ..., n} at time p 1 + p 2 is solved twice. This kind of redundancy can however be eliminated by merging node P 2 with node P 1,2 and creating a single node in which the best sequence among 21 and 12 is scheduled at the beginning and the job set {3, ..., n}, starting at time p 1 + p 2 , remains to be branched on. Furthermore, the best subsequence (starting at time t = 0) between 21 and 12 can be computed in constant time. Hence, the node created after the merging operation involves a constant time preprocessing step plus the search for the optimal solution of job set {3, ..., n} to be processed starting at time p 1 + p 2 . We remark that, in the branching scheme of TTBR1, for any constant k ≥ 3, the branches corresponding to P i and P n-i+1 , with i = 2, ..., k, are decomposed into two subinstances where one subinstances has size (ni) and the other subisntance has size (i -1) ≤ k. Correspondingly, the merging technique presented on instances P 2 and P 1,2 can be generalized to all branches inducing instances of sizes less than k. Notice that, by means of algorithm TTBR2, any instance of size less than k requires O * (2.4143 k ) time (that is constant time when k is fixed). In the remainder of the paper, for any constant k ≤ n 2 , we denote by leftside branches the search tree branches corresponding to instances P 1 , ..., P k and by right-side branches the ones corresponding to instances P n-k+1 , ..., P n .

In the following subsections, we show how the node-merging procedure can be systematically performed to improve the time complexity of TTBR1. Basically, two different recurrent structures hold respectively for left-side and right-side branches and allow to generate fewer subinstances at each recursion level. The node-merging mechanism is described by means of two distinct procedures, called LEFT MERGE (applied to left-side branches) and RIGHT MERGE (applied to right-side branches), which are discussed in Sections 3.1 and 3.2, respectively. The final branch-and-merge algorithm is described in Section 3.3 and embeds both procedures in the structure of TTBR1. Notice that a numerical example of the algorithms introduced in the remainder is provided by Shang [17].

Merging left-side branches

The first part of the section aims at illustrating the merging operations on the root node. The following proposition highlights two properties of instances P j and P 1,j with 2 ≤ j ≤ k.

Lemma 1. For a pair of instances P j and P 1,j with 2 ≤ j ≤ k, the following conditions hold:

1. The solution of intances P j and P 1,j involves the solution of a common subinstance which consists in scheduling job set {j + 1, ..., n} starting at time t = i=1,...,j p i . 2. Both in P j and P 1,j , at most k jobs have to be scheduled before job set {j + 1, ..., n}.

Proof. As instances P j and P 1,j are respectively defined by {2, ..., j}1{j + 1, ..., n} and 1{3, ..., j}2{j + 1, ..., n}, the first part of the property is straightforward. The second part can be simply established by counting the number of jobs to be scheduled before job set {j + 1, ..., n} when j is maximal, i.e., when j = k. In this case, job set {k + 1, ..., n} has (nk) jobs which implies that k jobs remain to be scheduled before that job set.

Each pair of instances indicated in Proposition 1 can be merged as soon as they share the same subinstance to be solved. More precisely, (k -1) instances P j (with 2 ≤ j ≤ k) can be merged with the corresponding instances P 1,j .

Figure 2 illustrates the merging operations performed at the root node on its left-side branches, by showing the branch tree before and after (Figure 2a and Figure 2b) such merging operations. For any given 2 ≤ j ≤ k, intances P j and P 1,j share the same subinstance {j + 1, ..., n} starting at time t = j i=1 p i . Hence, by merging the left part of both instances which is constituted by job set {1, ..., j} having size j ≤ k we can delete node P j and replace node P 1,j in the search tree by the node P σ 1,j which is defined as follows (Figure 2b):

• {j + 1, ..., n} is the set of jobs on which it remains to branch.

• Let σ 1,j be the sequence of branching positions on which the j longest jobs 1, . In the following, we describe how to apply analogous merging operations on any node of the tree. With respect to the root node, the only additional consideration is that the children nodes of an arbitrary node may have already been affected by a previous merging.

In order to define the branching scheme used with the LEFT MERGE procedure, a data structure L σ is associated to an instance P σ . It represents a list of k -1 subinstances that result from a previous merging and are now the first k -1 children nodes of P σ . When P σ is created by branching, L σ = ∅. When a merging operation sets the first k -1 children nodes of P σ to P σ 1 , ..., P σ k-1 , we set L σ = {P σ 1 , ..., P σ k-1 }. As a conclusion, the following branching scheme for an arbitrary node of the tree holds.

Definition 1. The branching scheme for an arbitrary node P σ is defined as follows:

• If L σ = ∅, use the branching scheme of TTBR1;

• If L σ = ∅, extract instances from L σ as the first k -1 branches, then branch on the longest job in the available positions from the k-th to the last according to Property 2.

This branching scheme, whenever necessary, will be referred to as improved branching.

Before describing how merging operations can be applied on an arbitrary node P σ , we highlight its structural properties by means of Proposition 3.

Proposition 3. Let P σ be an instance to branch on, and σ be the permutation of positions assigned to jobs 1, . . . , |σ|, with σ empty if no positions are assigned. The following properties hold: 

1. j * =
ρ 2 -1 otherwise with ρ 2 = min{i : i > ρ 1 , i ∈ σ} Proof.
According to the definition of the notation P σ , σ is a sequence of positions that are assigned to the longest |σ| jobs. Since we always branch on the longest unscheduled job, the first part of the proposition is straightforward. The second part aims at specifying the range of positions that job j * can occupy. Two cases are considered depending on the content of σ: Corollary 1 emphasises the fact that even though a node may contain several ranges of free positions, only the first range is the current focus since we only branch on the longest job in eligible positions.

• If σ is a permutation of 1, . . . ,
Corollary 1. Instance P σ has the following structure:

π{j * , . . . , j * + e -b }Ω
with π the subsequence of jobs on the first b -1 positions in σ and Ω the remaining subset of jobs to be scheduled after position e (some of them can have been already scheduled). The merging procedure is applied on job set {j * , . . . , j * + eb } starting at time t π = i∈Π p i where Π is the job set of π.

The validity of merging on a general node still holds as indicated in Proposition 4, which extends the result stated in Proposition 1.

Proposition 4. Let P σ be an arbitrary instance and let π, j * , b , e , Ω be computed relatively to P σ according to Corollary 1. If L σ =∅ the j-th child node P σ j is P σ, b +j-1 for 1≤j≤k. Otherwise, the j-th child node P σ j is extracted from L σ for 1≤j≤k-1, while it is created as P σ, b +k-1 for j=k. For any pair of instances P σ j and P σ 1 , b +j-1 with 2≤j≤k, the following conditions hold:

1. Instances P σ j and P σ 1 , b +j-1 with 2≤j≤k have the following structure:

• P σ j :          π j {j * +j, . . . , j * + e -b }Ω 1≤j≤k-1 and L σ =∅ π{j * +1, . . . , j * +j-1}j * {j * +j, . . . , j * + e -b }Ω (1≤j≤k-1; L σ = ∅)
or j=k Analogously to the root node, each pair of instances indicated in Proposition 4 can be merged. Again, (k -1) instances P σ j (with 2 ≤ j ≤ k) can be merged with the corresponding instances P σ 1 , b +j-1 . P σ j is deleted and P σ 1 , b +j-1 is replaced by P σ 1,j * +j-1 (Figure 3), defined as follows:

• P σ 1 , b +j-1 : π 1 {j * +2, . .
• {j * + j, ..., j * + eb }Ω is the set of jobs on which it remains to branch on.

• Let σ 1,j * +j-1 be the sequence of positions on which the j * + j -1 longest jobs 1, ..., j * + j -1 are branched, that leads to the best jobs permutation between π j and π 1 {j * + 2, . . . , j * + j -1}(j * + 1) for 2 ≤ j ≤ k -1, and between π{j * + 1, . . . , j * + j -1}j * and π 1 {j * + 2, . . . , j * + j -1}(j * + 1) for j = k. This involves the solution of one or two instances of size at most k -1 (in O * (2.4143 k ) time by TTBR2) and the finding of the sequence that has the smallest total tardiness value knowing that both sequences start at time 0.

The LEFT MERGE procedure is presented in Algorithm 2. Notice that, from a technical point of view, this algorithm takes as input one instance and produces as an output its first child node to branch on, which replaces all its k left-side children nodes. for j=1 to k do 4:

Create P σ j (j-th child of P σ ) by the improved branching with the subinstance induced by the job set {j * +1, . . . , j * +j-1} solved if L σ =∅ or j=k for j=1 to k-1 do

7:

Create P σ 1 j (j-th child of P σ 1 ) by the improved branching with the subinstance induced by the job set {j * +2, . . . , j * +j-1} solved if L σ 1 =∅ or j=k 8:

L σ 1 ←L σ 1 ∪BEST(P σ j+1 , P σ 1 j ) 9:
end for Proof. The creation of instances P σ 1 , b +j-1 , for all j = 2, . . . , k, can be done in O(n) time. The call of TTBR2 costs constant time. The BEST function called at line 8 consists in computing then comparing the total tardiness value of two known sequence of jobs starting at the same time instant: it runs in O(n) time. The overall time complexity of LEFT MERGE procedure is then bounded by O(n) time as k is a constant. Finally, as only node P σ 1 is returned, its size is clearly (n -1) when P σ has size n.

In the final part of this section, we discuss the extension of the algorithm in the case where LP T = EDD. In this case, Property 2 allows to discard subinstances associated to branching in some positions. Notice that if an instance P can be discarded according to this property, then we say that P does not exist and its associated node is empty.

Lemma 3. Consider a version of algorithm TTBR which uses the left merging mechanism to prune nodes. Instances such that LP T = EDD correspond to worst-case instances for this algorithm.

Proof. We prove the result by showing that the time reduction obtained from left merging and Property 2 in the case LPT=EDD is not greater than that of any other cases. Notice that the time reduction is measured as the decrease in the worst-case time complexity implied by not exploring pruned nodes. Let us consider the improved branching scheme. The following exhaustive cases hold:

1. 1 = [1] and 2 = [2]; 2. 1 = [j] with j ≥ 2; 3. 1 = [1] and 2 = [j] with j ≥ 3.
We first sketch the idea of the proof. For each of the 3 cases above, we analyse the time reduction that can be obtained on one single branching and merging and we show that the reduction corresponding to case 1, which covers the case LPT=EDD, is the smallest among all the 3 cases. In fact, for case 2 and case 3, some nodes are not created due to Property 2, and the resulting time reduction is not less than that of case 1.

Let T (n) be the time needed to solve an instance of size n in general. From Lemma 2, we can deduce that T (n) > 2T (n -1) because for instances with LP T = EDD, on each branching, a node of size (n -1) is returned by left merging and another node of size (n -1) exists due to the last child node of P σ . This statement is also valid in the worst case if no merging is done, due to the branching scheme. The inequality T (n) > 2T (n -1) induces that T (n) = ω(2 n ), which will be used below to prove the lemma.

In order to be general, consider the current node as P σ , as shown in Figure 3. The time reduction of the 3 cases are denoted respectively by T R1, T R2 and T R3. We also note T R LP T =EDD the time reduction corresponding to the case LP T = EDD.

In case 1, no nodes are eliminated by Property 2, hence, the merging can be done as described for the case LPT=EDD (Figure 3). Therefore, T R1 = T R LP T =EDD = T (n -2) + T (n -3) + .. + T (nk) according to Lemma 2 when LEFT MERGE is executed.

In case 2, the subinstance of P σ corresponding to branching the longest job on the first position, is eliminated directly by Property 2. Therefore, T R2 ≥ T (n -1).

In case 3, let b be the first free position in P σ , as defined in Proposition 3. Some child nodes of P σ 1 , as in Figure 3, corresponding to branch job 2 on positions { b + 1, .., b + j -1}, are eliminated due to Property 2. For these nodes, the time reduction that could have been achieved by merging is already ensured, while the nodes that are not eliminated, notably those corresponding to branch job 2 in positions { b + j, .., b + k -1} can still be merged pairwise with nodes {P σ j+1 , .., P σ k }. More reduction can be gained if j > k. Therefore,

T R3 ≥ T (n -2) + T (n -3) + .. + T (n -k).
Since T R1 ≤ T R3, this brings us to compare T R1 and T R2. Suppose T R1 > T R2, i.e., T (n -1) < T (n -2) + T (n -3) + .. + T (nk), then we have T (n -1) < T (n -2) + T (n -3) + .. + T (1). By solving this recurrence relation we get T (n) = o(2 n ) which is in contradiction with the fact that T (n) = ω(2 n ), as proved above. Therefore, T R1 < T R2, i.e., on each recursion of the algorithm, the time reduction obtained in case 1 is not greater than any other cases. Since T R 1 = T R LP T =EDD , this proves that LP T = EDD is the worst-case scenario, in which the LEFT MERGE procedure returns one node of size n -1 to branch on.

Merging right-side branches

Due to the branching scheme, the merging of right-side branches involves a more complicated procedure than the merging of left-side branches. In the merging of left-side branches, it is possible to merge some nodes associated to instances P with children nodes of P 1 , while for the right-side branches, it is not possible to merge some nodes P with children nodes of P n . We can only merge children nodes of P with children nodes of P n . Let us more formally introduce the right merging procedure and, again, let k < n 2 be the same constant parameter as used in the left merging.

Figure 4 shows an example on the structure of merging for the k right-side branches with k = 3. The root instance P consists in scheduling job set {1, . . . , n}. As for left-side merging, we always focus on the worst case where LP T = EDD. Unlike left-side merging, the right-side merging is done horizontally for each level. Nodes that are involved in merging are colored. For instance, the black square nodes at level 1 can be merged. Similarly, the black circle nodes at level 1 can be merged, the grey square nodes at level 2 can be merged and the grey circle nodes at level 2 can be merged. Notice that each right-side branch of P is expanded to a different depth which is actually an arbitrary decision: the expansion stops when the first child node has size (nk -1) as indicated in the figure. This eases the computation of the final complexity.

. . . More generally, Figure 5 shows the right-side search tree and the content of the nodes involved in the merging in a generic way.

• • • • • • • • • • • • • • • • • • P P n-2 P n-1 P n P n-2,1 P n-1,1,2 P n-2,n-3 P n-1,n-2 P n-1,1,n-2 P n,n-2 P n,n-1 P n,1,n-1 P n,1,n-2 P n,1,2,3 size:n-k-1 size:n-k-1 size:n-k-1 Level 0 Level 1 Level 3 Level 2 . . .
The rest of this section intends to describe the merging by following the same lines as for left merging. We first extend the notation P σ in the sense that σ may now contain . . .

• • •

• • • P P n-k+1 P q P n P q,1,..., ,j ,n . The cardinality of • may be omitted whenever it is not important for the presentation or it can be easily deduced as in the above example. Note that this adapted notation eases the presentation of right merge while it has no impact on the validity of the results stated in the previous section.

P n-k+1,n-k • • • • • • • • • • • • . . . • • • • • • • • • . . . • • • P n,1,..., ,j • • • • • • . . . • • • • • • • • • . . .
Proposition 5. Let P σ be an instance to branch on. Let j * , b , e , ρ 1 and ρ 2 be defined as in Proposition 3. Extending Corollary 1, instance P σ has the following structure:

π{j * , . . . , j * + e -b }γΩ
where π is defined as in Corollary 1 and γ is the sequence of jobs on positions ρ 2 , . . . , ρ 3 with ρ 3 = max{i : i ≥ ρ 2 , positions ρ 2 , . . . , i are in σ} and Ω the remaining subset of jobs to be scheduled after position ρ 3 (some of them can have been already scheduled). The merging procedure is applied on job set {j * , . . . , j * + eb } preceded by a sequence of jobs π and followed by γΩ .

Proof. The instance structure stated in Corollary 1 is refined on the part of Ω. Ω is split into two parts: γ and Ω . The motivation is that γ will be involved in the right merging, just like the role of π in left merging.

Proposition 6 shed lights on how to merge the right side branches originated from the root node. Proposition 6. For each instance in the set

S ,j =          P σ : |σ|= +2, max{j+1, n-k+ +1}≤σ 1 ≤ n, σ i =i-1, ∀i∈{2, . . . , +1}, σ +2 =j          1
with 0≤ ≤k-1, n-k≤j≤n-1, and with σ i referring to the position of job i in σ, we have the two following properties:

1. The solution of instances in S ,j involves the solution of a common subinstance which consists in scheduling job set { +3, ..., j+1} starting at time t = +1 i=2 p i . 2. For any instance in S ,j , at most k+1 jobs have to be scheduled after job set { + 3, ..., j+1}.

Proof. As each instance P σ is defined by (2, . . . , +1){ +3, ..., j+1}( +2){j+2, ..., σ 1 }1{σ 1 + 1, ..., n}, the first part of the property is straightforward.

Besides, the second part can be simply established by counting the number of jobs to be scheduled after job set { +3, ..., j+1} when j is minimal, i.e., when j=n-k. In this case, ( +2){j+2, ..., σ 1 }1{σ 1 +1, ..., n} contains k+1 jobs.

The above proposition highlights the fact that some nodes can be merged as soon as they share the same initial subinstance to be solved. More precisely, at most k --1 nodes associated to instances P q,1.. ,j , max{j + 1, nk + + 1} ≤ q ≤ (n -1), can be merged with the node associated to instance P n,1.. ,j , for all j = (nk), ..., (n -1). The node P n,1.. ,j is replaced in the search tree by the node P σ 1, +2,•,j+2,n defined as follows (Figure 5):

• { + 3, ..., j + 1} is the set of jobs on which it remains to branch.

• Let σ1, +2,•,j+2,n be the sequence containing positions of jobs {1, . . . , + 2, j + 2, . . . , n} and placeholders for the other jobs, that leads to the best jobs permutation among ( + 2){j + 2, ..., q}1{q + 1, ..., n}, max{j + 1, nk + + 1} ≤ q ≤ n. This involves the solution of at most k instances of size at most k + 1 (in O * (k × 2.4143 k+1 ) time by TTBR2) and the determination of the best of the computed sequences knowing that all of them start at time t, namely the sum of the jobs processing times in (2, . . . , + 1){ + 3, ..., j + 1}.

The merging process described above is applied at the root node, while an analogous merging can be applied at any node of the tree. With respect to the root node, the only additional consideration is that the right-side branches of a general node may have already been modified by previous mergings. As an example, let us consider Figure 6. It shows that, subsequently to the merging operations performed from P , the right-side branches of P n may not be the subinstances induced by the branching scheme. However, it can be shown in a similar way as per left-merge, that the merging can still be applied. In order to define the branching scheme used with the RIGHT MERGE procedure, a data structure R σ is associated to an instance P σ . It represents a list of subinstances that result from a previous merging and are now the k right-side children nodes of P σ . When a merging operation sets the k right-side children nodes of P σ to P σ n-k+1 , ..., P σ n , we set R σ = {P σ n-k+1 , ..., P σ n }, otherwise we have R σ = ∅. As a conclusion, the following branching scheme for an arbitrary node of the tree is defined. It is an extension of the branching scheme defined in Definition 1.

P P

n-1 P n P n-1,n-2 P n,n-2 P n,n-1 • • • • • • • • • • • • • • • P n,n-1,n-3 P n-1,n-2 P n-1,n-2,n-3
Definition 2. The branching scheme for an arbitrary node P σ is defined as follows:

• If R σ = ∅, use the branching scheme defined in Definition 1;

• If L σ = ∅ and R σ = ∅, branch on the longest job in the available positions from the 1st to the (nk)-th, then extract instances from R σ as the last k branches.

• If L σ = ∅ and R σ = ∅, extract instances from L σ as the first k -1 branches, then branch on the longest job in the available positions from the k-th to the nk-th, finally extract instances from R σ as the last k branches.

This branching scheme, whenever necessary, will be referred to as improved branching. It generalizes, also replaces, the one introduced in Definition 1

Proposition 7 states the validity of merging a general node, which extends the result in Proposition 6.

Proposition 7. Let P σ be an arbitrary instance and let π, j * , b , e , γ, Ω be computed relatively to P σ according to Proposition 5. If R σ =∅, the right merging on P σ can be easily performed by considering P σ as a new root instance. Suppose R σ =∅, the q-th child node P σ q is extracted from R σ , for all n -k+1≤q≤n , where n = eb +1 is the number of children nodes of P σ . The structure of P σ q is π{j * +1, ..., j * +q-1}γ q Ω . For 0≤ ≤k-1 and n -k≤j≤n -1, the following conditions hold:

1. Instances in S σ
,j have the following structure: π(j * +1, . . . , j * + ){j * + +2, ..., j * +j}(j * + +1){j * +j+1, ..., j * +q-1}γ q Ω with q varies from max{j+1, n-k+ +1} to n .

The solution of all instances in S σ

,j involves the scheduling of a job set {j * +j+ 1, ..., j * +q-1}, max{j+1, n-k+ +1}≤q≤n , which is of size less than k. Besides, for all instances in S σ ,j it is required to solve a common subinstance made of job set {j * + +2, ..., j * +j} starting after π(j * +1, . . . , j * + ) and before (j * + +1){j * +j+ 1, ..., j * +q-1}γ q Ω . Proof. The proof is similar to the one of Proposition 4. The first part of the statement follows directly from Definition 2 and simply defines the structure of the children nodes of P σ . For the second part, it is necessary to prove that {j * +j+1, ..., j * +q-1}γ q consists of the same jobs for any valid value of q. Actually, since right-merging only merges nodes that have common jobs fixed after the unscheduled jobs, the jobs present in {j * +j+1, ..., j * +q-1}γ q and the jobs present in {j * +j+1, ..., j * +q-1}j * {j * +q, ..., j * +n -1}γ, max{j+1, n-k+ + 1}≤q≤n , must be the same, which proves the statement.

Analogously to the root node, given the values of and j, all the instances in S σ ,j can be merged. More precisely, we rewrite σ as α• • {j * + +2, ..., j * +j} is the set of jobs on which it remains to branch.

• Let σ , b ,j be the sequence of positions among

{( b +q-1, b .. b + -1, b +j-1) : max{j+1, n -k+ +1}≤q≤n -1}
associated to the best job permutation on (j * + +1){j * +j+1, ..., j * +q-1}γ q , for all max{j+1, n -k+ +1}≤q≤n . This involves the solution of k instances of size at most k+1 (in O * (k×2.4143 k+1 ) time by TTBR2) and the determination of the best of the computed sequences knowing that all of them start at time t, namely the sum of the jobs processing times in π(j * +1, . . . , j * + ){j * + +2, ..., j * +j}.

The RIGHT MERGE procedure is presented in Algorithm 3. Notice that, similarly to the LEFT MERGE procedure, this algorithm takes as input one instance P σ and provides as an output a set of nodes to branch on, which replaces all its k right-side children nodes of P σ . It is interesting to notice that the LEFT MERGE procedure is also integrated.

A procedure MERGE RIGHT NODES (Algorithm 4) is invoked to perform the right merging for each level = 0, ..., k-1 in a recursive way. The initial inputs of this procedure (line 13 in RIGHT MERGE) are the instance P σ and the list of its k right-side children nodes, denoted by rnodes. They are created according to the improved branching (lines 4-12 of Algorithm 3). Besides, the output is a list Q containing the instances to branch on after merging. In the first call to MERGE RIGHT NODES, the left merge is applied to the first element of rnodes (line 2), all the children nodes of nodes in rnodes not involved in right nor left merging, are added to Q (lines 3-7). This is also the case for the result of the right merging operations at the current level (lines 8-11). In Algorithm 4, the value of r indicates the current size of rnodes. It is reduced by one at each recursive call and the value (kr) identifies the current level with respect to P σ . As a consequence, each right merging operation consists in finding the instance with the best total tardiness value on its fixed part, among the ones in set S σ k-r,j . This is performed by the BEST function (line 10 of MERGE RIGHT NODES) which extends the one called in Algorithm 2 by taking at most k subinstances as input and returning the dominating one.

The MERGE RIGHT NODES procedure is then called recursively on the list containing the first child node of the 2nd to r-th node in rnodes (lines [13][14][15][16][17]. Note that the procedure LEFT MERGE is applied to every node in rnodes except the last one. In fact, for any specific level, the last node in rnodes belongs to the last branch of P σ , which is P σ,l b +n-1,•,β . Since P σ,l b +n-1,•,β is put into Q at line 14 of RIGHT MERGE, it means that this node will be reprocessed later and LEFT MERGE will be called on it at that moment. Since the recursive call of MERGE RIGHT NODES (line 18) will merge some nodes to the right-side children nodes of P α, b , • nr -1 ,β r , the latter one must be added to the list L of P α, • nr ,β r (line 19). In addition, since we defined L as a list of size either 0 or k -1, lines 20-24 add the other (k -2) nodes to L α, • nr ,β r . It is also important to notice the fact that a node may have its L or R structures nonempty, if and only if it is the first or last child node of its parent node. A direct result is that only one node among those involved in a merging may have its L or R non-empty. In this case, these structures need to be associated to the resulting node. The reader can always refer to Figure 4 for a more intuitive representation. if R σ = ∅ then 5:

for q = n-k+1 to n do Q ← Q∪MERGE RIGHT NODES(nodes, P σ )

14:

Q ← Q∪nodes[k]
The last node will be re-processed 15:

return Q 16: end function for all r = 2, ..., k; q = 1, ..., (r -1); i = k, ..., (n -2k + r -2).

Proof. The first part of the result follows directly from Algorithm 3. The only lines where nodes are added to Q in RIGHT MERGE are lines 13-14. In line 14, only one instance is added to Q, thus it needs to be proved that the call on MERGE RIGHT NODES (line 13) returns O(n) nodes. This can be computed by analysing the lines 2-7 of Algorithm 4. Considering all recursive calls, the total number of nodes returned by

MERGE RIGHT NODES is ( k-1 i=1 (k - i)(n -2k -i)) + k -1 which yields O(n).
The number of all the nodes considered in right merging is bounded by a linear function on n. Furthermore, all the operations associated to the nodes (merging, creation, etc) have a polynomial cost. As a consequence, Algorithm 3 runs in polynomial time and space.

Regarding the sizes of the subinstances returned by RIGHT MERGE, the node added in line 14 of Algorithm 3 contains one subinstance of size (n -1), corresponding to branching the longest job on the last available position. Then, the instances added by the call to MERGE RIGHT NODES are added to Q. In line 2 of Algorithm 4, the size of the instance returned by LEFT MERGE is reduced by one unit when compared to the input instance which is of size (nk -(kr)). Note that (kr) is the current level with respect to the node tackled by Algorithm 4. As a consequence, the size of the resulting subinstance is (nk -(kr) -1). Note that this line is executed (k -1) times, for all r = k, . 

Q ← LEFT MERGE(P α, • n 1 , β 1 ) 3: 
for q = 1 to r -1 do 4:

for j = b + k to b + n 1 -1 do 5: Q ← Q ∪ P α,j, • nq -1 ,β q 6:
end for 7:

end for 8:

for j = b + n 1 to b + n r do 9:
Solve all the subinstances of size less than k in S σ k-r,j 10:

R α, • nr ,β r ← R α, • nr ,β r + BEST(S σ k-r,j ) 11: 
end for for q = 2 to r -1 do 15:

newnodes←newnodes+LEFT MERGE(P α, • nq ,β q )

16:

end for 17:

newnodes←newnodes+P α, b , • nr -1 ,β r 18: Q ← Q ∪ MERGE RIGHT NODES(newnodes, P σ ) 19: L α, • nr ,β r ← P α, b , • nr -1 ,β r 20:
for q = 2 to k -1 do 

Q ← P 3:
seqOpt← the EDD sequence of jobs 4:

while Q = ∅ do 5:

P * ← extract next instance from Q (depth-first order) 6:
if the size of P * < 2k then 7:

Solve P * by calling TTBR2 Create the i-th child node P i by branching scheme of TTBR1 return seqOpt 22: end function strategy and terminates when Q is empty. Note that the algorithm is still described for the worst-case scenario.

Proposition 8 determines the time complexity of the proposed algorithm. In this regard, the complexity of the algorithm depends on the value given to k. The higher it is, the more subinstances can be merged and the better is the worst-case time complexity of the approach.

Proposition 8. Algorithm TTBM requires polynomial space and has a worst-case time complexity which tends to O * (2 n ) when k increases.

Proof. The proof is based on the analysis of the number and the size of the subinstances put in Q when a single instance P * is expanded. As a consequence of Lemma 3 and Lemma 5, TTBM induces the following recursion:

T (n) =2T (n -1) + 2T (n -k -1) + ... + 2T (k) + k r=2 r-1 q=1 n 1 -(k-r)-2 i=k (T (i) + T (n q -(k -r) -i -1)) + (k -1)T (n 1 -1) + O(p(n)),
where T (n) represents the time needed by TTBM to solve an instance of n jobs. First, a simple lower bound on the complexity of the algorithm can be derived by the fact that the procedures RIGHT MERGE and LEFT MERGE provide (among the others) two instances of size (n -1), based on which the following inequality holds:

T (n) > 2T (n -1). (7) 
By solving the recurrence, we obtain that T (n) = ω(2 n ). As a consequence, the following inequality holds:

T (n) > T (n -1) + . . . + T (1). (8) 
In fact, if it does not hold, we have a contradiction on the fact T (n) = ω(2 n ). Now, we consider the summation

n 1 -(k-r)-2 i=k (T (n q -(k -r) -i -1)).
Since n q = n 1 + q -1, we can simply expand the summation as follows:

n 1 -(k-r)-2 i=k (T (n q -(k -r) -i -1)) = T (q) + ... + T (n 1 -(k -r) + q -k -2).
We know that k ≥ q, then qk ≤ 0 and the following inequality holds:

T (q) + ... + T (n 1 -(k -r) + q -k -2) ≤ n 1 -(k-r)-2 i=q T (i).
As a consequence, we can bound above T (n) as follows: Note that O(p(n)) includes the cost for creating all nodes for each level and the cost of all the merging operations, performed in constant time.

T (n) =2T (n -1) + 2T (n -k -1) + ... + 2T (k) + k r=2 r-1 q=1 n 1 -(k-r)-2 i=k (T (i) + T (n q -(k -r) -i -1)) ≤ 2T (n -1) + 2T (n -k -1) + ... + 2T (k) + k r=2 r-1 q=1 n 1 -(k-r)-2 i=q 2T (i) + (k -1)T (n 1 -1) + O(p(n)) ≤ 2T (n -1) + 2T (n -k -1) + ... + 2T (k) + k r=2 r-1
The recursion T (n) = 2T (n-1)+(5k -1)T (n-k -1)+O(p(n)) is an upper limitation of the running time of TTBM. Recall that its solution is T (n) = O * (c n ) where c is the largest root of the function:

f k (x) = 1 - 2 x - 5k -1 x k+1 . (9) 
As k increases, the function f k (x) converges to 1 -2 x , which induces a complexity of O * (2 n ). Table 1 shows the time complexity of TTBM obtained by solving Equation 9 for all the values of k from 3 to 20. The base of the exponential is computed by solving Equation 9by means of a mathematical solver and rounding up the fourth digit of the solution. The table shows that the time complexity is O * (2.0001 n ) for k ≥ 20. Lemma 6. The problem 1|| T i can be solved in O * ((2 + ε) n ) time and polynomial space, where ε > 0 converges towards 0 when k increases.

Proof. Lemma 3 and lemma 5 proved that LP T = EDD is the worst-case scenario for left merging and right merging. Since k ≤ n 2 , the time reduction obtained from left merging and right merging, when both are incorporated into TTBM, can be combined. Thus, lemma 3 and lemma 5 together prove that instances with LP T = EDD are the worst-case instances for TTBM. Therefore, the current lemma is proved according to Proposition 8.

Conclusions

This paper focused on the design of exact branching algorithms for the single machine total tardiness problem. By exploiting some inherent properties of the problem, we first proposed two branch-and-reduce algorithms, indicated with TTBR1 and TTBR2. The former runs in time O * (3 n ), while the latter achieves a better time complexity in O * (2.4143 n ). The space requirement is polynomial in both cases. Furthermore, a technique called branch-andmerge, is presented and applied onto TTBR1 in order to improve its performance. The final achievement is a new algorithm (TTBM) with time complexity converging to O * (2 n ) and polynomial space. The same technique can be tediously adapted to improve the performance of TTBR2, but the resulting algorithm achieves the same asymptotic time complexity as TTBM, and thus it was omitted. To the best of authors' knowledge, TTBM is the polynomial space algorithm that has the best worst-case time complexity for solving this problem.

Beyond the new established complexity results, the main contribution of the paper is the branch-and-merge technique. The basic idea is very simple, and it consists of speeding up branching algorithms by avoiding solving identical instances which corresponding nodes in the search tree are merged in polynomial time and space. When applied systematically in the search tree, this technique enables to achieve a good worst-case time bound. The same goal is traditionally pursued by means of Memorization [START_REF] Fomin | Exact exponential algorithms[END_REF], where the solution of already solved subinstances are stored and then queried when an identical subinstance appears. This is at the cost of exponential space. On a computational side, it is interesting to notice that doing memorization with a fixed size memory can already lead to substantially good practical results according to T'kindt et al. [START_REF] Della Croce | Revisiting branch and bound search strategies for machine scheduling problems[END_REF], at least on some scheduling problems, even though the worst-case time complexity of the algorithm is no more guaranteed.

As a future development of this work, our aim is twofold. First, we aim at applying the branch-and-merge algorithm to other combinatorial optimization problems in order to establish its potential generalization to other problems. Second, we want to explore the practical efficiency of this algorithm on the single machine total tardiness problem and compare it with memorization with a fixed memory space used to store already branched nodes.
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 1 Algorithm TTBR1 runs in O * (3 n ) time and polynomial space in the worst case.
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 1 Figure 1: The branching scheme of TTBR1 at the root node

  (b) Left-side branches of P after performing the merging operations. BEST(α, β) returns the better configuration between α and β.
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 2 Figure 2: Left-side branches merging at the root node
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 3 Figure 3: Merging for an arbitrary left-side branch
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 2 LEFT MERGE Procedure Input: P σ an input instance of size n, with b , j * accordingly computed Output: Q: a list of instances to branch on after merging 1: function LEFT MERGE(P σ )

2 .

 2 The LEFT MERGE procedure returns one node to branch on in O(n) time and polynomial space. The corresponding instance is of size (n -1).
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 4 Figure 4: An example of right-side branches merging for k = 3

Figure 6 :

 6 Figure 6: The right branches P n have been modified when performing right-merging from P
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  where α is the sequence of positions assigned to jobs {1, . . . , j * -1}, • n refers to the job set to branch on and β contains the positions assigned to the rest of jobs. At most k--1 nodes associated to instances P α, b +q-1, b .. b + -1, b +j-1,•,β , with max{j+1, n -k+ +1}≤q≤n -1, can be merged with the node associated to instance P α, e, b .. b + -1, b +j-1,•,β . Node P α, e, b .. b + -1, b +j-1,•,β is replaced in the search tree by node P α,σ , b ,j ,•,β defined as follows:

Lemma 4 .

 4 The RIGHT MERGE procedure returns a list of O(n) nodes in polynomial time and space. The solution of the associated instances involves the solution of 1 subinstance of size (n -1), of (k -1) subinstances of size (nk -1), and subinstances of size i and (n q -(kr)i -1), Algorithm 3 RIGHT MERGE Procedure Input: P σ = P α,• n ,β a instance of size n, with b , j * computed according to Proposition 3 Output: Q : a list of instances to branch on after merging 1: function RIGHT MERGE(P σ )

6 : 8 :

 68 Create P α, b +q-1,•,β by branching 7: δ ← the sequence of positions of jobs {j * +q, . . . , j * +n-1} fixed by TTBR2 nodes← nodes+P α, b +q-1,•,δ,β

else 13 :

 13 Q ← Q ∪ LEFT MERGE(P * )Left-side nodes 14:for i = k + 1, ..., nk do 15:

q=1 n 1 -2T (n 1 -

 11 (k-r)-2 i=1 2T (i) + (k -1)T (n 1 -1) + O(p(n)).By using Equation8, we obtain the following:T (n) ≤ 2T (n -1) + 2T (nk -1) + ... + 2T (k) ) + (k -1)T (n 1 -1) + O(p(n)) ≤ 2T (n -1) + 2T (nk -1) + ... + 2T (k) (kr) -1) + (k -1)T (n 1 -1) + O(p(n)).

Finally, we

  apply some algebraic steps and we use the equality n 1 = nk to derive the following upper limitation of T (n):T (n) ≤ 2T (n -1) + 2T (nk -1) + ... + 2T (k) + k r=2 (r -1)2T (n 1 -(kr) -1) + (k -1)T (n 1 -1) + O(p(n)) ≤ 2T (n -1) + 2T (nk -1) + ... + 2T (k) + 2(k -1)T (n 1 -1)2T (n 1 -(kr) -1) + (k -1)T (n 1 -1) + O(p(n)) ≤ 2T (n -1) + 2T (nk -1) + ... + 2T (k) + (k -1)4T (n 1 -1) + (k -1)T (n 1 -1) + O(p(n)) ≤ 2T (n -1) + 4T (nk -1) + 5(k -1)T (nk -1) + O(p(n)) = 2T (n -1) + (5k -1)T (nk -1) + O(p(n)).
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  |σ| + 1 is the job to branch on, 2. j * can occupy in the branching process, positions { b , b + 1, . . . , e }, where

b = |σ| + 1 if σ is a permutation of 1, . . . ,

|σ| or σ is empty; ρ 1 + 1 otherwise with ρ 1 = max{i : i > 0, positions 1, . . . , i are in σ} and e = n if σ is a permutation of 1, . . . , |σ| or σ is empty;

  |σ|, it means that the longest |σ| jobs are set on the first |σ| positions, which implies that the job j * should be branched on positions |σ|+1 to n. • If σ is not a permutation of {1, . . . , |σ|}, it means that the longest |σ| jobs are not set on consecutive positions. As a result, the current unassigned positions may be split into several ranges. As a consequence of the decomposition property, the longest job j * should necessarily be branched on the first range of free positions, that goes from ρ 1 to ρ 2 . Let us consider as an example P 1,9,2,8 , whose structure is 13{5, . . . , 9}42{10, . . . , n} and the job to branch on is 5. In this case, we have: σ = (1, 9, 2, 8), b = 3, e = 7. It is easy to verify that 5 can only be branched on positions {3, . . . , 7} as a direct result of Property 2.

  . , j * +j-1}(j * +1){j * +j, . . . , j * + eb }Ω[START_REF] Della Croce | A new decomposition approach for the single machine total tardiness scheduling problem[END_REF]. By solving all the instances of size less than k, that consist in scheduling the job set {j * +1, . . . , j * +j-1} between π and j * and in scheduling {j * +2, . . . , j * +j-1} between π 1 and j * +1, both P σ j and P σ 1 , b +j-1 consist in scheduling {j * +j, ..., j * + eb }Ω starting at time t π j = i∈Π j p i where Π j is the job set of π j .Proof. The first part of the statement follows directly from Definition 1 and simply defines the structure of the children nodes of P σ . The instance P σ j is the result of a merging operation with the arbitrary instance P σ, b +j-1 and it could possibly coincide with P σ, b +j-1 , for each j=1, ..., k-1. Furthermore, P σ j is exactly P σ, b +j-1 for j=k. The structure of P σ, b +j-1 is π{j * +1, . . . , j * +j-1}j * {j * +j, . . . , j * + eb }Ω, and the merging operations preserve the job set to schedule after j * . Thus, we have Π j =Π∪{j * , ..., j * +j-1} for each j=1, ..., k-1, and this proves the first statement. Analougosly, the structure of P σ 1 , b +j-1 is π 1 {j * +2, . . . , j * + j-1}(j * +1){j * +j, . . . , j * + eb }Ω. Once the subinstance before j * +1 of size less than k is solved, P σ 1 , b +j-1 consists in scheduling the job set {j * +j, ..., j * + eb } at time t π j = i∈Π j p i .In fact, we have that Π j =Π 1 ∪{j * +2, . . . , j * +j-1}∪{j * +1}=Π∪{j * , . . . , j * +j-1} .
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  . . , 2, corresponding to the number of calls to MERGE RIGHT NODES. In line 5 of Algorithm 4, the list of nodes which are not involved in any merging operation are added to Q. This corresponds ], ordered list of r last children nodes with b defined on any node in rnodes. |α| + 1 is the job to branch on and n r = n 1 + r -1. Output: Q, a list of instances to branch on after merging 1: function MERGE RIGHT NODES(rnodes, P σ )

	Algorithm 4 MERGE RIGHT NODES Procedure
	Input: rnodes= [P α, • n 1	,β 1 , . . . , P α, •
	2:	

nr

,β r

  Total Tardiness Branch and Merge (TTBM) Input: P : {1, ..., n}: input instance of size n

	Algorithm 5 n 2 > k ≥ 2: an integer constant Output: seqOpt: an optimal sequence of jobs	
	1: function TTBM(P ,k)		
	21:	Create P α, b +q-1, • nr -1	,β r by branching
	22:			
	23: 24:	L α, • end for	nr -1	,β r
	25:	end if		
	26:	return Q		
	27: end function		

δ ← the sequence of positions of jobs {|α| + 2, . . . , |α| + q} fixed by TTBR2 nr ,β r ← L α, • nr ,β r + P α, b +q-1,δ, • 2:

Table 1 :

 1 The time complexity of TTBM for values of k from 3 to 20

Placeholders do not count in the cardinality of σ

to pairs of instances of size i and (n q -(kr)i -1), for all i = k, ..., (nk -1) and this proves the last part of the lemma.

Lemma 5. Consider a version of algorithm TTBR which uses the right merging mechanism to prune nodes. Instances such that LP T = EDD correspond to worst-case instances for this algorithm.

Proof. The proof follows a similar reasoning to the proof of Lemma 3. We analyze the time reduction obtained from the last k subtrees of the current node. Notice that the time reduction is measured as the decrease in the worst-case time complexity implied by not exploring pruned nodes. The following cases are considered:

We refer the reader to Figure 5 for a better understanding of the proof. Since the structure of right merging is the same at different levels (except level 0) of the tree, it is sufficient to consider the time reduction from level 0 and level 1. We denote the resulting time reduction by T R1, T R2 and T R3 for each of the three cases, respectively. We also note T R LP T =EDD the time reduction corresponding to the case LP T = EDD.

In case 1, all black nodes at level 1 of Figure 5 are created and merged to one. Therefore, the corresponding time reduction

In case 2, some black nodes at level 1 of Figure 5 are not created due to Property 2, while the black nodes that remain can still be merged to the last subtree. Therefore, T R2 ≥ T R1.

In case 3, the subtrees rooted by {P 1 , ..., P j-1 } are not created due to Property 2. This is obviously a stronger reduction than only merging some nodes from inside these subtrees. In addition, for subtrees that remain except the last one, i.e., those rooted by {P j , ..., P n }, time reduction is still guaranteed by, either right merging or the non-creation of some nodes due to Property 2, depending on the position of job 2 in EDD ordering.

In other words, if LP T = EDD then the number of nodes in S σ ,j (defined in Proposition 7) can be less, since some nodes may not be created due to Property 2. However, all the nodes inside S σ ,j can still be merged to one except when S σ ,j is empty. In either case, we can achieve at least the same reduction as the case of LP T = EDD. This reasoning obviously holds when extending the consideration to all levels of the tree and to all recursions. Therefore, LP T = EDD is the worst-case scenario.

Complete algorithm and analysis

We are now ready to define the main procedure TTBM (Total Tardiness Branch-and-Merge), stated in Algorithm 5 which is called on the initial input instance P : {1, ..., n}. The algorithm has a similar recursive structure as TTBR1. However, each time a node is opened, the sub-branches required for the merging operations are generated, the subinstances of size less than k are solved and the procedures LEFT MERGE and RIGHT MERGE are called. Then, the algorithm proceeds recursively by extracting the next node from Q with a depth-first