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Abstract

We analyze the convergence of stochastic gradient methods for well
structured bi-level optimization problems. We address two specific cases:
first when the outer objective function can be expressed as a finite sum
of independent terms, and next when both the outer and inner objective
functions can be expressed as finite sums of independent terms. We as-
sume Lipschitz continuity and differentiability of both objectives as well
as convexity of the inner objective and consider diminishing steps sizes.
We show that, under these conditions and some other assumptions on the
implicit function and the variance of the gradient errors, both methods
converge in expectation to a stationary point of the problem if gradient
approximations are chosen so as to satisfy a sufficient decrease condition.
We also discuss the satisfaction of our assumptions in machine learn-
ing problems where these methods can be nicely applied to automatically
tune hyperparameters when the loss functions are very large sums of error
terms.

1 Introduction

We consider bi-level optimization problems of the following form:

min
x∈Rn

F (y)

s.t. y(x) = argmin
ȳ∈Rm

G(x, ȳ) (1)

in which F (y) : Rm → R, G(x, y) : Rn × Rm → R, and x ∈ Rn, y ∈ Rm. We
assume that n and m are large, F or both F and G are finite sums of indepen-
dent terms and we have prior knowledge on the regularity of F , G and their
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gradients (see Assumptions A1-A4).

Observe that the form of Problem (1) is very specific and well structured when
compared to general bi-level optimization problems. In (1), the outer objective
does not depend explicitely on the outer variable x. The outer level is not either
subject to any constraint. The instance (1) is one of the simplest form of bilevel
programming. The difficulty that arises is therefore not in the structure of the
levels but in the dimensions of the finite sums contained in both objectives.
We consider that these sums are so large that evaluating them would be very
expensive or even impossible. This is usually the setting of risk minimisation
problems in learning problems in the statistics or image processing communities.

There are many applications of bi-level optimization [1]. Bi-level programming
problems are generally difficult to solve when little is known on the objective
functions [3]. Extensive research has been done in the field of bi-level pro-
gramming and researchers have proposed several numerical strategies to find
approximate solutions of these problems [3, 7]. One common method is to re-
place the inner problem by its KKT optimality conditions. Descent techniques
based on gradient, sub-gradient or trust region steps have also been proposed
[12, 3]. In recent years, bi-level optimization problems in the form of (1) have
been proposed as a framework to model parameter selection in machine learning
[4, 5, 11, 8]. The inner problem consists in minimizing a regularized empirical
risk for given values of model hyperparameters while the outer problem mini-
mizes a validation error on unseen data over the complete set of hyperparameter
values. The volumes of datasets that one has to deal with are often large, lead-
ing to large scale bi-level optimization problems.

Integrating randomness in the bi-level problem to account for uncertainty in the
problem parameters is also an active research topic and is known as stochastic
bilevel programming [6, 10]. This work is different from the stochastic setting
we are proposing. In this research randomness is incorporated in the problem
but the solution process is usually deterministic where as in our technique as we
will see below, we calculate random approximations of large gradient informa-
tion to carry out cheap optimization moves. This concept is known as stochastic
approximation rather than stochastic optimization.

In machine learning problems, stochastic gradient methods have been the main
battle horse to address large scale data. As the objective function can be sep-
arated into one regularization term and a large sum of loss terms, the idea is
to perform successive optimization moves with respect to one or several ran-
domly chosen data points at a time. Under right assumptions, the convergence
in expectation and almost sure convergence of the minimization process can
be proven. These techniques date back from the 1950’s[17] and had been well
studied since [21, 15, 13]. Recently, with the increasing interest in data science,
they have been revisited through the eye of the machine learning research com-
munity. However, so far, very little investigation has been made on the use of
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these stochastic approximation methods in the context of bi-level optimization.
In [4, 5], we have proposed to design and experiment a stochastic gradient algo-
rithm for the specific case of bi-level optimization where both inner and outer
objectives can be seen as large finite sums. Results show significant training
time reduction when compared to other state-of-the-art techniques. Extensive
experimentation has been made in this context with significant training time
reduction when compared to other techniques. The technique is successful in
practice but no convergence results have been established so far for these tech-
niques. In this article, we propose to analyze the convergence properties of
these algorithms. Our initial motivation resides in machine learning applica-
tions, however the results are also valid for any problem of the form of (1)
satisfying the following assumptions on functions F , G and y : x→ y(x):

Assumptions:

A1 The function F (y) : y → F (y) is Lipschitz continuous with constant LF
and has Lipschitz gradient with constant L∇yF .

A2 The function G(x, y) : (x, y) → G(x, y) is twice differentiable. The func-
tion G(x, .) : y → G(x, y) is strictly convex and Lipschitz continuous with
constant LG. Its gradient ∇G is Lipschitz continuous with constant L∇G
and ∇2

yG(x, y) is well conditioned.

A3 The function F : x→ F (y(x)) is bounded below.

A4 The fonction y : x→ y(x) has Lipschitz gradient with constant L∇xy

Assumption A1 requires Lipschitz regularity on F and its gradient with respect
to the variable y. Assumption A2 requires similar regularity on G and and also
strict convexity with respect to the variable y to ensure that the inner problem
has a unique solution. Relaxing this assumption would make the bi-level prob-
lem (1) a much more complex problem as the solution set of the inner problem
would not be a single point but a continuous or discrete set of points. The
results that we will develop here would therefore not be valid anymore. We
also require that the Hessian ∇2

yG(x, y) is well conditioned to ensure, as we will
see later, that the implicit function is also Lipschitz continuous. Assumption
A3 requires that the funtion F : x → F (y(x)) is bounded from below whereas
assumption A4 necessitates also regularity of the gradient of the implicit func-
tion defined by y, the solution of the inner problem, as a function of x. Out
of context, these assumptions may seem strong but, in practice, in the type of
problems we address, usually there are satisfied. In the last part of the article,
we check and discuss the satisfaction of these assumptions in specific machine
learning applications.

Two algorithms are considered: the bi-level stochastic gradient algorithms with
outer approximation of function F when F can be decomposed into a sum of
independent Fi (i ∈ {1, . . . , N}) and the bi-level stochastic algorithm with in-
ner and outer approximations where both outer and inner objectives functions
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can be decomposed into a sum of independent terms (i.e. F = 1
N

∑N
i=1 Fi and

G = 1
J

∑J
j=1Gj). For these two cases, we consider bi-level techniques based on

stochastic approximation methods. The methods perform optimization moves
along a stochastic estimate of the gradient of the outer objective function with
respect to the outer variable x. The estimate is computed by taking an ap-
proximation of the gradient of the objective (or both objectives if both are
decomposable) and making use of bi-level differentiation. If the gradient ap-
proximations are chosen so as to satisfy a sufficient decrease condition, we show
that under the assumptions on F and G above, both methods converge in ex-
pectation towards a stationary point of Problem (1). Note that if the choice of
gradient approximations ensures that the approximation of the outer objective
gradient (with respect to the outer variable) is an unbiased estimate of the true
gradient, our technique reduces to the standard stochastic gradient technique
[17]. However, except for a special class of inner objective functions, the choice
of an unbiased estimate is not trivial and this is the reason why we allow some
bias in the choice of the approximation as long as the sufficient decrease con-
dition is satisfied. We would also like to emphasize that one may find that the
convergence in expectation is a rather weak convergence result as opposed to
an almost sure convergence. However, to the best of our knowledge, this work
is a first attempt to address stochastic approximation to bilevel optimization
and we argue that convergence in expectation is a first step towards a more
complete convergence analysis of these stochastic bilevel methods and we leave
the analysis of stronger convergence result as an open perspective.

The article is organized as follows: In Section 2, we first state a general result
that we will use throughout the sequel of the article. In Section 3, we prove
the convergence of the bi-level stochastic gradient technique with outer approx-
imation. Next, in Section 4, we prove the convergence of the bi-level stochastic
gradient technique with inner and outer approximations. Section 5 discusses
the application of these convergence results in the machine learning context.
Section 6 gives some concluding remarks.

2 Preliminaries

Under the assumptions (A1)-(A4) on functions F , G and y, we state and prove
two intermediate results.

2.1 Bi-level differentiation

We first calculate the gradient of the outer objective function in Problem (1)
with respect to the variable x using the chain rule for derivatives:

∇x [F (y(x))] = ∇yF (y)>∇y(x). (2)

Recall that the implicit function theorem (IFT) [19] states that, if:

4



• (x∗, y∗) is an optimal solution of the inner problem in (1), meaning that
∇yG(x∗, y∗) = 0,

• G is C2 and ∇2
yG(x∗, y∗) is invertible,

there exists an open set U ⊂ Rn, an open set V ⊂ Rm such that (x∗, y∗) ∈ U×V
and a C1-function y such that:

• ∀(u, v) ∈ U × V , ∇vG(u, v) = 0⇒ v = y(u).

• ∀u ∈ U , we have ∇vG(u, y(u)) = 0.

• ∀(u, v) ∈ U × V , the matrix ∇2
vG(u, v) is invertible and furthermore,

∇y(u) = −
[
∇2
vG(u, y(u))

]−1∇2
vuG(u, y(u)) (3)

Therefore, we can write

∇x [F (y(x))] = −∇yF (y)>
[
∇2
yG(x, y)

]−1∇2
xyG(x, y). (4)

The strict convexity of G ensures a unique solution of ∇yG(x, y) = 0 and there-
fore the possibility to express ∇y(x) uniquely everywhere, meaning that we
can replace the constrained bi-level problem by an unconstrained optimization
problem by expressing y as a function of x.

2.2 Lipschitz differentiability of x→ F (y(x))

Here, we use the previous result to prove that the implicit function y : x →
y(x) is Lipschitz continuous and that the function x → F (y(x)) is Lipschitz
differentiable. This last result will be important in the analysis of convergence
of the bi-level stochastic gradient methods as we will see in Section 3 and 4.

Lemma 2.1 Under assumption A2 above, the implicit function y defined by
y : x→ y(x) is Lipschitz continuous.

Proof We have

∇xy(x) = −
[
∇2
yG(x, y)

]−1∇2
xyG(x, y) (5)

Since ∇G is Lipschitz continuous, we have that
∥∥∇2G(x, y)

∥∥ is bounded, mean-

ing that
∥∥∇2

yG(x, y)
∥∥ and

∥∥∇2
xyG(x, y)

∥∥ are also bounded. From Assump-
tion A2, we know that ∇2

yG(x, y) is well conditioned, therefore there exists

c > 0 such that ‖
[
∇2
yG(x, y)

]−1 ‖‖∇2
yG(x, y)‖ ≤ c. Since ∇2

yG(x, y) is bounded

and non singular, we can further say that ‖
[
∇2
yG(x, y)

]−1 ‖ is bounded, proving
that y is Lipschitz continuous.

Lemma 2.2 Assuming A1, A2, A4 above, the function defined by F : x →
F (y(x)) is differentiable with Lipschitz continuous gradient and Lipschitz con-
stant L2

yL∇yF + LFL∇xy.
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Proof Clearly, from the definition of F : x → F (y(x)) as a composition of
the differentiable function y → F (y) and y : x → y(x) (where the existence of
∇xy(x) is ensured by IFT), F : x→ F (y(x)) is differentiable.

Additionally, ∀(x, x′) ∈ Rn×n, we have

‖∇x [F (y(x))]−∇x [F (y(x′))]‖ =
∥∥∇yF (y(x))>∇xy(x)−∇yF (y(x′))>∇xy(x′)

∥∥
=
∥∥∇yF (y(x))>∇xy(x)−∇yF (y(x′))>∇xy(x)

−∇yF (y(x′))>∇xy(x′) +∇yF (y(x′))>∇xy(x)
∥∥

≤ ‖∇yF (y(x))−∇yF (y(x′))‖ ‖∇xy(x)‖
+ ‖∇yF (y(x′))‖ ‖∇xy(x)−∇xy(x′)‖ .

Since ∇F is Lipschitz continuous with respect to y, we have

‖∇yF (y(x))−∇yF (y(x′))‖ ≤ L∇yF ‖y(x)− y(x′)‖

and ‖∇yF (y(x))‖ is bounded by LF .

Lemma 2.1 states also that y is Lipschitz continuous, therefore ∃Ly > 0 such
that ‖y(x) − y(x′)‖ ≤ Ly‖x − x′‖ and ‖∇xy(x)‖ ≤ Ly. Moreover, assumption
A4 ensures that ‖∇xy(x)−∇xy(x′)‖ ≤ L∇xy‖x − x′‖. Using these bounds in
the above inequality, we have:

‖∇x [F (y(x))]−∇x [F (y(x′))]‖ ≤ L∇yF ‖y(x)− y(x′)‖ ‖∇xy(x)‖
+ LFL∇xy‖x− x′‖
≤ LyL∇yFLy‖x− x′‖+ LFL∇xy‖x− x′‖
≤ (L2

yL∇yF + LFL∇xy)‖x− x′‖,

proving Lemma 2.2.

3 Convergence of the bi-level stochastic gradi-
ent method with outer approximation

In this section, we consider outer level objective function of the form :

F (y(x)) =
1

N

N∑
i=1

Fi(y(x))

If all Fi (∀i = 1, . . . , N) are Lipschitz continuous and Lipschitz differentiable,
assumption A1 is satisfied and Lemma (2.2) applies, meaning that the function
x→ F (y(x)) is Lipschitz differentiable.
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The principle of the bi-level stochastic gradient method with outer approxima-
tion (BSGo) is to randomly choose one i ∈ {1, . . . , N} at each iteration and use
g̃i as an estimate of ∇x [F (y(x))] to compute a stochastic move. To ensure con-
vergence, the expected angle between g̃i and ∇x [F (y(x))] must be sufficiently
positive. The BSGo procedure is summarized in Algorithm (1).

Algorithm 1 BSGo Algorithm

1: Choose x0 and α0 > 0
2: k ← 0
3: while ‖∇x [Fi(y(xk))] ‖ ≥ 0 do
4: Pick i randomly and uniformly in {1, . . . , N}
5: Compute y(xk) = argmin

ȳ∈Rm

G(xk, ȳ)

6: Choose g̃i such that E [g̃i|xk]
>∇x [F (y(xk))] ≥ µ‖ [∇xF (y(xk))] ‖2

7: xk+1 ← xk − αkg̃i
8: Update αk
9: k ← k + 1

10: end while

Note that the special case

g̃i = −∇yFi(y(xk))>
[
∇2
yG(xk, y(xk))

]−1∇2
xyG(xk, y(xk))

is an unbiased estimate of∇x [F (y(xk))] under the differentiability and Lipschitz
assumptions made above [18] and the algorithm reduces to the standard Rob-
bins and Monro algorithm for finding the roots of the function x→ ∇x [F (y(x))]
[17]. However, we address a more general case where g̃i is not required to be
an unbiased estimator but should only require sufficient expected decrease of
the function. This will also be critical later when we consider inner stochas-
tic approximation as it will be difficult to ensure ’unbiasness’ of the gradient
approximation.

At each iteration k of the BSGo algorihtm, let εk be the error between the
estimate ∇x [Fi(y(xk))] and the true gradient ∇x [F (y(xk))],

εk = g̃i −∇x [F (y(xk))]

We state and prove the following convergence theorem:

Theorem 3.1 Suppose that:

1. Assumptions A1-A4 are satisfied,

2. ∃ν, µ > 0 such that ∀i ∈ {1, . . . , N}, ∀k > 0,

‖E[g̃i|xk]‖ ≤ ν‖∇x [F (y(xk))] ‖

and
E[g̃i|xk]> [F (y(xk))] ≥ µ‖ [F (y(xk))] ‖2

,
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3. ∃D > 0 such that ∀k > 0, εk satisfies the following inequality

E
[
‖εk‖2

]
≤ D ‖∇x [F (y(xk))]‖2 ,

4. ∀k > 0, αk is chosen such that

∞∑
k=0

αk =∞ and

∞∑
k=0

α2
k <∞,

then the sequence {xk} generated by the BSGo algorithm converges in expecta-
tion to a stationary point of the function x→ F (y(x)), i.e.

lim
k→∞

E[‖∇x [F (y(xk)] ‖] = 0.

Proof let xk be a sequence of iterates generated by BSGo, we have

xk+1 = xk − αkg̃i
where i is randomly chosen in {1, . . . , N}.
From Lemma 2.2, we know that ∇xF is Lipschitz continuous with Lipschitz
constant L∇xF = L2

yL∇yF + LFL∇xy. Therefore, we can write the following
inequality

E[F (y(xk+1))|xk] ≤ E [F (y(xk))|xk] + E
[
∇x [F (y(xk))]

>
(xk+1 − xk)|xk

]
+
L∇xF

2
E
[
‖xk+1 − xk‖2|xk

]
≤ F (y(xk)) + E

[
−αk∇x [F (y(xk))]

>
g̃i|xk

]
+
L∇xF

2
α2
kE
[
‖g̃i‖2|xk

]
≤ F (y(xk))− µαk‖∇x [F (y(xk))] ‖2

+
L∇xF

2
α2
kE
[
‖∇x [F (y(xk))] + εk‖2|xk

]
.

≤ F (y(xk)) + αk

(
L∇xF

2
αk − µ

)
‖∇x [F (y(xk))] ‖2

+
L∇xF

2
α2
kE
[
‖εk‖2|xk

]
Taking the expectation again over all realizations of the random variable xk, we
get

E[F (y(xk+1))] ≤ F (y(xk)) + αk

(
L∇xF

2
αk − µ

)
‖∇x [F (y(xk))] ‖2

+
L∇xF

2
α2
kE
[
‖εk‖2

]
(6)

. (7)
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From the fact that E
[
‖εk‖2

]
≤ D‖∇x [F (y(xk))] ‖2, we have,

E [F (y(xk+1))] ≤ E [F (y(xk))]−αk
(
µ− αk

L∇xF +D

2

)
E
[
‖∇x [F (y(xk))] ‖2

]
.

(8)
Observe that if ∀k > 0, αk is chosen so as to ensure that 0 < αk <

2µ
L∇xF +D ,

then the sequence {E[F (y(xk+1))]} is decreasing. As αk is decreasing, it also
implies that for sufficiently large k, {E[F (y(xk))]} will decrease and converge
to its infimum as F is bounded below (monotone convergence theorem).

In the remaining part of the proof, we will show that the expected limit point
of the sequence {xk} is a stationary point of the function x→ F (y(x)).

Applying the above inequality (8) to pairs of iterates starting from (x1, x2) to
some iterates (xK−1, xK) for any K > 2, we get:

E [F (y(x0))]− E [F (y(x1))] ≥ α0

(
µ− α0

L∇xF +D

2

)
E
[
‖∇x [F (y(x0))] ‖2

]
E [F (y(x1))]− E [F (y(x2))] ≥ α1

(
µ− α1

L∇xF +D

2

)
E
[
‖∇x [F (y(x1))] ‖2

]
· · ·

E [F (y(xK−1))]− E [F (y(xK))] ≥ αK−1

(
µ− αK−1

L∇xF +D

2

)
× E

[
‖∇x [F (y(xK−1))] ‖2

]
Summing up all the above inequalities, we obtain the following,

E [F (y(x0))]−E [F (y(xK))] ≥
K−1∑
k=1

αk

(
µ− αk

L∇xF +D

2

)
E
[
‖∇x [F (y(xk))] ‖2

]
From assumption A3, x → F (y(x)) is bounded below. This implies that
E [F (y(x0))]−E [F (y(xK))] is bounded above and ∃M > 0 such that E [F (y(x0))]−
E [F (y(xK))] ≤ M . Hence we can bound the sum in the above inequality as
follows

K−1∑
k=1

αk

(
µ− αk

L∇xF +D

2

)
E
[
‖∇x [F (y(xk−1))] ‖2

]
≤M . (9)

Let now sk = αk(µ − L∇xF

2 αk). Since

∞∑
k=0

αk = ∞,

∞∑
k=0

α2
k < ∞, sk satisfies

∞∑
k=0

sk =∞. Taking K to ∞ in (9), we can write
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∞∑
k=0

skE
[
‖∇x [F (y(xk−1))] ‖2

]
≤M <∞, (10)

Assume now that ∃ε̂ > 0 and k̄ ∈ N such that ∀k ≥ k̄,

E
[
‖∇x [F (y(xk−1))] ‖2

]
≥ ε̂, (11)

implying
∞∑
k=0

skE
[
‖∇x [F (y(xk−1))] ‖2

]
≥ ε̂

∞∑
k=0

sk =∞. (12)

The inequality (12) contradicts inequality (9) meaning that the assumption (11)
is false. Therefore,

lim inf
k→∞

E [‖∇x [F (y(xk))] ‖] = 0,

Following a similar line of reasoning as in [2], we will now prove that

lim sup
k→∞

E [‖∇x [F (y(xk))] ‖] = 0.

Assume the contrary is true. This means that ∃ε̌ > 0 and k̃ ∈ N such that
∀k ≥ k̃, ∃i(k) satisfying

E [‖∇x [F (y(xk))] ‖] < ε̌/2
ε̌/2 ≤ E [‖∇x [F (y(xl))] ‖] ≤ ε̌ ∀l ∈ N such that k < l < i(k)

ε̌ < E [‖∇x [F (y(xi(k)))] ‖]
(13)

On one hand, from (13) and Lemma 2.2, observe that

ε̌

2
≤ E [‖∇x [F (y(xi(k))] ‖]− E [‖∇x [F (y(xk)] ‖]

= E [‖∇x [F (y(xi(k))] ‖ − ‖∇x [F (y(xk))] ‖]
≤ E [‖∇x [F (y(xi(k))]−∇x [F (y(xk))] ‖]
≤ L∇xFE [‖xi(k) − xk‖]

≤ L∇xF

i(k)−1∑
l=k

αlE [‖g̃l|xl‖] (14)

≤ νL∇xF

i(k)−1∑
l=k

αl‖∇x [F (y(xl))] ‖ (15)

Taking the expectation in the right hand side of (15) over all possible realizations
of the random variable xl (for l = k, . . . , i(k) − 1), we obtain

ε̌

2
≤ νL∇xF

i(k)−1∑
l=k

αlE [‖∇x [F (y(xl))] ‖]

≤ νε̌L∇xF

i(k)−1∑
l=k

αl.
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Hence,

lim inf
k→∞

i(k)−1∑
l=k

αl ≥
1

2νL∇xF
. (16)

On the other hand, from (8) and (13), we can write

E [F (y(xi(k)))] ≤ E [F (y(xk))]−
i(k)−1∑
l=k

αl

(
µ− αl

L∇xF +D

2

)
E
[
‖∇x [F (y(xl))] ‖2

]
≤ E [F (y(xk))]− µε̌2

4

i(k)−1∑
l=k

αl +
(L∇xF +D) ε̌2

2

i(k)−1∑
l=k

α2
l .

Since the sequence {E [F (y(xk))]} converges, and

∞∑
k=0

α2
k < ∞, we necessarily

have that

lim
k→∞

i(k)−1∑
l=k

αl = 0,

which contradicts the statement (16). As a consequence, the statement that
there exists ε̌ > 0 such that (13) is satisfied is false and

lim sup
k→∞

E [‖∇x [F (y(xk))] ‖] = 0,

which completes the proof of the convergence of Theorem 3.1.

Note on assumption (3) in Theorem 3.1:

The assumption that the variance of the noise ε is bounded by E
[
‖εk‖2

]
≤

D‖∇x [F (y(xk))] ‖2 has also been considered in [2, 16] and more recently in
[20]. Intuitively, it is reasonable to assume that if ‖∇x [F (y(xk))] ‖ is small,
there is little noise and that if ‖∇x [F (y(xk))] ‖ is growing, the variance of the
noise is growing as well (in proportion to its square).

4 Convergence of the bi-level stochastic gradi-
ent method with inner and outer approxima-
tion

We now consider the case where both outer and inner objective functions can
be expressed as finite sums as follows:

F (y(x)) =
1

N

N∑
i=1

Fi(y(x)) G(x, y) =
1

J

J∑
j=1

Gj(x, y)

11



The principle of the bi-level stochastic gradient method with inner and outer
approximations (BSG) is to randomly choose one i in {1, . . . , N} and one j in
{1, . . . , J} at each iteration and use (2.1) to compute an approximation g̃ji of
∇x [F (y(x))] as:

g̃ji = −Aj h̃i
where, similarly as in section 3, to ensure convergence, we require that the
matrix Aj and the vector h̃i are chosen so as to ensure the following sufficient
decrease condition :

E[g̃ji |xk]>∇x [F (y(xk))] ≥ µ‖∇x [F (y(xk))] ‖2

for some positive constant µ. This condition can also be written as:

−E[h̃i|xk]>E[Aj |xk]>H∇yF (ykj ) ≥ µ‖H∇yF (ykj )‖2 (17)

where ykj = argmin
ȳ∈Rm

Gj(xk, ȳ) and H = [∇2
yG(xk, y

k
j )]−1∇2

xyG(xk, y
k
j ).

The condition (17) is a coupling condition between the upper level(∇yF ) and
the lower level (H). In practice, it is not easy to check whether such condition
is satisfied or not. For this reason, in the next proposition, we give further
conditions on each of the levels separately that also ensure (17).

Proposition 4.1 Under Assumption A2, if there exists ρ and γ two positive
constants such that γρ ≥ µ‖H‖2 and such that for all k > 0, h̃i and Aj the
following conditions are satisfied

−E[h̃i|xk]>∇yF (ykj ) ≥ ρ‖∇yF (ykj )‖2 (18)

and
E[Aj |xk]>H � γIm (19)

then (17) is satisfied.

Proof Since γρ ≥ µ‖H‖2, we can write

γρ‖∇yF (ykj )‖2 ≥ µ‖H‖2‖∇yF (ykj )‖2 ≥ µ‖H∇yF (ykj )‖2.

From (18), we can further write

−γE[h̃i|xk]>∇yFi(ykj ) ≥ µ‖H∇yF (ykj )‖2,

which, using (19) leads to

−E[h̃i|xk]>E[Aj |xk]>H∇yFi(ykj ) ≥ µ‖H∇yF (ykj )‖2,

being condition (17).

Furthermore, we also show that under Assumption A2, the norm of the
gradient approximation g̃ji remains bounded by the norm of ∇x [F (y(xk))] if

the norm of h̃i is also bounded. This result is summarized in the following
proposition:

12



Proposition 4.2 Under Assumption A2, if there exists two positive constants
M and ν such that for all j ∈ {1, . . . , J}, ‖Aj‖ ≤M‖H‖ and for all k > 0,

‖E[h̃i|xk]‖ ≤ ν‖∇y [F (y(xk))] ‖

then, there exists a positive constant Cν such that

‖E[g̃ji |xk]‖ ≤ Cν‖∇x [F (y(xk))] ‖

Proof For all k > 0, for all (i, j) ∈ {1, . . . , N} × {1, . . . , J}, we have

‖E[g̃ji |xk]‖ ≤ ‖E[Aj |xk]‖‖E[h̃i|xk]‖
≤ ν‖E[Aj |xk]‖‖∇y

[
F (ykj )

]
‖

Since ‖Aj‖ ≤M‖H‖, we can write

‖E[g̃ji |xk]‖ ≤ νM‖H‖‖∇y
[
F (ykj )

]
‖

We also know that there exists λ > 1 a constant (with respect to i and k) that
satisfies the following:

‖∇y
[
F (ykj )

]
‖‖H‖ = λ‖H∇y

[
F (ykj )

]
‖,

Therefore,

‖E[g̃ji |xk]‖ ≤ λνM‖H∇x
[
F (xk, y

k
j )
]
‖

≤ Cν‖∇x [F (y(xk))] ‖

where Cν = λνM .

The BSG algorithm is summarized in Algorithm (2).

At iteration k, let again εk be the error between the gradient estimate and the
true gradient ∇x [F (y(x))]:

εk = g̃ji −∇x [F (y(x))] .

The convergence result for the BSG algorithm is summarized in the following
theorem.

Theorem 4.3 Suppose that:

1. Assumptions A1-A4 are satisfied,

2. ∃ν > 0 such that ∀i ∈ {1, . . . , N}, ∀k > 0,

‖E[h̃i|xk]‖ ≤ ν‖∇x [F (y(xk))] ‖

13



Algorithm 2 BSG Algorithm

1: Choose x0 and α0 > 0
2: k ← 0
3: while ‖∇x

[
Fi(y

(j)(xk))
]
‖ ≥ 0 do

4: Pick i randomly and uniformly in {1, . . . , N}
5: Pick j randomly and uniformly in {1, . . . , J}
6: Compute y(j)(xk) = argmin

ȳ∈Rm

Gj(xk, ȳ)

7: Choose g̃ji such that E[g̃ji |xk]>∇x [F (y(x))] ≥ µ‖∇x [F (y(x))] ‖2.

8: xk+1 ← xk − αkg̃ji
9: Update αk

10: k ← k + 1
11: end while

3. ∃µ > 0 such that ∀(i, j) ∈ {1, . . . , N} × {1, . . . , J}, ∀k > 0,

E[h̃i|xk]>E[Aj |xk]>H∇yF (ykj ) ≥ µ‖H∇yF (ykj )‖

4. ∀j ∈ {1, . . . , J}, ∃M > 0, ‖Aj‖ ≤M‖H‖

5. ∃D > 0 such that ∀k > 0, εk satisfies the following inequality

E
[
‖εk‖2

]
≤ D‖∇x [F (y(xk))] ‖2,

6. ∀k > 0, αk is chosen such that

∞∑
k=0

αk =∞ and

∞∑
k=0

α2
k <∞,

Then the sequence {xk} generated by the BSG algorithm converges in expecta-
tion to a stationary point of the function x→ F (y(x)), i.e.

lim
k→∞

E[‖∇x [F (y(xk)] ‖] = 0

Proof The sequence of iterates {xk} generated by BSG can be written as

xk+1 ← xk − αkg̃ji

where i and j are randomly chosen at each iteration k in {1, ..., N} and {1, ..., J}
respectively and g̃ji = −Aj h̃i with h̃i and Aj satisfying the assumptions of
Theorem 4.3.
Lemma 2.2 states that ∇xF is Lipschitz continuous (with Lipschitz constant
L∇xF = L2

yL∇yF + LFL∇xy. Therefore, given xk, we can bound the value of
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F (y(xk+1)) by a quadratic function above. In expectation, this gives

E[F (y(xk+1))|xk] ≤ E [F (y(xk))|xk] + E
[
∇x [F (y(xk))]

>
(xk+1 − xk)|xk

]
+
L∇xF

2
E
[
‖xk+1 − xk‖2|xk

]
≤ F (y(xk)) + E

[
−αk∇x [F (y(xk))]

>
g̃ji |xk

]
+
L∇xF

2
α2
kE
[
‖g̃ji ‖

2|xk
]

Using the sufficient decrease condition, we can further bound the previous ex-
pression as follows

≤ F (y(xk))− µαk‖∇x [F (y(xk))] ‖2

+
L∇xF

2
α2
kE
[
‖∇x [F (y(xk))] + εk‖2|xk

]
.

≤ F (y(xk)) + αk

(
L∇xF

2
αk − µ

)
‖∇x [F (y(xk))] ‖2

+
L∇xF

2
α2
kE
[
‖εk‖2|xk

]
Taking the expectation again over all possible realizations of xk, the remaining
part of the proof is identical to the proof of Theorem 3.1. By exploiting the
fact that E

[
‖εk‖2

]
≤ D‖∇x [F (y(xk))] ‖2, we can show exactly as before that

the sequence {E [F (y(xk+1))]} is decreasing. Observing that, when using inner
gradient approximation, the inequality (14) can be re-written as follows

ε̌

2
≤ L∇xF

i(k)−1∑
l=k

αlE
[
‖g̃jlil ‖|xl

]
where g̃jlil is chosen as g̃jlil = −Ajl h̃il with il and jl are picked randomly and
uniformly in the sets {1, . . . , N} × {1, . . . , J}.
Using Proposition 4.2, and taking the expectation of ‖∇x [F (y(xl))] ‖ over all
realizations of the random variable xl, we can write

ε̌

2
≤ CνL∇xF

i(k)−1∑
l=k

αlE [‖∇x [F (y(xl))] ‖] ≤ Cν ε̌L∇xF

i(k)−1∑
l=k

αl,

and, as before, see that the use of a step length αk satisfying

∞∑
k=0

αk = ∞ and

∞∑
k=0

α2
k <∞ will also ensure, with the exact same arguments, that

lim inf
k→∞

E [‖∇x [F (y(xk))] ‖] = lim sup
k→∞

E [‖∇x [F (y(xk))] ‖] = 0.
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Table 1: Piecewise linear loss functions

Loss φj
Hinge loss φj(z) = max{0, 1− yjz}
Absolute deviation loss φj(z) = |yj − z|
ε-insensitive loss φj(z) = max{0, |z| − ε}

5 Regularized empirical risk minimization

In this section, we briefly discuss the use of these algorithms and their conver-
gence results in the context of regularized empirical risk minimization (ERM).

Many machine learning problems can be cast as ERM. Basically, one tries to
build a model on past observations by minimizing some classification or fitting
error. The regularized variant of the problem builds solutions that exhibit nice
structure (ex:sparsity) to ensure generalization to unseen data. These problems
take the following general form:

min
ζ

r(ζ) + δ

J∑
j=1

φj(ζ
>xj)


where xj ∈ Rn are the feature vectors of J data points, φj is a loss function, r
a regularization function and δ > 0 an hyperparameter. Table 1 gives examples
of φj that are used for various machine learning problems.
In Problem (5), the trade-off between regularization and classification/fitting is
controlled by the hyperparameter δ. Tuning δ when datasets are large (i.e J
is large) is a difficult and expensive task if one wants to compute probabilis-
tics bounds or carry out cross-validation procedures (see [9]). For this reason,
stochastic bi-level optimization may be preferred [4]. The bi-level problem re-
sulting from learning the hyperparameter δ can be written as follows:

min
δ

N∑
i=1

φi(ζ̄(δ)>xvi )

s.t. ζ̄(δ) = argmin
ζ

r(ζ) + δ

J∑
j=1

φj(ζ
>xj)

 (20)

where xvi for i ∈ {1, . . . , N} are the validation data (unseen data) on which we
are tuning the hyperparameter.

Let us now discuss the applicability of the convergence results of algorithm BSG
to Problem (20) where φj are standard loss functions as often used in machine
learning applications (see Table 1) and r is the commonly used squared L2-norm
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(i.e. r(ζ) = 1
2‖ζ‖

2
2). If the BSG algorithm, h̃i and Aj are taken for example as

h̃i = φi(ζ̄(δ)>xvi )

and
Aj = [∇2

yGj(xk, y
k
j )]−1∇2

xyGj(xk, y
k
j ),

it is easy to check that g̃ji = −Aj h̃i is an unbiased estimate of ∇x [F (y(x))] and
the sufficient decrease condition (17) is satisfied.
Whenever φj is non differentiable as in the case of the hinge loss, observe that

one can replace in the inner and outer objectives

J∑
j=1

φj(ζ
>xj) and

N∑
i=1

φi(ζ̄(δ)>xvi )

by the following sums

Je∑
j=1

(1−yjζ>xj) and

Ne∑
i=1

(1−yj ζ̄(δ)>xvi ) where Je and Ne

are the number of training and validation error vectors, vectors with non zero
losses, as explained in [4]. In the stochastic approximation practical setting, this
only requires checking that the current random pick of data point is an error
vector or not, which is computationally inexpensive. For the ε-insensitive loss,
a simple test on the positivity of ζ>xj helps also in practice to smoothen the
problem.

Clearly, considering differentiable variants of φj , the functions r and φj are Lip-
schitz continuous and Lipschitz differentiable. We can also see that the function

ζ →

r(ζ) + δ

J∑
j=1

φj(ζ
>xj)

 is strictly convex, except for the Support Vector

Machine (SVM) case where strict convexity can be ensured by adding an extra
attribute to the data as explained in [14] and solving the SVM in the (n + 1)-
dimensional space. With this setting, assumptions A1−A3 are satisfied.

To check if assumption A4 is satisfied, we need to calculate the derivative of the
implicit function ζ̄ : δ → ζ̄(δ). Remember that

∇ζ(δ) = −
[
∇2
ζG(δ, ζ(δ))

]−1∇2
δζG(δ, ζ(δ)).

It is easy to see that ∇2
ζG(δ, ζ(δ)) = I where I is the identity matrix and that

∇2
δζG(δ, ζ(δ)) is a constant vector independent of δ and ζ for all loss functions

in Table 1 (ex: ∇2
δζG(δ, ζ(δ)) =

Je∑
i=1

yjxj for the hinge loss case). Hence, as-

sumption A4 is also satisfied.

The BSG algorithm is therefore applicable to these types of problems. Nu-
merical experiments with BSG for the large scale SVM case with hinge loss can
be found in [4]. The same stochastic bi-level technique was also used to adjust
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the level of input data uncertainty to be integrated in a robust SVM classifica-
tion model [5].

In these applications, the stochastic bi-level technique has shown significant
savings in computing times when compared to other alternative strategies that
sometime are not even applicable when the size of the dataset is extremely large.
For these types of large problems that require an outer optimization level to tune
hyperparameters, the proposed technique is often the only optimization-based
method available.

6 Conclusions

We have analyzed the convergence of stochastic optimization methods for bi-
level optimization problems (of the form of Problem (1)) where either the outer
objective function or both outer and inner objective functions can be expressed
as finite sums of independent terms. Under assumptions (A1)-(A4), we have
shown that convergence to a stationary point of Problem (1) is guaranteed in
expectation.

The bi-level formulation we have considered is a very simple instance of bi-level
programming but the difficulty resides in the size of the problems we have been
considering. The stochastic approximation methods we have proposed allows
sampling or approximation of both inner and outer objective functions. This
setting is specifically interesting when simple but large optimization problems
require hyperparameter optimization as this is tha case in large machine learn-
ing or image processing problems.

In the machine learning context, optimization is most of the time performed on
loss or regularized loss functions and these losses can be expressed as very large
sums of terms. Moreover, in this context, tuning model hyperparameters often
requires the use of computationally expensive cross-validation procedures com-
bined with a grid search approach. Alternatively, as explained in [4], the overall
issue of tuning model parameters on validation data while training, could be
expressed as a bi-level optimization problem of the form of Problem (1). The
results presented here are therefore giving some expected stationarity guaran-
tees for the bi-level stochastic gradient approach as an efficient alternative to
the well established cross-validation procedure among machine learning practi-
tioners.
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