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A numerical transcendental method in algebraic geometry:
Computation of Picard groups and related invariants

Pierre Lairez∗ and Emre Can Sertöz†

Abstract. Based on high precision computation of periods and lattice reduction techniques, we compute the
Picard group of smooth surfaces in P3. As an application, we count the number of rational curves of
a given degree lying on each surface. For quartic surfaces we also compute the endomorphism ring of
their transcendental lattice. The method applies more generally to the computation of the lattice
generated by Hodge cycles of middle dimension on smooth projective hypersurfaces. We demonstrate
the method by a systematic study of thousands of quartic surfaces (K3 surfaces) defined by sparse
polynomials. The results are only supported by strong numerical evidence; yet, the possibility of
error is quantified in intrinsic terms, like the degree of curves generating the Picard group.

1. Introduction. Griffiths emphasized the role of certain multivariate integrals, known as
periods, “to construct a continuous invariant of arbitrary smooth projective varieties” [39].
Periods often determine the projective variety completely and therefore its algebraic invariants.
Translating periods into discrete algebraic invariants raises difficult questions, exemplified by
the long standing Hodge conjecture which describes how periods determine the algebraic cycles
within a projective variety.

Recent progress in computer algebra makes it possible to compute periods with high
precision [68] and put transcendental methods into practice. This opens new possibilities in
numerical algebraic geometry. While path tracking methods from numerical algebraic geometry
are successful at computing topological invariants—irreducible decomposition [71], monodromy
groups [43] or Chern numbers [25]—the computation of periods reveal finer algebraic invariants.
For example, they are used to compute the endomorphism ring of the Jacobian variety of
algebraic curves [79, 7, 21, 12]. We extend this transcendental method to higher dimensions
and focus mainly on algebraic surfaces. We describe and implement a numerical method to
compute Picard groups of smooth surfaces. As an application, we count smooth rational curves
on quartic surfaces using the Picard group. We demonstrate that these methods apply more
generally to smooth hypersurfaces in a projective space of arbitrary dimension. Throughout
the paper we work over the complex field but the implementation is for hypersurfaces defined
over the rationals.

Structure of the Picard group and main results. There are many curves in a smooth
surface X ⊂ P3. The basic ones are those obtained by intersecting X with another surface S
in P3. If S1 and S2 are two surfaces of the same degree then the curve C1 = S1 ∩X can be
deformed into the curve C2 = S2 ∩X by varying continuously the coefficients of the defining
equation of S1. The curves C1 and C2 are said to be linearly equivalent. The notion of linear
equivalence extends to formal Z-linear combinations of curves and the Picard group [40, p. 143]
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of X is defined by

Pic(X)
def
= Z〈algebraic curves in X〉/〈linear equivalence relations〉.

The Picard group is an algebraic invariant that reflects the nature of the algebraic curves lying
on X. It is a free abelian group, that is, Pic(X) ' Zρ for a positive integer ρ called the Picard
number of X. As Zariski wrote, “The evaluation of ρ for a given surface presents in general
grave difficulties” [83, p. 110].

There is more to the Picard group than the Picard number. The intersection product,
which for any two curves C1 and C2 in X associates an integer C1 ·C2, induces a bilinear map
Pic(X)×Pic(X)→ Z. The intersection product is an intrinsic algebraic invariant of X that is
finer than the Picard number. There is also an extrinsic invariant in the Picard group, called
the polarization, recording much of the geometry of X within P3. The polarization is the linear
equivalence class of any curve obtained by intersecting X with a plane in P3. The problem we
address is then the following: Given the defining equation of X, compute the Picard number ρ
of X, the ρ× ρ matrix of the intersection product and the ρ coordinates of the polarization in
some basis of Pic(X) ' Zρ.

We approach the problem using transcendental methods, that is, we use the complex
geometry of the hypersurfaces and compute multivariate integrals on topological cycles, namely
the periods. For surfaces, the Lefschetz (1, 1) theorem identifies the Picard group of a surface
with the lattice of integer linear relations between periods. The rank, intersection product and
polarization of the Picard group can be computed from a high precision computation of the
periods [68] and well-established techniques in lattice reduction. We apply these techniques
also to the computation of the endomorphism ring of the transcendental lattice in order to
compute Charles’s gap [14], see below. Counting rational curves of a given degree lying on a
surface is an interesting application of the computation of the Picard group with its intersection
product and polarization. We study rigorously the reliability of using approximate periods
to make deductions about integral relations between them. In addition, we built a database
containing 180, 000 quartic surfaces to demonstrate the feasibility of the approach.

The method extends to higher dimensional hypersurfaces in order to compute the group
of Hodge cycles. For a hypersurface X in a projective space of odd dimension P2k+1

C with
k > 1 there are two interesting objects to study, replacing the Picard group for surfaces under
present discussion: the group of algebraic cycles Algk(X) generated by the cohomology classes
of k-dimensional algebraic subvarieties of X or the group of Hodge cycles Hdgk(X) generated
by integral linear relations between periods. The Hodge conjecture states in greater generality
that, after tensoring with rational numbers, the two groups Algk(X)⊗Z Q and Hdgk(X)⊗Z Q
coincide [24]. The resolution of this conjecture is one of the seven Millennium Prize Problems
posed by the Clay Institute. Perhaps the current method will allow for experimentation in
this direction with the ability to compute Hdgk(X) together with its intersection product and
polarization, see §5.

Applications. Let X be the space of solutions to a polynomial system of equations, as
might occur in integer programming, algebraic statistics or geometric modeling. It is natural
to consider subspaces of solutions that can be freely parametrized algebraically, such as linear
spaces inside X. When X ⊂ P3 is a smooth quartic surface, there is no dominant rational map
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P2 −→• X but there are often non-constant maps P1 → X. One of the applications of having
the Picard group of a quartic surface is the immediate ability to count smooth rational curves,
i.e. embeddings P1 ↪→ X, of any degree, see §3. Symbolic methods can tackle this problem too
but to the best of our knowledge, the computational complexity is too high to count anything
else that curves of degree one or two. Attempts at counting the number of maps P1 → X led
to deep connections between mathematics, string theory and mirror symmetry [44].

Periods of curves play a crucial role in finding algebro-geometric solutions to soliton
equations, e.g. integrable models in the KdV hierarchy. There is a large amount of work,
theoretical and applied, building upon this connection [70, 37, 22]. It is conceivable that
periods of higher dimensional varieties, now that they are easily accessible, will find new
applications.

Numerical period computations are used in constructing higher terms in Feynman integrals
appearing in perturbative quantum field theory [80, 10, 74]. Interpretations of the numerical
periods as rational linear sums of some expected transcendental numbers play an important
role in understanding the structure of these numbers [10]. A better understanding of the
reasons underlying this expected decomposition led to a surprising connection between high
energy physics and number theory [74]. Of direct relevance to our work is the paper [35] A
concrete application of computing Picard group of K3 surfaces is the proof of the impossibility
of resolving a square root in the parametrization of a two-loop Feynman integral [35].

Beyond physical interpretations, the behavior of periods is described in the global framework
of motives developed in the past decade [11]. The tools we develop open new ways of
experimentation. The computation of the Picard number of K3 surfaces in particular play
a crucial role in understanding the dimension of the mirror family associated to a given K3
surface [26]: computing the lattice structure of the Picard group gives an exact determination
for the base of this mirror family.

To further develop number theory as well as its applications to physics and cryptography
the LMFDB (The L-functions and Modular Forms Database) [72] was constructed (see also [1]),
partially relying on period computations of curves [54, 21]. The numerical transcendental
method introduced in our work applies well enough to surfaces to allow generation of databases
of similar nature1.

Related work. For surfaces of degree at most three the Picard group does not depend
on the defining equations and the main arguments to compute it have been known since the
19th century [27]. Starting with surfaces of degree four, the Picard group is sensitive to the
defining equations and its computation poses an entirely different kind of challenge. Noether
and Lefschetz [52] proved that a very general quartic surface has Picard number one. However,
the first quartic with ρ = 1 defined by a polynomial with integer coefficients appeared in
2007 with van Luijk’s seminal paper [78] where he used techniques involving reduction to
finite characteristic. Since then the reduction techniques have been going through a phase
of rapid development. The original argument of van Luijk was refined by Elsenhans and
Jahnel [29, 28] but the computational bottleneck persisted: in working with surfaces over finite
fields the computation of their Zeta function initially required the expensive process of point

1A proof-of-concept database containing more that 180, 000 quartic surfaces is available at https://pierre.
lairez.fr/quarticdb.
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counting. This bottleneck has been alleviated using ideas from p-adic cohomology and gave
rise to two different approaches: one dealing directly with the surface [48, 2, 20] and another
which deforms the given surface to a simpler one [51, 62].

To complement the upper bounds coming from prime reductions, lower bounds on the
Picard number can be obtained, at least in theory, by enumerating all the algebraic curves in X.
One could compute infinite sequences of lower and upper bounds that may eventually determine
the Picard number. However, Charles [14] proved that the upper bounds obtained from finite
characteristic could significantly overestimate the Picard number and he expressed the gap in
terms of the endomorphism ring of the transcendental lattice, see §2.3. In practice, computing
this gap appears to be just as difficult as the computation of the Picard number. However,
Charles demonstrated at last that the Picard number of a K3 surface (e.g. a quartic surface)
defined with coefficients in a number field is computable. On the theoretical side, effective
algorithms have been developed with a broader reach but with low practicability [14, 41, 65].
There is recent work addressing the issue of practicability [34].

Concerning numerical methods, high precision computation of periods has been successfully
applied to many problems concerning algebraic curves [79, 12], even with the possibility of a
posteriori symbolic certification [21].

Tools. For the purpose of exposition, we focus mainly on quartic surfaces. Our techniques,
as well as our code, work for hypersurfaces of any degree and dimension, given sufficient
computational resources. The main computational tool on the one hand is an algorithm to
approximate periods [68], based on Picard–Fuchs differential equations [64], algorithms to
compute them, [17, 49, 61, 59, 50, 9], and numerical analytic continuation [77, 76, 16, 56, 57].
On the other hand, we use algorithms to compute integer linear relations between vectors of
real numbers [33, 53, 42, 13, 32, 15].

We used the computer algebra system SageMath [73] with ore algebra-analytic2 [57] for
performing numerical analytic continuation and our code base is bundled as numperiods.3

Early experiments have been performed in Magma [8], with PeriodSuite4 [68] and periods5 [50].

The reliability of numerical computations. Although the periods vary continuously with
the coefficients of the defining equation of a surface, the Picard number is nowhere continuous
for surfaces of degree at least 4 [18] and behaves like the indicator function of the rational
numbers on the real line. This suggests that finite precision approximations of the periods of a
surface are not enough to formally determine the Picard group. Although sufficiently high
precision will compute the Picard group correctly, we do not know what precision is sufficient.

Instead, given the precision of the computation we determine a number B such that the
computed lattice contains the sublattice of the Picard group generated by all elements of norm
at most B. For example, using 600 decimal digits we have typically B ∼ 10100. In terms of
degree, it means that the group we compute contains all curves of degree at most B. With
over 180,000 examples, we never observed a generator of norm > 100. On the other extreme,
small relations may yield periods that are 0 to 600 decimal places but are non-zero. Such a

2http://marc.mezzarobba.net/code/ore algebra-analytic
3https://gitlab.inria.fr/lairez/numperiods
4https://github.com/emresertoz/PeriodSuite
5https://github.com/lairez/periods
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numerical coincidence would invalidate the computation by introducing false generators into
the lattice. We quantify the possibility of these errors precisely and relate them to quantities
intrinsic to the surface, see §4. If these intrinsics of the surface could be computed they would
allow for the certification of the numerical computations, however this computation appears
out of reach.

We checked our results against the literature whenever possible. In particular, we compared
our Picard number computations against controlledreduction6 [19] and Shioda’s algorithm for
Delsarte surfaces defined by a sum of four monomials [69]. Whenever a check was possible,
our computations gave the correct result.

Outline. In Section 2, we describe the computation of the Picard group of surfaces and
the endomorphism ring of the transcendental lattice of quartic surfaces from an approximation
of periods. In Section 3 we apply our computations to count smooth rational curves in quartic
surfaces. In Section 4 we describe and analyze a standard procedure to recover integer relations
between approximate real vectors. We quantify the nature of error in a way that is independent
of the methods employed and express it in terms of an intrinsic measure of complexity of the
given surface. Section 5 explains the situation for higher dimensional hypersurfaces where the
general idea of the method as explained in Section 2 applies verbatim. Section 6 summarizes
the experimental results obtained for over thousands of quartic surfaces. Section 7 explains
how we compute the polarization by fleshing out the argument given in [68].

Acknowledgments. We would like to thank Bernd Sturmfels for putting us together, for his
guidance and constant support. We also would like to thank Alex Degtyarev for explaining to
us how to count rational curves in a K3 lattice. We are also grateful for insightful conversations
with Simon Brandhorst, John Cannon, Edgar Costa, Stephan Elsenhans, Jon Hauenstein,
Marc Mezzarobba, Mateusz Micha lek, Matthias Schütt and Don Zagier, and for the valuable
comments of the referees.

2. Periods and Picard group.

2.1. Principles. Following Picard, Lefschetz and Hodge, algebraic curves on a smooth
complex surface X can be characterized among all topological 2-dimensional cycles of X in
terms of multivariate integrals (for a historical perspective, see [58, 45]).

Let X ⊂ P3 be a smooth complex surface. An algebraic curve C ⊂ X is supported on a
topological 2-dimensional cycle. Lefschetz proved that two algebraic curves are topologically
homologous if and only if they are linearly equivalent [52], see also [58, Chap. 9]. In other
words, the Picard group comes with a natural inclusion into the homology group

(2.1) Pic(X) ↪→ H2(X,Z).

This homology group is a topological invariant that depends only on the degree of X, while
Pic(X) is a much finer invariant of X.

Recall that for a 2-dimension cycle γ and any holomorphic differential 2-form ω on X, the
integral

∫
γ ω is well defined on the homology class of γ.

6https://github.com/edgarcosta/controlledreduction
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Theorem 2.1 (The Lefschetz (1,1) theorem). A homology class γ ∈ H2(X,Z) is in Pic(X)
if and only if

∫
γ ω = 0 for every holomorphic 2-form ω on X.

When X has degree 4, H2(X,Z) ' Z22 and X admits a unique non-zero holomorphic
2-form up to scaling, which we denote ωX . Given a basis γ1, . . . , γ22 of H2(X,Z), Theorem 2.1
becomes

(2.2) Pic(X) =

{
(a1, . . . , a22) ∈ Z22

∣∣∣∣∣
22∑
i=1

ai

∫
γi

ωX = 0

}
.

The integrals
∫
γi
ωX appearing here are called the periods of X. All periods can be expressed

as a sum of integrals in the affine chart C3 = {w = 1} ⊂ P3. For a 2-cycle γ ⊂ X ∩ {w = 1}
we can form a thin tube τ ⊂ C3 \X around γ so that

(2.3)

∫
γ
ωX =

1

2π
√
−1

∫
τ

dx dy dz

f(x, y, z, 1)
,

where f is the degree 4 homogeneous polynomial defining X [38].
In general, when X has degree d ≥ 4, H2(X,Z) has rank m = d3 − 4d2 + 6d − 2 and

the space Ω2(X) of holomorphic 2-forms on X is of dimension r =
(
d−1

3

)
. Fixing bases

H2(X,Z) = Z〈γ1, . . . , γm〉, Ω2(X) = C〈ω1, . . . , ωr〉 and applying Lefschetz (1,1) theorem we
get:

(2.4) Pic(X) =

{
(a1, . . . , am) ∈ Zm

∣∣∣∣∣ ∀1 ≤ j ≤ r,
m∑
i=1

ai

∫
γi

ωj = 0

}
.

In view of (2.2) and (2.4) we can determine Pic(X) by computing the matrix of periods
P = (

∫
γj
ωi)i,j and then finding integer linear relations between the rows, that is, by computing

the integral right kernel of P. The algorithm presented in [68] to compute the periods of X
takes care of the first step. We may then use lattice reduction algorithms [53, p. 525] to find
generators for Pic(X).

We briefly recall how periods of X are computed in [68]. The surface X is put into a single
parameter family of surfaces containing the Fermat surface Y = {xd + yd + zd + wd = 0}.
The matrix of periods along the family vary holomorphically in terms of the parameter and
these entries satisfy ordinary differential equations which are computed exactly, the Picard-
Fuchs differential equations. The value of this one parameter period matrix—as well as its
derivatives—at Y are given by formulas involving Gamma functions. The differential equations
together with the periods on Y expresses the periods of X as the solution to an initial value
problem. This initial value problem is solved using Mezzarobba’s implementation of numerical
analytic continuation [57] to arbitrary precision with rigorous error bounds.

The reconstruction of integer relations between numbers that are only approximately given
is not possible in general. However, we can guess generators of the integer relations, and
prove that these putative generators are genuine generators when the precision is high enough.
Section 4 is devoted to the study of this problem.
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

0 0 0 0 0 0 0 0 0 0 0 0 0 0−1669083212117905913652734 0 1937019641160560221317687 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1669083212117905913652734 1937019641160560221317687 . . .

1 0 0−1 0 0 0 1 1 0 0 0 0 0 −146511829901195443671789 84478429044587822467823 −365980228690630104919296 . . .
0 0 0 0 1 0 0 0 0 0 0 0 0 0 −337167720252678310258177 224110151973403946221421 −743116955936487279910552 . . .
0 0 0 0 0 0 0 0 0 0 0 0 1−1 357031479253522311483650 768066337666351099432748 940525994719391079998435 . . .
0 0 0 0 0 1 0 0 1 0 1 0 0 0 −552756671828854153114905−126018248279583585486071 535095811953165917210863 . . .
0−1 1 0 0 0 0 0 1 0 0−1 0 0 104335431129908645825133−231616284585318363570849 502730408585962411025306 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0−1 −649159586430203173692632 770784867967071100945665−2152014469737999315531272 . . .
0 0 0 0 0 0 0 0 0 1 1 0 0 0 277747983934797690835205 −28625739873061372966384 −638732179408358479990097 . . .
1 0 0 0 0 0 0 0 0 0 0 1 0 0 146511829901195443671790 −84478429044587822467823 365980228690630104919296 . . .
0 0 0 0 0 0 0 0 0 0 0−1 1 1 250899146775406645936761 575615030011256031395007 −114830012426104078247291 . . .
0 1 0 0 0 0 0 1 0 0−1 0 0 0 104335431129908645825133−231616284585318363570849 502730408585962411025307 . . .
0 0 0 0 0 0−1 0 0 0 0 0 1−1 −140644950443454586919439−393058206212350140614235 429933080833930208291557 . . .
0 0 0 0 0 0 0 0 1 0 0 0 0 0 594933070600140950961561 273156103820314126589096 −671845991848498223316874 . . .
0 0 0 0 1 0 0−1 0 0 0 0 0 0 337167720252678310258177−224110151973403946221421 743116955936487279910552 . . .
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −824317154838996681984621 177119763197465887754938 −236792300924643740702432 . . .
0 0 0 0 0 0 0 1 0 0 1 0 0 0 379344119023965108104833 −76972296432673405118395 606366776041154973804541 . . .
0 0 0 0 0 1 0 0 0 0 0 0 0 0 552756671828854153114905 126018248279583585486070 −535095811953165917210864 . . .
0 0 0 0 0 0 1 0 0 0 0 0 0−1 −140644950443454586919440−393058206212350140614234 429933080833930208291557 . . .
0 0 1 0 0 0 0 0 0 0 0 0 0 0 −104335431129908645825133 231616284585318363570849 −502730408585962411025307 . . .
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −467285675585474370500971−950623161465256990213520−1255629063127217210042702 . . .
0 0 0 1 0 0 0 0 0 0 0 0 0 0 −146511829901195443671790 84478429044587822467823 −365980228690630104919296 . . .
0 0 0 0 0 0 0 0 0 1 0−1 0 0 −277747983934797690835206 28625739873061372966384 638732179408358479990097 . . .
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −69025235930677842745100 457102914343586863258366 660652346877586707848817 . . .



Figure 2.1. Lattice of integer relations between approximate periods. The last 5 columns are omitted.

2.2. An example. Consider the quartic surface X ⊂ P3 defined by the polynomial

(2.5) f = 3x3z − 2x2y2 + xz3 − 8y4 − 8w4.

As described above, we may compute a 1× 22 matrix of periods to arbitrary precision. In this
example, the differential equations that arise are of order 5 with polynomial coefficients of
degree at most 59. On a laptop, the determination of this differential equation takes about two
seconds and it takes 30 seconds to integrate it to 100 digits of accuracy, with rigorous error
bounds.

Applying the LLL algorithm to these approximate periods of X gives a basis of integer
relations between the approximate periods. More precisely, we consider for the lattice Λ of
integer vectors (u, v, a1, . . . , a22) ∈ Z24 satisfying

(2.6)

22∑
i=1

ai

[
10100

∫
γi

ωX

]
= u+ v

√
−1,

where [−] denotes the rounding of real and imaginary part to nearest integer. Equation (2.6)
should be compared with (2.2). Short vectors in Pic(X) give rise to short vectors in Λ, and
a short vector in Λ is likely to come from a vector in Pic(X), unless a surprising numerical
cancellation happens.

Concerning the example, Figure 2.1 shows a matrix whose columns form a LLL-reduced
basis for the lattice Λ. We observe an important gap in size, between the 14th and 15th
column. We infer that the Picard number of X is 14 and that the columns of the lower left
22× 14 submatrix is a basis of Pic(X). The norm of the first dismissed column, about 1025,
fits precisely the expected situation described in Proposition 4.3.

This numerical approach may fail in two ways: either by missing a relation or by returning
a false relation which nevertheless holds up to high precision. Proposition 4.1 quantifies the
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

−4 0 0 2 2 2 0 −3 −1 −2 0 −1 1 −1
0 −4 2 0 −1 1 2 −1 2 0 4 −2 0 0
0 2 −4 0 2 0 −2 −1 −1 0 0 2 1 −1
2 0 0 −4 −1 −1 0 3 2 0 0 0 0 0
2 −1 2 −1 −4 0 1 3 1 2 1 0 −1 −1
2 1 0 −1 0 −4 −1 1 −1 2 −3 −1 1 3
0 2 −2 0 1 −1 −4 1 −2 0 −2 0 2 2
−3 −1 −1 3 3 1 1 −6 −1 −1 1 0 1 −1
−1 2 −1 2 1 −1 −2 −1 −4 1 −2 0 2 0
−2 0 0 0 2 2 0 −1 1 −4 0 1 −1 1

0 4 0 0 1 −3 −2 1 −2 0 −10 −1 0 3
−1 −2 2 0 0 −1 0 0 0 1 −1 −6 2 3

1 0 1 0 −1 1 2 1 2 −1 0 2 −4 0
−1 0 −1 0 −1 3 2 −1 0 1 3 3 0 −10





−4
−5

0
−2

4
3
1
3
−1

6
−2

4
0
2



Figure 2.2. Matrix of the intersection product and the coordinates of the hyperplane section in Pic(X).

way in which such a failure may occur: either the computation of Pic(X) is correct; or Pic(X)
is not generated by elements of norm < 1020; or there is some (ai) ∈ Zm with

∑
i a

2
i ≤ 4 such

that
∣∣∑

i ai
∫
γi
ωX
∣∣ is not zero but smaller than 10−99. Section 4.2 expresses these quantities

independently of any choice occurring in the computation.
The intersection product on Pic(X) is readily computed from the generators, as we now

describe. The basis of homology on X is obtained by carrying a basis from the Fermat surface Y
by parallel transport. On Y the intersection numbers γi · γj are known exactly as well as the
polarization, i.e. the coordinates of the homology class of a general place section H ∩X in
the basis {γi}22

i=1, see §7. As these values remain constant during parallel transport, we know
the intersection product on the homology of X as well as the polarization. Computing the
intersection product of the 14 generators of Pic(X) in homology, we obtain the intersection
product on Pic(X). Since the polarization lies in Pic(X) we express it in terms of these
generators of Pic(X). The result of this operation is displayed in Figure 2.2.

Applying standard methods to be discussed in §3, we find from the Picard lattice of X
that there are 4 lines, 102 quartic curves and no twisted cubics inside X.

2.3. Transcendental lattice and reduction to finite characteristic.
Definition and properties. Let X be a quartic surface. Beyond the Picard group of X, we

can compute its transcendental lattice and its endomorphism ring. The transcendental lattice
of X is given by

(2.7) T
def
=
{
ω ∈ H2(X,Z)

∣∣ ∀γ ∈ Pic(X), ω · γ = 0
}
.

We will denote the associated spaces by TQ = T ⊗ Q and TC = T ⊗ C. Observe that
ωX ∈ TC ⊂ H2(X,C) by (2.2). The endomorphism ring E is defined as the subring of all Q-
linear maps e : TQ → TQ preserving the intersection product and satisfying e(ωX) ∈ C〈ωX〉,
for the canonical extension of e to H2(X,C). The map ϕ : E → C defined by e(ωX) = ϕ(e)ωX
is an injective ring morphism and every nonzero element in E is invertible, therefore E is

8



a number field [46, Corollary 3.3.6]. In fact, E is either totally real or a CM-field [82], see
also [46].

Charles [14] determined in terms of E the overestimation of reduction methods to compute
the Picard number of K3 surfaces. We give here a quick overview, see [46, 75] for further
results. Although we state these results for quartic surfaces over Q much of it holds for any
K3 surface over a number field.

If the quartic X ⊂ P3 is defined by a polynomial f with integer coefficients, we may
consider for all but finitely many prime p the smooth quartic surface Xp defined over Fp by the
reduction of f modulo p. Let ρ and ρp denote the (geometric) Picard numbers of X and Xp

respectively. Let ρred be the minimum of the set {ρp | p > 5 prime and Xp smooth}. The
starting point of reduction methods is the inequality ρ ≤ ρred and the relative ease with which
the numbers ρp are computed. A key issue is to determine whether ρ = ρred.

Although ρ can be either even or odd, ρp is always even. This issue was partially overcome
by van Luijk [78] who gave necessary conditions for ρ = ρred. He used his argument to give the
first example of a K3 surface defined over the rationals with Picard number 1 by exhibiting
a surface X with ρred = 2 that does not satisfy his necessary condition. It was asked by
Elsenhans and Jahnel [30] whether ρ = ρred if ρ is even and ρ = ρred−1 if ρ is odd. Charles [14]
settled the question in the negative.

Theorem 2.2 (Charles). The equality ρred = ρ holds unless E is totally real and the
dimension of TQ over E is odd, in which case ρred = ρ+ dimQE.

Computation. From the numerical computation of periods, we obtain approximations
of ai

def
=
∫
γi
ωX ∈ C for some basis γ1, . . . , γ22 of H2(X,Z). The cohomology group H2(X,C)

is endowed with the dual basis γ∗1 , . . . , γ
∗
22 so that ωX =

∑
i aiγ

∗
i . Once a basis u1, . . . , uρ of

the Picard group Pic(X) is computed, a basis v1, . . . , vρ′ of T = Pic(X)⊥ ⊆ H2(X,Z) is found
readily. Let us remark that during our computations, the intersection products γ∗i · γ∗j are
known exactly and therefore the intersection product on T is immediately deduced.

For e ∈ EndQ(H2(X,Q)) the condition e ∈ E can be rewritten as:

(2.8) ∃λ ∈ C : e(ωX) = λωX ⇔ 〈ωX , e(ωX)〉ωX = 〈ωX , ωX〉e(ωX).

Writing A = (a1, . . . , a22)t for the coefficient vector of ωX , we can compute the endomorphism
ring E via the following formulation:

(2.9) E = Q ·
{
M ∈ Zρ

′×ρ′
∣∣∣ (ĀtMA)A = (ĀtA)MA

}
.

Just as with the computation of Pic(X), the problem of computing E is now a problem of
computing integer solutions to linear equations with approximate real coefficients. We approach
it once again with lattice reduction algorithms, see §4. Examples are provided in §6.

3. Smooth rational curves in K3 surfaces. The data of the matrix of the intersection
product in some basis of the Picard group of a smooth quartic surface X ⊂ P3 together with
the coordinates of the class of hyperplane section in the same basis (as in Figure 2.2) is enough
to count all smooth rational curves of a given degree lying on X.7 In principle, smooth rational

7We are indebted to Alex Degtyarev for sharing his understanding with us.
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curves in a surface can be enumerated using purely symbolic methods and for lines this process
is routine. However, it is a challenge to enumerate even the quadric curves in quartic surfaces,
let alone higher degree curves in higher degree surfaces. The computation of the Picard group
offers an indirect solution to this problem.

Fix a smooth quartic X ⊂ P3 and for each positive integer d let Rd be the set of all smooth
rational curves of degree d lying in X. In order to compute the cardinality of the set Rd we will
first observe that a smooth rational curve is completely determined by its linear equivalence
class. Recall that we denote by hX ∈ Pic(X) the class of a hyperplane section. For d > 0 we
define the set Md =

{
D ∈ Pic(X)

∣∣ D2 = −2, D · hX = d
}

.

Lemma 3.1. A smooth rational curve in X is isolated in its linear equivalence class. More-
over, the map Rd → Pic(X) which maps a rational curve to its linear equivalence class injects
Rd into Md.

Proof. Let C ∈ Rd and D = [C] ∈ Pic(X). As C is of degree d, it intersects a general
hyperplane in d points so that C · hX = d. Recall that the canonical class KX of the K3
surface X is trivial so that adjunction formula reads D2 = D · (KX +D) = 2g(P1)− 2 = −2
[6, §II.11][40, Ex. V.1.3]. This proves that the image of Rd lies in Md.

Now we show that C is isolated in its linear system. Indeed, if C ′ is a curve linearly
equivalent to but different from C, then the intersection number [C] · [C ′] must be positive, as
this number can be obtained by counting the points in C ∩ C ′ with multiplicity. This leads to
a contradiction: −2 = [C]2 = [C] · [C ′] > 0.

Typically, the inclusion Rd ↪→Md is strict. We now demonstrate that with knowledge of
Md′ for each d′ ≤ d one can compute the image of Rd in Md. For each d > 0 define inductively
a subset Nd ⊂Md as follows:

(3.1) Nd =
{
D ∈Md

∣∣ ∀d′ < d,∀D′ ∈ Nd′ , D
′ ·D ≥ 0

}
.

Note that when d = 1 there are no constraints and we have N1 = M1.

Proposition 3.2. For d > 0, the image of the inclusion Rd ↪→Md is Nd.

Proof. For any two distinct irreducible curves C and C ′ we have C · C ′ ≥ 0. Upon taking
C ∈ Rd and C ′ ∈ Rd′ for d′ < d we see that Rd injects in to Nd.

Now take any D ∈ Nd. From the Riemann–Roch theorem for surfaces [40, V.1.6] we get:

dimH0(X,OX(D)) + dimH0(X,OX(−D)) ≥ 1

2
D2 + 2 = 1,

so that either D or −D must be linearly equivalent to an effective divisor. Since D · hX > 0,
−D can not be so and therefore D must be.

Let us write D as a sum of classes of distinct irreducible curves
∑

i niCi with ni > 0. Since
D2 < 0 there exists an index i such that Ci ·D < 0. Moreover, Ci · Cj ≥ 0 for every j 6= i,
so C2

i < 0. By adjunction formula, we conclude that Ci is the class of a smooth rational curve
[40, Ex. IV.1.8]. Furthermore, let d′ = Ci · hX and observe d′ ≤ d. By definition of Nd we have
d′ = d and therefore D = Ci. Therefore, Rd surjects onto Nd.

Proposition 3.2 implies that in order to compute the cardinality of the set Rd it suffices to
compute the set Nd (see Algorithm 3.1). The latter can be easily computed from the sets Md′
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Algorithm 3.1 Finding rational curve classes on smooth quartic surfaces.

Input. The Picard group (i.e. matrix of the intersection product in some basis and the
coordinates of the class of hyperplane section in the same basis) of a smooth quartic
surface X ⊂ P3; an integer d > 0.

Output. The set {[C] ∈ Pic(X) | C ⊂ X is a smooth rational curve of degree d}.

function RationalCurves(Pic(X), d)
Compute a basis of Pic0(X) = {D | D · hX = 0} ⊂ Pic(X) ' Zρ
Compute a basis of 4 Pic(X) + ZhX ⊂ Pic(X)
Compute a basis of Λ = Pic0(X) ∩ (4 Pic(X) + ZhX) ⊂ Pic(X)
S ←

{
D ∈ Λ

∣∣ −D2 = 32 + 4d2
}

. e.g. with KFP algorithm [47, 36]
Md ←

{
1
4(D + dhX)

∣∣ D ∈ S} ∩ Zρ
return {D ∈Md | ∀d′ < d,∀D′ ∈ RationalCurves(Pic(X), d′), D ·D′ ≥ 0}

end function

for d′ ≤ d. We now reduce the computation of Md for each d > 0 to the enumeration of all
vectors of a given norm in a lattice with a negative definite quadratic form.

Let Pic0(X) = {D ∈ Pic(X) | D · hX = 0}. The intersection product on Pic0(X) is neg-
ative definite [46, Proposition 1.2.4]. Recalling that h2

X = 4, we define a map π : Pic(X)→
Pic0(X) with π(D) = 4D − (D · hX)hX .

The map π maps Md bijectively on to the following set:

(3.2) Md =
{
E ∈ Pic0(X)

∣∣ E2 = −(32 + 4d2) and E + dhX ∈ 4 Pic(X)
}
.

The inverse map Md →Md is given by E 7→ 1
4(E + dhX).

In order to compute Md we first find the finitely many elements E ∈ Pic0(X) of norm −(32+
4d2), for example using KFP algorithm [47, 36]. Then, among all such E, we select those
where 1

4 (E + dhX) has integer coordinates to obtain Md. In practice, it is sufficient and
more efficient to enumerate the elements of length −(32 + 4d2) in the sublattice π(Pic(X)) =
Pic0(X) ∩ (4 Pic(X) + ZhX).

Example 3.3. Take fX = 14x4−85x3z−2xz3+83y4−17y3w−96w4 and letX = Z(fX) ⊂ P3.
We find that X has Picard number 18 with the following representation of (Pic(X), hX):

−4 0 −1 0 −1 2 0 0 0 −2 0 −2 0 1 −1 −1 0 −2
0 −6 −3 −3 −3 3 0 −2 −2 −1 3 −1 −1 3 −1 0 1 0
−1 −3 −4 −2 −2 2 0 0 −1 0 2 0 −2 3 −2 0 1 0

0 −3 −2 −4 −2 2 1 −1 0 −1 1 −1 −1 2 −1 0 1 0
−1 −3 −2 −2 −4 2 0 0 −1 −1 2 0 0 2 −2 0 1 0

2 3 2 2 2 −4 1 2 2 2 −1 2 0 −2 2 0 −1 2
0 0 0 1 0 1 −4 −2 −2 1 1 1 0 0 −1 2 1 1
0 −2 0 −1 0 2 −2 −4 −2 0 1 −1 0 1 0 1 1 0
0 −2 −1 0 −1 2 −2 −2 −4 0 2 0 0 1 −1 1 2 0
−2 −1 0 −1 −1 2 1 0 0 −4 0 −2 1 0 0 −2 −1 −2

0 3 2 1 2 −1 1 1 2 0 −4 0 2 −2 1 −1 −2 −2
−2 −1 0 −1 0 2 1 −1 0 −2 0 −4 0 0 0 0 0 −2

0 −1 −2 −1 0 0 0 0 0 1 2 0 −4 3 −1 1 2 2
1 3 3 2 2 −2 0 1 1 0 −2 0 3 −6 3 0 −2 0
−1 −1 −2 −1 −2 2 −1 0 −1 0 1 0 −1 3 −4 1 2 −1
−1 0 0 0 0 0 2 1 1 −2 −1 0 1 0 1 −4 −2 −1

0 1 1 1 1 −1 1 1 2 −1 −2 0 2 −2 2 −2 −4 −1
−2 0 0 0 0 2 1 0 0 −2 −2 −2 2 0 −1 −1 −1 −4


,



−2
−1

1
1
3
4
4
0
0
0
0
2
2
0
−2

2
−1

4


.

Applying Algorithm 3.1 we see that there are 16 lines, 288 quadrics and 1536 twisted cubics
as determined by this lattice of X. The 16 lines, and their incidence correspondence, as
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we compute from this lattice are in agreement with what we can compute rigorously using
symbolic methods.

4. Numerical reconstruction of integer relations. In view of (2.2) and (2.4), recovering
Pic(X) boils down to finding integer linear relations between the period vectors. With the
methods employed here, a finite but high enough precision will successfully recover Pic(X).
It seems difficult to decide if a given precision is “high enough”. Instead, we will study
the process of finding linear relations between approximate vectors of real numbers and
quantify the expected behavior of “noise”, that is, of relations that are an artifact of the finite
approximation (the 15th to 22nd columns in Figure 2.1). We will thus select relations whose
behavior significantly differs from the expected behavior of noise.

The reconstruction of integer relations between real numbers is a well known application
of the Lenstra–Lenstra–Lovász lattice basis reduction algorithm [53, p. 525], see also [13, 15].
There are many other algorithms for the problem of computing integer relations, in particular
Ferguson and Forcade’s algorithm [33] and the HJLS [42] and PSLQ [32, 5, 31] families. A
strong point in favor of the folklore LLL approach is that efficient LLL implementations are
available in most computer algebra systems.

In this section, we recall and analyze the LLL approach to solve the following problem:
Given a numerical approximation of a real matrix P ∈ Rm×p, with p ≤ m, recover a basis
of the lattice Λ = {x ∈ Zm | xP = 0}. In our setting, the coefficients of P are the real and
imaginary parts of the periods

∫
γi
ωj of the surface X under consideration. A rigorous numerical

computation of Λ faces two obstacles: the lack of an a priori bound on the norm of generators
and the inability to recognize zero among periods. However, we can compute a candidate
lattice Λ̃ that satisfy a triple alternative: either Λ̃ = Λ; or Λ is not generated by elements of
norm less that some explicit number B; or some unexpected numerical cancellation happens
(Proposition 4.1).

The computation of a canditate lattice with LLL proceeds as follows. Assume that, for
some large β > 0 (typically 10300), we are given the exact value of the m× p integer matrix
Pβ obtained by entry wise rounding to the nearest integer the coefficients of βP , that is

(4.1) Pβ = βP + E, with E ∈ [−1
2 ,

1
2 ]p×m.

Then, we build the m× (p+m) integer matrix M =
[
Pβ Im

]
and compute an LLL-reduced

basis b1, . . . , bm of the lattice spanned by the rows of M .
We complement the folklore LLL approach with the following heuristic. If β is large enough,

Proposition 4.3 suggests that for ρ = rk Λ the norm ‖bρ‖ is small but the norm ‖bρ+1‖ is large

and comparable to β
p

m−ρ . In this case, Λ = 〈pr(b1), . . . ,pr(bρ)〉, where pr : Zp+m → Zm is the
projection on to the last m coordinates.

4.1. Quantitative results. For B > 0 and ε > 0 let ΛB,ε be the lattice

(4.2) ΛB,ε = 〈x ∈ Zm | ‖x‖ ≤ B and ‖xP‖ < ε〉 .

For B ≥ 1, let

(4.3) ε(B) = min {‖uP‖ | u ∈ Zm, ‖u‖ ≤ B and uP 6= 0} .
12



Algorithm 4.1 Computation of the lattice of integer relations between approximate real
vectors with a heuristic check.
Input. Q ∈ Zp×m and β > 0.
Precondition. Q = βP + E for some P ∈ Rp×m and E ∈ [−1

2 ,
1
2 ]p×m.

Output. Fail or return a sublattice Λ̃ ⊂ Zm and B,N, ε > 0.
Postcondition. Either Λ̃ = {x ∈ Zm | xP = 0};

or {x ∈ Zm | xP = 0} is not generated by vectors of norm at most B;
or ∃x ∈ Zm : ‖x‖ ≤ N , ‖xP‖ ≤ ε and xP 6= 0.

function IntegerRelationLattice(Q, β)
Compute an LLL-reduced basis b1, . . . , bm of the lattice spanned by the rows

[
Q Im

]
.

Find ρ such that ‖bρ‖ ≤ 2−m‖bρ+1‖ and β
p

m−ρ ≈ ‖bρ+1‖. Fail if there is none.
Λ̃← 〈pr(b1), . . . ,pr(bρ)〉, where pr : Zp+m → Zm takes the last m coordinates.

B ← 1
m2−

m+1
2 ‖bρ+1‖

N ← ‖uρ‖
ε← mβ−1N
Return (Λ̃, B,N, ε)

end function

Equivalently, ε(B) is the largest real number such that ΛB,ε(B) ⊆ Λ. Since ε(B) is non-
increasing as a function of B, the quotient B/ε(B) is strictly increasing as function of B. In
particular, for s ≥ 0 we may define a non-decreasing function ϕ with

(4.4) ϕ(s) = max{B ≥ 0 | mB/ε(B) ≤ s}.

The growth of this function governs the ability to numerically reconstruct Λ.
As above, assume that, for some β > 0, we are given the exact value of the integer m× p

matrix Pβ obtained by entry wise rounding to the nearest integer the coefficients of βP . Having
coefficients in [−1

2 ,
1
2 ], the error matrix E = Pβ − βP satisfies ‖E‖op ≤ 1

2

√
pm ≤ m− 1, where

‖·‖op denotes the operator norm, and where we used 1
2

√
pm ≤ 1

2m ≤ m− 1, as m ≥ 2.
Let R be the lattice generated by the rows of the integer m × (p + m) matrix M =[

Pβ Im
]

and let b1, . . . , bm be an LLL-reduced basis of R. We denote B0 = 0 and Bi = ‖bi‖,
for 1 ≤ i ≤ m. In particular B0 ≤ B1 ≤ · · · ≤ Bm. Gaps in this sequence typically separate
the elements of R that come from genuine integer relations from spurious relations coming
from the inaccuracy of the approximations.

Proposition 4.1. Let κ = m−12−
m+1

2 . For any i ∈ {0, . . . ,m− 1} such that Bi ≤ κBi+1, at
least one of the following propositions holds:

(i) {pr(b1), . . . ,pr(bi)} is a basis of Λ;
(ii) Λ is not generated by elements of norm ≤ κBi+1;

(iii) ϕ(β) ≤ Bi.
Proof. By Lemma 4.2 below, we have

ΛBi,mβ−1Bi = ΛκBi+1,mβ−1κBi+1
= 〈pr(b1), . . . ,pr(bi)〉.
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If Λ is generated by elements of norm ≤ κBi+1 then Λ ⊆ ΛκBi+1,mβ−1κBi+1
, and therefore Λ ⊆

ΛBi,mβ−1Bi . If moreover ϕ(β) > Bi, then mβ−1Bi ≤ ε(Bi), by definition of ϕ, and this implies
that ΛBi,mβ−1Bi ⊆ Λ.

Lemma 4.2. For any i ∈ {0, . . . ,m− 1} and any B ∈ [Bi, κBi+1]

ΛB,mBβ−1 = 〈pr(b1), . . . ,pr(bi)〉.

Proof. Let Λi ⊂ Zm be the lattice generated by pr(b1), . . . ,pr(bi) and let Ri ⊂ R be the
lattice generated by 〈b1, . . . , bi〉. Let R|τ denote the sublattice of R generated by vectors of
length at most τ .

We first show Λi ⊆ ΛB,mBβ−1 . Let x = pr(bj), with j ≤ i. We have ‖x‖ ≤ ‖bj‖ ≤ ‖bi‖ ≤ B.
Moreover bj =

[
xPβ x

]
, so ‖xPβ‖ < ‖bj‖ ≤ B. Since xP = β−1(xPβ − xE), we obtain

(4.5) ‖xP‖ ≤ β−1 (‖xPβ‖+ (m− 1)‖x‖) < mBβ−1.

Conversely, let x ∈ Zm such that ‖x‖ ≤ B and ‖xP‖ < mBβ−1. Let r =
[
xPβ x

]
. We

check that

‖r‖ ≤ ‖xPβ‖+ ‖x‖ ≤ β‖xP‖+ ‖xE‖+ ‖x‖(4.6)

≤ 2mB < 2−(m−1)/2Bi+1.

The properties of an LLL-reduced basis [60, Thm. 9] imply that no family of i+ 1 vectors in R
with norms less than 2−(m−1)/2Bi+1 is independent. Since b1, . . . , bi are independent and of
norm ≤ B, it follows that r ∈ QRi. Moreover R is a primitive lattice (that is QR∩Zp+m = R)
therefore any subset of the basis b1, . . . , bm of R generates a primitive lattice, so r ∈ Ri. And
therefore x = pr(r) ∈ Λi.

The size of the gap between Brk Λ and Brk Λ+1 can be described more precisely in terms
of ϕ(β).

Proposition 4.3. Let ρ = rk Λ and let C be the smallest real number such that Λ is generated
by elements of norm at most C. For any β > 0:

(i) Bρ ≤ 1
2κ
−1C;

(ii) ϕ(β) ≤ Bρ+1;
Moreover, if C ≤ 2ϕ(β), then

(iii) κBρ+1 ≤ ϕ(β);
(iv) pr(b1), . . . ,pr(bρ) is a basis of Λ.

Proof. For x ∈ Zm let r(x) =
[
xPβ x

]
∈ R. If x ∈ Λ, that is xP = 0,

(4.7) ‖r(x)‖ ≤ ‖xPβ‖+ ‖x‖ ≤ β‖xP‖+ ‖xE‖+ ‖x‖ ≤ m‖x‖,

using Pβ = βP + E. In particular, R contains ρ independent elements of norm at most mC.

This implies that Bρ ≤ m2
m−1

2 C = 1
2κ
−1C; this is (i).

For (ii), since Λ has rank ρ, at least one of the pr(b1), . . . ,pr(bρ+1) is not in Λ, say pr(bi),
denoted x. Since x = pr(bi) 6∈ Λ, xP 6= 0 and ‖xP‖ ≥ ε(Bρ+1). Moreover Bρ+1 ≥ ‖bi‖ ≥
‖xPβ‖, because bi = r(x). It follows

(4.8) Bρ+1 ≥ β‖xP‖ − ‖xE‖ ≥ βε(Bρ+1)− (m− 1)Bρ+1,
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which implies ϕ(β) ≤ Bρ+1.
To check (iii), let x ∈ Zm such that ‖x‖ ≤ ϕ(β) and ‖xP‖ = ε(ϕ(β)). By construction,

x 6∈ Λ. The element r(x) ∈ R satisfies

(4.9) ‖r(x)‖ ≤ β‖xP‖+ ‖xE‖+ ‖x‖ ≤ βε(ϕ(β)) +mϕ(β).

By definition of ϕ, βε(ϕ(β)) = mϕ(β) and therefore ‖r(x)‖ ≤ 2mϕ(β). As shown above,
R contains ρ independent elements of norm ≤ mC that project to elements of Λ. The
vector r(x) ∈ R does not project on Λ, so R contains ρ + 1 independent elements of norm
≤ mmax(C, 2ϕ(β)) = 2ϕ(β). It follows that κBρ+1 ≤ ϕ(β).

Minkowski’s Theorem on linear forms shows that if εpβm−rk Λ−p ≥ det(P TP ), there is
an x ∈ Λ⊥ ∩ Zm such that ‖xP‖ ≤ pε. Therefore

(4.10) ε(β) = O
(
β

1−m−rk Λ
p

)
and ϕ(s) = O

(
s

p
m−rk Λ

)
.

We define the irrationality measure of P , denoted µ(P ) as the infimum of all µ > 0
such that ε(β) = O(β1−µ) as β → ∞. As for the usual irrationality of real numbers, we
can show with Borel–Cantelli Lemma that µ(P ) = m−rk Λ

p for almost all P ∈ Rm×p with a
given lattice Λ of integer relations. Generalizing Roth’s Theorem on rational approximation
of algebraic numbers, Schmidt [67] proved that if P has algebraic coefficients, with some
additional hypotheses, then it again holds that µ(P ) = m−rk Λ

p .
All in all, this leads to Algorithm 4.1. The heuristic check relies on assuming µ(P ) = m−rk Λ

p ,

approximating ϕ(β) ' β1/µ(P ), that is ϕ(β) ' β
p

m−rk Λ , and applying Proposition 4.3.

4.2. Intrinsic error bounds for the computation of the Picard group. Let X ⊂ P3 be
a smooth surface of degree d, (γi)i a basis of H2(X,Z) and (ωj)j a basis of the space of
holomorphic 2-forms Ω2(X) on X. Given a numerical approximation of the period matrix( ∫

γi
ωj
)
i,j

, one can compute with Algorithm 4.1 a sublattice Λ ⊂ H2(X,Z) and three positive
numbers B, N and ε such that one of the following hypotheses must hold:

1. Λ = Pic(X); or
2. Pic(X) is not generated by the set {

∑
i aiγi ∈ Pic(X) |

∑
i a

2
i ≤ B2}; or

3. there is some
∑

i aiγi ∈ H2(X,Z) such that

∑
i

a2
i ≤ N2 and 0 <

∑
j

∣∣∣∣∑
i

ai

∫
γi

ωj

∣∣∣∣2 ≤ ε2.

For B large enough and ε small enough the latter two possibilities can not be realized. As we
have no rigorous criterion to exclude Hypotheses 2 or 3, it is important to be able to interpret
them as well as possible. Currently, these conditions are not expressed in intrinsic terms
and the choice of bases may affect the relevance of the triple (B,N, ε). For example, if γ1 is
replaced by γ1 +Bγ2, Hypothesis 2 becomes plausible.

First, we note that Ω2(X) is endowed with a natural Hermitian structure, defined by

‖ω‖2 def
=

∫
X
ω ∧ ω.
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If we choose a basis (ωj)j of Ω2(X) orthonormal with respect to this Hermitian structure, then
the statement of Hypothesis 3 will be independent of the choice of the orthonormal basis.

Second, following [46, Example 3.1.7(ii)], we define a canonical norm on H2(X,R).
Let αj , βj ∈ H2(X,R) be the unique homology classes such that for any γ ∈ H2(X,R),

(4.11) γ · (αj +
√
−1βj) =

∫
γ
ωj .

Let U be the R-linear subspace of H2(X,R) generated by hX , αj and βj . Let U⊥ be the
orthogonal complement of U with respect to the intersection product so thatH2(X,R) = U⊕U⊥.
The intersection product is positive definite on U and negative definite on U⊥. Therefore, the
quadratic form q defined on H2(X,R) by

(4.12) q(u+ v)
def
= u · u− v · v,

for any u ∈ U and v ∈ U⊥, is positive definite.
The matrix of q can be computed numerically from the intersection matrix on H2(X,R)

and bases of U and U⊥. We can compute bounds for σmin(q) and σmax(q), the smallest and
largest eigenvalues of q respectively. For any v =

∑
i aiγi ∈ H2(X,R), we have

(4.13) σmin(q)q(v) ≤
∑
i

a2
i ≤ σmax(q)q(v).

Therefore, with N ′
def
= σmax(q)1/2N and B′

def
= σmin(q)1/2B, we obtain the following alternative

hypotheses which are independent of the choice of bases:
1. Λ = Pic(X); or

2’. Pic(X) is not generated by the set {v ∈ Pic(X) | q(v) ≤ (B′)2}; or
3’. there is some v ∈ H2(X,Z) such that

q(v) ≤ N ′2 and 0 <
∑
j

∣∣∣∣ ∫
v
ωj

∣∣∣∣2 ≤ ε2.

We obtain rigorous bounds on B′, N ′ and ε using interval arithmetic.
Lemma 4.4 allows for another interpretation for any surface. For simplicity, let us assume X

has degree four. If Hypothesis 2’ fails for a surface X of degree d, then Pic(X) is not generated
by classes of irreducible curves of degree less than B′. In our computations, B′ is typically
larger than 10100 which proves that the sublattice of H2(X,R) that we compute contains the
classes of all irreducible algebraic curves in X of degree at most 10100. In particular, our count
of smooth rational curves (up to degree 10100) gives rigorous upper bounds for the correct
numbers.

Lemma 4.4. If X is a smooth surface of degree d and D ∈ Pic(X) the class of an irreducible
curve of degree δ, then q(D) ≤ 2 + (d− 4)δ + 2

dδ
2.

Proof. Any D ∈ Pic(X) decomposes as

D = 1
d(D · hX)hX +

(
D − 1

d(D · hX)hX
)
,
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with the first and second terms respectively in U and U⊥. Therefore

q(D) = 1
d2 (D · hX)2(hX · hX)−

(
D − 1

d(D · hX)hX
)2

= −D2 + 2
d(D · hX)2.

In particular, if D is the class of an irreducible curve C ⊂ X of degree δ and arithmetic
genus pa, then −D · (D +KX) = 2− 2pa ≤ 2 and D · hX = δ. Moreover KX = (d− 4)hX [40,
Ex. 8.20.3], therefore

q(D) = −D · (D +KX) + (d− 4)D · hX + 2
d(D · hX)2

≤ 2 + (d− 4)δ + 2
dδ

2.

5. Hypersurfaces of arbitrary even dimension. Let k be a positive integer and let X ⊂
P2k+1 be a smooth hypersurface. Using Lefschetz hyperplane theorem and Poincaré duality
we see that the cohomology groups H i(X,Z) are either trivial or Z except when i = 2k. The
Hodge decomposition on de Rham cohomology gives

(5.1) H2k
dR(X,C) =

⊕
p+q=2k

Hp,q(X,C).

Algebraic cycles of dimension k in X give cohomology classes in

(5.2) Hdgk(X)
def
= Hk,k(X,C) ∩H2k(X,Z).

As a generalization of Theorem 2.1, the Hodge conjecture predicts that the vector space
Hdgk(X)⊗Z Q is spanned by algebraic cycles [81].

The Hodge group Hdgk(X) comes with an intersection pairing obtained by restricting the
cup product on cohomology H2k(X,C). Furthermore, there is a polarization hkX ∈ Hdgk(X)
where hX is the class of a generic hyperplane section of X. The tools we used to tackle the
computation of Picard groups apply to the following problem: given the defining equation of
X ⊂ P2k+1, compute the rank ρ of Hdgk(X), the ρ× ρ matrix of the intersection product and
the ρ coordinates of the polarization hkX in some basis of Hdgk(X) ' Zρ.

Suppose now that γ1, . . . , γm ∈ H2k(X,Z) is a basis for the middle homology group of X.
We can then identify the cohomology H2k(X,C) = Hom(H2k(X,Z),C) with Cm via the dual
basis of {γi}mi=1. Let us write F 2k,`(X,C) =

⊕`
j=0H

2k−j,j(X,C) for the corresponding Hodge
filtration.

Let ω1, . . . , ωs ∈ F 2k,k−1(X,C) be a basis for the (k − 1)-th part of the Hodge filtration.
Suppose that we have the coordinates of ωi with respect to the identification Hn(X,C) ' Cm,
that is, suppose that for each i = 1, . . . , s the following integrals are known

(5.3)

(∫
γ1

ωi, . . . ,

∫
γm

ωi

)
∈ Cm.

These periods of X are listed as the columns of the following matrix:

(5.4) P def
=

(∫
γi

ωj

)
i=1,...,m
j=1,...,s

.
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The matrix P induces the linear map PZ : Zm → Cs by acting on the integral vectors from the
right.

Lemma 5.1. We have a natural isomorphism Hdgk(X) ' kerPZ.

Proof. The kernel of PZ computes in H2k(X,Z) the classes annihilated by F 2k,k−1(X,C).
Any integral (or real) class annihilated by F 2k,k−1 will also be annihilated by its complex

conjugate F 2k,k−1. We now use the equality Hk,k(X,C) =
(
F 2k,k−1 ⊕ F 2k,k−1

)⊥
and the

definition of Poincaré duality.

The kernel of PZ sits most naturally in homology H2k(X,Z) and is denoted by Hdgk(X).
We can approximate the matrix P to the desired degree of accuracy for an automatically
generated basis of F 2k,k−1(X,C) and some implicit basis of H2k(X,Z) [68]. The basis of
H2k(X,Z) comes with an intersection pairing as well as the coordinates of the polarization hkX
in this basis.

In light of Lemma 5.1, it remains to compute integral linear relations between the columns
of P to recover Hdgk(X). That is the problem studied in §4.

The study of the Hodge groups of cubic fourfolds is an active area of research [66, 3].
Although generic cubic fourfolds provide a computational challenge, we can quickly compute
the Hodge rank of sparse cubic fourfolds if most of the monomial terms are cubes of a single
variable.

Example 5.2. Let X be the cubic fourfold in P5 cut out by the equation

(5.5) 6x3
0 + 10x0x2x4 + 9x0x2x5 + 4x3

1 + 2x1x
2
2 + 4x3

2 + 3x3
3 + 4x3

4 + 9x3
5.

We find that Hdg2(X) is of rank 13.

6. Experimental results. We put our methods into practice and computed the Picard
lattices of thousands of smooth quartic surfaces defined by sparse polynomials. For these
computations, setting up the initial value problem for the periods was not the limiting factor
but rather the numerical solution of these initial value problems took the greatest amount of
time. With our current methods, the periods of a quartic surface defined by dense polynomials
may take weeks to compute. Further work will address the problem.

As a first experiment, we performed a systematic exploration of quartics that are defined
by a sum of at most six monomials in x, y, z, w with coefficients 0 or 1. We built a graph whose
vertices store the defining polynomials and an edge between two polynomial is constructed
if the difference of the two polynomials is supported on at most two monomials (this is
done to ease the computations). Then, for each edge, we setup and attempt to solve the
initial value problem defining the transition matrix from one set of periods onto the other,
using 300 decimal digits of precision, see [68] for details. Computation is stopped if it takes
longer than an hour and the edge deleted. Having explicit formulas for the periods of Fermat
surface

{
x4 + y4 + z4 + w4 = 0

}
, we can compute the periods of any vertex in the connected

component of x4 + y4 + z4 + w4 in the resulting graph by simply multiplying the transition
matrices of each edge along a path.

For each of the 2790 polynomials in this graph, we computed the Picard group, the
polarization, the intersection product, the endomorphism ring and the number of smooth
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Defining polynomial Picard number

wx3 + w3y + y4 + xz3 + z4 1
x3y + z4 + y3w + zw3 4

x3y + y4 + z3w + yw3 + zw3 6
w3x+ x4 + wx2z + x3z + xy2z − y3z + wxz2 + x2z2 − xz3 + z4 7

x3y + z4 + y3w + xw3 + w4 8
w4 + wx2y + y4 + x3z − xy2z + z4 9

x3y + z4 + y3w + w4 10
w4 + x4 + x2y2 + y4 − w3z −2 xy2z + x2z2 + z4 11

x3y + y4 + z3w + x2w2 + w4 12
w4 +3 x4 + wy3 + y2z2 + wz3 +2 xz3 13

x3y + y4 + z3w + yw3 + w4 14
x3y + y3z + z4 + xy2w + zw3 15

x3y + y4 + z3w + xyw2 + y2w2 + w4 16
x3y + y4 + z4 + x2w2 + zw3 17
x3y + x3z + y3z + yz3 + w4 18
x3y + z4 + y3w + xyzw + xw3 19

x3y + z4 + y3w + xw3 20

Figure 6.1. Specimen polynomials for each Picard number found

rational curves of degree up to 4. We found quartic surfaces with Picard number 4, 6, 8, 10,
12, 14, 15, 16, 17, 18, 19 and 20, see Figures 6.1 and 6.2. When possible, we checked that
our results were consistent with Shioda’s formula for 4-nomial quartic surfaces [69], reduction
methods with Costa’s implementation [19] and symbolic line counting.

Afterwards, we extended our collection of quartics by following a random walk in the space
of homogeneous polynomials of degree 4 in 4 variables, where each step adds or substracts a
monomial. We computed the periods of more than 180,000 quartics as well as the related data:
Picard lattice, endomorphism ring of the transcendental lattice, number of smooth rational
curves of degree at most 4.8

We give a few interesting examples below. Of course, all the assertions were obtained
through numerical computations, so they are not proved.

Example 6.1. {x4 + y3z + xyzw + z3w + yw3 = 0}. This surface has Picard number 19. It
contains no smooth rational curves of degree < 4 but has 133056 smooth rational curves of
degree 4. These generate the Picard group.

Example 6.2. {x3y+ x3z+ y3z+ yz3 + z4 + xw3 = 0}. This surface has Picard number 10.
It contains 13 lines that generate the Picard group. The endomorphism ring is Q(exp(2πi

18 )), a
cyclotomic extension of Q of degree 6. Up to degree 10, the number of smooth rational curves
inside X are as follows.

8Results are compiled at https://pierre.lairez.fr/quarticdb.
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0 0 0

249

0

123

0

186

0

757

0

389

0

431

25

239

29

284

65
13

Figure 6.2. Occurence of Picard numbers in the graph of 4-nomials and 5-nomials

d 1 2 3 4 5 6 7 8 9 10
#Rd 13 0 0 108 0 0 972 0 0 3996

Example 6.3. {x3y + z4 + y3w + zw3 = 0}. This surface has Picard number 4. It contains
exactly 4 lines that generate the Picard group and no other smooth rational curve of degree <
100. The endomorphism ring is Q(exp(πi27)), a cyclotomic extension of Q of degree 18. They
actually all come from the diagonal morphism

(x, y, z, w) 7→ (ζ9w, ζx, ζ−3y, ζ−27z),

for some primitive 108th root of unity ζ, that fixes the defining polynomial of the surface.

Example 6.4. {w4 +x4 +xy3 +y4 +w3z+xyz2 +z4 = 0}. This surface has Picard number 9.
It contains no smooth rational curves of degree ≤ 21 (the space complexity of the search makes
it difficult to search for higher degree curves). The Picard lattice is generated by smooth
quartic curves of genus 1. It would be interesting to settle the existence of rational curves on
this surface.

Example 6.5. {wx3 + w3y + y4 + xz3 + z4 = 0}. This surface has Picard number 1. The
first example of such a quartic surface defined over Q was given recently by van Luijk [78].
As Picard number 1 is the smallest possible value, implementations of finite characteristic
methods, e.g. controlledreduction [19], can readily prove that this is the correct number.

7. Computing the coordinates of the polarization. Let X = Z(fX) ⊂ Pn+1 be a smooth
hypersurface of degree d and assume n is even. We compute a basis for the middle integral
homology Hn(X,Z) by carrying over a basis from a hypersurface of Fermat type [68, §1.3]. If

hX = [X ∩H] denotes the hyperplane class in X, then h
n/2
X ∈ Hn(X,Z) is the polarization.

The orthogonal complement of h
n/2
X is the primitive homology, denoted PHn(X,Z). In order to

compute the periods of X, it is sufficient to work only with the primitive homology PHn(X,Z)
as is done in [68]. In §4.5 of loc. cit. there is a sketch on how to complete the given basis
for the primitive homology to a basis of homology. In this section we flesh out the details
as the particular choices we make in completing the basis determine the coordinates of the
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polarization. The problem that must be addressed is that h
n/2
X and PHn(X,Z) do not generate

Hn(X,Z) but a full rank sublattice.
In [68] the Fermat surface Y = Z(xd0 + · · ·+ xdn − xdn+1) was used for the construction of

a basis of primitive homology. This basis is formed using a Pham cycle and the Pham cycle
itself is formed by gluing translates of the following simplex:

D = {[s0 : s1 : · · · : sn : 1] | si ∈ [0, 1], sd0 + · · ·+ sdn = 1} ⊂ Y.

For β = (β0, . . . , βn+1) ∈ Zn+2 we define the translations tβ : Pn+1 → Pn+1 by the action on
the coordinates xi 7→ ξβixi. Then the Pham cycle S is defined by:

S = (1− t−1
0 ) · · · (1− t−1

n )D,

where summation is union and negation is change of orientation [63]. It is possible to compute
a subset B ⊂ Zn+2 for which the set {tβS}β∈B is a basis for the primitive homology PHn(Y,Z),
for instance, use Corollary 4.8 [68]. We will now add one more cycle to complete {tβS}β∈B to
a basis of homology.

With d being the degree of X and Y , we denote the d-th root of −1 by η := exp(π
√
−1
d )

and the d-th root of 1 by ξ := exp(2π
√
−1
d ). Let Pn/2 be a projective space with coordinate

functions µ0, . . . , µn/2 and consider the linear map Pn/2 → Pn+1 defined by

x2k = µk, x2k+1 = ηµk k = 0, . . . ,
n

2
− 1,(7.1)

xn = µn
2
, xn+1 = µn

2
.

The image of this map is a linear space L which is evidently contained in Y . Let [L] be the
homology class of L and let γβ be the homology class of tβS. The set {[L]} ∪ {γβ}β∈B is a
basis for the integral homology Hn(X,Z).

As Y is deformed into X, the homology class of L will typically deform into a class which
no longer supports an algebraic subvariety and therefore this class will typically have non-zero
periods. Nevertheless, we can deduce the periods of L as it deforms based on the following

two observations: The polarization h
n/2
Y deforms in to h

n/2
X and will always remain algebraic

throughout the deformation. We will know the periods of the Pham basis {tβS}β∈B as it
deforms.

The homology with rational coefficients Hn(Y,Q) splits into the direct sum PHn(Y,Q)⊕
Q〈hn/2Y 〉 so that we may write:

(7.2) [L] =
1

d
h
n
2
Y +

∑
β∈B

aβγβ.

The coefficients {aβ}β∈B ⊂ Q of this relation remain constant as we carry the basis {[L]} ∪
{γβ}β∈B to a basis of Hn(X,Z). The problem of computing the periods of L as it deforms is
therefore reduced to computing the coefficients {aβ}β∈B. Put an ordering on B and let

(7.3) aB,L = (aβ)β∈B ∈ Q#B

21



denote the row vector of coefficients defined in (7.2).
Let bB,L = ([L] · γβ)β∈B ∈ Q#B be the intersection numbers of L with the Pham basis

and let MB = (γβ · γβ′)β,β′∈B be the matrix of intersections of the Pham basis. We see that
aB,L = M−1

B bB,L so it remains to compute MB and bB,L.
Fix d ≥ 2 and define a function χ : Z→ {−1, 0, 1} as follows:

χ(b) =


1 if b = 0 mod d

−1 if b ≡ 1 mod d

0 if b 6≡ 0, 1 mod d.

Proposition 7.1. For β = (βi)
n+1
i=0 , β

′ = (β′i)
n+1
i=0 ∈ Zn+2 let β′′ = (βi−β′i−βn+1 +β′n+1)n+1

i=0 .

The Pham cycles tβS and tβ
′
S intersect as follows:

〈tβS, tβ′S〉 = (−1)
(n+1)n

2

(
n∏
i=0

χ(β′′i )−
n∏
i=0

χ(β′′i + 1)

)
.

For a proof of Proposition 7.1 see any one of [4, 58, 55]. We reformulated the statement
here for the choices that were made in [68] and in the style that was first communicated to us
by Degtyarev and Shimada.

Define the function τd : Z→ {−1, 0, 1} where:

τd(i) =


1 i ≡ 1 (mod 2d)
−1 i ≡ −1 (mod 2d)
0 otherwise.

Lemma 7.2. The intersection pairing of the linear space L with the translates of the Pham
cycle S can be expressed as follows:

〈L, tβS〉 = τd(2βn − 2βn+1 − 1)

n
2
−1∏
i=0

τd(2β2i − 2β2i+1 + 1).

Lemma 7.2 is proven by a straightforward application of Theorem 2.2 in [23].

Example 7.3. Let us consider quartic surfaces in P3, that is d = 4 and n = 2. Using
Corollary 4.8 [68] we find

B = {(0, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (0, 0, 2, 0), (0, 1, 1, 0), (1, 0, 1, 0),

(0, 2, 0, 0), (1, 1, 0, 0), (2, 0, 0, 0), (0, 1, 2, 0), (1, 0, 2, 0), (0, 2, 1, 0), (1, 1, 1, 0),

(2, 0, 1, 0), (1, 2, 0, 0), (2, 1, 0, 0), (0, 2, 2, 0), (1, 1, 2, 0), (2, 0, 2, 0), (1, 2, 1, 0)}.

With respect to this basis, and the ordering presented above, we find that the vector aB,L of
(7.3) is given by

(7.4) aB,L = (0,−1, 1
2 , 0, 0,

1
2 ,−1, 0, 1

2 , 0,
3
4 ,

1
4 ,−

1
4 ,−

1
2 ,−

1
4 ,−

3
4 ,

1
4 , 0, 0,

1
2 ,−

1
2).

The set {γβ}β∈B is completed to a basis with the addition of [L]. In this basis, Equation (7.2)
gives us the coordinates of the polarization:

(7.5) hX = (0, 4,−2, 0, 0,−2, 4, 0,−2, 0,−3,−1, 1, 2, 1, 3,−1, 0, 0,−2, 2, 4).
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