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Abstract

Model-based diagnosis is founded on the construction of fault indicators. The methods proposed for this purpose generally
represent the process by means of an extremely inflexible formalism that limits the scope of applications. Moreover, it is usually
difficult and costly to develop precise mathematical models of complex plants. New and more flexible techniques intended notably to
explain the observed behavior open new perspectives for fault detection and diagnosis. The diagnostic procedures for such plants are
generally integrated into a supervisory system, and must therefore be provided with explanatory features that are essential
interpretation and decision-making supports. Techniques based on causal graphs constitute a promising approach for this purpose.
A causal graph represents the process at a high level of abstraction, and may be adapted to a variety of modeling knowledge
corresponding to different degrees of precision in the underlying mathematical models. When the process is dynamic the causal
structure must allow temporal reasoning. Lastly, because reasoning on real numbers is often used by human beings, fuzzy logic is
introduced as a numeric-symbolic interface between the quantitative fault indicators and the symbolic diagnostic reasoning on them;
it also provides an effective decision-making tool in imprecise or uncertain environments. An industrial application in the nuclear fuel

reprocessing industry is presented.
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1. Introduction

An operator support system that makes it possible to
assess the process state at all times, to diagnose failures
and to supply validated data to the process control
system would be an attractive way to improve large-scale
plant availability and maintainability and more generally
plant dependability. These considerations explain the
rapid development of plant supervision and the success
encountered by process fault detection and isolation
(FDI) techniques in recent years (Gertler, 1997, 1998;
Chen, Patton & Zhang, 1996). However, in the light of
the recent analysis proposed by Isermann and Ballé
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(1997), much work remains to be done before the
modeling formalisms and methods proposed in the litera-
ture meet the general objective described above and can
actually be applied to industrial processes.

There are a number of reasons for this situation,
including the inadequacy of available models for the
proposed FDI algorithms, the difficulty of compiling
the diverse knowledge required for plant diagnosis, and
the lack of instrumentation designed specifically for
diagnosis.

Two types of models are generally available for indus-
trial plants: material or energy balances established from
process block diagrams and flowsheets that integrate
operator knowledge of production rules, and complex,
partial derivative nonlinear analytical equations that are
written by physicists or chemists when the focus is the
process and the physical phenomena involved. In large
plants, the former are written from a production manage-
ment standpoint and thus implement shop-scale bal-
ances, while the latter are developed to obtain load
diagrams or to build training simulators. In any case,



they were conceived for purposes other than supervision.
Classic FDI techniques used in automatic control —
generalized parity space, dedicated observers scheme
or parameter estimation (Frank, 1990, 1991; Patton
& Chen, 1991; Isermann, 1993) — are poorly suited to
this type of representation. Classic process diagnosis
techniques which are generally based on state variable
representation, are not adapted to the supervision of
a complete facility because of their constraining formal-
ism and global analytical processing.

In an attempt to surmount these shortcomings, new
techniques (notably artificial intelligence and qualitative
modeling) have been adopted in recent years (Frank,
1994, 1996). But propagating qualitative values generally
leads to multiple solutions, which is not compatible with
diagnosis (MQ&D coordinated by P. Dague, 1995).
Some attempts to overcome this issue have been pro-
posed in Montmain, Leyval and Gentil (1994a), and
Mosterman, Biswas and Manders (1998).

The hybrid method presented here relies on both
a qualitative causal representation of the process func-
tion and quantitative local behavioral models. It allows
the construction of a complete FDI system for less con-
straining representations than those of process control
theory. Moreover, any existing models of the industrial
facility that were initially designed for integration in
training simulators can be reused without further refin-
ing. It generalizes previous results to a large class of
numerical models (Montmain & Gentil, 1993; Penalva,
Coudouneau, Leyval & Montmain, 1993).

Another reason for the choice of a hybrid approach is
not a technical one and is much less often discussed in the
literature; it concerns the very purpose of the supervision
system in the control room. Until now, measurement
consistency analysis and fault detection functions were
implicitly performed by human operators; thus they were
generally overlooked or only partially incorporated in
the automation scheme.

One point of view is to consider that the objective of
supervision is to automate these decision-making tasks.
An ideal supervisory control and data acquisition system
(SCADA) should be able to reconfigure and tune new
control laws when a degraded operating mode is detec-
ted. The operator is removed from the control loop in
this active supervision perspective. From this standpoint,
the objective is not to help the operator in a critical
situation to analyze a process that computerization has
made increasingly complex, but rather to relieve him of
decision-making tasks in a faulty situation.

Another point of view is to consider that the exhaust-
iveness of the mathematical model in such an approach is
illusive and consequently that FDI techniques are not
ready to be extended to the supervision of plant facilities.
As a result, the recovery action in the event of a malfunc-
tion in a complex large-scale process will remain subject
to the decision of the operating staff for many years to

come. The objective of supervision is thus revised: it is
more reasonable to envisage systems that no longer elim-
inate the operators from process control, but instead
support them in this function by assisting their reasoning
on line (Rasmussen, 1993; Montmain, 1997).

A supervision system that targets the operating team
rather than on the SCADA leads to major revisions in
model-based diagnosis strategies (Montmain, 1998). The
intelligibility and pertinence to the operator of the results
provided by a diagnostic system become legitimate
issues. The results of the diagnostic system become part
of the reasoning of the operator analyzing the situation
and as such must be substantiated and explained.

The approach discussed here is based on this second
passive supervision option and relies on causal and ap-
proximate reasoning on quantitative data, issued from
on line sensors and numerical models. This is a more
natural form of reasoning for human beings. As a result,
it is easily interpreted by an operator.

Additionally, it is not always sufficient to isolate the
primary fault in operating situations. In many large in-
dustrial plants, the operators benefit from an appreciable
control margin with respect to the nominal operating
parameters. Isolation is, of course, vital for a mainten-
ance policy or when the fault requires an immediate
reaction. However, if the operators consider that the
available control margin makes an immediate reaction
unnecessary on detection of the fault, they will wait for
further and more significant events before undertaking
a counter-action. A dynamic monitoring of the primary
fault effects is necessary to ensure a continuous assess-
ment of the disturbed functions and to revise the initial
decision if necessary (Mosterman, Biswas & Narasim-
ham, 1997). This concept of fault filtering is generally
disregarded in classic diagnostic systems where the objec-
tives are early detection and isolation on the basis of
a theoretical fault signature. From this standpoint, the
diagnosis of an industrial process differs considerably
from theoretical diagnosis: supervision requires filtering
new faults and relating them if appropriate to the prob-
lem identified earlier rather than minimal response time
FDI.

Section 2 describes the diagnostic enhancements of
causal reasoning, relates the proposed approach to other
causal model-based approaches and shows how complex
plants can be represented by a causal structure. The
numerical model implemented with this causal structure
can take practically any form. The first attempt at dy-
namic causal reasoning was initiated by the particular
model proposed by Leyval, Gentil and Feray-Beaumont
(1994), and its simulation, explanatory and advisory ca-
pabilities have been enhanced. This article extends the
notion of causality to other types of models and demon-
strates its utility for diagnosis through detection, isola-
tion and alarm filtering procedures. Section 3 is
dedicated to residual generation. The models used to



generate residuals are numerical ones. The techniques of
generating and processing residuals locally for a variable
are discussed, together with overall control of diagnostic
reasoning at the level of the causal structure. Section 4
reviews the advantages of using fuzzy reasoning to model
FDI and fault filtering as decision making processes in an
imprecise environment due to modeling imprecision and
measurement uncertainty. Section 5 examines the indus-
trial application of these techniques to nuclear fuel
reprocessing using a causal graph modeling the normal
dynamic behavior of the facility. A glossary and an
appendix complement the paper.

2. Causal graph-based diagnosis

Diagnosis is typically a causal process for it consists in
pointing out the faulty components that can explain the
observed malfunction. Davis (1983) wrote that a signifi-
cant aspect of the knowledge required to analyze disturb-
ed regimes is an understanding of the mechanisms in
causality terms. A causal structure is a description of the
effects that variables may have on one another, and it
may be represented by a directed graph (digraph). This
structure then provides a conceptual tool for reasoning
about the way in which normal or abnormal changes
propagate within a plant. The nodes are the variables and
the arcs symbolize the relations among them.

All causal graph-based diagnostic methods implement
the same basic principle. The objective is to account for
deviations detected in the evolution of the variables of
a plant using a minimum of malfunctions at the source. If
significant deviations are detected, primary faults are
hypothesized and the propagation paths in the directed
graph are analyzed to determine whether this failure
hypothesis is sufficient to account for the remaining
faults. A primary fault is a change in the evolution of
a variable that is directly attributable to a failure or to an
unmeasured disturbance; secondary faults result from the
propagation of this change in the process over time,
causing new deviations. Causal graph-based diagnosis
consists in finding the source variable whose variation
accounts for all the deviations detected on the other
variables (the detection variables) (Montmain & Leyval,
1994b). The algorithm for locating the primary deviation
is a backward/forward procedure starting from a detec-
ted variable: the backward search formulates hypotheses,
and the forward search evaluates them. The backward
search bounds the fault space by eliminating the normal
measurements causally upstream. Then each possible
primary deviation generates a hypothesis which is for-
ward tested by using the states of the variables and the
functions of the arcs.

As an example, the simplest causal graph structure is
the signed digraph (SDG). A diagnostic method using an
SDG as the basic data structure was initially presented

by Iri, Aoki, O’Shima and Matsuyama (1980). The nodes
of the SDG correspond to variables, and the directed
branches are labeled by signs: the sign is defined as ““ + ”
when the variables of the arc evolve in the same direction,
and the sign is “ — ” when they evolve in the opposite
direction. The state of a variable is expressed in the
quantity-space { +,0, — }, according to whether the
value is normal (0), higher than normal ( + ), or lower
than normal ( —). The graph exclusively composed of
signed nodes (+ or —) and consistent branches
— branches for which the product of the signs of the
initial and the final nodes is the same as the sign of the
branch — is a representation of the propagation of
the fault in the system. This initial and final nodes consist-
ency test is recursively carried out and constitutes the
basic isolation procedure. The roots of such a sub-graph
are candidates for the origins of the failure.

Shiozaki, Matsuyama, Tano and O’Shima (1985) con-
clude that the purely qualitative description of variables
is too rough and explain that the diagnosis results cannot
be accurate if there is a poor balance between the thre-
sholds of the variables which are connected by an arc. As
a solution to this issue, an algorithm based on a five-
range pattern of the variable states { —, — 2,0, + 2, + } is
proposed to avoid the pitfalls of a wrong diagnosis.
Ambiguity symbols (—? or + ?) associated with the
nodes improve the robustness of even bad thresholds
choices. The algorithm proposed by Palowitch and
Kramer (1986) also uses the simplest causal graph; the
arcs are labeled by signs, but numerical information is
stored in nodes: their deviation indexes DI are a nor-
malized measure of the deviation from the steady state.

Yu and Lee (1991) apply fuzzy sets to manage pro-
gressive quantification of the qualitative digraph struc-
ture. The membership function of the fuzzy set theory
provides a simple way to integrate quantitative knowl-
edge in qualitative representations.

Finally, in the method presented here, the behavior of
variables is purely numerically described (measurements,
estimations and associated residuals) and the functions
symbolized by the arcs are numerical differential equa-
tions. Fuzzy set theory is introduced at a higher level of
abstraction to symbolically interpret and manage the
numerical residuals in a diagnosis reasoning as explained
in Section 4.

A second point is that the process is dynamic; therefore
the signatures of the observed faults change over time
which implies that temporal fault filtering is a required
functionality. Montmain and Gentil (1993) introduce
temporal information within the arcs. In Mosterman et
al. (1997) the idea is to predict future behavior of the
system for each abnormal deviation in terms of their
qualitative time-derivative changes. After initial compon-
ent parameter implication and prediction (backward and
forward chaining), the progressive monitoring module
compares reported signatures and actual observations as



they change dynamically after faults have occurred. Pro-
gressive monitoring is activated when there is a discrep-
ancy between a predicted value and a monitored value
that deviates. At every time point, it is determined
whether the next higher derivative could make the pre-
diction consistent with the observation.

The fault filtering method presented here could be
assimilated with an extension of the progressive monitor-
ing: a measured variable is no longer described by its
qualitative value and other higher-order derivatives but
through the dynamic equation that manages the residual
behavior associated with it. Numerical residuals make it
possible to distinguish normal dynamic effects from fault
propagation.

In conclusion, the causal structure represents the pro-
cess at a high level of abstraction. It can support a great
variety of information. The digraph is above all a reason-
ing structure that can be enriched as knowledge becomes
available. This paper deals with the quantitative dynamic
case in causal graph-based diagnosis.

An example of a dynamic causal graph managing
quantitative and temporal information in an event-
driven causal simulator is described in Leyval et al.
(1994). This graph was obtained by a careful physical
analysis and a functional top-down breakdown of the
process. Nodes were selected as variables meaningful for
the supervision operator. It particularly focused on hy-
draulic phenomena (balances, transfers, storage, etc.).
Temporal parameters in the dynamic relations supported
by the arcs were obtained with classical identification
procedures (Leyval & Ledoux, 1991).

In the case of a process for which a model described by
a system of differential equations is available, the causal
relations among the variables are implicit: the effects
on the output cannot precede the input variations. De-
fined in this way, causality becomes equivalent to the
notion of calculability, and is related to the implicit
sampling of differential equations by the simulation algo-
rithms. This means that the differential equation system
can be represented by a causal graph that may include
loops.

5(:1 = gl(ulaunaxl)a
X2 = g2 (u;, x3),

X3 = g3(uy, X2, Xy, X3) (1)

')'Cn = gn(x:ia Xg5enns xn)'

The output of one equation becomes the input of the
following equation, corresponding to the choice of a par-
tial strict order relation as shown in Fig. 1.

If it is initially assumed that the g; relations are linear,
and that X; is a process variable, then based on the
notation in Fig. 1, the simulator computes the behavior

ul

Fig. 1. Causality: A partial strict-order relation.

of X; as follows:

xi(k) = (1 — Ai(g™ ")xi(k) + Yoa Y Aulg Nx;(k)

JeP;

+ Y q “Bjlg “uy(k), 2)

JjeU;

where A;, A;;, Bj; are polynomials in the shift operator
q and dj;, d; represent the delays with respect to other
variables or inputs; x; are the computed behavior of the
predecessors X ;, P; designates the set of all subscripts j of
the predecessors X; of X;, and U, refers to the set of
subscripts j of the process inputs directly affecting X;.

3. Generation of residuals with the causal structure

This section proposes a method for managing residuals
based on the causal graph; thus it provides the isolation
power of numerical methods without the need for alge-
braic operations to obtain a structured residual set. It
allows for a wider range of process representations than
those proposed by classic diagnostic methods; notably it
is flexible enough for possible application to industrial
simulators (Section 1) with no additional modeling. In
view of this orientation, the following discussion is illus-
trated by a discrete representation for the differential
equations.

3.1. Residual generation

We assume initially that the model is accurate enough
to give the actual behavior x; of X; by the difference
equation:

Xi(k) = (1 — Ai(q” Nxik) + Y. q~“Ajlg™ Mx;(k)

JeP;

+ Y a " Bilg k) + Eig ")fik), 3)

JjeU;

where f; is the variable modeling the effect of failures
liable to affect X; directly.



The simulator outputs are compared with the process
sensor outputs. The error between the measured and
simulated values constitutes the open-loop residual &;:

&i(k) = Xi(k) — x;(k). )
The dynamics of ¢; are given by the following relation:

ei(k) = (1 — Ai(q™ H)eik) + Y g~ " Ai(q Mej(k)

+ Eilg™ ") filk). )

These residuals alone permit only detection: it is clear
that ¢; is excited either by a local fault f; or by a fault
affecting an upstream variable X ;. Since the idea is that
the use of a model other than the simulator is to be
avoided for isolation purposes, the diagnostic system
must be provided with another set of fault indicators
using the potential inputs to the simulator.

At this stage in the modeling procedure, the dynamics
of the simulation residuals are expressed locally while
taking advantage of the causal structure of the system.
Another type of residual — called prediction residual
— is based on the preceding causal decomposition and
uses no parameters other than those of the simulator
equations. Consider the following equation:

xP(k) = (1 — Ailg™ DxP(k) + 3 a~ " Aj(g™ )x;(k)

JeP;
J#p

+a~ " A(a" D%, (0 + Y g7 Bjila” Huy(k). (6)

JjeU;

In this equation, the simulated evolution x, of X, has
been replaced by its measured evolution X, to obtain the
predicted evolution x? of X;. This will be referred to as
predicting X; by reconfiguring the predecessor X .

It is now possible to define the prediction residual after
reconfiguring X, by subtracting Eq. (6) from Eq. (3):

ef(k) = xi(k) — xf(k), ()
ef(k) = (1 — Ai(q™ ")ef(k) + 2 q " Ajilg e;(k)
+ Edg™ " fi(k). t)

From a more general standpoint, several predecessors
may be reconfigured at the same time. If P; is the set of
subscripts of the reconfigured predecessors, then & des-
ignates the prediction error on reconfiguration of the
predecessors associated with P}

() = 5:(0) — K), ©)
4100 = (1 = Ada™ Vel + ¥ a7 Aula™ e
e

+ Eilg™ ") fi(k). (10)

In a linear system, it can easily be shown that & may
be calculated from &f, p € P;i: individual reconfigurations
provide access to all the prediction errors obtained on
combinations of reconfigurations. The limit case is the
prediction error, &: the calculated evolution of X; is
obtained only from measurements of its predecessors.

Finally, subtracting Eq. (8) from Eq. (5) yields

ei(k) — ef(k) = (1 — Ai(g™ "ei(k) — (k)
+q " A,g Ney(k), (11)

which may be written as

—d,,;A ; -1
s et = 12y, (12

In the case of a multiple reconfiguration, Eq. (12)
becomes

po oo 4 T Aulgh)

ei(k) — &;'(k) ,,;; A Y ep(k). (13)

Eq. (12) implies that the contribution of the simulation
errors of the selected predecessors can be determined
simply by comparing the suitable prediction error & with
the simulation error ¢;. The difference between the simu-
lation error and the prediction error on reconfiguring
X, can be used to assess the contribution of the simula-
tion error ¢, propagated from X, to the observed error
on X;.

Fig. 2 reviews the excitation sources for Egs. (12), (5)
and (8).

The open loop residual Eq. (4) is used for detection.

The next section develops the isolation procedure us-
ing the prediction errors Egs. (12) and (13).

3.2. Fault isolation and filtering

For a variable X, it is possible to use the prediction
residuals with different reconfigurations to determine
whether the observed error on X; has a local cause
— primary fault — or is simply the consequence of an
upstream fault — secondary fault. This test is the basic
isolation and fault filtering procedure. The proposed
method estimates and quantitatively analyzes the simula-
tion and prediction errors to determine whether the
errors are related. Establishing a link between two
deviations is not based only on the sign of the arcs as
in a simple SDG test, but also involves a dynamic
quantitative analysis of the local model involved in
the arc.

Consider the simple example in Fig. 3. The simulated
evolution of X5 is calculated with the simulated evolu-
tions of X; and X,; X5 is the detection variable. A signif-
icant error &5 is detected on X5, and the problem is to
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Fig. 2. Open-loop and prediction residuals.
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Fig. 3. A causal graph.

identify its origin: it may be due to a failure f; directly
affecting X5, or may simply be a consequence of a fault
f1 affecting X, or a fault f, affecting X,. Local recon-
figurations are used to test these conditions. A local
prediction in which the actual evolution of X, is sub-
stituted for its simulated evolution is performed as if
X, were a simulator input. The same is done with X,.

Reconfiguring X; and/or X, yields three prediction
errors: 5 and &3 (Eq. (12)) and &% (Eq. (13)). According
to Fig. 2, Eqgs. (12) and (13), the following cases may be
noted:

e If &} and &5 are nearly identical, hereafter denoted by
&5 =e3, then ¢;~0 and X; cannot be considered as
responsible for the fault detected on Xj;

e If ¢ is negligible compared with &5, hereafter denoted
by &} < &3, then &5 is essentially excited by ¢ ; accord-
ing to Eq. (12), and X is incriminated as responsible
for ¢;.

e If &) and ¢; are of the same order of magnitude,
hereafter denoted by & ~ e5, it may be concluded
merely that 5 is only partially explained by ¢;. In this
case, Eq. (13) can account for ¢; by multiple faults.
In addition, if &% <e;, both X; and X, are
incriminated.

This can be summed up as follows:
e < &3 and &3 ~e5: secondary fault incriminating X,

ey ~ey and &3 < e5: secondary fault incriminating X ,,
(14)

ey ~ey and &3 ~e5: primary fault incriminating X 5,
1 o 2 o d {1,2} .
&3 ~ ¢3 and &3 ~ g3 and &5 7 < g5: secondary fault
incriminating X; and X,.

Fig. 2 illustrates that structured residuals for fault
isolation are obtained without any algebraic manipula-
tion thanks to the causal organization. The proposed test
generalizes the initial/final nodes consistency test of
causal graph-based diagnostic schemes when causal rela-
tions are quantitatively and dynamically described and
when variables are not simply associated with deviation
from their nominal value but with the dynamics of their
associated residuals.

Note that X; and X, are not necessarily detection
variables; the error on X (or X,) may not be significant
enough — in terms of the selected detection criteria — to
be detected, but may nevertheless be sufficient to induce
the error on X 5. Thus, even if X; and X, are missed at
the detection stage, they may be proposed as root vari-
ables by the isolation step, and this result makes diag-
nosis reasoning more robust.

The generic rules that generalise the example in Eq.
(14) and provide the order-of-magnitude solution of Eqgs.
(12) and (13) are:

e (VkeP;, & ~¢;): primary fault incriminating X,

o (¢f <¢)and (VjeP,, j #k, el~¢;): secondary fault
incriminating X;

e (5P! c P;) such that (¢f' < ¢,) and (Vke Pt &f ~ ¢;):
secondary fault incriminating X;, k€ P;. (15)

The order of magnitude relations used to interpret the
consistency test as proposed in Eq. (15) for isolation
illustrates the idea that symbolic reasoning on real num-
bers is often sufficient to solve a practical case. However,
implementing simple rules as proposed in Eq. (15) re-
quires a proper formalization. The mathematical treat-
ment of the order of magnitude relations <, ~ and =~ is
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achieved through a fuzzy set semantics and discussed in
Section 4.

The test Eq. (15) is a first step in the isolation proced-
ure; causality allows the local analysis of a variable X; to
be included in a recursive strategy for following the paths
on the graph. The consistency test on X; is followed by
tests on its predecessors, and so on. The test is recursively
carried out until an incriminated simulation error ¢; is no
longer causally linked with at least one of its prede-
cessors’ errors; X; is then declared root variable. The
diagnostic result may be an input arc to the source
variable X ; — corresponding to at least the partial disap-
pearance of a plant function — or a disturbance directly
affecting the source variable X;; the malfunction may
thus correspond either to a component failure or to a non
measurable disturbance, a sensor or actuator fault. The
other faulty detected nodes in the propagation graph are
only variables influenced by the effects of the primary
fault(s). The complete propagation graph of the fault
effects can be plotted in this way, with the graph source(s)
identified as the cause(s).

Finally, through the filtering procedure, a variable that
has not been detected as faulty because of an inappro-
priately selected detection threshold can nevertheless be
identified as a variable responsible for the fault, and can
thus belong to the fault propagation sub-graph. This
provides considerable flexibility in the choice of detection
thresholds and ensures a very robust detection procedure
(Montmain, 1992).

Causal modeling requires particular consideration of
propagation of phenomena in loops. For material feed-

Control loop

. Regulated
v
‘ Control

Variable

Closed loop (a)

back loops, the propagation delay is consistent with the
causal nature of the simulation. When the delay is nil, as
in the case of a control loop (Fig. 4) the naturally asso-
ciated graph is not causal.

Moreover, this graph would provide explanations of
control loop behavior that are of no interest to the
operator: it is not pertinent to explain the behavior of
a regulated variable for which the setpoint has first been
modified by a change in the control signal, modified
again by the evolution of the error, and again by the
evolution of the regulated variable. A representation that
directly explains the behavior of a regulated variable,
either by a change in the setpoint or by a disturbance is
illustrated in Fig. 5a and is a causal representation
(Leyval et al., 1994). Representations using causal graphs
easily allow for changes in the structure of a process.
Consider the same example of a control loop: the sub-
graphs related to the behavior of the regulated variables
must be constructed according to the state — closed or
open — of the loop. Each control loop is therefore
broken down into two sub-graphs, one corresponding to
the closed-loop causal structure described above and the
other to the open-loop structure (Fig. 5b) that is easily
derived from the former.

Thanks to this causal transformation of a loop with
a nil delay, fault isolation does not present any particular
difficulty, and the previous consistency test may be ap-
plied between any disturbance and the control variable
or the regulated variable, which retains an explanatory
power. Moreover, the test Eq. (15) remains valid when
used in closed loop (see Combastel, Gentil and Rognon
(1999) for an application to a closed-loop electrical drive).

3.3. Fault filtering use

Once a propagation sub-graph has been identified, any
subsequent faults will be tested using the same consist-
ency test to determine whether they correspond to the
occurrence of a new fault, or whether they are only the
consequences of faults previously detected and accounted
for; this is known as fault filtering or progressive
monitoring. Propagation of the effects of the fault will
lead to new simulation errors (and consequently to new

Control loop

Regulated
Variable

Control
Variable

Open loop (b)

Fig. 5. Causal sub-graphs of closed (a) and open (b) control loops with a disturbance affecting the output.



detection variables), which will become the new terminal
nodes on the fault propagation graph. With each
measurement acquisition, the fault graph evolves as the
effects of the fault propagate dynamically. With dynamic
monitoring of the fault signature, the evolution of its
consequences on the process can be explained continu-
ously by the same source.

It is worth noting that the localization algorithm pro-
posed in this paper does not consist simply in linking
variables which have been detected in defect and which
are related by an arc of the causal graph in order to
declare that the root of this sub-graph is the source
variable. It relies on a consistency test taking advantage
of the dynamic properties of the arcs. It recursively tests
every antecedent of a detected variable until a local fault
has been proved, even if the antecedent is not presently
detected faulty. In this way, a source fault that has been
corrected by the operator but whose effects are still
propagating due to long delays would still be considered
as the explanation of the faulty variables.

Dynamic fault signature recognition is thus integrated
in the operating tools in control rooms. Displaying the
fault propagation sub-graph on the control interface con-
stitutes an explanatory provision that is highly appreci-
ated by operators (Evsukoff, Montmain & Gentil, 1998).

3.4. Extending the method

Consider again the general system in Eq. (1). Each
equation in the system has the following form:

X; = gi((X;)p,» X, W), (16)

where u; represents the input vector directly affecting
variable X; and (x;)p, the vector of the P; direct anteced-
ents of X;. In normal operation, the process output
verifies the following equation:

Xi = gi((X;)p,, X;, ;). (17)

A predicted output on reconfiguration of the predecessor
X, is defined from Eq. (6)

XP = gi(Xj)Pijps Xp, XF, w;). (18)

From Egs. (4) and (7) after a first-order development of
the gi((X;)p,, Xi, w;) — gi((X;)p,» Xi>w;) and g;((X;)p,, X;, u;)
— 9i((X;)p,/p> Xp, X7, 0;) terms, the simulation and predic-
tion error dynamics are then written as

5g,- 6gl
. . o, hll - e(h 19
=g g,+]_§‘ 7, 5t Il olh), (19)
. 6gl agl
g=""er g Y g + ||| e(h), (20)
0x; jerp 0%; !

where ||h]| - &(h) and ||I'|| - &(h’) are the residual terms of the
development.

Integration yields the following equations describing
the temporal behavior of the residuals:

t
&(t) = e_“’")|:.si(t0) + > f e?® 6—)gcl.sj(v:) dr

jeP; J 10 0 J

+ f e”||h]|e(h) dr:|, (21)

0

t das
el(t) = e”’(”|:£,-(t0) + ) J e’ isj(r) dr
axj'

JjePi/p J 10

+ J e? O |s(h') dr} (22)

0

where ¢(t) = — jﬁo (0g;/0x;)dt. The first-order difference
gives

t

&(t) — el(t) = e“’(')J e?® %Sk(‘c) dz. (23)

A
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As in the particular case of a linear simulator, it is thus
possible to obtain the contributions of each predecessor
to the relevant simulation error. The principle proposed
here to generate the residuals is not related to a particu-
lar representation or to a particular solution method; it
remains valid not only for event driven simulation
(Montmain et al.,, 1994a; Montmain & Leyval, 1994b),
but also for difference equations (Evsukoff, Montmain
& Gentil, 1997) and for continuous nonlinear differential
equations (Vadam, Montmain & Cassar, 1997).

In practice, it is only necessary to calculate the open-
loop simulation error Eq. (4) and the prediction errors
Egs. (7) and (9) obtained simply by successive substitu-
tion of the actual measured process value for each vari-
able in the simulator equation, in order to determine
whether it is a primary fault or a simple consequence
(secondary fault). The algorithm is then applied recur-
sively to the predecessors considered responsible for the
identified error. Because of the approximations resulting
from the developments used — among other reasons —,
the layer of approximate reasoning necessary for a perti-
nent interpretation of the errors involved — as proposed
in Eq. (15) and developed in Section 4 — is particularly
warranted in the case of nonlinear systems.

4. Approximate reasoning for interpreting residuals and
isolating faults

This section describes the mathematical formalism
used to model the order of magnitude relations in the
decision-making rules in Eq. (15). It is explained why and
how this test can be modeled as a decision-making pro-
cess in imprecise context.



1,(4/B)

113

I+e

I+e

(1+e)

| —

Lte

Fig. 6. Fuzzy representation and order of magnitude.

The consistency test fundamentally relies on Egs. (4),
(7), (9) and rules Eq. (15). Solving these equations in
a purely numerical way would be the most accurate way
to process the initial/final nodes consistency test if the
model was perfect and the measurements were very pre-
cise. To solve this problem, thresholds defining the zero
value of the residuals are generally introduced in numer-
ical methods. Nevertheless the purely numerical solving
cannot be carried out correctly if the thresholds of these
various residuals, which are connected by arcs, are poor-
ly balanced. When a malfunction or a nonmeasurable
disturbance occurs, inappropriate thresholds may pre-
vent the defect from being detected immediately on the
root variable, or may upset the chronological sequence
of fault occurrences in the causal chain: the primary
fault may be detected first on one of its successors
on the graph. To avoid a wrong diagnosis, these
thresholds should be determined by using the very accu-
rate quantitative information obtained by sensitivity
analysis. This analysis is a rather dissuasive prospect for
a process with a large number of variables. In fact the
zero value is a vague concept and should be modeled as
such.

Instead of associating an element of {0,1} with a resid-
ual, it thus seems reasonable to use a real number in
[0,17], which may be interpreted as the degree of possibili-
ty that the equation associated with the residual is in fact
violated, considering the context. Fuzzy sets constitute
a simple tool for creating the interface between low-level
numerical data and high-level symbolic knowledge, inas-
much as they account for the continuous nature of the
variables manipulated in a symbolic representation.

Moreover, Dubois (1983) indicated that the incentive
to using fuzzy sets was the need to represent non-strin-
gent specifications such as flexible constraints (for which
slight violations are permissible). In any event, the idea is
to achieve robust diagnosis by avoiding the sudden dis-
continuities that would arise if precise limits were intro-
duced for the sets constituting the specification: sudden
transition from permissible to unacceptable values, from

values for which a procedure is applicable to nearly
identical values for which it is no longer applicable.

As a conclusion, finding the fault propagation path
must therefore be considered as an analysis in an impre-
cise context due to inappropriate thresholds or more
generally imprecise measurements and modeling approx-
imations. The idea beyond this remark is that like in
many design or diagnostic activities in process engineer-
ing, order-of-magnitude reasoning is not only often suffi-
cient in solving practical cases but also more realistic and
safer. Thus the practical order of magnitude solving of
Eq. (15) corresponds to this idea that symbolic reasoning
on real numbers is often used by human beings.

In this imprecise decision-making environment, the
<,~ and = relations must firstly be interpreted in
vague terms. Mavrovouniotis and Stephanopoulos
(1988) proposed seven primitive binary order-of-magni-
tude relations. An “ArB” relation is equivalent to
“(A4/B)r1” and can be modeled as a fuzzy interval for the
(A/B) ratio. Interpreting the relations in Eq. (15), only
three order-of-magnitude relations are defined, using
a single parameter e (Fig. 6):

3

=~ " nearly identical to
~ " of the same order of magnitude
< : negligible.

°
o
°

Threshold e has an upper limit of 0.4656 set by the
constraint 1/e > (1 + e)*. Otherwise, the value of e could
be assumed to be 0.1, which corresponds to the common

idea that an order of magnitude denotes roughly a factor
of 10. Following this idea, Eq. (15) is replaced by

o (VkeP;|e¥|/le;] = 1): primary fault incriminating X;;
o (efl/leil < 1) and  (VjePi,j # klell/le:] = 1):
secondary fault incriminating X,; (24)

e (AP: c P;) such that (|ef|/|ls;l <1) and (VkeP,
|e¥|/e; ~ 1): secondary faults incriminating X, where
ke P;.



It is now possible to give the formal model of the
decision-making process that consists in determining
whether an antecedent is responsible for the fault on one
of its successors.

Fuzzy logic allows mathematical modeling of deci-
sion-making for imprecise and uncertain conditions, i.e.
to assist the decision-maker in selecting an action to
produce the desired consequences with respect to the
assigned (possibly flexible) criteria and (possibly vague)
constraints.

HReasonable SuspicionS(stusplCIOn) = h|:

In a known environment, each action a€ A (where 4 is
the set of possible actions) has a known consequence
described by a series of values [my(a),m;(a),...,
m,(a)]; m;(a) measures action a in the sense of criterion
i; m; defines an application of 4 in an objective scale X,
and the set of consequences X is identified with the
Cartesian product X; x X, x --- x X,. The decision-
maker’s objective for criterion i is a fuzzy set G; of
X; such that Vx; € X;, pg, (x;) is the degree of compatibil-
ity between the decision-maker’s objective and the value
x; describing the consequence (Dubois, 1983). Given the
objective G; and the criterion i(m;), each action a may be
assessed for its expediency with regard to the objective
G; by the membership function yu, such that

1y, (@) = pg, (m;(a)). (25)

When X is identified with X; x X, x --- x X, the set of
acceptable decisions D is defined as a fuzzy subset of the
set of possible actions A4, obtained by aggregating the sets
of best actions y; based on the partial objectives
G;-1,, constructed by Eq. (25). The membership function
Lp is thus such that

Va, p(a) = hi, (@, ..., (@]

= h[:uGl (ml (a))’ R :uGP (’/np(a):l5 (26)

where h is a fuzzy set operator connective to be deter-
mined (Dubois & Prade, 1985).

Here, for a given X; and its associated simulation error
g, an action a consists in suspecting an antecedent
Xy, ke P, of being responsible for ¢;; A is the set of
possible X, Suspicions and D is the associated fuzzy
subset of reasonable suspicions; the measures m; are iden-
tified with the simulation and prediction errors, and the
partial objectives G; are the order-of-magnitude relations
constituting Eq. (24). Thus, for example, the membership
function u|8¢|,|8,_|<1(8§‘, g;) corresponds to the degree of
relevance of the symbolic fact (partial clue in the suspi-
cion examination) “¢ is negligible compared to ¢;” to the

situation described by the numerical values of & and ;.
Finally, up (X, Suspicion)is the value of the membership
function to the reasonable suspects fuzzy set D for the
element X, and can be seen as the suspicion degree of
X in the X; simulation error responsibility. X is finally
suspected when its suspicion degree is beyond a given
threshold.

Considering the decision model proposed in Eq. (26),
decision-making rules incriminating X, in Eq. (24) thus
become for each ke P;:

Hiki1e) < 1(85'(78i)s{/l|s§|/|s,-| = 1(6{, Si)}jeP,-,j;tka

k ) J . P} } (27)
Hstitent ~ 1 €6 €0 {16 ~ 1 (81 €0) jepr o kolbief ey < 1 (87 €1)

Necessary conditions on operator h are enumerated in
Appendix B. Three main decision-making attitudes may
be modeled using the aggregation function: conjunction,
compromise and disjunction, although all possible inter-
mediate attitudes may be imagined. Identification tech-
niques of h operator and application to fault isolation
modeled as a decision-making process are proposed in
Montmain and Gentil (1996). The choice of i is made
explicit in Eq. (28), where © A’ indicates a conjunction and
‘v’ a disjunction.

HReasonable Suspicions (Xk SusplCIOH)

= [ AN e = 1L €D} A e ye <1 (EF, 8i):|

JjePi,j*k
\% |: /\ {tuls,’l/ls.l ~ 1(8{5 61)} A Mls?|/|£;| ~ l(si'(a gi)

jePLj#k
A WePi| e < 1(8f‘,8i):|o (28)

The fuzzy conjunction and disjunction operators were
selected as follows: unv=u-vanduvo=u+v—u-v.
The use of probabilistic operators for aggregation can be
justified from a purely mathematical standpoint: their
strict monotonic character can notably be a useful prop-
erty in this application. Their other interest lies in their
quick processing for on line implementation.

Finally the algorithm could be summed up as follows:

e simulation errors ¢; are calculated at each acquisition
time through Eq. (4); they provide the corresponding
detection variable set;

e for each detection variable X;, prediction errors after
reconfiguration are established through Egs. (7)
and (9);

O for each antecedent of X; all the membership func-
tions associated to the order-of-magnitude relations
in Eq. (28) are evaluated;

O the degree of suspicion of each antecedent of X; is
evaluated by Eq. (28);



o the test is recursively carried out with the suspected
antecedents as new detection variables;

e the fault propagation sub-graph is achieved and up-
graded at each acquisition time.

5. Description of an application

The methodology described in the preceding sections
was implemented in a nuclear fuel reprocessing plant
application. Spent fuel is reprocessed to recover the
uranium and plutonium still present in the fuel rods
irradiated in nuclear reactors and to isolate the residual
fission products.

The process considered in this application consists of
two-pulsed columns. A pulsed column is a liquid-liquid
extractor. The aqueous input stream comprising two
flows, Q0500 (spent fuel and nitric acid) and QG100, is
mixed with the organic solution Q1010 in the column.
The acid solution outflow stream QE120 contains only
the fission products. The organic solution outflow stream
QG600 containing uranium and plutonium is extracted
by overflow. The mixture is subjected to periodic pres-
sure pulses PRESO1. The equilibrium between the vari-
ous components is regulated by the level NIRE.

The two-pulsed columns are coupled top-to-bottom so
the organic outflow from the extraction column becomes
the organic inflow QG600 to the scrubbing column. The
aqueous outflow QG100 from the scrubbing column is
recycled to the extraction column feed port (Fig. 7).
A corresponding simplified causal graph is proposed in
Fig. 8, which involves only 32 variables. The complete
application addresses the detection and isolation of
about 55 variables (flow rates, pressures, column weights
and levels) and five local regulation loops (mainly levels
and flow rates). This gives an idea of the applicability of
the method to a complex process.

A precise simulator of the plant is available for oper-
ator training. Several types of faults are managed by the
simulator: sensor or actuator faults (drift, noise, offset),
operating faults (e.g. a poorly selected setpoint) or pro-
cess faults (plugging, fouling, inadequate head). About 60
faults can be simulated. Multiple fault scenarios can be
solved without any major difficulty (excepted compensa-
tory effects of some faults). The results discussed below
were obtained not on the actual process, but with this
simulator. The training simulator, which is a reference in
the domain, provides a highly realistic description of
process behavior, corresponding to what is actually ob-
served by the operators on the control interfaces.

This training simulator plays the role of the process
— {X;} — in the study presented in this paper. The
simulated behaviors — {x;} — are obtained with a causal
dynamic simulator where the arcs between a variable
X; and its predecessors X; are identified as difference
equations as proposed in Eq. (3).

EXTRACTION WASHING

Qo500 QG100

PRL801

PRE801

Fig. 7. Schematic diagram of plant.

Fig. 8. Part of the associated hydraulic causal graph.

Fig. 9 shows two examples of consistency tests in the
case of a fault on flow rate QG100: a local fault (a) and
a fault due to a pressure fault (b). The training simulator
output QG100, the measurement QG100 and the causal
graph prediction QG100* clearly illustrate the difference
between the two situations. In the case of the local fault
— sensor fault on the aqueous outflow QG100 from the
scrubbing column — whatever the reconfigured anteced-
ent ke {BETAL,Q1120,01520} of QG100, it can be veri-
fied (Fig. 9a) that £hg100 = 96100 (¥ — Y =y — yin the
figure) and the local fault is concluded Eq. (28). In the
second case (Fig. 9b) the illustrated example corresponds
to a pressure pulse primary fault of the scrubbing column
(PRL801). As a quasi immediate effect, the heavy phase
inner flow of the scrubbing column is affected, and conse-
quently the hold-up BETAL and the column weights
(BL030, BLO31 and BL032) characteristic of the emulsion
operating mode are abnormally modified. To keep the
level (NIRL) of the settler at the bottom of the column
constant, the heavy phase outlet (QG100) is finally subject
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Fig. 9. Isolation from variable QG100. (a) Local fault, QG100 # QG100 and QG100=QG100*. (b) Upstream fault, QG100 # QG100 and

0G100= QG100

to abnormal variations. When ke {Q1120,01520} it
could be shown that ehg100 = €gg100 and Q1120 and
Q1520 are not incriminated. When k is BETAL (Fig. 9b).
eoino0 < €ogioo (¥ — Y* <y —y in the figure) and BE-
T AL is incriminated. Then the consistency test is recur-
sively carried out until the root PRL801 is found. In fact,
the QG100 abnormal deviation is a very late observation
of the initial fault on the pressure. It can still be noticed
that BETAL is difficult to evaluate accurately and the
corresponding threshold on egpr ;. cannot be as strict as
the ones on éprrgo; (predecessor) or ggg100 (SUCcessor).
This is a typical case when there is a poor balance
between the thresholds of linked variables. However, the

use of fuzzy set theory in the order of magnitude reason-
ing avoids a wrong diagnosis and provides the right root
variable even when BET AL has not been declared as
faulty by Eq. (5) in the detection step. The fault on QG100
will finally affect the extraction column and a later view
of the fault propagation path is showed in Fig. 10
(Evsukoff et al., 1998).

Let us now consider a drift fault on Q0500 — it
corresponds to a slow danaid clogging. This fault occurs
during a ramp set point change, which is rather difficult
to detect before a steady state has been reached. The
first observed effect is an abnormal deviation on Q0500.
Instantaneously the organic phase outflow QG600 is
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Fig. 12. Fault propagation path.
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Then the hold-up BETAE and the column weights
(BE030, BEO31 and BEO032) characteristic of the extrac-
tion emulsion are involved with the hydraulic dynamics
of the column. When the aqueous inner flow disturbance
e reaches the settler at the bottom of the column, the
- D it aqueous outflow QFE120 that regulates the settler level
NIRE is affected. Fig. 11 illustrates this step. It is shown
that £§0556 °° = €gos00 and consequently Q0500 is a pri-
. mary fault; moreover the test on QE120 concludes that
S82120 X €9E120> 8Q€‘1§10 X ggp120 and S{QOSOO BETAE} <
gor120: Q0500 and BETAE are both incriminated.
Finally, the last test between Q0500 and BET AE gives
the fault propagation path in Fig. 12. The dynamic
monitoring of the primary fault effects is necessary to
ensure a continuous assessment of the disturbed func-

1000

400

200

Fig. 11. Consistency tests on variables QO500 and QE120.

modified due to the inflow-outflow balance. The system
verifies that the faults on Q0500 and QG600 are linked:
the fault on QG600 is only a secondary effect. It is
a cascading fault case and not a multiple fault scheme.

tions that allows the operators to revise their initial
decision if necessary and to undertake the appropriate
reaction at any time — ie. from any observed fault
signature.



The dynamic analysis for fault isolation and fault filter-
ing is successfully achieved and the order of magnitude
reasoning relying on rules Egs. (24) and (28) is proved to
be sufficient to interpret the generated structured resid-
uals. It corresponds not only to the idea that human
beings often efficiently reason symbolically on numerical
data, but as explained in Section 4, this qualitative man-
agement of quantitative equations eliminates two major
problems:

o the illusive and irrelevant precision of purely quantit-
ative methods as soon as models are imprecise and
measurements uncertain;

e the poor detectability and distinguishability capacities
of purely qualitative approaches as well as the difficult
question of time management.

The process presented is this section is a continuous
one with slow dynamics (time responses are of the order
of 30 min) and an acquisition time of 30s. Despite the
recursive graph search, the suspect sub-graph elabor-
ation never exceeds 1s in this application where the
number of nodes is 55 and the maximal number of
antecedents is 5. This gives a rough idea of the algorithm
complexity.

6. Conclusion

The method proposed in this paper uses the precision
of numerical techniques while benefiting from causal
knowledge of the process to implement diagnostic rea-
soning suitable for industrial processes. The isolation
power of numeric methods was obtained here without
algebraic manipulations to obtain a structured residual
set. Causal knowledge is used to apply the classic con-
cepts of model-based diagnosis — simulation, prediction
and measurement coherence test — to local sub-models;
isolation is then obtained naturally by testing the coher-
ence of the local models with the measured values. Recur-
sivity makes it possible to test numerous variables with
very simple models and produces a chain of suspected
variables. Fault filtering may be considered as a supple-
mentary means of increasing the robustness of the detec-
tion phase.

The method can be used to construct a complete fault
detection, isolation and filtering system for less con-
straining representations than a state representation.
When a simulator implementing differential equations is
already available, it is not even necessary to know the
analytical structure of the model to perform the isolation:
having established the causal structure of the simulator,
with only a few software properties — e.g. provision for
switching the differential equation inputs — it may be
considered simply as a black box with switchable inputs.
In this configuration, the method makes fault isolation

possible without extending or further refining the existing
models of the industrial facility.

When a numerical simulator is not available a model
may be directly constructed as a causal model. A top-
down analysis from the balance equations is used to add
nodes and arcs until the graph includes sufficient details.
Approximate temporal parameters may be used to quan-
tify the arcs, or classic identification procedures may be
used to assign difference equations to them. The causal
graph is not necessarily easy to develop, and requires
a detailed physical analysis, but this in turn is the source
of its explanatory capability. Moreover, as the process
itself evolves, the causal graph is modified without FDI
algorithm re-coding.

In this diagnostic methodology for online supervision
of dynamic complex processes, the fault filtering function
constitutes an essential process supervision support int-
ended more for the control operator than for an upgraded
SCADA able to reconfigure the plant in any malfunction-
ing case. The progressive monitoring of observed fault
signatures is considered to be as essential as an optimal
FDI scheme with theoretical fault signatures.

Algorithms based on the causality principle are simple,
dissociated from the model, and avoid all the algebraic
manipulations that confuse the diagnostic reasoning pro-
cess. The fact that a numeric control is based on a math-
ematical model that is meaningless to the operator is not
a serious defect inasmuch as it concerns a closed loop in
the process. For computerized supervision, however, the
operator is part of the decision-making loop; the math-
ematical artifices used by the supervision system must
therefore be given a cognitive transcription correspond-
ing to the operator’s representation and reasoning in
faulty situations. The method proposed here is dedicated
to supervision and diagnosis: it uses a causal process
breakdown to minimize the required calculations and to
provide the diagnostic system with the explanatory char-
acter that is crucial in ensuring satisfactory perception in
the control room. The information supplied by the sys-
tem is explained in a manner pertinent to the knowledge
domains of the operating staff.

A fault detection and isolation system in a complex
plant is primarily an operating support. The causal
model-based process supervision concept is consistent
with this point of view. Displaying the behavior of the
model and process in a historical log provides a basic
tool for understanding the diagnosis. Displaying the
graph and the fault propagation paths is another tool
that has been highly appreciated by experienced oper-
ators in a nuclear process.

Appendix A: Glossary

X; simulated behavior of variable X;
u; input vector directly affecting variable X;



fi fault directly affecting variable X;

X; actual behavior of X;

x? predicted evolution of X; when antecedent X,
has been reconfigured: x, has been replaced by
its measured evolution X, in the calculus of x;

P; set of all subscripts j of the predecessors X ; of X
P; set of all subscripts j of the predecessors
X; of X; that have been reconfigured
U; set of subscripts j of the process inputs
directly affecting X;
& simulation error or open-loop residual
for variable X;
el prediction error on reconfiguration
of the predecessor X,
el prediction error on reconfiguration of the

predecessors of variable X; associated with P}

= nearly identical
~ of the same order of magnitude
< negligible
up(e)  degree of relevance of symbolic fact F
to the situation described by the numeric value ¢
h fuzzy set aggregation connective

Appendix B: Properties of fuzzy set aggregation
connectives

Necessary conditions on operator h are the following:
h is continuous;

h0,0,...,00=0 and A((1,1,...,1)=1; (B.1)
Y(u;, v;)€[0,17% if u; = v; then h(u;, s Uy) = hvg, .., 0p).

Three main decision-making attitudes may be modeled
using the aggregation function: conjunction, compromise
and disjunction, although all possible intermediate atti-
tudes may be imagined.

For an operator h expressing that all the criteria are
met simultaneously, a natural axiom is:

Vg, ..., up), hug,...,u,) <min(ug, ..., u,), (B.2)

i.e. the overall evaluation of an action cannot be better
than the worst of the partial evaluations. These operators
are conjunctions. The main associative conjunctions are

min(uy, ..., u,).

)4
l_[ ui,

i=1
)4

max<0, oui—p+ 1). (B.3)
i=1

To express the redundancy of the objectives, operator
h must meet the following condition:

V(uy, ..., up), max(uy, ..., u,) < h(uy, ..., u,), (B.4)

i.e. the overall evaluation is determined by the best of the
partial evaluations. These operators are disjunctions.
The most frequently used are

max(uy, ..., up)

min<1, i u,-). (B.5)

i=1

Operator h is a compromise when the following axiom is
verified:

Vh(uy, ..., u,), min(uy, ..., u,)

< h(uy,...,u,) <max(uy,...,u,). (B.6)

All conjunctive operators can be covered by the Yager
operator family

Y (u)=1— min<1, (i (1— ui)q> Uq)

for g = 0. (B.7)
For example,

lim Y,(;) = min(y;),
q— o0

)4
Y (u;) = max<0, oui—p+ 1>.
i=1

Parameters are assigned to the disjunctive operators by
the associated conorm family

)4 1/q
CY, ()= min(l,( Y u?) > for ¢ > 0. (B.8)
i=1
The compromise operators are described as follows:
LT AL
Ym,(u;) = <IT“> . (B.9)

Notable ¢ values include the arithmetic mean Ymy (u;)
and the harmonic mean Ym_(u;); when g — 0, Eq. (B.9)
is the geometric mean.

The symmetrical characteristic of h does not imply that
the aggregation is symmetrical. Indeed, aggregation relies
on the fuzzy sets describing the partial objectives, and
dissymmetry may easily be introduced among criteria by
manipulating the membership functions. The above ag-
gregation functions can be generalized with balancing
coefficients in order to easily introduce natural dissym-
metries.
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