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Abstract

This paper considers a decision support system dedicated to fault detection and isolation from a human}machine co-operation 
point of view. Detection and isolation are based on di!erent models of the process (non-linear and linear causal local models). 
Reasoning using real numbers is often used by human beings; fuzzy logic is introduced as a numerical-symbolic interface between the 
quantitative fault indicators and the symbolic diagnostic reasoning on them; it also provides an e!ective decision-making tool in 
imprecise or uncertain environments while managing model uncertainty, sensor imprecision and vague normal behavior limits. Fuzzy 
rules are modelled geometrically; fuzzy sets are represented as points in a description space. A prototype graphical interface with 
structural, causal and historical views gives complete information to the human operator. In such an interface, fuzziness is displayed as 
a colour palette evolving with time. 
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1. Introduction

Demands for increased productivity and #exibility has
led to the operation of processes in fast changing condi-
tions. The safety and e$ciency of industrial processes are
thus closely interrelated (Al Khani & Koivo, 1997). Cur-
rently, skilled human operators guarantee process avail-
ability. They must interpret complex situations through
vast amounts of data, which change rapidly when a mal-
function occurs and propagates throughout cascaded
sub-systems.

Computer-supported co-operative work in supervision
systems can improve plant reliability by combining com-
puter and human resources in the main supervision tasks,
i.e. monitoring and diagnosis. Nevertheless, the display of
appropriate information in multi-human/machine inter-
faces is a challenge in computer supported co-operative
systems (Johannsen, 1997).
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It is evident that operators do not use mathematical
models or precise values to make decisions but rather
their reasoning is based on a symbolic interpretation of
the process trend. The idea behind this remark is that like
in many design or diagnostic activities in engineering,
qualitative reasoning and/or order-of-magnitude reason-
ing are often not only su$cient in solving practical cases
but also more realistic. Hence, the symbolic interpreta-
tion of data is the means of explaining the process behav-
iour to humans. Fuzzy reasoning techniques are a means
for human-friendly computerised devices (Dubois, Prade
& Yager, 1996; Iserman, 1998) because they allow the
symbolic generalisation of numerical data by fuzzy sets,
thus providing linguistic interpretability (Zadeh, 1996).

This paper presents a prototype system that executes
the following supervisory functions as de"ned by Iser-
man and BalleH (1997), where explanation facilities have
been added to original de"nitions to "t co-operative
work:

(a) Monitoring: `A continuous real-time task of deter-
mining the conditions of a physical system, by re-
cording information, recognising and indicating
anomalies in the behavioura and generating alarms
to human operators.

(b) Diagnosis: `Determination of the kind, size, location
and time of detection of a faulta and generation of



sound explanation to human operators. `Follows
fault detection and includes fault isolation and iden-
ti"cationa.

Classical supervision systems present a lot of data that
may evolve quickly. To focus the operator's attention,
alarms are used. An alarm is generally initiated when
a variable is passing over a threshold. These thresholds
are di$cult to choose by process engineers because they
may correspond to di!erent notions: strict safety limits,
production tolerance, etc. They are vague concepts.
Moreover, a small variation in a variable can make it
pass over the limit and this abrupt change does not
correspond to reality. Generally, the process evolves
gradually into a bad situation and this progression
should be expressed by the supervision system. Fuzzy
sets, here again, are an appropriate tool to model gradual
symbols.

Control engineering science has contributed highly to
supervision thanks to analytical model-based redund-
ancy that is probably the most active area in diagnosis
(Frank, 1996). The comparison of numerical simulation
of process variables with plant measurements allows nu-
merous residuals to be generated, which makes it pos-
sible to detect and isolate faults. The di$culty is to get
a complex process model. In some situations, a numerical
simulator of the process is available. This is the case for
the example presented at the end of this paper. This
model is actually the one that is used for operator train-
ing. In other industries, a precise numerical simulator of
the plant, re#ecting all physical or chemical processes is
not available because it would take a very long time to be
developed. Nevertheless, approximate models can be de-
veloped speci"cally for supervision objectives, because
these models may not be as precise as for control objec-
tives (Leyval, Gentil & Feray}Beaumont, 1994). Noise
corrupts measurements in every plant. Thus the compari-
son of system and model outputs is very imprecise. Fuzzy
reasoning allows much better management of this kind of
imprecision than crisp alarm thresholds.

Analytical models cannot generate a reasonable ex-
planation of the diagnosis process. Rather, causal models
can emulate expert operator's mental models in their
diagnosis reasoning. A causal model is a qualitative de-
scription of the direct in#uences that some variables of
a process have on others: one variable is the cause and
the other the consequence. Causal models di!er from
analytical models (Rasmussen, 1993), in the notion of
cause and e!ect sequences. Hence, causality is inherently
related to time evolution. Causal model-based reasoning
has been successfully used for fault detection and isola-
tion in complex systems (Kramer & Palowitch, 1987)
and recently it has been proposed to manage time de-
pendencies explicitly with a causal graph (Leyval, Mont-
main & Gentil, 1994; Evsuko!, Montmain & Gentil,
1997).

In this work the causal structure of the process vari-
ables has been elicited from experts and represented as
a causal graph. The nodes of the graph represent measur-
able variables. A simple linear dynamic model has then
been linked to each edge of the graph by a classical
identi"cation procedure between the variables related to
each edge. The resulting bank of linear models was used
as additional information for isolation reasoning.

The proposed system is thus based on a multi-model
architecture and is composed of two main modules: the
fault detection module, based upon the analytical non-
linear simulator of the process and the fault isolation
module, based upon the causal model. The causal graph
provides a conceptual tool to appropriately explain to
human operators how changes propagate throughout the
process.

In the proposed co-operative supervision system, fuzzy
reasoning plays a central role. On the one hand, fuzzy
sets are used to take into account modelling imprecision
and measurement noise that corrupt the decision process.
On the other hand, symbolic interpretation of reasoning
conclusions is used to represent the evolution of the
process as a gradual palette of colours in the graphical
interface of the system. As a result, crisp thresholds are
avoided, leading to stable decisions and allowing gradual
information processing that can be easily understood by
the human operators.

A prototype system has been implemented for a speci-
"c application in a nuclear fuel reprocessing plant and
was evaluated by students training to be operators
(Evsuko!, Montmain & Gentil, 1998). The paper is or-
ganised as follows: the second section presents an over-
view of computer supported co-operative systems for
complex processes. Section 2 also introduces the basic
concepts of the proposed supervision system, which are
detailed in the subsequent sections. Section 3 introduces
the key issues of fuzzy reasoning and its geometrical
interpretation. Each of system modules is then explained.
Section 4 details the fuzzi"cation procedure. The detec-
tion module is presented in Section 5, while Section 6
is devoted to the isolation module. Section 7 illustrates
the graphical interface of the prototype system with an
example and comments its evaluation. Finally, some
concluding remarks are made.

2. Co-operative supervisory systems

Computer-supported management and control sys-
tems for large-scale complex processes are characterised
by a hierarchy containing di!erent co-ordination levels
shown in Fig. 1.

Low-level tools are close to the physical process and
contain local units that execute closed-loop control of
process sub-systems. Middle-level tools provide supervis-
ory control to ensure set point changes and alarm



Fig. 1. Process management and control hierarchy.

Fig. 2. The proposed system.

handling, but for increasingly complex processes, this
level must include more advanced tools in order to en-
sure global process availability and production quality.
High-level tools include plant management and strategic
decisions (Al Khani & Koivo, 1997).

In computer-supported co-operative work, all levels
interact with human users who co-ordinate computer
subsystems by means of multi-human/machine interfaces
that must provide appropriate information (Johannsen,
1997).

The proposed co-operative supervisory system is
shown in Fig. 2. In the following, each one of the modules
is described as one of the "ve primitive canonical tasks
proposed by Leitch and Gallanti (1992) for knowledge-
based automation systems:

(1) Prediction: generates future states from the present
observed state by using an implicit or explicit model
of the process,

(2) Interpretation: maps sensor information in order to
process state description de"ned by the adopted rep-
resentation language,

(3) Decision: generates conclusions from known process
states,

(4) Identixcation: generates unknown or unmeasurable
past or present states from known or assumed cur-
rent observed states,

(5) Execution: is dual to interpretation, transforming
symbolic conclusions into data suitable to interven-
tion on the process.

In the system data #ow presented in Fig. 2, the prediction
task is performed by the two di!erent models presented
in the introduction (Evsuko! et al., 1997): the analytical
model, based on physical relations; the causal model,
representing linear approximations between internal
variables. The use of the causal model is explained in
greater detail in Section 6.

The interpretation task is performed by the fuzzixcation
of some features extracted from residuals obtained from
the di!erence between observable data and model out-
puts. The features extraction and the fuzzi"cation step
are presented in Section 4.

Symbolic descriptions of each process variable feed the
decision and identixcation task modules, represented by
the detection module, which decides whether the process
state is normal or not, and the isolation module, which
identi"es the source fault. These decision modules are
presented in Sections 5 and 6.

There is no execution task since human operators deci-
de which recovery action is necessary and execute such
action. This module is replaced in the system by an
explanation facility for human operators, intended to
avoid erroneous counteractions. Such an explanation is
provided by a graphical interface.

The interface module presents symbolic decisions on
each variable by colour codes and displays an overall
representation of fault evolution in time. The fault propa-
gation through the process is explained by the causal
graph where the fault path is displayed. Additionally, the



Fig. 3. Symbolic fuzzi"cation.

models are used for prognosis. Further information on
the system interface is given in Section 7.

3. Fuzzy reasoning

This section details how fuzzy reasoning is used as the
basis for interpretation of numerical data and for deci-
sion-making. A simple example is used throughout this
section to clarify the notations.

3.1. Preliminaries

The symbolic-numerical interface in fuzzy systems is
carried out by linguistic variables that take linguistic
values associated with fuzzy sets. Formally, a variable t is
de"ned by

t"(X, A(X), KI , C). (1)

where XLR is the reference domain of the variable, A(X)
is its descriptor set and KI is the language that assigns
a meaning de"ned by a fuzzy set on X to each symbolic
term in A(X). The descriptor set is a subset of the term set
T, which contains all symbolic terms that can be gener-
ated by the grammar C (Dubois & Prade, 1980).

The symbolic terms in A(X) represent ordered linguis-
tic concepts that describe the values in the reference
domain. Each symbolic term represents a generalisation
of the reference values whose meaning is a fuzzy set. For
instance, the ordered descriptor set Mlow, normal, highN
can describe a temperature.

The meaning of symbolic terms is provided by the
language that associates the fuzzy set AI

i
with the term

A
i
3A(X), for every element x3X. Conversely, every ele-

ment x
0
3X can be described by the fuzzy set XI

0
de"ned

from the descriptor set A(X). The language thus de"nes
the relationship between the descriptor set A(X) and the
reference X as the fuzzy relation KI characterised by the
membership function K: X]A(X)P[0, 1].

For every element x
0
3X of the reference domain, the

meaning AI
i
is related to the description XI

0
by the lan-

guage, in such a way that

A
i
(x

0
)"X

0
(A

i
)"K(x

0
, A

i
). (2)

The description XI
0

is often called symbolic fuzzixcation
(Foulloy & Galichet, 1995). For instance, Fig. 3 shows
the description XI

0
given by the descriptor set

A(X)"MA
0
, A

1
, A

2
N.

The description of a numeric value must be interpreted
as how such a value can be expressed by the vocabulary
in the descriptor set. For example, if fuzzy sets in Fig. 3(a)
denote the sense of `lowa, `normala and `higha temper-
atures, the fuzzy description in Fig. 3(b) is used to denote
a given temperature measure t

0
"253C.

The collection of fuzzy sets AI
i

associated with each
term A

i
3A(X) forms a fuzzy partition whose cardinality

denotes the granularity of the description provided by the
descriptor set. The greater the cardinality of the fuzzy
partition, the smaller the granularity of the description
which allows more precise information to be represented
but with less linguistic generalisation.

In this work, normalised orthogonal fuzzy sets are
used in the meanings of variables, so that:

(i) ∀i, &x
0
3X, A

i
(x

0
)"1,

(ii) +
i

A
i
(x)"1, ∀x3X. (3)

It can be useful to represent the description XI
0

by a line
vector in the unit cube In (Kosko, 1992), where n is the
cardinality of the descriptor set A(X) and

XI
0
"[X

0
(A

1
)2X

0
(A

n
)]. (4)

For instance, if XI
0

represents the description of a given
temperature t

0
"253C in Fig. 3, it can be represented by

XI
0
"[X

0
(low) X

0
(normal) X

0
(high)]"[0 0.3 0.7].

Linguistic variables can be related by a set of rules
to describe a linguistic model between their reference
domains. Such models are computed by fuzzy systems
described in the next section.

3.2. Fuzzy systems

A linguistic model relating variables x and y is written
as a rule base, relating the terms A

i
3A(X) and B

j
3B(>)

in rules AI
i
PBI

j
, read as

if x is A
i
then y is B

j
. (5)



Fig. 4. Symbolic inference.

The fuzzy propositions in the antecedent and consequent
of rule (5) can be seen as #exible constraints in the values
of the reference domains of each variable, represented by
the fuzzy sets AI

i
and BI

j
.

The rule base models a linguistic relationship between
the terms in the descriptor sets of the variables and is
represented by the fuzzy relation U3 in the Cartesian
product A(X)]B(>) (Foulloy et al., 1995). Rules in the
rule base are weighted by the membership value
U(A

i
, B

j
) that represents how much the term A

i
is related

to the term B
j

in the model described by the rule base.
A value U(A

i
, B

j
)'0 means that the rule (i, j) occurs in

the rule base with a weight U(A
i
, B

j
).

The rule base is thus represented by the matrix
U3 3InCm, where n and m are the cardinality of fuzzy
partitions associated with A(X) and B(>). For example,
a simple rule base like

AI
0
PBI

1
, AI

1
PBI

0
, AI

2
PBI

1
(6)

can be represented by the matrix

B
0

B
1

A
0

0 1

A
1

1 0

A
2

0 1

In the above example of the temperature, this rule base
can express the reasoning that an alarm must be "red if
the temperature is too high or too low. B

0
is associated

with the concept `normala and B
1

with `alarma. The
weights of the rules could be di!erent from 0 or 1, to
model uncertain knowledge.

In fuzzy systems, outputs y
0
3> are computed from

inputs x
0
3X in three steps:

(1) Fuzzixcation, where the input description XI
0

is com-
puted from the input value x

0
3X as in Eq. (4).

(2) Inference, where output description >I
0

is computed
from XI

0
and the rule base UI using the fuzzy rela-

tional composition operator " as

>I
0
"XI

0
"UI . (7)

(3) Defuzzixcation, where the output y
0
3> is computed

from the output description >I
0
, if a crisp output is

needed.

By using the sum-product composition operator for
fuzzy inference, the description>I

0
is easily computed for

all B
j
3B(>) as a vector matrix product by:

>
0
(B

j
)" +

1xixn

X
0
(A

i
)U(A

i
, B

j
). (8)

Eq. (8) shows that inference can be seen as a mapping
between unit cubes (Kosko, 1992), which can be vis-
ualised in Fig. 4. In the above example, for input
XI

0
"[0 0.3 0.7], the output given by the rule base (6)

is >I
0
"[0.3 0.7].

If more than one variable occurs in the antecedent of
the rules, the input description is de"ned in the Cartesian
product of the input descriptor sets (Babuska & Verbrug-
gen, 1996). This will be presented later.

Defuzzi"cation can be computed by the prototype
values y

j
, associated with fuzzy sets BI

j
, weighted by the

description >I
0

(Foulloy & Galichet, 1995):

y
0
" +

1xjxm

>
0
(B

j
)y

j
. (9)

Eq. (9) can be seen as a symbolic defuzzi"cation when the
values y

j
represent terms of a smaller granularity set >.

For instance, in this work, the output descriptions are
defuzzi"ed into an index that represents colour codes to
be displayed in the graphical interface.

In the example above, each term of the output descrip-
tor set B(>) can be associated with a primary colour, for
example green for B

0
and red for B

1
. A colour palette of,

for instance, 64 colours varying gradually from green to
red, can be used to represent terms of a smaller granular-
ity output descriptor set. This colour palette can be
stored in a colour map vector where each element repres-
ents a colour in such a way that the colours associated
with the terms B

0
and B

1
are respectively the "rst and

the last elements of the colour map vector. From (9), the



output description >I
0
"[0.3 0.7] is thus represented by

the colour associated with the 45th position of the colour
map vector.

Symbolic defuzzi"cation used in this way, to represent
output description as colours, is a very e$cient way to
improve human interpretation of machine conclusions.
Colours are vague concepts by nature and can be easily
interpreted by human operators of complex processes,
allowing the symbolic representation of a large amount
of information.

Before defuzzi"cation, output descriptions can be used
in multi-criteria decision-making as described below.

3.3. Multi-criteria decision-making

The general problem of multi-criteria decision-making
can be formalised as follows (Zimmermann, 1996). Let
u

i
3X be the set of possible solutions and C

j
3C a set of

M criteria carrying some judgements on each possible
solution for a given situation. The decision problem
consists of choosing the `best solutiona a

0
from the

information contained in the criteria.
Generally, the solution to the decision problem is

carried out in two steps:

(1) The aggregation step: to aggregate criteria for each
possible solution.

(2) The decision step: to decide on the most suitable
solution.

Fuzzy decision-making assumes that criteria are #exible
constraints on the possible solution set represented by
the fuzzy sets CI

j
, where the membership function value

C
j
(u

i
) represents the judgement of solution u

i
given by

the criterion C
j
.

The aggregation step results in the fuzzy set GI , de"ned
on the possible solution set X, whose membership func-
tion is computed by

G(u
i
)"h(C

1
(u

i
),2, C

M
(u

i
)), ∀u

i
3X (10)

where h : [0, 1]MP[0, 1] is an aggregation operator.
Several aggregation operators have been proposed in the
literature (Grabish, 1995) whose characteristics depend
on the application.

The decision step is computed by a decision rule. The
most common decision rule is the maximum rule, where
the solution is computed by

a
0
"u

i
/G(u

i
)"max
+uj|X

(G(u
j
)). (11)

Nevertheless, other decision rules can be used (Denoeux,
1997).

In this work, symbolic descriptions of the process
variable states are computed by fuzzi"cation of features
extracted from the residuals. Possible solutions u

i
are

taken as symbolic terms representing decisions in the de-
tection and isolation modules. The criteria CI

j
represent

descriptions of partial conclusions computed by fuzzy
inference.

4. Fuzzi5cation

Knowledge about a given situation is generally imper-
fect. Doubts can arise either about knowledge validity (it
is said to be uncertain), or about how to express know-
ledge clearly (it is vague or imprecise). These two types of
imperfections are di!erent but often intimately linked.

Noise measurements and modelling approximations
are sources of uncertainty in the decision to classify
on-line a process state with measurements. When the
linguistic terms are used in diagnostic reasoning, di$cul-
ties arise from the lack of well-de"ned thresholds that
might separate linguistic terms, which are vague concepts
and should be modelled as such.

In this work, imprecision due to noise is taken into
account by combining past and present information
within residual signals. The residuals used in the detec-
tion or isolation modules are di!erent, but the underlying
uncertainty modelling is the same. Feature extraction
and fuzzi"cation will be described for a generic residual
r(k).

There are many works in the literature that attempt to
symbolically describe the evolution of a dynamic process
(Cheung & Stephanopoulos, 1990; Rengaswamy & Ven-
katasubramanian, 1995). Generally, extracting some
features from signals, and further interpreting these as
process trends is part of this symbolic description. In
many cases, these features correspond to signal deriva-
tives. Nevertheless, derivatives are corrupted if the signal
is noisy, leading to further imprecision.

In this work, residual features are used to take noise
into account. For each process variable, two sets of
features are computed from residual values in the last
instants:

1. Residual values in the q
1

last instants, represented by
the vector v(t), whose components are:

v
i
(t)"r(t!i), i"0,2, q

1
!1. (12)

2. Residual variations with respect to present time, in
the q

2
last instants, represented by the vector vR (t),

whose components are

v5
j
(t)"r(t)!r(t!j), j"1,2, q

2
, (13)

where the time windows q
1

and q
2

are chosen a priori.
Time window q

1
is chosen as a speci"cation of the fault

persistence (Theilliol, Weber, Ghetie & Noura, 1995).
Time window q

2
is chosen to improve the robustness of

the decision (while giving rise to a delay), because it
corresponds to several derivative estimations from
several temporal windows.



Fig. 5. Fuzzy partition.

The set of features are taken as independent measure-
ments and are used to compute partial conclusions on
the process state. If the partial conclusions are very
di!erent, then there is lot of imprecision that will account
for uncertainty in the "nal decision, otherwise the "nal
decision is more reliable.

The reference domain of residual value and variation
are noted as X, XQ LR respectively and are considered to
be the same in the detection and isolation modules.
Orthogonal normalised fuzzy partitions are de"ned in
the universe of each residual feature. The descriptor sets
associated with each feature fuzzy partition are:

A(X)"MNN, N, Z, P, PPN, B(XQ )"MN, Z, PN (14)

related respectively to residual value and variation
features. The terms describe a qualitative order of magni-
tude of the feature values, and their linguistic interpreta-
tions are those of current applications of fuzzy control.

In the example, symmetrical trapezoidal or triangular
membership functions are used for both fuzzy partitions
(Fig. 5). Symmetry is justi"ed here by the fact that in the
absence of a fault, residuals are zero, and positive or
negative faults have the same importance. The symmetry
leads to a simple parameterisation of the residual value
fuzzy partition with only four parameters: a

1
, a

2
, a

3
and

a
4
, corresponding to the trapezoid boundaries.
Parameter a

1
can be chosen from a rough idea of the

noise standard deviation. Parameter a
4

corresponds to
a threshold as in a classical alarm system. Parameters
a
1

and a
4

represent the conventional thresholds for nor-
mal and faulty states. Taken as being equal to a

3
, para-

meter a
2

can be equal to the mean of a
1

and a
4
, leading

to a triangular membership function for P and N in A(X),
thus avoiding further parameterisation.

The parameters for the residual variation partition
are de"ned from the residual value partitions. As sym-
metrical trapezoidal membership functions are used, the
three fuzzy sets can be de"ned with two parameters
a5
1

and a5
2
. It can be seen from (13), that a deviation in the

residual a!ects the variation attribute twice, hence the
parameters for residual variation partition can be derived
from those of the residual value partition as a5

1
"2a

1
,

a5
2
"2a

2
.

At a given instant t, the residual value and variation
features are computed in the respective time windows.
For simplicity, the time instant t will be omitted in some

equations. The fuzzi"cation of residual features leads to
the descriptions:

<I
i
"[NN(v

i
)2PP(v

i
)] (15)

for residual value and

<QI
j
"[N(v5

j
)2P(v5

j
)] (16)

for residual variation.
The linguistic description of the residual in a process

variable at each instant is represented by a fuzzy proposi-
tion written from residual features as

v
i
(t) is A and v5

j
(t) is B (17)

where A3A(X) and B3B(XQ ). Fuzzy propositions like (17)
are used as inputs to fuzzy inference in detection and
isolation modules.

At each instant, each of the ordered pairs (v
i
(t), v5

j
(t)) of

feature values leads to the description of the residual in
the process variable computed as the vector:

=I
k
"[t(NN(v

i
), N(v5

j
))2t(PP(v

i
), P(v5

j
))] (18)

where W3
k
3I15 is the fuzzy description computed as the

conjunction of the descriptions VI
i
3I5 and VQI j3I3 by

the t-norm t. In the application described in this work, the
product operator was used as t-norm.

In order to represent residual imprecision, all
M"q

1
q
2

feature combinations are taken into account
as independent measurements of the process state. The
resulting input descriptions, represented by the matrix
WI 3IMC15 are used to compute partial conclusions in the
detection and isolation modules. Partial conclusions
are then aggregated into a "nal decision as described in
the next sections.

5. Detection module

The analytical model used for detection is a numerical
non-linear simulator of the process that provides the
reference for the fault-free behaviour. The simulator is fed
on-line the set points chosen by the operators and the
measurable disturbances.

For each variable, the measurement value y(t) at time
t can be written from the reference value yH(t) given by the
numerical simulator output at the same time as:

y(t)"yH(t)#d(t), (19)

where d(t) is the total residual.
Detection decisions can be formulated linguistically as:
`if d(t) is near to zero then the variable follows its normal
behaviour, including modelling errors and measurement
noise; otherwise, there is a fault, or a non-measurable
disturbance on the variable, that must be detected a.

To take imprecision into account, residual value and
variation features for the detection module, noted as x

i
(t)

and x5
j
(t) respectively, are computed as in (12) and (13).



Table 1
The detection symbolic rule base!

U3 x5
j

N Z P

x
i

NN 0/OK#1/AL 0/OK#1/AL 0.2/OK#0.8/AL
N 0/OK#1/AL 0.4/OK#0.6/AL 0.6/OK#0.4/AL
Z 0.8/OK#0.2/AL 1/OK#0/AL 0.8/OK#0.2/AL
P 0.6/OK#0.4/AL 0.4/OK#0.6/AL 0/OK#1/AL
PP 0.2/OK#0.8/AL 0/OK#1/AL 0/OK#1/AL

U x
i
x5
j

NN}N NN}Z NN}P N}N N}Z N}P Z}N Z}Z Z}P P}N P}Z P}P PP}N PP}Z PP}P

OK 0, 0 0, 0 0, 2 0, 0 0, 4 0, 6 0, 8 1, 0 0, 8 0, 6 0, 4 0, 0 0, 2 0, 0 0, 0
A¸ 1, 0 1, 0 0, 8 1, 0 0, 6 0, 4 0, 2 0, 0 0, 2 0, 4 0, 6 1, 0 0, 8 1, 0 1, 0

!The transpose of the matrix U describing the rule base.

Fuzzy partitions are de"ned over the universe of residual
features for each process variable as in (14). At each
instant, the residual feature descriptions XI

i
and XQI

j
are

computed as in (15) and (16).
A rule base written as follows expresses partial con-

clusions about the variable state:

If x
i
(t) is A and x5

j
(t) is B then state is S (20)

where A3A(X), B3B(XQ ) and the conclusion S3
MOK, FAN represents the variable state, where OK ac-
counts for the normal state and FA for the faulty state.
For a better performance, weights are associated with
each rule in the rule base; this is represented in Table 1.
For instance, if the residual is very negative and its
variation is negative too, the variable is certainly in
alarm, while if the residual is very negative with a positive
variation, the alarm is not so drastic.

At each instant, residual descriptions computed from
XI

i
3I5 and XQI

j
3I3 (15), (16), are represented by the

matrix W3 3IMC15. In this matrix, rows correspond to
time instants and columns correspond to the feature
combinations (18). Residual descriptions are used as in-
puts to the fuzzy system that computes the membership
values to the states OK and FA by the relational
composition:

S3 "W3 "U3 , (21)

where U3I15C2 is the matrix representation of the rule
base (Table 1) and S3 3IMC2 contains descriptions of par-
tial conclusions about the process variable state. The
rows of S3 correspond to the fuzzy description (see (4)) of
the rule base conclusions at each time instant. The "rst
column of S3 is associated with the conclusion OK and the
second column to the conclusion FA. Since normalised
orthogonal fuzzy partitions are used, the partial con-
clusions associated with each residual feature combina-

tion are complementary so that

S
k
(FA)"1!S

k
(OK), k"1,2, M. (22)

The "nal decision takes all the past M sampling times
into account. This allows the "ltering of noise. Moreover,
in order to represent uncertainty in the "nal decision, two
"nal conclusions are computed by the aggregation of all
partial conclusions about the variable state descriptions
by two ordered weighted aggregator (OWA) operators
(Yager, 1988):

(a) robust "nal conclusion DI ~ as:

D~(FA)"O=A~(S
1
(FA)2S

M
(FA)). (23)

D~(OK)"O=A`(S
1
(OK)2S

M
(OK)). (24)

(b) A sensitive "nal conclusion DI ` as

D`(FA)"O=A`(S
1
(FA)2S

M
(FA)), (25)

D`(OK)"O=A~(S
1
(OK)2S

M
(OK)), (26)

where O=A` and O=A~ are respectively an or-like OWA
operator and an and}like OWA operator (Yager, 1993).
These operators can be chosen in such a way that "nal
conclusions remain complementary.

D~(OK)#D~(FA)"1, (27)

D`(OK)#D`(FA)"1. (28)

In the application described in Section 7, the max and the
min operators used were O=A` and O=A~ respectively.

At each instant, uncertainty is bounded by the robust
and sensitive "nal conclusions. From the di!erence be-
tween Eqs. (27) and (28), uncertainty bounds can be
computed as

1"D`(FA)!D~(FA)"D~(OK)!D`(OK)'0. (29)



Fig. 6. Decision interpretation.

Fig. 7. Residual evolution in a variable.

Fig. 8. OK decision evolution.

Fig. 9. FA decision evolution.

The "nal decision step follows the aggregation step (see
(11)). Uncertainty modelling makes it possible to work on
di!erent limits to detect a variable in alarm or to decide
to turn o! the alarm.

A fault is detected on a variable if the FA membership
is signi"cant. The robust "nal conclusion is used for fault
detection and to trigger an alarm in a process variable by
the following decision rule:

D~(FA)!D~(OK)'e
1
, (30)

where e
1

is a safety factor, chosen according to required
robustness, that acts as an ambiguity rejection (FreH licot,
Masson & Dubuisson, 1995). Note that if e

1
"0, Eq. (30)

reduces to the max decision rule. This crisp decision is
used to represent the alarm status on the classical inter-
face or on the graph that is presented in Section 7.

The supervision system follows the process on-line
and the sensitive "nal conclusion is used to turn the
alarm o! if

D`(OK)!D`(FA)'e
2
. (31)

The I2 decision space is shown in Fig. 6, where
the vectors DI `"xD`(OK) D`(FA)y and DI ~"

xD~(OK) D~(FA)y are represented in two situations
(alarm, normal). Relations (27)}(29) are visualised in this
"gure. Normal, faulty and ambiguous regions are high-
lighted. An alarm is set o! if the robust "nal conclusion
description vector is in the faulty region. Otherwise, an
alarm is turned o! if the sensitive description vector is in
the normal region.

Fig. 7 presents the residual evolution during a fault
simulation. Figs. 8 and 9 show the evolution of robust
and sensitive "nal conclusions in the simulation of the
fault shown in Fig. 7, where an ambiguity band can be
observed. It can be seen that in spite of measurement
noise that is more or less constant over the temporal
window, uncertainty in the decision occurs only between
the ambiguity bounds.

The mean description DI "1
2
(DI `#DI ~) is defuzzi"ed

into an index representing a colour code to be displayed
in the graphical interface (see Section 7).

A meta-algorithm is given in the appendix to depict the
various computational steps.

The detection module provides a unordered list of the
simultaneous faults that a!ect the process. The isolation
module aims to convert the set of detected variables into
a graph whose root is the primary fault, and whose paths
illustrate the fault propagation.



Fig. 10. Causal model.

6. Isolation module

Causal modelling requires the description of a complex
process with a chain of elementary partial e!ects. For
instance, the output #ow of a tank explains its level; the
level is explained by the input #ow; the valve opening
explains the input #ow. Therefore, the causal model
provides a conceptual tool with which to reason how
changes propagate or how they may be explained.

A digraph, whose nodes represent the variables and
whose arcs represent directed relationships between
variables, can describe the causal model. Note that
contrary to fault-symptom trees, the causal graph repres-
ents the normal behaviour of the process (Leyval et al.,
1994).

In this work, the causal links of the graph represent the
local linear discrete model of each measured variable,
whose transfer functions have been identi"ed as approxi-
mations of the non-linear simulator behaviour. Addition-
ally, the causal model is fed with the outputs of the
analytical model, which allows the linear approximation
errors to be estimated.

For each variable, its predicted value y( (t) is computed
from the measurements of each antecedent, by the sum
of the components associated with each entering arc
(Fig. 10) as

y( (t)"G(q)u(t), (32)

where u(t)"[u
1
(t)2u

n
(t)]@ is the measurement of each

antecedent and G(q)"[G
1
(q)2G

n
(q)] is the local model

of the variable, written in the shift operator q. Expressing
the measured values of the antecedents according to (19):

y( (t)"G(q)uH(t)#G(q)du (t), (33)

where du (t)"[d
1
(t)2d

n
(t)]@ are the total residuals in the

antecedents.
Assuming linearity allows the e!ects of each potential

antecedent on a variable to be separated. This means that
antecedent faults propagate and that their e!ects are
summed on the successor node.

The predicted value of the variable can be rewritten
from (33) as

y( (t)"y( H(t)#dK (t), (34)

where y( H(t) is the estimation of the reference value and dK (t)
is the propagated residual that accounts for propagated
e!ects of faults in variables upstream in the graph.

Linear approximation errors in each variable can be
estimated by the di!erence between the reference value
computed by the analytical model and the estimation of
the reference value computed by the local model of the
variable as

yH(t)!y( H(t)"*y( H(t). (35)

The isolation procedure is carried out for all variables in
the process. For each variable, the local residual *d(t) is
de"ned as the e!ect of local faults only. It can be com-
puted by the di!erence between the total residual d(t)
(19), which is sensitive to all faults, and the propagated
residual dK (t) (34), which is only sensitive to upstream
faults. Taking into account linear approximation errors,
the local residual can be written as

*d(t)"d(t)!dK (t)"y(t)!y( (t)!*y( H(t). (36)

A purely numerical interpretation of (19), (34) and (36)
should be the most accurate way to process the initial/
"nal-node consistency-test necessary for the isolation
step if the model was perfect and the measurements were
very precise. Nevertheless this purely numerical inter-
pretation cannot be soundly performed if the thresholds
of these various residuals, which are connected by arcs,
are poorly balanced. Indeed when a malfunction or a un-
measurable disturbance occurs, inappropriate thresholds
may prevent the defect from being immediately detected
on the root variable, or may upset the chronological
sequence of fault occurrences in the causal chain: the
primary fault may be detected "rst on one of its suc-
cessors on the graph. To avoid a wrong diagnosis
situation, these thresholds should be determined by
using the very accurate quantitative information ob-
tained from a sensitivity analysis. This analysis is a rather
dissuasive prospect for a process with a large number of
variables.

These considerations explain why the isolation pro-
cedure is modeled (as is the previous detection step) as
a decision-making process in an imprecise context, and
the isolation decision is then linguistically stated as fol-
lows: `if the local residual is near zero, then the detected
disturbance is due to the propagation of upstream faults;
otherwise there is a local faulta. Note that even in the
presence of multiple faults, the local residual should
isolate local faults.

The rule base for the isolation module is expressed as
follows:

if z
i
(t) is A and z5

j
(t) is B then fault is F (37)



Fig. 11. Schematic view of the plant.

where z
i
(t) and z5

j
(t) are the local residual features com-

puted as in (12) and (13); A3A(X) and B3B(XQ ) are terms
in the fuzzy partitions (14), which are the same as those
used in the detection module, avoiding new parameters.
The conclusion F3M;P, ¸ON, where UP stands for
upstream faults and LO for local faults.

The input description matrix W3 3IMC15 is now com-
puted from feature descriptions ZI

i
3I5 and ZQ

j
3I3 as (18).

The fuzzy inference for the isolation module can use the
same rule weights as the detection module avoiding fur-
ther parameterisation. Thus, Table 1 represents the rule
base for localisation too, with UP instead of OK and LO
instead of FA. For instance, if the local residual is very
negative and its variation is negative too, the fault is
certainly local, while if the residual is near zero with
a positive variation, the fault is certainly upstream.

The fuzzy description of the fault isolation is computed
by

FI "W3 "U3 , (38)

where FI 3IMC2. The "rst column of FI is associated with
the conclusion UP and the second column with the
conclusion LO.

Obviously, a decision on whether the fault is local or
upstream depends on the decision that a fault has oc-
cured in the process variable, computed by the decision
rule (30).

The membership values of decisions LO and UP are
computed in such a way that

F(¸O)#F(;P)"D(FA), (39)

where D(FA) is the membership of FA in the mean de-
scription in the detection module. Due to fuzzy partitions
properties (3), equality in (39) is achieved by multiplying
the result of (38) by D(FA).

The "nal conclusions of the isolation are computed in
the same way as the detection ones. A robust description
I̧ ~ and a sensitive description I̧ ` are computed by the
aggregation of partial conclusions as in (23)}(26). The
"nal decision that a fault is local is computed as in (30)
and a mean valued description is also used for defuzzi"-
cation into a colour code to be used in the graphical
interface.

A meta-algorithm is given in Appendix to depict the
various computational steps.

7. Prototype description

7.1. Process description

An application of the method was carried out at
a nuclear fuel reprocessing plant (Fig. 11). Spent fuel is
reprocessed to recover the uranium and plutonium still
present in the fuel rods irradiated in nuclear reactors, and
to isolate the remaining "ssion products. The pulsed

column facility considered here includes extraction col-
umns and "ssion product scrubbing columns, and is
designed to separate the uranium and plutonium from
the "ssion products (FP) by selective extraction.

A pulsed column is a liquid-liquid extraction device.
The spent fuel (comprising uranium, plutonium and FP)
is dissolved in nitric acid (Q0500), and the extraction
column selectively transfers the uranium and plutonium
to an organic phase (inlet Q1010 and outlet QG600)
consisting essentially of tributylphosphate (TBP); thus
most of the "ssion products remain in the aqueous phase
(QE120).

The extraction step requires that the aqueous and
organic phases be thoroughly mixed to maximize the
contact surface area between the two solvents and there-
by optimise the chemical exchange phenomena. The two
phases tend to separate by gravity, as nitric acid has
a higher density than TBP.

In order to ensure countercurrent #ow, the light phase
(Q1010) is injected at the base of the column and the
heavy (acid) phase at the top (Q0500 and QG100).
The organic phase is the continuous phase; it initially
"lls the entire volume of the extraction column, and
remains the predominant phase after injection of the
aqueous phase: acid droplets are dispersed in the TBP.
The resulting mixture is subjected to periodic pressure
pulses (PRE801) to form an emulsion in order to delay
the descent of the heavy phase and to mix it with the light
phase. The interface* the surface physically separating
the two phases* is located in the settler at the bottom of
the column (NIRE), and is regulated by drawing o! the
aqueous phase (QE120) at a suitable rate. In the applica-
tion considered here, all liquid transfers are ensured by
airlifts.

The facility is comprised of two columns coupled top-
to-bottom by means of a transfer system. The extraction
column described above is followed by a scrubbing col-
umn designed to enhance the decontamination of "ssion



Fig. 12. Causal model of the plant.

Fig. 13. QO500 #ow behaviour during a drift fault and a ramp set point
change.

products from the solvent (aqueous phase: inlet Q1120
and Q1520, outlet QG100; organic phase: inlet QPAR;
outlet QG800). Traces of "ssion products carried out
from the extraction column (QG600) are rinsed from the
organic phase containing the uranium and plutonium.

The columns are connected top-to-bottom (QG100) in
order to recover the aqueous phase containing the "ssion
products through a single out#ow (QE120), and to in-
crease the process e$ciency by recycling the traces of
uranium and plutonium in the aqueous phase from the
scrubbing column.

A simulator of the process, based on a set of non-linear
numerical models, is used to provide reference behaviour
and also to simulate faulty behaviour. Nuclear physicists
wrote this simulator; it is based on sound mathematical
models of the plant. The process simulator computes 50
variables, which are used by the prototype system and
can simulate several kinds of faults (sensor, actuator and
process faults).

A careful physical analysis (Leyval et al., 1994) of the
process under study has resulted in a causal graph link-
ing input and output #ows, levels and column weights
(Fig. 12).

7.2. Application of detection and isolation

At each time, the fuzzy reasoning procedure for detec-
tion and isolation presented above is carried out for each
process variable. As an example a drift fault on the
variable Q0500 is analysed (Fig. 13; see in Fig. 7 the
residual evolution); this fault occurs during a ramp set
point change, which is very di$cult to detect.

The parameters of fuzzy partitions have been chosen
without any precise quantitative analysis for the total
residual. Before the fault, residual values due to noise give
an idea of the value of parameter a

1
(see Fig. 5). The

variable is certainly faulty when the residual value is
greater than !50, what de"nes the value of parameter
a
4
. The same procedure has been applied to each process

variable. Simulation results have shown that the diagnos-
tic performance is not very sensitive to such parameters.
The values of parameters q

1
and q

2
have been chosen by

analysing the sensitivity and robustness of the detection
for some variables. The values q

1
"2 and q

2
"4 have

shown good results and were adopted for all variables.
The variable Q0500 is the input #ow solution contain-

ing radioactive products. The e!ects of a fault that a!ects
this variable is propagated over the extraction column
and Fig. 14 shows the behaviour of the variable QE120,
which is the output #ow of the heavy phase.

An arc in the causal model of the process links the
variables Q0500 and QE120. The fault appeared "rst on
variable Q0500 and can be detected in variable QE120
some instants later. The isolation reasoning is illustrated
in Figs. 13 and 14. In Fig. 14, the predicted value y( (t) of
variable QE120 is close to the measured value y(t),



Fig. 14. QE120 #ow behaviour (same fault as Fig. 13).

Fig. 15. The "rst layer, structural modules of the plant.

demonstrating that its behaviour can be explained by
upstream variable behaviours, the fault is thus upstream.
This is not the case in Fig. 13 for Q0500, where the
di!erence between the measured value y(t) and the pre-
dicted value y( (t) is large, indicating that the fault is local.
The isolation module reproduces such reasoning for
every variable of the process.

7.3. Graphical interface

The information about the process is presented in
three di!erent abstract layers in the prototype system.
The layers present di!erent information in the screen

area. The basic frame window presents the list of the
process variables on the right side. By clicking on each
button, the corresponding variable history information is
displayed (see Figs. 13 and 14).

In the "rst layer, the plant is represented according to
a structural decomposition as in classical monitoring
interfaces (Fig. 15). In this view, the variables are repre-
sented by a rectangle containing their measured value or
a colour representation obtained from the fuzzy reason-
ing in the detection module. The primary fault, found by
the isolation module, is shown in this view by a red
contour around the name of the variable.

The illustrated example corresponds to a pressure-
pulse primary fault problem of the scrubbing column
(PRL801). As a quasi-immediate e!ect, the heavy phase
inner #ow of the scrubbing column is a!ected, and conse-
quently the column weights (BL030, BL031 and BL032)
characteristic of the emulsion operating mode are abnor-
mally modi"ed. To keep the level (NIRL) of the settler at
the bottom of the column constant, the heavy-phase
outlet (QG100) is "nally subject to abnormal variations.
This view only proposes the set of the faulty variables at
a given time.

In the second layer, a "rst abstraction is made and the
process variables are represented as nodes in the causal
graph. The output of the fuzzy reasoning in the isolation
module is displayed in the graph in the following way. If
the node is not red, the variable is in a normal state. If the
contour of the node is red, the alarm in the variable does



Fig. 16. The second layer, causal model of the plant.

Fig. 17. Detection view.

not mean a local fault. If the interior of the node is red
then the variable is isolated as a local fault. The fault path
is also shown in red, with the primary fault as the root of
the faulty sub-graph (Fig. 16). The fault path in the causal
graph can be seen as a justi"cation module that explains
the chain of alarms to the operators.

The arcs turn red, as the system decides that the arc
carries the propagation of some fault. If an arc between
two red variables is not red, then it means that the system

is not able to make a decision due to uncertainty e!ects
or to the fact that the two faults are independent.

The fault scenario described above can be followed on
the causal graph view. The e!ects of the causal propaga-
tion of the primary fault on PRL801 are easily observ-
able. The "gure corresponds to a later observation since
the weights and hold-up of the extraction column have
already been a!ected by the abnormal top-of-bottom
connection #ow QG100.

The third layer is a full abstraction layer, where only
the qualitative time evolution of the variables is present-
ed. In the interface screen, each line is associated with
a variable, and each column is associated with a sampling
time, where the columns close to the left side represent
earlier time samples. The information display in this layer
was inspired by the concept of &mass data display', which
has already been studied for this process (Lambert, Riera
& Martel, 1997).

One view is dedicated to the detection module and
another one is dedicated to the isolation module. In both
views, the evolution of the colour code for each variable
is shown in the screen area.

Each conclusion is associated with a colour. The de-
scription obtained as output of fuzzy reasoning in detec-
tion and isolation modules are defuzzi"ed into an index
associated with colour shade to represent how each of the
conclusions is matched. In the detection view (Fig. 17),
the conclusions of the detection decision are defuzzi"ed
into an index of a colour map from green (normal state)



Fig. 18. Isolation view.

to red (faulty state). In the isolation view (Fig. 18), the
conclusions of the decision are defuzzi"ed into an index
of a colour map from blue (upstream fault), to red (local
fault). A colour palette composed of 64 colours is used.

In a normal situation the whole screen is green in both
detection and isolation views. In the detection view, when
a fault occurs, the lines turned to red represent the vari-
ables in alarm. The evolution of the colour intensity
represents the abruptness of the fault. In the isolation
view, the variables in green in the detection view remain
green. The variables in red remain red if the fault is local
or turn blue if the fault is upstream. By changing from the
detection to isolation view the e!ect of alarm "ltering
provided by the system can be evaluated.

The isolation view and causal graph representation
can be used concurrently in isolation task reasoning.
With the isolation view it is very relevant to analyse the
times of appearance and disappearance of correlated
alarms to get the right isolation reasoning. But this
implies that all the relationships between variables are
well assimilated by the operators. The causal graph high-
lights such relationships for novice operators and shows
how the fault propagates throughout the process.

The detection and isolation views and the causal graph
are di!erent representations of the pressure pulse failure
mode at the same time. The causal graph is a powerful
tool to express the links between abnormal or normal
variable behaviours. The physical in#uence of the pres-
sure pulse on the outlet QG100 is not necessarily obvious

to a novice operator in abnormal situations. The column
reading of the detection or isolation view provides a natu-
ral representation of simultaneous or past events essen-
tial in diagnosing the temporal reasoning of a process
expert.

The last view of the third layer shows the predicted
behaviour of the process (Fig. 19). In this view, current
time measurements are shown in the middle of the screen.
The left-side screen shows past behaviour while the
right-side screen shows the behaviour predicted by the
causal model, according to the same colour representa-
tion as in the detection view.

The third layer attempts to present the timed behav-
iour of the process state. The objective of this interface is
to present a large amount of qualitative information
about the fault's evolution to help the operator analyse
the chain of alarms. Moreover, the isolation interface
shows an image that can be seen as a graphical repres-
entation of the fault. In the propagation view, the oper-
ator is informed at the very beginning of the fault if its
consequences will a!ect a large number of variables. In
a practical application, this view could be used to test
alternative actions.

7.4. Evaluation

A rough evaluation of the prototype system was made
with eight students at a technical school (Evsuko! et al.,
1998). The students were arranged into two groups with



Fig. 19. Propagation view.

equivalent skills. Each group tried a version of the sys-
tem: the "rst group tried the full system, while the second
group did not have access to the second layer with the
causal graph information.

Experimentation was carried out with one student at
a time. All students were confronted with the same four
fault scenarios of increasing di$culty. At the end of each
scenario, the students were asked to explain the process
evolution. At the end of each experiment, the students
were asked to answer general questions about the inter-
face and more speci"c questions about the evolution of
some variables in each scenario.

The aim of the experimentation was to test if students
could understand the notions of model-based supervision
and causal reasoning. It is clear that the limited number
of students and the short time given to each of them did
not allow precise statistics but only a qualitative evalu-
ation of the relevance of the di!erent ideas for future
process operators.

Classically, the main representation of the physical
phenomena propagation used by students is the #ow
diagram. So when the fault e!ects can be observed on
a single phase, students easily manage to make the right
diagnosis because the fault propagation matches the #ow
diagram circulation.

When the fault is more di$cult to diagnose, involving
dynamic relationships that are not included in the #ow
diagram (such as a fault in a regulation loop), it was
di$cult for the students, who are not experts in

liquid}liquid extractors, to give the right explanation.
Nevertheless, those using the graph interface gave a clear
description of the underlying phenomena.

Consequently the causal graph seems to constitute
a good support to explain the fault propagation through
the process when the problem to be diagnosed is com-
plex. Moreover, the causal graph is a natural way to
explain alarm "ltering to the operator.

Obviously, experimental conditions were far from
ideal. Nevertheless, at the end of the relatively short
period of experimentation, "rst-time users of the proto-
type system were able to understand most of complex
physical behaviour of the process and to diagnose
various types of faults.

8. Conclusion

This paper has presented an alarm "ltering method
based on di!erent models of a process: a non-linear
precise model for detection and a bank of approximate
local linear models structured as a causal graph for
isolation. These tasks have been designed from a co-
operative human/machine point of view. Consequently,
their "rst objective is to make the operators focus on
suspicious variables before the discrepancy with normal
behaviour becomes too signi"cant, thus enabling them
to act appropriately, sure of the real cause of the ob-
served malfunction. For such a system to be e$cient,



explanations of primary fault localisation must be given
to the operator. One foundation of this system is causal
reasoning, visualised as a cause-e!ect graph that is the
key to explaining isolation reasoning.

Fuzzy reasoning is another basis of the human/ma-
chine co-operation because it allows the symbolic inter-
pretation of numerical data such as model residuals and
the implementation of gradual decisions. Residuals are
basic quantities for model based diagnostics; most works
focus on structured residual generation. In classical con-
trol approaches, residuals are considered to be Boolean
quantities (equal to zero or not) for detection and isola-
tion reasoning. A zero residue means no fault while
a non-zero residue means a fault is detected; when struc-
tured residuals are obtained, several residuals are not
zero at the same time and this allows fault localisation.
This is clearly a purely theoretical approach because
measurements are noisy, models are imprecise and thus
residuals are never zero. Few authors have emphasised
the decision problem following residual generation. Most
of the time, replacing the zero by a "xed value is pro-
posed, which corresponds to a vague concept and is
di$cult to choose. Using crisp values as thresholds re-
sults in abrupt decisions and eventually unstable deci-
sions when small variations due to noise occur around
the limit. The use of fuzzy sets to represent residuals
consequently begins to be considered necessary to obtain
gradual decisions. This does not solve problems due to
noise because fuzzifying a noisy value leads to a noisy
membership value. This is why in this paper it has been
proposed that decisions be made based on the residual
values over a temporal window. Moreover, this paper
proposes modelling the uncertainty of the decision. This
allows a supervision-system designer to evaluate the
alarm-"ltering e$ciency, and makes it possible to give
the operator robust or sensitive decisions following
the case study. This approach is very general and could
be applied to any kind of model based diagnosis system.

Fuzzy rule bases have been shown to be easily ex-
pressed as matrix algebra, modelling a mapping between
input descriptors and conclusion descriptors. This allows
a computationally e$cient real-time implementation of
the detection and localisation algorithms.

Communication between the computer and the oper-
ators is accomplished owing to several interfaces that
illustrate each of the underlying concepts. Colours codes
have been widely used in human}machine interfaces to
represent qualitative numerical results. Using colours
enables concepts that gradually evolve with time to be
represented. A graduated colour code translates the de-
tection and isolation algorithm results into a mass vis-
ualisation of the variable states, which allows operators
to analyse a large amount of qualitative information.
A causal graph with coloured suspected nodes or arcs
allows the visualisation and physical understanding of
the isolation algorithm results.

Previous experiments with novice operators demon-
strate the validity of the approach. The use of a model
as a reference of normal behaviour was very easily
understood. The colour code was easily interpreted and
allows operators to anticipate their actions compared to
a classical binary alarm signal. The causal graph is
a powerful tool for those problems that are not easily
managed by novice operators such as faults in regulation
loops.

An analysis of a hierarchical representation of causal
graphs has been undertaken in order to allow the repres-
entation of a complete facility.
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Appendix A

Detection algorithm applied to all variables at time t:

1. Data acquisition gives y(t); computation of the refer-
ence model value gives yH(t). The total residual is
computed as

d(t)"y(t)!yH(t).

See Fig. 7 as an illustration.
2. Updating of the residual features:

x
i
(t)"d(t!i), i"0,2, q

1
!1,

x5
j
(t)"d(t)!d(t!j), j"1,2, q

2
.

3. Fuzzi"cation of the residual features (fuzzy parti-
tions de"ned by Eq. (14)) leading to fuzzy descrip-
tions of residual features:

XI
i
"[NN(x

i
)2PP(x

i
)], XI

i
3I5,

XQI
j
"[N(x5

j
)2P(x5

j
)], XQI

j
3I3.

4. Computation of the fuzzy description matrix W3 ,
whose components are residual features descriptions
in the time window M"q

1
q
2
. Each row of W3 is

computed by product of the combinations of the
feature membership values and:



W3 "

C
(NN(x

0
) )N(x5

1
)) ) (PP(x

0
) )P(x5 q2 ))

F } F

(NN(xq1 !1) )N(x5
1
)) ) (PP(xq1~1

) )P(x5 q2 ))D ,

W3 3IMC15.

5. Computation of partial conclusions about variable
state, represented by the matrix S3 3IMC2, in one pass
of W3 through the rule base matrix U3 3I15C2:

S3 "W3 "U3 "W3 )U3 .

6. Aggregation of all partial conclusions to compute
robust and sensitive "nal decisions,

D~(FA)"min(S
1
(FA)2S

M
(FA)),

D~(OK)"max(S
1
(OK)2S

M
(OK)),

D`(FA)"max(S
1
(FA)2S

M
(FA)),

D`(OK)"min(S
1
(OK)2S

M
(OK)).

7. Computation of the crisp decisions:

If D~(FA)!D~(OK)'e
1

then an alarm is trig-
gered.
If D`(OK)!D`(FA)'e

2
then the alarm is turned

o!.

These decisions are transmitted to the classical inter-
face (Fig. 15 is an illustration) and to the causal
graph interface to colour the contour of the node in
red (Fig. 16 is an illustration).

8. Computation of the colour index associated to the
mean decision:

DI "1
2
(DI `#DI ~)

u
d
(t)"D(OK)u

OK
#D(FA)u

FA
,

where u
d
(t) is the colour code to be associated to the

variable in the detection graphical interface; u
OK

is the
colour index associated to the colour green and u

FA
is

the index associated to the colour red in the detection
colour palette (see Figs. 17}19 as illustrations).

Isolation algorithm applied to all variables at time t:

1. Data acquisition gives measures y(t); computation
of the reference model value gives yH(t); the
local causal model using measures of antecedents
as inputs gives y( (t); the local causal model using
reference model values of antecedents as inputs gives
y( H(t) (see Eqs. (32)}(34)). The local residual is com-
puted as

*d(t)"d(t)!dK (t)"(y(t)!yH(t))!(y( (t)!y( H(t)).

2. Updating of the residual features:

z
i
(t)"*d(t!i), i"0,2, q

1
!1,

z5
j
(t)"*d(t)!*d(t!j), j"1,2, q

2
.

3. Fuzzi"cation of the residual features (fuzzy parti-
tions de"ned by Eq. (14)) leading to fuzzy descrip-
tions of residual features:

ZI
i
"[NN(z

i
)2PP(z

i
)], ZI

i
3I5,

ZQI
j
"[N(z5

j
)2P(z5

j
)], ZQI

j
3I3.

9. Computation of the fuzzy description matrix W3 ,
whose components are residual features descriptions
in the time window M"q

1
q
2
. Each row of W3 is

computed by product of the combinations of the
feature membership values and:

W3 "

C
(NN(z

0
) )N(z5

1
)) 2 (PP(z

0
) )P(z5 q2 ))

F } F

(NNzq1!1) )N(z5
1
)) 2 (PPzq1~1

) )P(z5 q2 ))D,
W3 3IMC15.

4. Computation of partial conclusions about variable
state, represented by the matrix F3 3IMC2 in one pass
of=I through the rule base matrix U3 3I15C2:

F3 "W3 "U3 "W3 )U3 .

5. Aggregation of all partial conclusions to compute
robust and sensitive "nal decisions:

¸~(¸O)"min(F
1
(¸O)2F

M
(¸O)) )D(FA),

¸~(;P)"max(F
1
(;P)2F

M
(;P)) )D(FA),

¸`(¸O)"max(F
1
(¸O)2F

M
(¸O)) )D(FA),

¸`(;P)"min(F
1
(;P)2F

M
(;P)) )D(FA).

6. Computation of the crisp decisions:

If ¸~(¸O)!¸~(;P)'e
1

then the variable is de-
clared the cause of the fault.

If ¸`(;P)!¸`(¸O)'e
2

then the variable is de-
clared a consequence of the fault.

These decisions are transmitted to the classical inter-
face to highlight the contour of the variable name if
the variable is declared the source fault (Fig. 15 is an
illustration). In the causal graph interface the crisp
decisions are used to colour the node in red when the
variable is declared the source fault (Fig. 16 is an
illustration).

7. Computation of the colour index associated to the
mean decision:

I̧ "1
2
( I̧ `# I̧ ~), u

i
(t)"¸(;P) )u

UP
#¸(¸O) )u

LO
,



where u
i
(t) is the colour code to be associated to the

variable in the isolation graphical interface; u
UP

is
the colour index associated to the colour blue and
u
LO

is the index associated to the colour red in the
isolation colour palette (see Figs. 17}19 as illustra-
tions).
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