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ABSTRACT

We introduce and study a notion of spatial redundancy in Gaussian random fields. we define similarity
functions with some properties and give insight about their statistical properties in the context of
image processing. We compute these similarity functions on local windows in random fields defined
over discrete or continuous domains. We give explicit asymptotic Gaussian expressions for the
distribution of similarity function random variables when computed over Gaussian random fields
and illustrate the weaknesses of such Gaussian approximations by showing that the approximated
probability of rare events is not precise enough, even for large windows. In the special case of the
squared L2 norm, non-asymptotic expressions are derived in both discrete and continuous periodic
settings. A fast and accurate approximation is introduced using eigenvalues projection and moment
methods.

( )

Keywords Random fields, spatial redundancy, central limit theorem, law of large numbers, eigenvalues approximation,
moment methods.

1 Introduction

Stochastic geometry [1, 2, 3] aims at describing the geometry of random structures based on the knowledge of the
distribution of geometrical elementary patterns (point processes, random closed sets, etc.). When the considered
geometrical elements are functions over some topological space, we can study the geometry of the associated random
field. For example, centering a kernel function at each point of a Poisson point process gives rise to the notion of
shot-noise random field [4, 5, 6]. We can then study the perimeter or the Euler-Poincaré characteristic of the excursion
sets [7] among other properties [8]. In this article we will focus on the geometrical notion of redundancy in random
fields, defined on local windows. We say that a local window in a random field is redundant if it is “similar” to other
local windows in the same random field. The similarity of two local windows is defined as the output of some similarity
function computed over these local windows. The lower is the output, the more similar are the local windows. We give
some examples of similarity functions and illustrate their statistical properties with examples from image processing.

Identifying spatial redundancy is indeed a fundamental task in the field of image processing. For instance, in the context
of denoising, Buades et al. in [9], propose the famous Non-Local means algorithm in which a noisy patch is replaced by
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the mean over all similar patches. Other examples can be found in the domains of inpainting [10] and video coding
[11]. Spatial redundancy is also of crucial importance in exemplar-based texture synthesis, where we aim at sampling
images with the same perceptual properties as an input exemplar texture. If Gaussian random fields [12, 13, 14, 15]
give good visual results for input textures with no, or few, spatial redundancy, they fail when it comes to sampling
structured textures (brick walls, fabric with repeated patterns, etc.) and more elaborated models are needed [16, 17]. In
this work, we propose a statistical framework to get a better understanding of the spatial redundancy information. To be
more precise, we aim at giving the explicit probability distribution function of the random variables associated to the
output of similarity functions between local windows of random fields, in order to conduct rigorous statistical testing on
the spatial redundancy in natural images.

In order to compute these explicit distributions we will consider specific random fields over specific topological
spaces. First, the random fields will be defined either over Rd (or Td, where Td is the d-dimensional torus, when
considering periodicity assumptions on the field), or over Zd (or pZ{pMZqqd, with M P N when considering periodicity
assumptions on the field). The first case is the continuous setting, whereas the second one is the discrete setting. Since
all the applications we are primarily interested in are image processing tasks we set d “ 2. In image processing, the
most common framework is the finite discrete setting, considering a finite grid of pixels. The discrete setting (Z2) can
be used to define asymptotic properties when the size of images grows or when their resolution increases [18], whereas
continuous settings are needed in specific applications where, for instance, rotation invariant models are required [19].
All the considered random fields will be Gaussian. This assumption will allow us to explicitly derive moments of some
similarity functions computed on local windows of the random field. Once again another reason for this restriction
comes from image processing. Indeed, given an input image, we can compute its first and second-order statistics.
Sampling from the associated Gaussian random field gives examples of images which conserve the covariance structure
but lose the global arrangement of the input image. Investigating redundancy of such fields is a first step towards giving
a mathematical description of this lack of structure. The seminal work of Adler et al. [20] provides us the tools to
perform geometrical analysis of such models. Mathematical properties of Gaussian random field models in image
processing were described and investigated in [13].

The need of explicit distributions also restricts the choice of the similarity functions we are going to consider. Finding
measurements which correspond to the one of our visual system is a long-standing problem in image processing. It was
considered in the early days of texture synthesis and analyzed by Julesz [21, 22, 23] who formulated the conjecture
that textures with similar first-order statistics (first conjecture) or that textures with similar first and second-order
statistics (second conjecture) could not be discriminated by the human eye. Even if both conjectures were disproved
[24], in a discrete setting, the work of Gatys et al. [16] suggests that second-order statistics of image features are
enough to characterize a broad range of textures. To compute features on images we embed the image in a higher
dimensional space. This operation can be conducted using linear filtering [25] or convolutional neural networks [16]
for instance. Recent work examines the response of convolutional neural network to elementary geometrical pattern
[26], giving insight about the perceptual properties of such a lifting. Another embedding is given by considering a
square neighborhood, a patch, around each pixel. This embedding, is exploited in many image processing tasks such as
inpainting [27], denoising [9, 28], texture synthesis [29, 30, 31, 32], etc. In order to avoid the curse of dimensionality
small patches are considered. This justifies our definition of similarity functions on local windows. Recalling that, in
this study, the distribution of the similarity functions must be explicit when computed on Gaussian random fields, we
only consider similarity functions that are easy to compute over these random fields, using the properties of the scalar
product associated to the L2 norm.

In the special case of the L2 norm, explicit distributions can be inferred even in the non-asymptotic case, i.e. when
considering the finite discrete setting. This distribution is not easy to compute exactly since it requires the knowledge of
some covariance matrix eigenvalues as well as an efficient method to compute cumulative distribution functions of
quadratic forms of Gaussian random variables. We address both of these problems.

The paper is organized as follows. We introduce Gaussian random fields in general settings in Section 2.1. Similarity
functions to be evaluated on these random fields, as well as their statistical properties, are described in Section 2.2. We
give the asymptotic properties of these similarity functions in Gaussian random fields in the discrete setting in Section
3.1 and in the continuous setting in Section 3.2. It is shown in Section 3.3 that the Gaussian asymptotic approximation
is valid only for large patches. This is not a reasonable situation since we aim at deriving local measurements. In
order to bypass this problem we consider an explicit formulation of the probability distribution function for a particular
similarity function, the L2 norm. The computations are done in the finite discrete case in Section 4.1. We also derive an
efficient algorithm to compute these probability distribution functions. Similar non-asymptotic expressions are given in
the continuous case in Section 4.2.
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2 Similarity functions and random fields

2.1 Gaussian random fields

Let pA,F ,Pq be a probability space. Following [20], a random field over a topological vector space Ω is defined as a
measurable mapping U : AÑ RΩ. Thus, for all a in A, Upaq is a function over Ω and, for any a P A and any x P Ω,
Upaqpxq is a real number. For the sake of clarity we will omit a in what follows.

Assuming that U is a second-order random field, i.e. for any finite sequence px1, . . . ,xnq P Ωn with n P N, the vector
pUpx1q, . . . , Upxnqq is square-integrable, we define the mean function of U , m : Ω Ñ R as well as its covariance
function, C : Ω2 Ñ R by for any x,y P Ω2

mpxq “ E rUpxqs and Cpx,yq “ E rpUpxq ´mpxqqpUpyq ´mpyqqs .

A random field U is said to be stationary if for any finite sequence px1, . . . ,xnq P Ωn with n P N and t P Ω, the
vector pUpx1q, . . . , Upxnqq and pUpx1 ` tq, . . . , Upxn ` tqq have same distribution. A second-order random field
U over a topological vector field is said to be stationary in the weak sense if its mean function is constant and if for
all x,y P Ω, Cpx,yq “ Cpx ´ y,0q. In this case the covariance of U is fully characterized by its auto-covariance
function Γ : Ω Ñ R given for any x P Ω by

Γpxq “ Cpx, 0q .

A random field U is said to be a Gaussian random field if, for any finite sequence px1, . . . ,xnq P Ωn with n P N,
the vector pUpx1q, . . . , Upxnqq is Gaussian. The distribution of a Gaussian random field is entirely characterized by
its mean and covariance functions. As a consequence, the notions of stationarity and weak stationarity coincide for
Gaussian random fields.

Since the applications we are interested in are image processing tasks, we restrict ourselves (in the continuous setting)
to the case where Ω “ R2. In Section 2.2 we will consider the Lebesgue integrals of random fields and thus need
integrability condition for U over compact sets. Let K “ ra, bs ˆ rc, ds be a compact rectangular domain in R2.
Imposing continuity conditions on the function C implies that

ş

K
gpxqUpxqdx is well-defined as the quadratic mean

limit, see [33]. for real-valued functions g over Ω such that
ş

KˆK
gpxqgpyqCpx,yqdxdy is finite, see [33]. However,

we are interested in almost sure quantities and thus we want the integral to be defined almost surely over rectangular
windows. Imposing the existence of a continuous modification of a random field, ensures the almost sure existence
of Riemann integrals over rectangular windows. The following assumptions will ensure continuity almost surely, see
Lemma 1 below and [20, 34]. We define d : Ωˆ Ω Ñ R such that for any x,y P Ω

dpx,yq “ E
“

pUpxq ´ Upyqq2
‰

“ Cpx,xq ` Cpy,yq ´ 2Cpx,yq ` pmpxq ´mpyq2 .

Assumption 1 (A1). U is a second-order random field and there exist M,η, α ą 0 such that for any x P Ω and
y P Bpx, ηq X Ω with y ‰ x we have

dpx,yq ď
M}x´ y}22

| logp}x´ y}2q|2`α
.

This assumption can be considerably weakened in the case of a stationary Gaussian random field.

Assumption 2 (A2). U is a stationary Gaussian random field and there exist M,η, α ą 0 such that for any x P Ω and
y P Bpx, ηq X Ω with y ‰ x we have

dpx,yq ď
M

| logp}x´ y}2q|1`α
.

Assumptions (A1) and (A2) both imply quadratic mean continuity of the random field U , i.e. for any x P Ω,
limyÑx dpx,yq “ 0. Note that the quadratic mean continuity implies the continuity of the covariance function
and the mean function of the random field U . However, since assumptions (A1) and (A2) are stronger than the quadratic
mean continuity we can show that each realization of the random field is continuous, up to a modification, see Lemma
1. The demonstration of this lemma can be found in [20] for the Gaussian case and in [34] for the general case.

Lemma 1 (Sample path continuity). Assume (A1) or (A2). In addition suppose that for any x P Ω, mpxq “ 0. Then

there exists a modification of U , i.e. a random field rU such that for any x P Ω, P
”

Upxq “ rUpxq
ı

“ 1, and for any

a P A, rUpaq is continuous over Ω.

3
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In what follows we will replace U by its continuous modification rU . Note that in the discrete case all random fields are
continuous with respect to the discrete topology.

In Sections 3 and 4, we will suppose that U is a stationary Gaussian random field with zero mean. Asymptotic theorems
derived in the next section remain true in broader frameworks, however restricting ourselves to stationary Gaussian
random fields allows for explicit computations of asymptotic quantities in order to numerically assess the speed of
convergence.

2.2 Similarity functions

In order to evaluate redundancy in random fields, we first need to derive a criterion for comparing random fields. We
introduce similarity functions which take rectangular restrictions of random fields as inputs.

When comparing local windows of random fields (patches), two cases can occur. We can compare a patch with a patch
extracted from the same image. We call this situation internal matching. Applications can be found in denoising [9] or
inpainting [10] where the information of the image itself is used to perform the image processing task. On the other
hand, we can compare a patch with a patch extracted from another image. We call this situation template matching. An
application of this case is presented in the non-parametric exemplar-based texture synthesis algorithm proposed by
Efros and Leung. [29].

The Euclidean distance is the usual way to measure the similarity between patches [28] but many other measurements
exist, corresponding to different structural properties, see Figure 1. When they are defined, we introduce p-norms and
angle measurements similarity functions.

Definition 1. Let P,Q P Rω with ω Ă R2 or ω Ă Z2. When it is defined we introduce

(a) the Lp-similarity, sppP,Qq “ }P ´Q}p “
`ş

xPω
|P pxq ´Qpxq|pdµpxq

˘1{p
, with p P p0,`8q ;

(b) the L8-similarity, s8pP,Qq “ supωp|P ´Q|q ;

(c) the p-th power of the Lp-similarity, sp,ppP,Qq “ sppP,Qq
p , with p P p0,`8q ;

(d) the scalar product similarity, sscpP,Qq “ ´xP,Qy “ 1
2

`

s2,2pP,Qq ´ }P }
2
2 ´ }Q}

2
2

˘

;

(e) the cosine similarity, scospP,Qq “
sscpP,Qq
}P }2}Q}2

, if }P }2}Q}2 ‰ 0 .

Depending on the case µ is either the Lebesgue measure on ω or the discrete measure on ω.

The locality of the measurements is ensured by the fact that these functions are defined on patches. Following conditions
(1) and (3) in [35] we check that similarity functions (a), (c) and (e) satisfy the following properties

§ (Symmetry) spP,Qq “ spQ,P q ;

§ (Maximal self-similarity) spP, P q ď spP,Qq ;

§ (Equal self-similarities) spP, P q “ spQ,Qq .

Note that since ssc, the scalar product similarity, is homogeneous in P , maximal self-similarity and equal self-similarity
properties are not satisfied. In [35], the authors present many other similarity functions all relying on statistical
properties such as likelihood ratios, joint likelihood criteria and mutual information kernels. The latter measurement is
defined by a cosine in some feature space. In this paper we focus only on similarity functions defined directly in the
spatial domain.

Definition 2 (Auto-similarity and template similarity). Let u and v be two functions defined over a domain Ω Ă R2 or
Z2. Let ω Ă Ω be a patch domain. We introduce Pωpuq “ u|ω, the restriction of u to the patch domain ω. When it is
defined we introduce the auto-similarity with patch domain ω and offset t P R2 or Z2 such that t` ω Ă Ω by

ASipu, t, ωq “ si pPt`ωpuq, Pωpuqq ,

where si corresponds to sp with p P p0,`8s, sp,p with p P p0,`8q, ssc or scos. In the same way, when it is defined,
we introduce the template similarity with patch ω and offset t by

T Sipu, v, t, ωq “ si pPt`ωpuq, Pωpvqq .

4
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s2 s1 s8

ssc scos

Figure 1: Structural properties of similarity functions. In this experiment we show in the 20 ˆ 20 patch space the
twenty closest patches to the green upper-left patch in the original image for different similarity functions. All introduced
similarity functions, see Definition 1, correctly identify the structure of the patch, i.e. a large clear part with diagonal
textures and a dark ray on the right side of the patch, except for s8 which is too sensitive to outliers. Indeed outliers
have more importance for s8 than they have perceptually speaking. Similarities s2 and s1 have analogous behaviors
and find correct regions. It might be noted that s1 is more conservative as it identifies seven main different patches and
s2 identifies eight. Similarity ssc is too sensitive to contrast and, as it finds a correct patch, it gives too much importance
to illumination. The behavior of scos is interesting as it avoids some of the illumination problems encountered with the
scalar product. The identified regions were also found with s1 and s2, but with the addition of a new one.

Note that in the finite discrete setting, i.e. Ω “ pZ{pMZqq2 with M P N, the definition of AS and T S can be extended
to any patch domain ω Ă Z2 by replacing u by 9u its periodic extension to Z2.

Suppose we evaluate the scalar product auto-similarity ASscpU, t, ωq with U a random field. Then the auto-similarity
function is a random variable and its expectation depends on the second-order statistics of U . In the template case, the
expectation of T SscpU, v, t, ωq depends on the first-order statistics of U . This shows that auto-similarity and template
similarity can exhibit very different behaviors even for the same similarity functions.

For image processing tasks, the auto-similarity computes the local resemblance between a patch in u and a patch of the
same size at another position in the same image corresponding to a shift by the offset t, whereas the template similarity
uses an image v as input and computes local resemblances between u and v.

In the discrete case, it is well-known that, due to the curse of dimensionality, the L2 norm does not behave well in
large-dimensional spaces and is a poor measure of structure. Thus, considering u and v two images, s2pu, vq, the L2

template similarity on full images, does not yield interesting information about the perceptual differences between u
and v. The template similarity T S2pu, v,0, ωq avoids this effect by considering patches which reduces the dimension
of the data (if the cardinality of ω, denoted |ω|, is small) and also allows for fast computation of similarity mappings,
see Figure 1 for a comparison of the different similarity functions on a natural image.

In Figure 2, we investigate the behavior of the patch lifting operation on different Gaussian random fields. Roughly
speaking, patches are said to be similar if they are clustered in the patch space. Using the Principal Component Analysis
we illustrate that patches are more scattered in Gaussian white noise than in the Gaussian random field U “ f ˚W

(with periodic convolution, i.e. f ˚W pxq “
ř

yPΩ
9fpyq 9W px´yq where 9f is the periodic extension of f to Z2), where

W is a Gaussian white noise over Ω (a finite discrete grid) and f is the indicator function of a rectangle non reduced to
a single point.

We continue this investigation in Figure 3 in which we present the closest patches (of size 10ˆ 10), for the L2 norm, in
two Gaussian random fields U “ f ˚W (where the convolution is periodic) for different functions f called spots. The

5
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(a) (b) (c) (d)

Figure 2: Gaussian models and spatial redundancy. In this experiment we illustrate the notion of spatial redundancy
in two models. In (A) we present a Gaussian white noise over a finite 64ˆ 64 discrete domain. (B) shows an indicator
function f with mean 0 and standard deviation σ “ 64´1. (C) presents a realization of the Gaussian random field
defined by f ˚W (with periodic convolution) where W is a Gaussian white noise over Ω “ 64 ˆ 64. Note that f
was designed so that the two Gaussian random fields have the same gray-level distribution for each pixel. For each
image we compute 642 9-dimensional vectors corresponding to the 642 vectors with initial point the top-left patch and
final point any other patch (note that we handle the boundaries periodically), and patch domain ω “ 3 ˆ 3. These
9-dimensional vectors are projected in a 3-dimensional space using Principal Component Analysis. We only show the
20 shortest vectors for the Gaussian white noise model (in blue) and the Gaussian random field associated to function
(B) (in red). The radius of the blue, respectively red, sphere represents the maximal L2 norm of these 20 vectors in the
Gaussian white noise model, respectively in model (C). Since the radius of the blue sphere is larger than the red one the
points are more scattered in the patch space of (A) than in the patch space of (B). This implies that there is more spatial
redundancy in (C) than in (A) which is expected.

more regular f is the more the patches are similar. Limit cases are f “ 0 (all patches are constant) and f “ δ0, i.e.
U “W . Note that any stationary periodic Gaussian random field over pZ{pMZqq2 with M P N can be written as the
convolution of some spot function f with a Gaussian white noise W [36]. We introduce the notion of autocorrelation.
Let f P L2pZ2q. We denote by Γf the autocorrelation of f , i.e. Γf “ f ˚ f̌ where for any x P Z2, f̌pxq “ fp´xq.
In a more general setting we introduce the associated random field to a square-integrable function f as the stationary
Gaussian random field U such that for any x P Ω

E rUpxqs “ 0 , and Γpxq “ Γf pxq .

In Figure 4, we compare the patch spaces of natural images and the one of their associated random fields. Since the
associated Gaussian random fields lose all global structure, most of the spatial information is discarded. This situation
can be observed in the patch space. In the natural images, patches containing the same highly spatial information (such
as a white diagonal) are close for the L2 norm. In Gaussian random field since this highly spatial information is lost,
close patches for the L2 norm are not necessarily perceptually close.

3 Asymptotic results

In this Section we aim at giving explicit asymptotic expressions for the probability distribution functions of the auto-
similarity and the template similarity in both discrete and continuous settings. Using general versions of the law of
large numbers and central limit theorem we will derive Gaussian asymptotic approximations.

We start by introducing two notions which will be crucial in order to derive a law of large numbers and a central limit
theorem in broad settings. The R-independence, see Definition 3, ensures long-range independence whereas stochastic
domination will replace integrability conditions in the standard law of large numbers or central limit theorem.

The notion of R-independence generalizes to R2 and Z2 the associated one-dimensional concept, see [37] and its
extension to N2 [38], [39].

Definition 3 (R-independence). Let Ω “ R2 or Ω “ Z2 and V be a random field over Ω. Let K1,K2 Ă Ω be two
compact sets, and V |Ki

be the restriction of V to Ki, i P t1, 2u. We say that V is R-independent, with R ě 0, if V |K1

is independent from V |K2
as soon as d8pK1,K2q “ min

xPK1,yPK2

}x ´ y}8 ą R.

6
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Figure 3: Patch similarity in Gaussian random fields. In this figure we show two examples of Gaussian random
fields in the discrete periodic case. On the left of the first row we show a Gaussian spot f and a realization of the
Gaussian random field U “ f ˚W , where the convolution is periodic and W is a Gaussian white noise. Since the spot
is isotropic so is the Gaussian random field. The smoothness of the realization of Gaussian random field is linked with
the smoothness of the spot function f . The situation is different when considering a rectangular plateau spot (here the
support of the spot is 7ˆ 5). The associated random field U “ f ˚W is no longer smooth nor isotropic. Images are
displayed on the right of their respective spot. We illustrate the notion of clustering in the patch space. For each setting
(Gaussian spot or rectangular spot) we present 12 patches of size 15ˆ 15. In each case the top-left patch is the top-left
patch in the presented realization of the random field, shown in green. Following from the top to the bottom and the left
to the right are the closest patches in the patch space for the L2 norm. We discard patches which are spatially too close
(we impose }x´ y}8 ě 10 for all indices of different patch domains). Note that since the random field with Gaussian
spot is more regular than the one with rectangular spot, the 11 closest patches are more perceptually similar. Indeed,
all similar patches in the Gaussian spot case exhibit a smooth contrast change from the left to the right; No common
structure is identified in the case of the anisotropic spot.

7
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Figure 4: Natural images and Gaussian random fields. In this experiment we present the same image, f , which was
used in Figure 1 and the associated Gaussian random field U “ f ˚W , where the convolution is periodic and W is a
Gaussian white noise. As in Figure 3 we present under each image the top-left patch (of size 15ˆ 15 and shown in
green in the original images) and its 11 closest matches. We discard patches which are spatially too close (we impose
}x´ y}8 ě 10 for all indices of different patch domains). Note that if a structure is clearly identified in the real image
(black and white diagonals) and is retrieved in every patch, it is not as clear in the Gaussian random field. Contrast
information seems to have more importance than structure information.

Note that in the case of Ω “ Z2, compacts sets K1 and K2 are finite sets of indices. This notion of R-independence
will replace the traditional assumption of independence in asymptotic theorems.

Definition 4 (Uniform domination). Let Ω “ R2 or Ω “ Z2 and let V, rV be random fields over Ω. We say that:

(a) rV uniformly stochastically dominates V if for any α ě 0 and x P Ω, P rV pxq ě αs ď P
”

rV pxq ě α
ı

;

(b) rV uniformly almost surely dominates V if for any x P Ω, V pxq ď rV pxq almost surely.

Note that if rV uniformly almost surely dominates V then rV uniformly stochastically dominates rV .

Supplementary hypotheses are required in the case of template matching since we use an exemplar input image v
to compute T SipU, v, t, ωq. Let v P RΩ, where Ω is equal to R2 or Z2. We denote by pvkqkPN the sequence of the
restriction of v to ωk, with ωk Ă Ω, extended to Z2 (or R2) by zero-padding, i.e. vkpxq “ 0 for x R ωk. We suppose that
limkÑ`8 |ωk| “ `8, where |ωk| is the Lebesgue measure, respectively the cardinality, of ωk if Ω “ R2, respectively
Ω “ Z2. Note that the following assumptions are well-defined for both continuous and discrete settings.

Assumption 3 (A3). The function v is bounded on Ω.

8
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We also introduce the following assumption, ensuring the existence of spatial moments of any order for the function v.
Assumption 4 (A4). For any m,n P N, there exist βm P R and γm,n P RΩ such that

(a) limkÑ`8 |ωk|
1{2

´

|ωk|
´1

ş

ωk
v2m
k pxqdµpxq ´ βm

¯

“ 0 ;

(b) for any K Ă Ω compact, limkÑ`8 }|ωk|
´1v2m

k ˚ v̌2n
k ´ γm,n}8,K “ 0 ,

with } ¨ }8,K such that for any u P CpΩ,Rq, }u}8,K “ supxPK |upxq|. Note that in the case where Ω is discrete the
uniform convergence on compact sets introduced in (b) is equivalent to the pointwise convergence.
Assumption 5 (A5). There exists γ P RΩ such that for any K Ă Ω, compact, limkÑ`8 }|ωk|

´1vk ˚ v̌k´ γ}8,K “ 0 .

3.1 Discrete case

In the discrete case, we consider a random field U over Z2 and compute local similarity measurements. The asymptotic
approximation is obtained when the patch size grows to infinity. In Theorem 1 and Theorem 2 we obtain Gaussian
asymptotic probability distribution in the auto-similarity case and in the template similarity case. In Proposition 1
and Proposition 2 we give explicit mean and variance for the Gaussian approximations. We recall that N pµ, σq is the
probability distribution of a Gaussian real random variable with mean µ and variance σ if σ ą 0 and δµ, the Dirac
distribution in µ, otherwise.
Theorem 1 (Discrete case – asymptotic auto-similarity results). Let pmkqkPN, pnkqkPN be two positive increasing
integer sequences and pωkqkPN be the sequence of subsets defined for any k P N by, ωk “ J0,mkK ˆ J0, nkK. Let
f P RZ2

, f ‰ 0 with finite support, W a Gaussian white noise over Z2 and U “ f ˚W . For i “ tsc, p, pp, pqu with
p P p0,`8q there exist µi, σi P RZ2

and pαi,kqkPN a positive sequence such that for any t P Z2z t0u we get

(a) limkÑ`8
1
αi,k

ASipU, t, ωkq “
a.s

µiptq ;

(b) limkÑ`8 |ωk|
1
2

´

1
αi,k

ASipU, t, ωkq ´ µiptq
¯

“
L
N p0, σiptqq .

Proof. The proof is divided in two parts. First we show (a) and (b) for i “ p, p and extends the result to i “ p. Then
we show (a) and (b) for i “ sc.

Let p P p0,`8q, t P Z2z t0u and define Vp,t the random field on Z2 by for any x P Z2, Vp,tpxq “ |Upxq´Upx`tq|p.
We remark that for any k P N we have

ASp,ppU, t, ωkq “
ÿ

xPωk

Vp,tpxq .

We first notice that U is R-independent with R ą 0, see Lemma 2 in Appendix. Since for any x P Z2 we have that
Vp,tpxq depends only on Upxq and Upx` tq we have that Vp,t is Rt “ R` }t}8-independent. Since U is stationary,
so is Vp,t. The random field Vp,t admits moments of every order since it is the p-th power of the absolute value of a
Gaussian random field. Thus Vp,t is a Rt-independent second-order stationary random field. We can apply Lemma 3 in
Appendix and we get

(a) limkÑ`8
1
|ωk|

ASp,ppU, t, ωkq “
a.s.

µp,pptq ;

(b) limkÑ`8 |ωk|
1
2

´

1
|ωk|

ASp,ppU, t, ωkq ´ µp,pptq
¯

“
L
N p0, σp,pptqq .

with µp,pptq “ E rVp,tp0qs and σp,pptq2 “
ř

xPZ2 Cov rVp,tpxq, Vp,tp0qs. By continuity of the p-th root over r0,`8q
we get (a) for i “ p with

αp,k “ |ωk|
1{p , µpptq “ µp,pptq

1{p .

By Lemma 4 in Appendix we get that E
“

pUp0q ´ Uptqq2
‰

“ 2pΓf p0q ´ Γf ptqq ą 0 thus µp,pptq “ E rVp,tp0qs ą 0.
Since the p-th root is continuously differentiable on p0,`8q we can apply the Delta method, see [40], and we get (b)
for i “ p with

αp,k “ |ωk|
1{p , µpptq “ µp,pptq

1{p , σpptq
2 “

1

p2
σp,pptq

2µp,pptq
2{p´2 . (1)

9
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We now prove the theorem for i “ sc. Let t P Z2z t0u and define Vsc,t the random field on Z2 by for any x P Z2,
Vsc,tpxq “ ´UpxqUpx` tq. We remark that for any k P N we have

ASscpU, t, ωkq “
ÿ

xPωk

Vsc,tpxq .

Since for any x P Z2, Vsc,tpxq depends only on Upxq and Upx` tq, we have that Vsc,t is Rt “ R`}t}8-independent.
Since U is stationary, so is Vsc,t. The random field Vsc,t admits moments of every order since it is a product of Gaussian
random fields. Thus Vsc,t is a Rt-independent second-order stationary random field. We can again apply Lemma 3 in
Appendix and we get

(a) limkÑ`8
1
|ωk|

ASscpU, t, ωkq “
a.s.

µscptq ;

(b) limkÑ`8 |ωk|
1
2

´

1
|ωk|

ASscpU, t, ωkq ´ µscptq
¯

“
L
N p0, σscptqq ,

with µscptq “ E rVsc,tp0qs and σscptq2 “
ř

xPZ2 Cov rVsc,tpxq, Vsc,tp0qs, which concludes the proof.

In the following proposition we give explicit values for the constants involved in the law of large numbers and the
central limit theorem derived in Theorem 1. We introduce the following quantities for k, ` P N and j P J0, k ^ `K,
where k ^ ` “ minpk, `q,

q` “
p2`q!

`! 2`
, rj,k,` “ qk´jq`´j

ˆ

2k

2j

˙ˆ

2`

2j

˙

p2jq! . (2)

We also denote rj,` “ rj,`,`. Note that for all ` P N, r0,` “ q2
L and

ř̀

j“0

rj,` “ q2`. We also introduce the following

functions:

∆f pt,xq “ 2Γf pxq ´ Γf px ` tq ´ Γf px ´ tq , r∆f pt,xq “ Γf pxq
2 ` Γf px ` tqΓf px ´ tq . (3)

Note that ∆f is a second-order statistic on the Gaussian field U “ f ˚W with W a Gaussian white noise over Z2,
whereas r∆f is a forth-order statistic on the same random field.

Proposition 1 (Explicit constants – Auto-similarity). In Theorem 1 we have the following constants for any t P Z2z t0u.

(i) If i “ p with p “ 2` and ` P N, then for all k P N, we get that αp,k “ |ωk|1{p2`q and

µpptq “ q
1{p2`q
` ∆f pt,0q

1{2 and σpptq
2 “

q
1{`´2
`

p2`q2

ÿ̀

j“1

rj,`

ˆ

}∆f pt, ¨q}2j
∆f pt,0q

˙2j

∆f pt,0q .

(ii) If i “ sc, then for all k P N, we get that αsc,k “ |ωk| and

µscptq “ Γf ptq and σscptq
2 “

ÿ

xPZ2

r∆f pt,xq .

Proof. The proof is postponed to Appendix C.

We now derive similar asymptotic properties in the template similarity case.

Theorem 2 (Discrete case – asymptotic template similarity results). Let pmkqkPN, pnkqkPN be two positive increasing
integer sequences and pωkqkPN be the sequence of subsets defined for any k P N by, ωk “ J0,mkK ˆ J0, nkK. Let
f P RZ2

, f ‰ 0 with finite support, W a Gaussian white noise over Z2, U “ f ˚ W and let v P RZ2

. For
i “ tsc, p, pp, pqu with p “ 2` and ` P N, if i “ p or pp, pq assume (A3) and (A4), if i “ sc assume (A3) and (A5).
Then there exist µi, σi P R and pαi,kqkPN a positive sequence such that for any t P Z2 we get

(a) limkÑ`8
1
αi,k

T SipU, v, t, ωkq “
a.s

µi ;

(b) limkÑ`8 |ωk|
1
2

´

1
αi,k

T SipU, v, t, ωkq ´ µiptq
¯

“
L
N p0, σiq .

10
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Note that contrarily to Theorem 1 we could not obtain such a result for all p P p0,`8q but only for even integers. Indeed,
in the general case the convergence of the sequence

`

|ωk|
´1E rT Sp,ppU, v, t, ωkqs

˘

kPN
, which is needed in order to

apply Theorem 5, is not trivial. Assuming that v is bounded it is easy to show that
`

|ωk|
´1E rT Sp,ppU, v, t, ωkqs

˘

kPN
is also bounded and we can deduce the existence of a convergent subsequence. In the general case, for Theorem 2 to
hold with any p P p0,`8q, we must verify that or any t P Ω, there exist µp,pptq ą 0 and σp,pptq ě 0 such that

(a) limkÑ`8 |ωk|
1
2

´

1
|ωk|

E rT Sp,ppU, v, t, ωkqs ´ µp,pptq
¯

“ 0 ;

(b) limkÑ`8
1
|ωk|

Var rT Sp,ppU, v, t, ωkqs “ σ2
p,pptq .

We now turn to the proof of Theorem 2.

Proof. As for the proof of Theorem 1, the proof is divided in two parts. First we show (a) and (b) for i “ pp, pq and
extends the result to i “ p. Then we show (a) and (b) for i “ sc.

Let p P p0,`8q, t P Z2 and define Vp,t the random field on Z2 by for any x P Z2, Vp,tpxq “ |vpxq ´Upx` tq|p. We
remark that for any k P N we have

T Sp,ppU, v, t, ωkq “
ÿ

xPωk

Vp,tpxq .

By Lemma 2 in Appendix, U is R-independent with R ą 0. Since for any x P Z2 we have that Vp,tpxq depends only
on Upx` tq we also have that Vp,t is R-independent. We define the random field V 8p,t by for any x P Z2, V 8p,tpxq “
psupZ2 |v|`Upx` tqqp. We have that V 8p,tpxq`E

“

V 8p,tp0q
‰

uniformly almost surely dominates Vp,tpxq´E rVp,tpxqs.
The random field V 8p,t admits moments of every order since it is the p-th power of the absolute value of a Gaussian
random field and is stationary because U is. Thus Vp,t is a Rt-independent random field and Vp,tpxq ´ E rVp,tpxqs is
uniformly stochastically dominated by V 8p,tpxq ` E

“

V 8p,tp0q
‰

, a second-order stationary random field. Using (A4) and
Lemma 5 in Appendix, we can apply Theorem 5 and 6 and we get

(a) limkÑ`8
1
|ωk|

T Sp,ppU, v, t, ωkq “
a.s.

µp,pptq ;

(b) limkÑ`8 |ωk|
1
2

´

1
|ωk|

T Sp,ppU, v, t, ωkq ´ µp,pptq
¯

“
L
N p0, σp,pptqq .

Note that since U is stationary we have for any t P Z2, µp,p “ µp,pp0q “ µp,pptq and σp,p “ σp,pp0q “ σp,pptq. By
continuity of the p-th root over r0,`8q we get (a) for i “ p with

αp,k “ |ωk|
1{p , µp “ µ1{p

p,p .

By Lemma 5, we have that µp,p ą 0. Since the p-th root is continuously differentiable on p0,`8q we can apply the
Delta method and we get (b) for i “ p with

αp,k “ |ωk|
1{p , µp “ µ1{p

p,p , σ2
p “ σ2

p,pµ
2{p´2
p,p {p2 . (4)

We now prove the theorem for i “ sc. Let t P Z2 and define Vsc,t the random field on Z2 such that for any x P Z2,
Vsc,tpxq “ ´vpxqUpx` tq. We remark that for any k P N we have

T SscpU, v, t, ωkq “
ÿ

xPωk

Vsc,tpxq .

It is clear that for any k P N, T SscpU, v, t, ωkq is a R-independent Gaussian random variable with
E rT SscpU, v, t, ωkqs “ 0 and

Var rT SscpU, v, t, ωkqs “
ÿ

x,yPωk

E rVsc,tpxqVsc,tpyqs “
ÿ

x,yPωk

vpxqvpyqΓf px´ yq “
ÿ

xPZ2

Γf pxqvk ˚ v̌kpxq ,

where we recall that vk is the restriction of v to ωk. The last sum is finite since Supp pfq finite implies that Supp pΓf q
is finite. Using (A5) we obtain that for any k P N,

ÿ

xPωk

pE rVsc,ts pxq ´ µscq “ 0 , lim
kÑ`8

|ωk|
´1

ÿ

x,yPωk

Cov rVsc,tpxq, Vsc,tpyqs “ σ2
sc , (5)

with µsc “ 0 and σ2
sc “

ř

xPZ2 Γf pxqγpxq and. Since Vsc,t is a R-independent second-order random field using (5)
we can apply Theorems 5 and 6 to conclude.

11
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Proposition 2 (Explicit constants – template similarity). In Theorem 2 we have the following constants for any t P Z2.

(i) If i “ p with p “ 2` and ` P N, then we get that αp,k “ |ωk|
1
p , and

µp “

˜

ÿ̀

j“0

ˆ

2`

2j

˙

q`´jΓf p0q
´jβj

¸1{2`

Γf p0q
1{2 ,

σ2
p “

˜

ÿ̀

i,j“0

ˆ

2`

2i

˙ˆ

2`

2j

˙ `´i^`´j
ÿ

m“1

rm,`´i,`´jΓf p0q
´pi`j`2mq

@

Γ2m
f , γi,j

D

¸˜

ÿ̀

j“0

ˆ

2`

2j

˙

q`´jΓf p0q
´jβj

¸1{`´2
Γf p0q

p2`q2
.

(ii) If i “ sc then for all k P N, we get that αsc,k “ |ωk| and

µsc “ 0 , σ2
sc “ xΓf , γy “

ÿ

xPZ2

Γf pxqγpxq .

Proof. The proof is postponed to Appendix C.

Note that limit mean and standard deviation do not depend on the offset anymore. Indeed, template similarity function
are stationary in t. If v has finite support then (A4) holds with βi “ 0 and γi,j “ 0 as soon as i ‰ 0 or j ‰ 0.
Remarking that β0 “ 1 and γ0,0 “ 1 we obtain that

µp “ q
1{p2`q
` Γf p0q

1{2 , σ2
p “

q
1{`´2
`

p2`q2

ÿ̀

j“1

rj,`

ˆ

}Γf }2j
Γf p0q

˙2j

Γf p0q .

Limit mean and standard deviation in the p-norm template similarity do not depend on v. This result comes from the
finite support property of v in Proposition 2 which implies that v is not considered in the similarity functions for large
windows.

In both Theorem 1 and 2 we could have derived a law of large numbers for the cosine similarity function. Obtaining
a central limit theorem with explicit constants, however, seems more technical, since it will require the use of a
multidimensional version of the Delta method [40] in order to compute the asymptotic variance.

3.2 Continuous case

We now turn to the the continuous setting. Theorem 3, respectively Theorem 4, is the continuous counterpart of
Theorem 1, respectively Theorem 2.

Theorem 3 (Continuous case – asymptotic auto-similarity results). Let pmkqkPN, pnkqkPN be two positive increasing
integer sequences and pωkqkPN be the sequence of subsets defined for any k P N by, ωk “ r0,mks ˆ r0, nks. Let U be
a zero-mean Gaussian random field over R2 with covariance function Γ. Assume (A2) and that Γ has finite support.
For i P tsc, p, pp, pqu with p P p0,`8q there exist µi, σi P RZ2

and pαi,kqkPN a positive sequence such that for any
t P R2z t0u we get

(a) limkÑ`8
1
αi,k

ASipU, t, ωkq “
a.s

µiptq ;

(b) limkÑ`8 |ωk|
1
2

´

1
αi,k

ASipU, t, ωkq ´ µiptq
¯

“
L
N p0, σiptqq .

Proof. The proof is the same as the one of Theorem 1 replacing Lemma 3 and Lemma 4 by Lemma 6 and Lemma 7.

Proposition 3 (Explicit constants – Continuous auto-similarity). Constants given in Proposition 1 apply to Theorem 3
provided that Γf is replaced by Γ in (3).

Proof. The proof is the same as the one of Proposition 1.
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Theorem 4 (Continuous case – asymptotic template similarity results). Let pmkqkPN, pnkqkPN be two positive increasing
integer sequences and pωkqkPN be the sequence of subsets defined for any k P N by, ωk “ r0,mks ˆ r0, nks. Let U be
a zero-mean Gaussian random field over R2 with covariance function Γ. Assume (A2) and that Γ has finite support.
For i P tsc, p, pp, pqu with p P p0,`8q, if i “ p or pp, pq assume (A3) and (A4), if i “ sc assume (A3) and (A5). Then
there exist µi, σi P R and pαi,kqkPN a positive sequence such that for any t P R2 we get

(a) limkÑ`8
1
αi,k

T SipU, v, t, ωkq “
a.s.

µi ;

(b) limkÑ`8 |ωk|
1
2

´

1
αi,k

T SipU, v, t, ωkq ´ µiptq
¯

“
L
N p0, σiq .

Proof. The proof is the same as the one of Theorem 2.

Proposition 4 (Explicit constants – Continuous auto-similarity). Constants given in Proposition 2 apply to Theorem 4
provided that Γf is replaced by Γ in (3).

Proof. The proof is the same as the one of Proposition 2.

3.3 Speed of convergence

In the discrete setting, Theorem 1 justifies the use of a Gaussian approximation to compute ASipU, t, ωq. However
this asymptotic behavior strongly relies on the increasing size of the patch domains. We define the patch size to be |ω|,
the cardinality of ω, and the spot size |Supp pfq | to be the cardinality of the support of the spot f . The quantity of
interest is the ratio r “ patch size

spot size . If r " 1 then the Gaussian random field associated to f can be well approximated
by a Gaussian white noise from the patch perspective. If r « 1 this approximation is not valid and the Gaussian
approximation is no longer accurate, see Figure 5. We say that an offset t is detected in a Gaussian random field if
ASipU, t, ωq ď aptq for some threshold aptq. In the experiments presented in Figure 6 and Table 1 the threshold is
given by the asymptotic Gaussian inverse cumulative distribution function evaluated at some quantile. The parameters of
the Gaussian random variable are given by Proposition 1. We find that except for small spot sizes and large patches, i.e.
r " 1, the approximation is not valid. More precisely, let U “ f ˚W with f a finitely supported function over Z2 andW
a Gaussian white noise over Z2. Let ω Ă Z2 and let Ω0 be a finite subset of Z2. We compute

ř

tPΩ0
1ASipU,t,ωqďaptq,

with aptq defined by the inverse cumulative distribution function of quantile 10{|Ω0| for the Gaussian N pµ, σq where
µ, σ are given by Theorem 1 and Proposition 1. Note that aptq satisfies P rASipU, t, ωq ď aptqs « 10{|Ω0| if the
approximation for the cumulative distribution function was correct. In other words, if the Gaussian asymptotic was
always valid, we would have a number of detections equal to 10 independently of r. This is clearly not the case in Table
1. One way to interpret this is by looking at the left tail of the approximated distribution for s2,2 and ssc on Figure 5.
For ssc the histogram is above the estimated curve, see (a) in Figure 6 for example. Whereas for s2,2 the histogram is
under the estimated curve. Thus for ssc we expect to obtain more detections than what is predicted whereas we will
observe the opposite behavior for s2,2. This situation is also illustrated for similarities s2 and ssc in Figure 6 in which
we compare the asymptotic cumulative distribution function with the empirical one.

In the next section we address this problem by studying non-asymptotic cases for the s2,2 auto-similarity function in
both continuous and discrete settings.

4 A non-asymptotic case: internal Euclidean matching

4.1 Discrete periodic case

In this section Ω is a finite rectangular domain in Z2. We fix ω Ă Ω. We also define f a function over Ω. We consider
the Gaussian random field U “ f ˚W (we consider the periodic convolution) with W a Gaussian white noise over Ω.

In the previous section, we derived asymptotic properties for similarity functions. However, a necessary condition for
the asymptotic Gaussian approximation to be valid is for the spot size to be very small when compared to the patch size.
This condition is not often met and non-asymptotic techniques must be developed. Some cases are easy. For instance it
should be noted that the distribution of the ssc template similarity, T SipU, v, t, ωq, is Gaussian for every ω. We might
also derive a non-asymptotic expression for the template similarity in the cosine case if the Gaussian model is a white
noise model. In what follows we restrict ourselves to the auto-similarity framework and consider the square of the L2

norm auto-similarity function, i.e. AS2,2pu, t, ωq. In this case we show that there exists an efficient method to compute
the cumulative distribution function of the auto-similarity function in the non-asymptotic case.
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5 10 15 20 40 70

1 0.3 1.4 3.2 4.6 7.4 9.0
2 0.3 0.4 1.2 2.2 5.8 8.5
5 0.3 0.4 0.4 0.5 1.3 4.1

10 0.4 0.5 0.5 0.4 1.4
15 0.5 0.5 0.5 0.5
20 0.5 0.5 0.5
25 0.5 0.5

5 10 15 20 40 70

1 18.1 11.6 10.9 10.4 10.1 10.0
2 34.2 16.5 12.8 11.5 10.4 9.9
5 93.9 49.3 30.8 20.9 13.2 11.5

10 86.7 57.6 46.0 19.7 14.5
15 83.9 63.8 30.0 18.2
20 79.5 36.7 24.7
25 51.5 26.6

Table 1: Asymptotic properties. Number of detections with different patch domains from 5 ˆ 5 to 70 ˆ 70 and
spot domains from 1 ˆ 1 to 25 ˆ 25 for the s2,2 (left table) or ssc (right table) auto-similarity function. We only
consider patch domains larger than spot domains. We generate 5000 Gaussian random field images of size 256ˆ 256
for each setting (with spot the indicator of the spot domain). We set α “ 10{2562. For each setting we compute
aptq the inverse cumulative distribution function of N pµiptq, σiptqq evaluated at quantile α, with µi and σi given
by Proposition 1. For each pair of patch size and spot size we compute

ř

tPΩ 1ASipu,t,ωqďaptq, namely the number
of detections, for all the 5000 random fields realizations. The empirical averages are displayed in the table. If
ASipu, t, ωq had Gaussian distribution with parameters given by Proposition 1 then the number in each cell would be
ř

tPΩ P rASipU, t, ωq ď aptqs « 10.

pa
tc

h
si

ze
10

pa
tc

h
si

ze
50

ssc s2,2

Figure 5: Gaussian moment matching. In this experiment, 104 realizations of 128ˆ 128 Gaussian images are
computed with spot of size 5ˆ 5 (the spot is the indicator of this square). Scalar product auto-similarities and squared
L2 auto-similarities are computed for a fixed offset p70, 100q. Values are normalized to fit a standard Gaussian using
the moment method. We plot the histograms of these normalized values. The red curve corresponds to the standard
Gaussian N p0, 1q. On the top row r “ 100 " 1 and the Gaussian approximation is adapted. On the bottom row
r « 1 and the Gaussian approximation is not valid. Note that the reasons for which the asymptotic approximations
are not valid vary from one similarity function to another. In the case of ssc, the modes coincide but the asymptotic
distribution is not spiked enough around this mode. In the case of s2 the asymptotic mode does not seem to coincide
with the empirical one. Note also that using s2,2 we impose that the similarity function takes its values in r0,`8q. This
positivity constraint is omitted when considering a Gaussian approximation.
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(a) ssc
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(b) s2

Figure 6: Theoretical and empirical cumulative distribution function. This experiment illustrates the non-Gaussianity
in Figure 5. Theorem 1 asserts that asymptotically the distribution of ASipU, t, ωq is Gaussian with parameters given
by Proposition 1. In both cases, the red curve is the inverse cumulative distribution function of the standard Gaussian
and the blue curve is the empirical inverse cumulative distribution function of normalized auto-similarity functions
computed with 104 realizations of Gaussian models. Here we focus on the situation where the patch size is fixed to
10ˆ 10, i.e. r « 1. We present auto-similarity results obtained for t “ p70, 100q and similarity function ssc (on the
left) and s2 (on the right). We note that for rare events, see the magnified region, the theoretical inverse cumulative
distribution function is above the empirical inverse cumulative distribution function. The opposite behavior is observed
for similarity s2. These observations are in accordance with the findings of Table 1.

Proposition 5 (Squared L2 auto-similarity function exact probability distribution function). Let Ω “ pZ{MZq2 with
M P N, ω Ă Ω, f P RΩ and U “ f ˚W where W is a Gaussian white noise over Ω. The following equality holds for
any t P Ω up to a change of the underlying probability space

AS2,2pU, t, ωq “
a.s

|ω|´1
ÿ

k“0

λkpt, ωqZk , (6)

with Zk independent chi-square random variables with parameter 1 and λkpt, ωq the eigenvalues of the covariance
matrix Ct associated with function ∆f pt, ¨q, see Equation (3), restricted to ω, i.e for any x1,x2 P ω, Ctpx1, x2q “

∆f pt,x1 ´ x2q.

Note that if we consider the Mahalanobis distance instead of the L2 distance when computing the auto-similarity
function then the equality in (6) is still valid with λkpt, ωq “ 1 and the random variable ASM pU, t, ωq (where we
replace the square L2 norm by the Mahalanobis distance) has the same distribution as a chi-square random variable
with parameter |ω|.

Proof. Let t P Ω and Vt defined for any x P Ω by Vtpxq “ Upxq ´ Upx` tq. It is a Gaussian vector with mean 0 and
covariance matrix CV given for any x1,x2 P Ω by

CV px1,x2q “ 2Γf px1 ´ x2q ´ Γf px1 ´ x2 ´ tq ´ Γf px1 ´ x2 ` tq “ ∆f pt,x1 ´ x2q .

The covariance of the random field PωpVtq, the restriction of Vt to ω, is given by the restriction of ∆f pt, ¨q to
ω ` p´ωq, in the sense of the Minkowski sum. This new covariance matrix, Ct, is symmetric and the spectral theorem
ensures that there exists an orthonormal basis B such that Ct is diagonal when expressed in B. Thus we obtain that
PωpVtq “

ř

ekPBxPωpVtq, ekyek. It is clear that, for any k P J0, |ω| ´ 1K, xPωpVtq, eky is a Gaussian random variable
with mean 0 and variance eTkCtek “ λkpt, ωq ě 0. We set K “ tk P J0, |ω| ´ 1, λkpt, ωq ‰ 0u and define X a
random vector in R|ω| such that

Xk “ λkpt, ωq
´1{2xPωpVtq, eky, if k P K , and XK´ “ Y ,
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where XK´ is the restriction of X to the indices of K´ “ J0, |ω| ´ 1KzK and Y is a standard Gaussian random vector
on R|K´| independent from the sigma field generated by tpXkq, k P Ku. By construction we have E rXkX`s “ 0 if
` P K and k P K´, or ` P K´ and k P K´. Suppose now that k, ` P K. We obtain that

E rXkX`s “ λkpt, ωq
´1{2λ

´1{2
` pt, ωqE

“

eTkCte`
‰

“ 0 .

Thus X is a standard Gaussian random vector and we have PωpVtq “
ř|ω|´1
k“0 λ1{2pt, ωqXkek, where the equality holds

almost surely. We get that

AS2,2pU, t, ωq “
a.s
}PωpVtq}

2
2 “

ÿ

ekPB
xPωpVtq, eky

2 “

|ω|´1
ÿ

k“0

λkpt, ωqX
2
k .

Setting Zk “ X2
k concludes the proof.

Note that if ω “ Ω then we obtain that the covariance matrix Ct is block-circulant with circulant blocks and the
eigenvalues are given by the discrete Fourier transform.

In order to compute the true cumulative distribution function of the auto-similarity square L2 norm we need to: 1)
compute the eigenvalues of a covariance matrix in M|ω|pRq ; 1) compute the cumulative distribution function of a
positive-weighted sum of independent chi-square random variable with weights given by the computed eigenvalues.
Storing all covariance matrices for each offset t is not doable in practice. For instance considering a patch size of
10ˆ 10 and an image of size 512ˆ 512 we have approximately 2.6ˆ 109 coefficients to store, i.e. 10.5GB in float
precision. In the rest of the section we suppose that t and ω are fixed and we denote by Ct the covariance matrix
associated to the restriction of ∆f pt, ¨q to ω ` p´ωq, Proposition 5. In Proposition 6 we propose a method to efficiently
approximate the eigenvalues of Ct by using its specific structure. Indeed, as a covariance matrix, Ct is symmetric and
positive and, since its associated Gaussian random field is stationary, it is block-Toeplitz with Toeplitz blocks, i.e. is
block-diagonally constant and each block has constant diagonals. In the one-dimensional case these properties translate
into symmetry, positivity and Toeplitz properties of the covariance matrix. Proposition 6 is stated in the one-dimensional
case for the sake of simplicity but two-dimensional analogous can be derived.

We recall that the Frobenius norm of a matrix of size nˆ n is the L2 norm of the associated vector of size n2.
Proposition 6 (Eigenvalues approximation). Let b be a function defined over J´pn´ 1q, n´ 1K with n P Nz t0u. We
define Tbpj, `q “ bpj ´ `q for j, ` P J0, n ´ 1K. The matrix Tb is a circulant matrix if and only if b is n-periodic. Tb
is symmetric if and only if b is symmetric. Let b be symmetric, defining ΠpTbq the projection of Tb onto the set of
symmetric circulant matrix for the Frobenius product, we obtain that

1. the projection satisfies ΠpTbq “ Tc with cpjq “
`

1´ j
n

˘

bpjq ` j
nbpn ´ jq for all j P J0, n ´ 1K and c is

extended by n-periodicity to Z ;

2. the eigenvalues of ΠpTbq are given by
´

2 Repd̂pjqq ´ bp0q
¯

jPJ0,n´1K
with dpjq “

`

1´ j
n

˘

bpjq, and d̂ is the

discrete Fourier transform over J0, n´ 1K ;

3. let pλjqjPJ1,nK be the sorted eigenvalues of Tb and pλ̃jqjPJ1,nK the sorted eigenvalues of ΠpTbq (in the same

order). For any j P J1, nK, we have |λj ´ λ̃j | ď }Tb ´ΠpTbq}Fr ;

4. if Tb is positive-definitive then ΠpTbq is positive-definite.

Proof. (1) Let Tc be an element of the symmetric circulant matrices set. Minimizing }Tb ´ Tc}2Fr in cpjqjPJ0,n´1K we
get that cpjq satisfies for any j P J0, n´ 1K

cpjq “ argmin
sPR

`

2pn´ jqps´ bpjqq2 ` 2jps´ bpn´ jqq2
˘

,

which gives the result.

(2) Since Tc “ ΠpTbq is circulant, its eigenvalues are given by the discrete Fourier transform of c. We have that if
i ‰ 0 then cpiq “ 9dpjq ` 9dp´jq with dpjq “

`

1´ j
n

˘

bpjq and 9d its extension to Z by n-periodicity. We also have
cp0q “ bp0q. We conclude the proof by taking the discrete Fourier transform of c.

(3) The demonstration of the Lipschitz property on the sorted eigenvalues of symmetric matrices with respect to the L2

matricial norm can be found in [41]. We conclude using the fact that the L2 matricial norm is upper-bounded by the
Frobenius norm.
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(a) (b) (c)

Figure 7: Eigenvalues approximation. We consider a Gaussian random field generated with f ˚W with W a Gaussian
white noise and f is a fixed realization of an independent Gaussian white noise over Ω. We consider patches of size
10ˆ 10 and study the approximation of the eigenvalues for the covariance matrix of the random field restricted to a
domain of size 10ˆ 10, similarly to Proposition 5. (A) shows the Normalized Root-Mean Square Deviation between
the eigenvalues computed with standard routines and the ones given by the approximation for each offset t P Ω

with NRMSD “

˜

1
|ω|

|ω|´1
ř

k“0

|λ̃kpt,ωq´λkpt,ωq|
2

¸1{2

maxpλkpt,ωqqkPJ0,|ω|´1K´minpλkpt,ωqqkPJ0,|ω|´1K
with λ̃kpt, ωq the two-dimensional approximation of the

eigenvalues, for every possible offset in the image. Offset zero is at the center of the image. (B) and (C) illustrate the
properties of Proposition 6. Blue circles correspond to the 100 eigenvalues computed with MATLAB routine for offset
p5, 5q in (B), respectively p10, 20q in (C), and red crosses correspond to the 100 approximated eigenvalues for the same
offsets. Note that a standard routine takes 273s for 10ˆ 10 patches on 256ˆ 256 images whereas it only takes 1.11s
when approximating the eigenvalues using the discrete Fourier transform.

(4) This result is a special case of the spectrum contraction property of the projection proved in Theorem 2 of [42].

In Figure 7 we display the behavior of the projection for the eigenvalues in the two-dimensional case. Computing
the eigenvalues of the projection is done via Fast Fourier Transform (FFT) which is faster than standard routines,
MATLABR2017a function eig for instance, for computing eigenvalues of Toeplitz matrices. The major cons of using
such approximation is that it may not be valid for small offsets t P Ω as shown in Figure 7.

Suppose the approximation of the eigenvalues is valid, we need an efficient algorithm to compute the distribution of
the associated positive-weighted sum of chi-square random variables in Equation (6). Exact computation has been
derived by J.P.Imhof in [43] but requires to compute heavy integrals. This exact method, named Imhof method in the
following, will be used as a baseline for other algorithms. Numerous methods such as differential equations [44], series
truncation [45], negative binomial mixtures [46] approaches were later introduced but all require stopping criteria such
as truncation criteria which can be hard to set. We focus on cumulant methods which generalize and refine the Gaussian
approximations used in Section 3. These methods rely on computing moments of the original distribution and then
fitting a known probability distribution function to the objective distribution using these moments. Bodenham et al. in
[47] show that the following methods can be efficiently computed:

§ Gaussian approximation (discarded due to its poor results for small patches as illustrated in Section 3) ;

§ Hall-Buckley-Eagleson [48, 49] (HBE), (three moments fitted Gamma distribution) ;

§ Wood F [50] (three moments fitted Fischer-Snedecor distribution).

Other methods such as the Lindsay-Pilla-Basak-4, which relies on the computation of eight moments, are slower
than HBE by a factor 350 at least, see [47], and thus are discarded. In Figure 8 we investigate the trade-off between
computational speed and accuracy of these methods for the task of detection.

The experiments conducted in Figure 8 show that the HBE approximation does not give good results when evaluating the
probability of rare events. This was already noticed by Bodenham et al. in [47] who stated that “Hall–Buckley–Eagleson

0NRMSD “

˜

1
|ω|

|ω|´1
ř

k“0
|λ̃kpt,ωq´λkpt,ωq|

2

¸1{2

maxpλkpt,ωqqkPJ0,|ω|´1K´minpλkpt,ωqqkPJ0,|ω|´1K
with λ̃kpt, ωq the two-dimensional approximation of the eigenval-

ues, for every possible offset in the image.
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(a) 1513s, nd “ 52 (b) 200s, nd “ 116 (c) 4.77s, nd “ 50 (d) 4.64s, nd “ 671

Figure 8: Similarity detection. In this figure we illustrate the accuracy of the different proposed approximations of the
cumulative distribution function of AS2,2pU, t, ωq. We say that an offset t is detected in an image if AS2,2pu, t, ωq ď
aptq for some threshold aptq P R. In every image, in green we display the patch domain ω (in the center of the
image) and in red we display the shifted patch domain for detected offsets with function aptq such that for any t P Ω,
P rAS2,2pU, t, ωq ď aptqs “ 1{2562, where U is given by the Gaussian random field f ˚W where f is the original
image of fabric and W is a Gaussian white noise over Ω “ 256ˆ 256. Approximations of the cumulative distribution
function of AS2,2pU, t, ωq lead to approximations of aptq. The most precise approximation is given in (A) where the
eigenvalues are computed using a MATLAB routine and the cumulative distribution function is given by the Imhof
method. In (B) we approximate the eigenvalues using the projection described in Proposition 6 and still use the Imhof
method. It yields twice as many detections. In (C) Wood F method is used instead of Imhof’s yielding less detections
but performing seven times faster. Interestingly errors seem to compensate and the obtained result with Wood F method
is very close to the results obtained with the baseline algorithm in (A). In (D) HBE method is used instead of Imhof’s,
in this case we obtain too many detections, i.e. the approximation of the cumulative distribution function is not valid.

method is recommended for most practitioners [...]. However, [...], for very small probability values, either the Wood F
or the Lindsay–Pilla–Basak method should be used”.

4.2 Continuous periodic case

To conclude we show that a similar non-asymptotic study can be conducted in continuous settings.

Proposition 7 (Squared L2 continuous auto-similarity function exact probability distribution function). Let Ω “ T2,
ω Ă Ω and let U be a zero-mean Gaussian random field on Ω with covariance function Γ. Assume (A2), then the
following equality holds for any t P Ω up to a change of the underlying probability space

AS2,2pU, t, ωq “
a.s

ÿ

kPN

λkpt, ωqZk,

with Zk independent chi-square random variables with parameter 1 and λkpt, ωq the eigenvalues of the kernel Ct

associated with function ∆pt, ¨q “ 2Γptq ´ Γp¨ ` tq ´ Γp¨ ´ tq restricted to ω, i.e. for any x1,x2 P ω, Ctpx1, x2q “

∆pt,x1 ´ x2q.

Proof. We consider the stationary Gaussian random field PωpVtq over ω defined by the restriction to ω of Vt defined for
any x P Ω by Vtpxq “ Upxq ´ Upx` tq. The Karhunen-Loeve theorem [51] ensures the existence of pλkpt, ωqqkPN P

RN
`, pXkqkPN a sequence of independent normal Gaussian random variables and pekqkPN a sequence of orthonormal

function over L2pωq such that

lim
nÑ`8

sup
xPω

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

PωpVtqpxq ´
n
ÿ

k“0

a

λkpt, ωqekpxqXk

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl “ 0 , (7)
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We define the sequence pInqnPN “

ˆ

ş

ω

´

řn
k“0

a

λkpt, ωqekpxqXk

¯2

dx

˙

nPN

. We have, using the Cauchy-Schwarz

inequality on L2pAˆ ωq and (7)

E r|AS2,2pU, t, ωq ´ In|s ď E

»

–

ż

ω

|PωpVtq
2pxq ´

˜

n
ÿ

k“0

a

λkpt, ωqekpxqXk

¸2

|dx

fi

fl

ď E

«

ż

ω

pPωpVtqpxq ´
n
ÿ

k“0

a

λkpt, ωqekpxqXkq
2dx

ff1{2

E

«

ż

ω

pPωpVtqpxq `
n
ÿ

k“0

a

λkpt, ωqekpxqXkq
2dx

ff1{2

ď 2E rAS2,2pU, t, ωqs
1{2

ż

ω

E

«

pPωpVtqpxq ´
n
ÿ

k“0

a

λkpt, ωqekpxqXkq
2

ff

dx , (8)

where we used the Fubini theorem in the last inequality. Using the dominated convergence theorem in (8) with inte-
gral domination given by supnPN supxPω E

”

pPωpVtqpxq ´
řn
k“0

a

λkpt, ωqekpxqXkq
2
ı

we conclude that pInqnPN

converges to AS2,2pU, t, ωq in L1pAq. Thus there exists a subsequence of pInqnPN which converges almost surely

to AS2,2pU, t, ωq. We also have In “
ş

ω

´

řn
k“0

a

λkpt, ωqekpxqXk

¯2

dx “
řn
k“0 λkpω, kqX

2
k by orthonormality

and thus the sequence pInqnPN is almost surely non-decreasing. We get that pInqnPN converges almost surely to
AS2,2pU, t, ωq which can be rewritten as

AS2,2pU, t, ωq “
ÿ

kPZ

λkpt, ωqX
2
k almost surely.

The characterization of pλkpt, ωq, ekpxqq is given by the Karhunen-Loeve theorem and ekpxq is solution of the following
Fredholm equation for all x P ω

ż

ω

∆pt,x´ yqekpyq dy “ λkpt, ωqekpxq .

Setting Zk “ X2
k concludes the proof.

Note that if ω “ T2 then the solution of the Fredholm equation is given by the Fourier series of Γ.

Appendices
A Asymptotic theorems – discrete case

The following theorem is a two-dimensional law of large numbers with weak dependence assumptions. It is a slight
modification of Corollary 4.1 (ii) in [38].

Theorem 5. Let pmkqkPN, pnkqkPN be two positive increasing integer sequences and pωkqkPN be the sequence of
subsets such that for any k P N, ωk “ J0,mkK ˆ J0, nkK. Let V be a R-independent, with R ě 0, random field
over Z2 such that |V pxq ´ E rV pxqs | is uniformly stochastically dominated by rV , a second-order stationary random
field over Z2. Then V is a second-order random field. In addition, assume that there exists µ P R such that
limkÑ`8 |ωk|

´1
ř

xPωk
E rV pxqs “ µ. Then it holds that

lim
kÑ`8

|ωk|
´1

ÿ

xPωk

V pxq “
a.s

µ . (9)

Proof. We suppose that for any x P Z2, E rV pxqs “ 0, otherwise we replace V pxq by V pxq ´ E rV pxqs. In order to
apply Corollary 4.1 (ii) in [38] we must check that:

(a) V is R´independent ;
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(b) |V | is uniformly stochastically dominated by a random field rV and there exists r P r1, 2r such that for any
x P Z2, E

”

rV rpxq log`prV pxqq
ı

is finite.

Item (a) is given in the statement of Theorem 5 and |V | is uniformly stochastically dominated by the random field rV0

defined for any x P Z2 by rV0pxq “ rV p0q. Since E
”

rV p0q2
ı

is finite so is E
”

rV p0q log`prV p0qq
ı

which implies (b).
Then it holds that

lim
kÑ`8

ÿ

xPωk

pV pxq ´ E rV pxqsq “
a.s

0 .

Using that limkÑ`8 |ωk|
´1

ř

xPωk

E rUpxqs “ µ we conclude the proof.

We now turn to an extension of the central limit theorem to two-dimensional random fields with weak dependence
assumptions. This result is a consequence of [52, Theorem 2].
Theorem 6. Under the hypotheses of Theorem 5 and assuming that there exist µ P R and σ ě 0 such that

(a) limkÑ`8 |ωk|
´1{2

ř

xPωk
pE rV s pxq ´ µq “ 0 ;

(b) limkÑ`8 |ωk|
´1

ř

x,yPωk
Cov rV pxq, V pyqs “ σ2 .

Then it holds that
lim

kÑ`8
|ωk|

´1{2
ÿ

xPωk

pV pxq ´ µq “
L
N p0, σq , (10)

with the convention that N p0, 0q “ δ0, the Dirac distribution at 0.

Proof. Using the same notations as in [52, Theorem 2] we first note that σ2
k “ |ωk|

´1 Var
“
ř

xPωk
V pxq

‰

. Since V is
R-independent each vertex of the dependency graph of V has its degree bounded by p2R` 1q2. Thus in order to apply
[52, Theorem 2] we need to find a positive integer m such that

lim
kÑ`8

|ωk|
1{mAk{p|ωk|

1{2σkq “ 0 ,

with Ak such that limkÑ`8

ř

xPωk
E
“

V pxq21|V pxq|ąAk

‰

{p|ωk|σ
2
kq “ 0. Since σ2

k is supposed to converge using
hypothesis (b) the conditions reduce to find m and Ak such that

lim
kÑ`8

|ωk|
1{m´1{2Ak “ 0 , lim

kÑ`8

ÿ

xPωk

E
“

V pxq21|V pxq|ąAk

‰

{|ωk| “ 0 .

Since |V | is uniformly stochastically dominated almost surely by rV , a second-order stationary random field, we obtain
the following stronger condition on Ak

lim
kÑ`8

1

|ωk|

ÿ

xPωk

E
“

V pxq21|V pxq|ąAk

‰

ď lim
kÑ`8

E
”

rV p0q21
rV p0qąAk

ı

“ 0 .

Using the dominated convergence theorem this condition is satisfied for any Ak which tends to infinity. Thus setting,
for example, m “ 4 and Ak “ |ωk|1{8 we get using [52, Theorem 2]

lim
kÑ`8

|ωk|
´1{2

ˆ

ř

xPωk
pV pxq ´ E rV pxqsq

σk

˙

“
L
N p0, 1q.

Since limkÑ`8 σk “ σ by (b) we get that

lim
kÑ`8

|ωk|
´1{2

ÿ

xPωk

pV pxq ´ E rV pxqsq “
L

lim
kÑ`8

N p0, σkq .

If limkÑ`8 σk “ σ ą 0 then limkÑ`8N p0, σkq “ N p0, σq. If limkÑ`8 σk “ 0 then limkÑ`8N p0, σkq “ δ0.
Using (a) we obtain that

lim
kÑ`8

|ωk|
´1{2

ÿ

xPωk

pV pxq ´ µq “
L
N p0, σq ,

with N p0, 0q “ δ0 if σ “ 0.
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The following lemma explicits a class of Gaussian random fields over Z2 such that the R-independence property holds
for some R ě 0.
Lemma 2. Let f P RZ2

with finite support Supp pfq Ă J´r, rK2, where r P N. Let W be a Gaussian white noise over
Z2 and V “ f ˚W then V is a R-independent second-order random field with R “ 2r.

Proof. V is a Gaussian random field such that for any x,y P Z2

E rV pxqs “ 0 , Cov rV pxq, V pyqs “
ÿ

x1,y1PZ2

fpx´ x1qfpy ´ y1qCov
“

W px1q,W py1q
‰

“ Γf px´ yq . (11)

Note that since Supp pfq Ă J´r, rK we have Supp pΓf q Ă J´R,RK with R “ 2r. For any x,y P Z2 such that
}x´ y}8 ą R, using (11), we obtain

Cov rV pxq, V pyqs “ Γf px´ yq “ 0 . (12)

Let K1,K2 Ă Z2 two finite sets with dpK1,K2q8 ą R and consider V |Ki the restriction of V to Ki for i “ t1, 2u.
Using (12), we get that for any x P K1, y P K2 we have

Cov rV |K1pxq, V |K2pyqs “ 0 .

As a consequence, Cov rV |K1
, V |K2

s “ 0 and V |K1
and V |K2

are uncorrelated. Since V |K1
, V |K2

are Gaussian
random fields we get that V |K1

, V |K2
are R-independent.

The following lemma gives specific conditions on random fields in order for Theorems 5 and 6 to hold.
Lemma 3. Let pmkqkPN, pnkqkPN be two positive increasing integer sequences and pωkqkPN be the sequence of subsets
given for any k P N by, ωk “ J0,mkK ˆ J0, nkK. Let V be a R-independent, with R ě 0, second-order stationary
random field over Z2. Then for all k P N

(a) |ωk|´1
ř

xPωk
E rV pxqs “ E rV p0qs ;

(b) limkÑ`8 |ωk|
´1

ř

x,yPωk
Cov rV pxq, V pyqs “

ř

xPZ2 Cov rV pxq, V p0qs .

In addition, Equations (9) and (10) hold with µ “ E rV p0qs and σ “
ř

xPZ2 Cov rV pxq, V p0qs which is finite.

Proof. Item (a) is immediate by stationarity. Concerning (b), for any k P N we have by stationarity

|ωk|
´1

ÿ

x,yPωk

Cov rV pxq, V pyqs “ |ωk|
´1

ÿ

x,yPωk

Cov rV px´ yq, V p0qs “
ÿ

xPZ2

Cov rV pxq, V p0qs gkpxq ,

where gk P RZ2

satisfies for any x P Z2, gkpxq “ |ωk|
´11ωk

˚ 1̌ωk
pxq. For any k P N, x P Z2 we have 0 ď

gkpxq ď 1 and limkÑ`8 gkpxq “ 1. For any x P Z2 such that }x}8 ą R, Cov rV pxq, V p0qs “ 0 and then
ř

xPZ2 |Cov rV pxq, V p0qs | ă `8. Using the dominated convergence theorem we get that

lim
kÑ`8

|ωk|
´1

ÿ

x,yPωk

Cov rV pxq, V pyqs “
ÿ

xPZ2

Cov rV pxq, V p0qs ,

We obtain Equations (9) and (10) by applying Theorems 5 and 6.

Lemma 4. Let f P RZ2

, f ‰ 0, a function with finite support. Then it holds for any t P Z2, Γf ptq ď Γf p0q, with
equality if and only if t “ 0.

Proof. For any t P Z2, let τtf “ fp¨ ` tq. By the definition of the autocorrelation Γf and using the Cauchy-Schwarz
inequality we get that for any t P Z2

Γf ptq “ xτtf, fy ď }f}
2
2 ď Γf p0q ,

with equality if and only if f “ ατtf , with α ‰ 0 since f ‰ 0. This implies that Supp pτtpfqq “ Supp pfq. As a
consequence t “ 0, which concludes the proof.

The following lemma ensures that items (a) and (b) in Theorem 6 are satisfied in the template similarity case when
imposing summability conditions over v.
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Lemma 5. Under the hypotheses of Theorem 1, assuming (A4) with ` P N and p “ 2`. There exist µp,p ą 0 and
σp,p ě 0 such that for any t P Ω

(a) limkÑ`8 |ωk|
1
2

´

1
|ωk|

E rT Sp,ppU, v, t, ωkqs ´ µp,pptq
¯

“ 0 ;

(b) limkÑ`8
1
|ωk|

Var rT Sp,ppU, v, t, ωkqs “ σ2
p,pptq .

Proof. (a) For any k P N we have that

E rT Sp,ppU, v, t, ωkqs “
ÿ

xPωk

E
“

pvpxq ´ Upx` tqq2`
‰

“

2
ÿ̀

j“0

ˆ

2`

j

˙

ÿ

xPωk

p´1qjvpxqjE
“

Upxq2`´j
‰

“
ÿ̀

j“0

ˆ

2`

2j

˙

ÿ

xPωk

vpxq2jE
”

Upxq2p`´jq
ı

“
ÿ̀

j“0

ˆ

2`

2j

˙

E rUp0qs2p`´jq
ÿ

xPωk

vpxq2j .

Let µp,p “
ř`
j“0

`

2`
2j

˘

E rUp0qs2p`´jq βj and using (a) of (A4) we get that

lim
kÑ`8

|ωk|
1
2

ˆ

1

|ωk|
E rT Sp,ppU, v, t, ωkqs ´ µp,pptq

˙

“ 0 .

Now since µp,p ě E
“

Up0q2`
‰

ě E
“

Up0q2
‰`
ě Γf p0q ą 0 we have that µp,p ą 0.

(b) For any k P N we have that

Var rT Sp,ppU, v, t, ωkqs “
ÿ

x,yPωk

Cov
“

pUpxq ´ vpxqq2`, pUpyq ´ vpyqq2`
‰

“
ÿ

x,yPωk

ÿ̀

i,j“0

ˆ

2`

2i

˙ˆ

2`

2j

˙

vpxq2ivpyq2j Cov
”

Upxq2p`´iq, Upyq2p`´jq
ı

“
ÿ

x,yPZ2

ÿ̀

i,j“0

ˆ

2`

2i

˙ˆ

2`

2j

˙

vkpxq
2ivkpx ` yq2j Cov

”

Upyq2p`´iq, Up0q2p`´jq
ı

“
ÿ̀

i,j“0

ˆ

2`

2i

˙ˆ

2`

2j

˙

A

v2i
k ˚ v̌

2j
k ,Cov

”

Up¨q2p`´iq, Up0q2p`´jq
ıE

.

Let σp,p “
ř`
i,j“0

`

2`
2i

˘`

2`
2j

˘ @

γi,j ,Cov
“

Up¨q2p`´iq, Up0q2p`´jq
‰D

. Using (b) in (A4) we can conclude.

Note that this lemma is also valid in the continuous case.

B Asymptotic theorems – continuous case

We now turn to the the continuous setting. We start by stating the continuous counterparts of Theorems 5 and 6. The
following theorem, given here for completeness, can be found with different assumptions (in the one-dimensional case)
in [33].
Theorem 7. Let pmkqkPN, pnkqkPN be two positive increasing integer sequences and pωkqkPN be the sequence of
subsets given for any k P N by, ωk “ r0,mks ˆ r0, nks. Let V be a R-independent, with R ě 0, random field over R2

such that |V pxq ´ E rV pxqs | is uniformly stochastically dominated by rV , a second-order stationary random field over
R2. Then V is a second-order random field. In addition, assume V is sample path continuous and that there exists
µ P R given by limkÑ`8 |ωk|

´1
ş

xPωk
E rV pxqsdx “ µ. Then it holds that

lim
kÑ`8

|ωk|
´1

ż

xPωk

V pxqdx “
a.s.

µ . (13)
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Proof. Without loss of generality we can suppose that for any x P Ω, E rV pxqs “ 0. Let pσkqkPN P RN such that for
any k P N we have

σ2
k “ E

«

ˆ

k´2

ż

Ωk

V pxqdx

˙2
ff

, (14)

with Ωk “ r0, ks
2. Since V is R-independent, for any x,y P Ω such that }x´y}8 ą R, we have Cpx,yq “ 0. Hence

for k large enough we obtain
ż

Ωk

ż

Ωk

Cpx,yqdxdy ď

ż

xPΩk

ż

}y}8ďR

|Cpx,x` yq|dydx ď k2|B̄8p0, Rq| sup
ΩkˆB̄8p0,Rq

|Cpx,x` yq| . (15)

Using that rV uniformly stochastically dominates |V |, the stationarity of rV , and the Cauchy-Schwarz inequality, we
obtain for any x,y P Ω,

|Cpx,x` yq| “ |E rV pxqV px` yqs | ď E
”

rV 2pxq
ı1{2

E
”

rV 2px` yq
ı1{2

ď E
”

rV 2p0q
ı

. (16)

Combining (14), (15) and (16) we get that for any k P N

σ2
k ďMk´2 ,

with M “ |B̄8p0, Rq|E
”

rV 2p0q
ı

. Thus the series
ř

kPN σ
2
k converges and

ř

kPN

´

k´2
ş

Ωk
V pxqdx

¯2

is finite almost

surely. This proves that limkÑ`8 k
´2

ş

Ωk
V pxqdx “ 0 almost surely. In order to conclude for the general case it

remains to prove that

lim
kÑ`8

sup
ΩkĂωĂΩk`1

ˇ

ˇ

ˇ

ˇ

|ω|´1

ż

ω

V pxqdx´ |ωk|
´1

ż

Ωk

V pxqdx

ˇ

ˇ

ˇ

ˇ

“
a.s.

0 .

This is proved in the one-dimensional case in [53] and extends to the two-dimensional situation.

The following theorem is an application of [54, Theorem 1.7.1].
Theorem 8. Under the hypotheses of Theorem 7 and assuming that there exist µ P R and σ ě 0 such that

(a) limkÑ`8 |ωk|
´1{2

ş

xPωk
pE rV s pxq ´ µqdx “ 0 ;

(b) limkÑ`8 |ωk|
´1

ş

x,yPωk
Cov rV pxq, V pyqsdxdy “ σ2 .

Then it holds that
lim

kÑ`8
|ωk|

´1{2

ż

xPωk

pV pxq ´ µqdx “
L
N p0, σq . (17)

Proof. Upon considering for any x P R2, V pxq ´ E rV pxqs instead of V pxq we can suppose that for any x P R2,
E rV pxqs “ 0. In [54, Theorem 1.7.1] setting the weight function to be 1ωk

{|ωk|
1{2, condition V is immediately

fulfilled. The following equality implies that Condition IV is satisfied

lim
kÑ`8

E

«

ˆ
ż

ωk

V pxqdx

˙2
ff

{|ωk| “ lim
kÑ`8

ż

x,yPωk

Cpx,yqdxdy{|ωk| “ σ2 ,

where the first equality is obtained using the Fubini-Lebesgue theorem. Indeed since |V | is uniformly stochastically
dominated by rV we have by the Fubini-Tonelli theorem

E

„
ż

ωk

ż

ωk

|V pxqV pyq|dxdy



“

ż

ωk

ż

ωk

E r|V pxqV pyq|s dxdy ď |ωk|
2E

”

rV p0q2
ı

ă `8 .

Condition VI is ensured because V is a second-order random field and is R-independent. We get that

lim
kÑ`8

|ωk|
1{2

ˆ
ż

ωk

pV pxq ´ E rV pxqsqdx{|ωk|

˙

“
L
N p0, σ2q .

Using that limkÑ`8 |ωk|
´1{2

ş

ωk
pE rV pxqs ´ µqdx “ 0 we conclude the proof.
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The following lemmas are the continuous versions of Lemma 3 and 4.

Lemma 6. Let pmkqkPN, pnkqkPN be two positive increasing integer sequences and pωkqkPN be the sequence of subsets
such that for any k P N, ωk “ r0,mks ˆ r0, nks. Let V be a R-independent, with R ě 0, second-order stationary
random field over R2. Assume that V is sample path continuous, then for all k P N

(a) |ωk|´1
ş

xPωk
E rV pxqsdx “ E rV p0qs ;

(b) limkÑ`8 |ωk|
´1

ş

x,yPωk
Cov rV pxq, V pyqsdxdy “

ş

xPR2 Cov rV pxq, V p0qsdx .

In addition, (13) and (17) hold with µ “ E rV p0qs and σ “
ş

xPR2 Cov rV pxq, V p0qsdx.

Proof. (a) Using the Fubini-Tonelli theorem we obtain that for any k P N

E

„
ż

xPωk

|V pxq|dx



“

ż

xPωk

E r|V pxq|sdx “
ż

xPωk

E r|V p0q|s dx “ |ωk|E r|V p0q|s ă `8 .

Thus, using the Fubini-Lebesgue theorem we get (a) for any k P N.

(b) For any k P N we have by stationarity

|ωk|
´1

ż

x,yPωk

Cov rV pxq, V pyqsdxdy “ |ωk|
´1

ż

x,yPωk

Cov rV px´ yq, V p0qsdxdy .

By the Fubini-Lebesgue theorem we obtain that for any k P N,

|ωk|
´1

ż

x,yPωk

Cov rV pxq, V pyqsdx “

ż

xPR2

Cov rV pxq, V p0qs gkpxqdx ,

where gk P L8pR2q satisfies for any x P R2, gkpxq “ |ωk|
´11ωk

˚ 1̌ωk
pxq. For any k P N, x P R2 we have

0 ď gkpxq ď 1 and limkÑ`8 gkpxq “ 1. For any x P R2 such that }x}8 ą Rt, Cov rV pxq, V p0qs “ 0 and then
ż

xPR2

|Cov rV pxq, V p0qs |dx ă `8 .

Using the dominated convergence theorem we get that

|ωk|
´1

ż

x,yPωk

Cov rV pxq, V pyqsdxdy “

ż

xPR2

Cov rV pxq, V p0qsdx ,

If V is R-independent we conclude the proof by applying Theorem 7 and 8.

Lemma 7. Let Γ be a function over R2, Γ ‰ 0, such that for any x,y P R2, Cpx,yq “ Γpx´yq with C the covariance
function of V a second-order random field over R2. Assume that Γ has finite support. Then it holds for any t P R2,
Γptq ď Γp0q, with equality if and only if t “ 0.

Proof. Upon replacing for any x P R2, V pxq by V pxq ´ E rV pxqs we suppose that E rV pxqs “ 0. Using the
Cauchy-Schwarz inequality and the stationarity of V we get for any t P R2 and x P R2

Γptq “ E rV px` tqV pxqs ď E
“

V px` tq2
‰1{2

E
“

V pxq2
‰1{2

ď E
“

V pxq2
‰

ď Γp0q .

with equality if and only if V px` tq “ αpxqV pxq with αpxq P R. Since V is stationary and V ‰ 0 we get that for any
x, t P R2, E

“

V px` tq2
‰

“ E
“

V pxq2
‰

ą 0. Thus αpxq2 “ 1 and for all n P N, V pntq “ ˘V p0q. If t ‰ 0 then there
exists n P N such that nt R Supp pΓq and then we have

0 “ Γpntq “ E rV pntqV p0qs “ ˘E
“

V p02q
‰

‰ 0 ,

which is absurd. Thus the equality in the inequality holds if and only if t “ 0.
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C Explicit constants

In order to derive precise constants in Theorem 1 and 2 we use the following lemma which is a consequence of the
Isserlis formula [55].
Lemma 8. Let U and V be two zero-mean, real-valued Gaussian random variable and k, ` P N. We have

E
“

U2kV 2`
‰

“

k^
ÿ̀

j“0

rj,k,`E
“

U2
‰k´j

E
“

V 2
‰`´j

E rUV s2j and Cov
“

U2k, V 2`
‰

“

k^
ÿ̀

j“1

rj,k,`E
“

U2
‰k´j

E
“

V 2
‰`´j

E rUV s2j ,

with rj,k,` defined by (2).

Proof. Let k, ` P N. Using Isserlis formula [55] we obtain that E
“

U2kV 2`
‰

is the sum over all the partitions in pairs of
tU, . . . , U
looomooon

2k times

, V, . . . , V
looomooon

2` times

u of the product of the expectations given by a pair partition. Given a pair partition we identify

three different cases, tU,Uu, tV, V u and tU, V u. We only need to count the number of times each case appears in the
sum. We denote the number of tU,Uu couples in a given pair partition p by nU,U ppq. In the same fashion we define
nU,V ppq and nV,V ppq. We have 2k “ 2nU,U ppq ` nU,V ppq which proves that nU,V ppq is even. We denote by Pj the
number of pair partitions p such that nU,V ppq “ 2j, with j P J0, k ^ `K.

The cardinality of Pj is given by rj,k,`. Indeed, in order to select 2j pair tU, V u we select 2j elements among 2k

(selection of replicates of U ), same for V which gives
`

2k
2j

˘`

2`
2j

˘

possibilities. Considering all the bijections between
these elements we construct all the possible 2j pairs tU, V u. Given 2j pairs tU, V u we must construct k ´ j pairs
tU,Uu and `´ j pairs tV, V u in order to obtain a pair partition of Pj . The number of pairs partition of a set with `´ j
elements is given q`´j . As a consequence we obtain for all j P J0, k ^ `K

|Pj | “ qk´jq`´j

ˆ

2k

2j

˙ˆ

2`

2j

˙

p2jq! “ rj,k,` .

Summing over j P J0, k ^ `K we obtain all the possible pair partition and we get

E
“

U2kV 2`
‰

“

k^
ÿ̀

j“0

rj,k,`E
“

U2
‰k´j

E
“

V 2
‰`´j

E rUV s2j . (18)

Using that r0,k “ q2
k, respectively r0,` “ q2

` and E
“

U2k
‰

“ qkE
“

U2
‰k

, respectively E
“

V 2`
‰

“ q`E
“

V 2
‰`

, we obtain
that the first term in the right-hand side sum of (18) is equal to E

“

U2k
‰

E
“

V 2`
‰

. Hence by removing this term we
obtain the covariance and conclude the proof.

Proof of Proposition 1. As above, the proof is divided in two parts. First we consider the case i “ p then the case
i “ sc.

Let i “ p with p “ 2` and ` P N, t P Z2z t0u and Vt the Gaussian random field given for any x P Z2 by
Vtpxq “ Upxq ´ Upx` tq. Note that for all x P Z2 we have Vtpxq2` “ Vp,tpxq. For any x,y P Z2 we have

E rVtpxqs “ 0 , Cov rVtpxq, Vtpyqs “ 2Γf px´ yq ´ Γf px´ y ´ tq ´ Γf px´ y ` tq “ ∆f pt,x´ yq , (19)

with ∆f given by (3). We show in proof of Theorem 1, see Equation (1), that for any t P Z2z t0u

µpptq “ E
“

V 2`
t p0q

‰1{2`
, σpptq

2 “
ÿ

xPZ2

Cov
“

V 2`
t pxq, V

2`
t p0q

‰

E
“

V 2`
t p0q

‰1{`´2
{p2`q2 . (20)

Combining (19), (20) and Lemma 8 we get that

(a) µpptq “ q
1{p2`q
2` ∆f pt,0q

1{2 ;

(b) σpptq2 “
ř

xPZ2

´

ř`
j“1 rj,`∆f pt,0q

2p`´jq∆f pt,xq
2j
¯

q
1{`´2
` ∆f pt,0q

1´2`{p2`q2 .

Exchanging the sums in (b) we get σpptq2 “
q
1{`´2
`

p2`q2

ř̀

j“1

rj,`

´

}∆f p¨,tq}2j
∆f p0,tq

¯2j

∆f p0, tq.
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Let i “ sc, t P Z2z t0u and Vsc,t be a Gaussian random field given for any x P Z2, by Vtpxq “ UpxqUpx` tq. For
any x,y P Z2 we have

E rVsc,tpxqs “ Γf ptq , Cov rVsc,tpxq, Vsc,tpyqs “ Γf px´yq ´Γf px´y´ tqΓf px´y` tq “ ∆m
f pt,x´yq ,

(21)
with ∆m

f given by (3). We show in the proof of Theorem 1, see (1), that for any t P Z2z t0u

µscptq “ E rVsc,tp0qs , σscptq
2 “

ÿ

xPZ2

Cov rVsc,tpxq, Vsc,tp0qs . (22)

Combining (21) and (22) we get that

(a) µscptq “ Γf ptq ;

(b) σscptq2 “
ř

xPZ2 ∆m
f pt,xq .

Proof of Proposition 2. The proof is divided in two parts. First we treat the case i “ p then the case i “ sc.

Let p “ 2` with ` P N. Lemma 5 gives us that

µp,p “
ÿ̀

j“0

ˆ

2`

2j

˙

E rUp0qs2p`´jq βj and σp,p “
ÿ̀

i,j“0

ˆ

2`

2i

˙ˆ

2`

2j

˙

A

γi,j ,Cov
”

Up¨q2p`´iq, Up0q2p`´jq
ıE

.

Using Lemma 8 we obtain that

µp,p “ Γf p0q
`
ÿ̀

j“0

ˆ

2`

2j

˙

q`´jΓf p0q
´jβj and σp,p “

ÿ̀

i,j“0

ˆ

2`

2i

˙ˆ

2`

2j

˙ `´i^`´j
ÿ

m“1

rm,k,`
@

γi,j ,Γ
2m
f

D

Γf p0q
2`´i´j´2m .

We conclude using (4).

For i “ sc, the result is given in the proof of Theorem 2.
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