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REDUNDANCY IN GAUSSIAN RANDOM FIELDS

Valentin De Bortoli1,*, Agnès Desolneux2, Bruno Galerne3

and Arthur Leclaire4

Abstract. In this paper, we introduce a notion of spatial redundancy in Gaussian random fields. This
study is motivated by applications of the a contrario method in image processing. We define similarity
functions on local windows in random fields over discrete or continuous domains. We derive explicit
Gaussian asymptotics for the distribution of similarity functions when computed on Gaussian random
fields. Moreover, for the special case of the squared L2 norm, we give non-asymptotic expressions in
both discrete and continuous periodic settings. Finally, we present fast and accurate approximations
of these non-asymptotic expressions using moment methods and matrix projections.
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1. Introduction

Stochastic geometry [3, 12, 52] aims at describing the arrangement of random structures based on the knowl-
edge of the distribution of geometrical elementary patterns (point processes, random closed sets, etc.). When
the considered patterns are functions over some topological space, we can study the geometry of the associated
random field. For example, centering a kernel function at each point of a Poisson point process gives rise to the
notion of shot-noise random field [18, 50, 51]. We can then study the perimeter or the Euler-Poincaré charac-
teristic of the excursion sets among other properties [2, 4]. In the present work we will focus on the geometrical
notion of redundancy of local windows in random fields. We say that a local window in is redundant if it is
“similar” to other local windows in the same random field. The similarity of two local windows is defined as
the output of some similarity function computed over these local windows. The lower is the output, the more
similar the local windows are.

Identifying such spatial redundancy is a fundamental task in the field of image processing. For instance, in
the context of denoising, Buades et al. in [9], propose the Non-Local means algorithm in which a noisy patch is
replaced by a weighted mean over all similar patches. Other examples can be found in the domains of inpainting
[17] and video coding [34]. Spatial redundancy is also of crucial importance in exemplar-based texture synthesis,
where we aim at sampling images with the same perceptual properties as an input exemplar texture. If Gaussian
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random fields [26, 40, 55, 57] give good visual results for input textures with no, or few, spatial redundancy,
they fail when it comes to sampling structured textures (brick walls, fabric with repeated patterns, etc.). In this
case, more elaborated models are needed [20, 27, 43]. In this work, we derive explicit probability distribution
functions for the random variables associated with the output of similarity functions computed on local windows
of random fields. The knowledge of such functions allows us to conduct rigorous statistical testing on the spatial
redundancy in natural images.

In order to compute these explicit distributions we will consider specific random fields over specific topo-
logical spaces. First, the random fields will be defined either over R2 (or T2, where T2 is the 2-dimensional

torus, when considering periodicity assumptions on the field), or over Z2 (or pZ{pMZqq2, with M P N when
considering periodicity assumptions on the field). Each of these spaces is embedded with its classical topology.
The first case is the continuous setting, whereas the second one is the discrete setting. In image processing,
the most common framework is the finite discrete setting. The discrete setting (Z2) can be used to define
asymptotic properties when the size of images grows or when their resolution increases [8], whereas contin-
uous settings are needed in specific applications where, for instance, rotation invariant models are required
[54]. All the considered random fields will be Gaussian. This assumption will allow us to explicitly derive
moments of some similarity functions computed on local windows of the random field. Once again, another
reason for this restriction comes from image processing. Indeed, given an input image, we can compute
its first and second-order statistics. Sampling from the associated Gaussian random field gives examples of
images which preserve the covariance structure but lose the global arrangement of the input image. Inves-
tigating redundancy of such fields is a first step towards giving a mathematical description of this lack
of structure.

Finding measurements which correspond to the ones of our visual system is a long-standing problem in
image processing. It was considered in the early days of texture synthesis and analyzed by Julesz [36, 37, 58]
who formulated the conjecture that textures with similar first-order statistics (first conjecture) or that textures
with similar first and second-order statistics (second conjecture) could not be discriminated by the human eye.
Even if both conjectures were disproved [22], the work of Gatys et al. [27] suggests that second-order statistics of
image features are enough to characterize a broad range of textures. To compute features on images we embed
them in a higher dimensional space. This operation can be conducted using linear filtering [47] or convolutional
neural networks [27] for instance. Some recent works examine the response of convolutional neural network
to elementary geometrical pattern [45], giving insight about the perceptual properties of such a lifting. In the
present work, we focus on another embedding given by considering a square neighborhood, called a patch, around
each pixel. This embedding, is exploited in many image processing tasks such as inpainting [30], denoising [9, 39],
texture synthesis [23, 24, 41, 49], etc.

In the special case where the similarity functions are given by the L2 norm, explicit distributions can be
inferred even in the non-asymptotic case. Calculating this distribution exactly is demanding since it requires
the knowledge of some covariance matrix eigenvalues as well as an efficient method to compute cumulative
distribution functions of quadratic forms of Gaussian random variables. We propose an efficient algorithm to
approximate this distribution. In [7], this algorithm is applied to denoising and periodicity detection problems
in an a contrario framework.

The paper is organized as follows. We recall basic notions of Gaussian random fields in general settings in
Section 2.1. Similarity functions to be evaluated on these random fields, as well as their statistical properties,
are described in Section 2.2. We give the asymptotic properties of these similarity functions in Gaussian random
fields in the discrete setting in Section 3.1 and in the continuous setting in Section 3.2. It is shown in Section 3.3
that the Gaussian asymptotic approximation is valid only for large patches. In order to overcome this problem
we consider an explicit formulation of the probability distribution function for a particular similarity function:
the square L2 norm. The computations are conducted in the finite discrete case in Section 4.1. We also derive an
efficient algorithm to compute these probability distribution functions. Similar non-asymptotic expressions are
given in the continuous case in Section 4.2. Technical proofs and additional results on multidimensional central
limit theorems are presented in the Appendices.
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2. Similarity functions and random fields

2.1. Gaussian random fields

Let pA,F ,Pq be a probability space. Following [1], a random field over a topological space Ω is defined as a
measurable mapping U : AÑ RΩ. Thus, for all a in A, Upaq is a function over Ω and, for any a P A and any
x P Ω, Upaqpxq is a real number. For the sake of clarity we will omit a in what follows.

We say that a random field U is of order r ą 0 if for any finite sequence px1, . . . ,xnq P Ωn with n P N, the
vector V “ pUpx1q, . . . , Upxnqq satisfy E r}V }rrs ă `8. Assuming that U is a second-order random field, we
define the mean function of U , m : Ω Ñ R as well as its covariance function, C : Ω2 Ñ R for any x,y P Ω2 by

mpxq “ E rUpxqs and Cpx,yq “ E rpUpxq ´mpxqqpUpyq ´mpyqqs .

A random field U is said to be stationary if for any finite sequence px1, . . . ,xnq P Ωn with n P N and t P Ω,
the vector pUpx1q, . . . , Upxnqq and pUpx1 ` tq, . . . , Upxn ` tqq have same distribution. A second-order random
field U over a topological vector field is said to be stationary in the weak sense if its mean function is constant
and if for all x,y P Ω, Cpx,yq “ Cpx ´ y,0q. In this case the covariance of U is fully characterized by its
auto-covariance function Γ : Ω Ñ R given for any x P Ω by

Γpxq “ Cpx, 0q .

A random field U is said to be a Gaussian random field if, for any finite sequence px1, . . . ,xnq P Ωn with
n P N, the vector pUpx1q, . . . , Upxnqq is a n-dimensional Gaussian random vector. The distribution of a Gaussian
random field is entirely characterized by its mean and covariance functions. As a consequence, the notions of
stationarity and weak stationarity coincide for Gaussian random fields.

Since the applications we are interested in are image processing tasks, we consider the case where Ω “ R2 (in
the continuous setting) and Ω “ Z2 (in the discrete setting). In Section 2.2 we will consider Lebesgue integrals of
random fields and thus need integrability condition for U over compact sets. Let K “ ra, bsˆ rc, ds be a compact
rectangular domain in R2. Continuity requirements on the function C imply that

ş

K
gpxqUpxqdx is well-defined

as the quadratic mean limit for real-valued functions g over Ω such that
ş

KˆK
gpxqgpyqCpx,yqdxdy is finite,

see [42]. However, we are interested in almost sure quantities and thus we want the integral to be defined almost
surely over rectangular windows. Imposing the existence of a continuous modification of a random field, ensures
the almost sure existence of Riemann integrals over rectangular windows. The following assumptions will ensure
continuity almost surely, see Lemma 2.3 whose proof can be found in ([1], Thm. 1.4.1) and ([48], Lem. 4.2,
Lem. 4.3, Thm. 4.5). We define D : Ωˆ Ω Ñ R such that for any x,y P Ω

Dpx,yq “ E
“

pUpxq ´ Upyqq2
‰

“ Cpx,xq ` Cpy,yq ´ 2Cpx,yq ` pmpxq ´mpyqq2 .

Assumption 2.1 (A2.1). U is a second-order random field and there exist M,η, α ą 0 such that for any x P Ω
and y P Bpx, ηq X Ω with y ‰ x we have

Dpx,yq ď
M}x´ y}22

| logp}x´ y}2q|2`α
.

This assumption can be considerably weakened in the case of a stationary Gaussian random field.

Assumption 2.2 (A2.2). U is a stationary Gaussian random field and there exist M,η, α ą 0 such that for
any x P Ω and y P Bpx, ηq X Ω with y ‰ x we have

Dpx,yq ď
M

| logp}x´ y}2q|1`α
.
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Lemma 2.3 (Sample path continuity). Assume (A2.1) or (A2.2). In addition, assume that for any x P Ω,

mpxq “ 0. Then there exists a modification of U , i.e. a random field rU such that for any x P Ω, PrUpxq “
rUpxqs “ 1, and for any a P A, rUpaq is continuous over Ω.

In the rest of the paper we always replace U by its continuous modification rU . Note that in the discrete case
all random fields are continuous with respect to the discrete topology.

In Sections 3 and 4, we will suppose that U is a stationary Gaussian random field with zero mean. Asymptotic
theorems derived in the next section remain true in broader frameworks, however restricting ourselves to sta-
tionary Gaussian random fields allows for explicit computations of asymptotic quantities in order to numerically
assess the rate of convergence.

2.2. Similarity functions

In order to evaluate redundancy in random fields, we first need to derive a criterion for comparing random
fields. We introduce similarity functions which take rectangular restrictions of random fields as inputs.

When comparing local windows of random fields (patches), two cases can occur. We can compare a patch
with a patch extracted from the same image. We call this situation internal matching. Applications can be
found in denoising [9] or inpainting [17] where the information of the image itself is used to perform the image
processing task. On the other hand, we can compare a patch with a patch extracted from another image. We call
this situation template matching. An application can be found in the non-parametric exemplar-based texture
synthesis algorithm proposed by Efros and Leung [23].

The L2 norm is the usual way to measure the similarity between patches [39] but many other measurements
exist, corresponding to different structural properties, see Figure 1.

Definition 2.4. Let P,Q P Rω with ω Ă R2 or ω Ă Z2. When it is defined we introduce

(a) the Lp-similarity, sppP,Qq “ }P ´Q}p “
`ş

xPω
|P pxq ´Qpxq|pdx

˘1{p
, with p P p0,`8q;

(b) the L8-similarity, s8pP,Qq “ supxPωp|P pxq ´Qpxq|q;
(c) the p-th power of the Lp-similarity, sp,ppP,Qq “ sppP,Qq

p , with p P p0,`8q;
(d) the scalar product similarity, sscpP,Qq “ ´xP,Qy “

1
2

`

s2,2pP,Qq ´ }P }
2
2 ´ }Q}

2
2

˘

;

(e) the cosine similarity, scospP,Qq “
sscpP,Qq
}P }2}Q}2

, if }P }2}Q}2 ‰ 0.

Depending on the case dx is either the Lebesgue measure or the discrete measure over ω.

The locality of the measurements is ensured by the fact that these functions are defined on patches, i.e. local
windows. Following conditions (1) and (3) in [21] one can check that similarity functions (a), (c) and (e) satisfy
the following properties

– (Symmetry) spP,Qq “ spQ,P q;
– (Maximal self-similarity) spP, P q ď spP,Qq;
– (Equal self-similarities) spP, P q “ spQ,Qq.

Note that since ssc, the scalar product similarity, is homogeneous in P , maximal self-similarity and equal self-
similarity properties are not satisfied. All introduced similarities satisfy the symmetry condition and s8 satisfies
the maximal self-similarity property. In [21], the authors present many other similarity functions all relying on
statistical properties such as likelihood ratios, joint likelihood criteria and mutual information kernels. In the
present paper we focus only on similarity functions defined directly in the spatial domain.

Definition 2.5 (Auto-similarity and template similarity). Let u and v be two functions defined over a domain
Ω Ă R2 or Z2. Let ω Ă Ω be a patch domain. We introduce Pωpuq “ u|ω, the restriction of u to the patch
domain ω. When it is defined we introduce the auto-similarity with patch domain ω and offset t P R2 or Z2
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Figure 1. Structural properties of similarity functions. In this experiment the image size is
512 ˆ 512 and the patch size is 20 ˆ 20. We show the 20 closest patches (red squares) to
the upper-left patch (green square) among all patches for different similarity functions. All
introduced similarity functions, see Definition 2.4, correctly identify the structure of the patch,
i.e. a large clear part with diagonal textures and a dark ray on the right side of the patch, except
for s8 which is too sensitive to outliers. Similarities s2, s1 and scos have analogous behaviors
and identify correct regions. Similarity ssc is too sensitive to contrast and, as it selects a correct
patch, it gives too much importance to illumination.

such that t` ω Ă Ω by

ASipu, t, ωq “ si pPt`ωpuq, Pωpuqq ,

where si corresponds to sp with p P p0,`8s, sp,p with p P p0,`8q, ssc or scos. In the same way, when it is
defined, we introduce the template similarity with patch ω and offset t by

T Sipu, v, t, ωq “ si pPt`ωpuq, Pωpvqq .

Note that in the finite discrete setting, i.e. Ω “ pZ{pMZqq2 with M P N, the definition of AS and T S can be
extended to any patch domain ω Ă Z2 by replacing u by 9u, its periodic extension to Z2. A similar extension
can be derived in the finite continuous setting, i.e. Ω “ T2.

Suppose we evaluate the scalar product auto-similarity ASscpU, t, ωq with U a random field. Then the auto-
similarity function is a random variable and its expectation depends on the second-order statistics of U . In
the template case, the expectation of T SscpU, v, t, ωq depends on the first-order statistics of U . This shows
that auto-similarity and template similarity can exhibit very different behaviors even for the same similarity
functions.

In the discrete case, it is well-known that, due to the curse of dimensionality, the L2 norm does not behave
well in large-dimensional spaces and is a poor measure of structure. Thus, considering u and v two images,
s2pu, vq, the L2 template similarity on full images, does not yield interesting information about the perceptual
differences between u and v. The template similarity T S2pu, v,0, ωq avoids this effect by considering patches
which reduces the dimension of the data (if the cardinality of ω, denoted |ω|, is small) and also allows for fast
computation of similarity mappings, see Figure 1 for a comparison of the different similarity functions on a
natural image.

We extract patches from images as follow. For each position in the image we consider a square ω centered
around this position. This operation is called patch lifting. In Figure 2, we investigate the behavior of patch lifting
on different Gaussian random fields. Roughly speaking, patches are said to be similar if they are clustered in
the patch space. Using Principal Component Analysis we illustrate that patches are more scattered in Gaussian
white noise than in the Gaussian random field U “ f ˚W (with periodic convolution, i.e. f ˚W pxq “

ř

yPΩW pyq
9fpx ´ yq where 9f is the periodic extension of f to Z2), where W is a Gaussian white noise over Ω (a finite

discrete grid) and f is the indicator function of a rectangle non reduced to a single pixel.
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Figure 2. Gaussian models and spatial redundancy. In this experiment we illustrate the notion
of spatial redundancy in two models. In (A), we present a 64 ˆ 64 Gaussian white noise. (B)
Shows an indicator function f . In (C), we present a realization of the Gaussian random field
defined by f ˚W (with periodic convolution) where W is a Gaussian white noise over Ω (domain
of size 64ˆ 64). Note that f was chosen so that the two Gaussian random fields (A) and (C)
have the same gray-level distribution for each pixel. To each pixel position in (A) and (C) we
associate the surrounding patch, with patch domain ω (of size 3ˆ 3q. Hence, for each image (A)
and (C) we obtain 64ˆ64 “ 5096 vectors each of size 3ˆ3 “ 9. These 9-dimensional vectors are
projected in a 3-dimensional space using Principal Component Analysis. In the subfigure (D),
we display the 20 vectors closest to 0 in each case: Gaussian white noise model (in blue) and the
Gaussian random field (C) (in red). The radius of the blue, respectively red, sphere represents
the maximal L2 norm of these 20 vectors in the Gaussian white noise model, respectively in
model (C). Since the radius of the blue sphere is larger than the red one the points are more
scattered in the patch space of (A) than in the patch space of (B). This implies that there is
more spatial redundancy in (C) than in (A), which is expected.

We continue this investigation in Figure 3 in which we present the closest patches (of size 10ˆ 10), for the
L2 norm, in two Gaussian random fields U “ f ˚W (where the convolution is periodic) for different functions
f called spots, [25]. The more regular f is, the more similar the patches are. Limit cases are f “ 0 (all patches
are constant and thus all the patches are similar) and f “ δ0, i.e. U “W .

We introduce the notion of autocorrelation. Let f P L2pZ2q. We denote by Γf the autocorrelation of f , i.e.
Γf “ f ˚ f̌ where for any x P Z2, f̌pxq “ fp´xq and define the associated random field to a square-integrable
function f as the stationary Gaussian random field U such that for any x P Ω

E rUpxqs “ 0 and Γpxq “ Γf pxq.

In Figure 4, we compare the patch spaces of natural images and the ones of their associated random fields.
Since the associated Gaussian random fields lose all global structures, most of the spatial information is dis-
carded. This situation can be observed in the patch space. In the natural images, patches containing the same
highly spatial information (such as a white diagonal) are close for the L2 norm. In Gaussian random field since
this highly spatial information is lost, close patches for the L2 norm are not necessarily perceptually close.

3. Asymptotic results

In this section we aim at giving explicit asymptotic expressions for the probability distribution functions of
the auto-similarity and the template similarity in both discrete and continuous settings. Using general versions
of the law of large numbers and central limit theorems we will derive Gaussian asymptotic approximations.

Additional assumptions are required in the case of template matching since we use an exemplar input image v
to compute T SipU, v, t, ωq. Let v P RΩ, where Ω is R2 or Z2. We denote by pvkqkPN the sequence of the restriction
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Figure 3. Patch similarity in Gaussian random fields. In this figure we show two examples
of Gaussian random fields in the discrete periodic case. On the left of the first row we show
a Gaussian spot f and a realization of the Gaussian random field U “ f ˚W , where the
convolution is periodic and W is a Gaussian white noise. The associated random field is smooth
and isotropic. The random field U “ f ˚W associated with a rectangular plateau f is no longer
smooth nor isotropic. Images are displayed on the right of their respective spot. For each setting
(Gaussian spot or rectangular spot) we present 12 patches of size 15ˆ 15. In each case the top-
left patch is the top-left patch in the presented realization of the random field, shown in green.
Following from the top to the bottom and from the left to the right are the closest patches in
the patch space for the L2 norm. We discard patches which are spatially too close (if ω1 and
ω2 are two patch domains we impose supx,y }x´ y}8 ě 10).

of v to ωk, extended to Z2 (or R2) by zero-padding, i.e. vkpxq “ 0 for x R ωk. We suppose that limkÑ`8 |ωk| “
`8, where |ωk| is the Lebesgue measure, respectively the cardinality, of ωk if Ω “ R2, respectively Ω “ Z2.
Note that the following assumptions are well-defined for both continuous and discrete settings.

Assumption 3.1 (A3.1). The function v is bounded on Ω.

The following assumption ensures the existence of spatial moments of any order for the function v.

Assumption 3.2 (A3.2). For any m,n P N, there exist βm P Rzt0u and γm,n P RΩ such that

(a) limkÑ`8 |ωk|
1{2

´

|ωk|
´1

ş

ωk
v2m
k pxqdx´ βm

¯

“ 0;

(b) for any K Ă Ω compact, limkÑ`8 supxPK |ωk|
´1

ş

yPωk
v2m
k pyqv2n

k px` yqdy ´ γm,npxq| “ 0.
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Figure 4. Natural images and Gaussian random fields. In this experiment we present the same
image, f , which was used in Figure 1 and the associated Gaussian random field U “ f ˚W ,
where the convolution is periodic and W is a Gaussian white noise. As in Figure 3 we present
under each image the top-left patch (of size 15ˆ 15 and shown in green in the original images)
and its 11 closest matches for the `2 similarity. We discard patches which are spatially too
close (if ω1 and ω2 are two patch domains we impose supx,y }x ´ y}8 ě 10). Note that if a
structure is clearly identified in the real image (black and white diagonals) and is retrieved in
every patch, it is not as clear in the Gaussian random field.

Note that in the case where Ω is discrete, the uniform convergence on compact sets introduced in (b) is
equivalent to the pointwise convergence.

Assumption 3.3 (A3.3). There exists γ P RΩ with for any K Ă Ω compact, limkÑ`8 supxPK |ωk|
´1

ş

yPωk
vkpyq

vkpx` yqdy ´ γpxq| “ 0.

3.1. Discrete case

In the discrete case, we consider a random field U over Z2 and compute local similarity measurements. The
asymptotic approximation is obtained when the patch size grows to infinity. In Theorems 3.4 and 3.6 we obtain
Gaussian asymptotic probability distribution in the auto-similarity case and in the template similarity case. In
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Propositions 3.5 and 3.7 we give explicit mean and variance for the Gaussian approximations. We recall that
N pµ, σ2q is the probability distribution of a Gaussian real random variable with mean µ and variance σ2.

Theorem 3.4 (Discrete case – asymptotic auto-similarity results). Let pmkqkPN, pnkqkPN be two positive increas-
ing integer sequences and pωkqkPN be the sequence of subsets defined for any k P N by, ωk “ J0,mkKˆ J0, nkK. Let

f P RZ2

, f ‰ 0 with finite support, W a Gaussian white noise over Z2 and U “ f ˚W . For i “ tp, pp, pq, sc, cosu
with p P p0,`8q there exist µi, σ

2
i , real valued functions on Z2, and pαi,kqkPN a positive sequence such that for

any t P Z2z t0u we get

1. limkÑ`8
1
αi,k

ASipU, t, ωkq “
a.s

µiptq;

2. limkÑ`8 |ωk|
1
2

´

1
αi,k

ASipU, t, ωkq ´ µiptq
¯

“
L
N

`

0, σ2
i ptq

˘

.

The asymptotics derived in Theorem 3.4 can be extended to vectors of autosimilarities, i.e.
selecting ptjqjPt1...Nu a finite number of shifts the results of Theorem 3.4 hold for the sequence
ppASipU, tj , ωkqqjPt1...NuqkPN. Note that in Theorem 3.4 if t varies with k such that for any k P N, pωk ` tkq X
ωk “ H then similar results can be obtained with the usual law of large numbers and central limit theorem
since true independence hold.

Proof. The proof is divided into three parts. First we show 1 and 2 for i “ p, p and extends the result to i “ p.
Then we show 1 and 2 for i “ sc. Finally, we show 1 and 2 for i “ cos.

1. Let p P p0,`8q, t P Z2z t0u and define Vp,t for any x P Z2 by, Vp,tpxq “ |Upxq ´ Upx` tq|p. We remark
that for any k P N we have

ASp,ppU, t, ωkq “
ÿ

xPωk

Vp,tpxq.

We first notice that U is R-independent with R ą 0, see Lemma B.5. Since for any x P Z2, Vp,tpxq depends
only on Upxq and Upx` tq we have that Vp,t is Rt “ R ` }t}8-independent. Since U is stationary, so is
Vp,t. The random field Vp,t admits moments of every order since it is the pth power of the absolute value
of a Gaussian random field. Thus Vp,t is a Rt-independent second-order stationary random field. We can
apply Lemma B.6 and we get
(a) limkÑ`8

1
|ωk|

ASp,ppU, t, ωkq “
a.s.

µp,pptq;

(b) limkÑ`8 |ωk|
1
2

´

1
|ωk|

ASp,ppU, t, ωkq ´ µp,pptq
¯

“
L
N

`

0, σ2
p,pptq

˘

.

with µp,pptq “ E rVp,tp0qs and σp,pptq
2 “

ř

xPZ2 Cov rVp,tpxq, Vp,tp0qs. By continuity of the p-th root over
r0,`8q we get 1 for i “ p with

αp,k “ |ωk|
1{p , µpptq “ µp,pptq

1{p .

By Lemma B.7 we get that E
“

pUp0q ´ Uptqq2
‰

“ 2pΓf p0q ´ Γf ptqq ą 0 thus µp,pptq “ E rVp,tp0qs ą 0.
Since the pth root is continuously differentiable on p0,`8q we can apply the Delta method, see [14], and
we get 2 for i “ p with

αp,k “ |ωk|
1{p , µpptq “ µp,pptq

1{p , σpptq
2 “

1

p2
σp,pptq

2µp,pptq
2{p´2. (3.1)

2. We now prove the theorem for i “ sc. Let t P Z2z t0u and define Vsc,t for any x P Z2, Vsc,tpxq “
´UpxqUpx` tq. We remark that for any k P N we have

ASscpU, t, ωkq “
ÿ

xPωk

Vsc,tpxq .
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Since for any x P Z2, Vsc,tpxq depends only on Upxq and Upx` tq, we have that Vsc,t is Rt “ R ` }t}8-
independent. Since U is stationary, so is Vsc,t. The random field Vsc,t admits moments of every order since
it is a product of Gaussian random fields. Thus Vsc,t is a Rt-independent second-order stationary random
field. We can again apply Lemma B.6 and we get
(a) limkÑ`8

1
|ωk|

ASscpU, t, ωkq “
a.s.

µscptq;

(b) limkÑ`8 |ωk|
1
2

´

1
|ωk|

ASscpU, t, ωkq ´ µscptq
¯

“
L
N

`

0, σ2
scptq

˘

,

with µscptq “ E rVsc,tp0qs and σscptq
2 “

ř

xPZ2 Cov rVsc,tpxq, Vsc,tp0qs, which concludes the proof.
3. Finally, we consider the case i “ cos. Let t P Z2z t0u and define Vcos,t for any x P Z2,

Vcos,tpxq “

¨

˝

´UpxqUpx` tq
Upxq2

Upx` tq2

˛

‚. (3.2)

We remark that for any k P N we have

ASscospU, t, ωkq “ h

˜

|ωk|
´1

ÿ

xPωk

Vcos,tpxq

¸

, (3.3)

with hpx, y, zq “ xy´1{2z´1{2. Since U is stationary, so is Vcos,t. The random field Vcos,t admits moments
of every order since it is a vector of products of Gaussian random fields. Thus Vcos,t is a Rt-independent

second-order stationary random field. We can apply Lemma B.6 and there exist µ̃cosptq and C̃cosptq such
that
(a) limkÑ`8

1
|ωk|

Vcos,t “
a.s.

µ̃cosptq;

(b) limkÑ`8 |ωk|
1
2

´

1
|ωk|

Vcos,t ´ µ̃cosptq
¯

“
L
N

´

0, C̃cosptq
¯

.

We conclude the proof using the multivariate Delta method, [14].

In the following proposition we give explicit values for the constants involved in the law of large numbers
and the central limit theorem derived in Theorem 3.4. We introduce the following quantities for k, ` P N and
j P J0, k ^ `K, where k ^ ` “ minpk, `q,

q` “
p2`q!

`! 2`
, rj,k,` “ qk´jq`´j

ˆ

2k

2j

˙ˆ

2`

2j

˙

p2jq! . (3.4)

We also denote rj,` “ rj,`,`. Note that for all ` P N, r0,` “ q2
` and

ř̀

j“0

rj,` “ q2`. We also introduce the following

functions:

∆f pt,xq “ 2Γf pxq ´ Γf px ` tq ´ Γf px ´ tq , r∆f pt,xq “ Γf pxq
2 ` Γf px ` tqΓf px ´ tq. (3.5)

Note that ∆f is a second-order statistic on the Gaussian field U “ f ˚W with W a Gaussian white noise over

Z2, whereas r∆f is a fourth-order statistic on the same random field.

Proposition 3.5 (Explicit constants – Auto-similarity). In Theorem 3.4 we have the following constants for
any t P Z2z t0u.
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(i) If i “ p with p “ 2` and ` P N, then for all k P N, we get that αp,k “ |ωk|
1{p2`q and

µpptq “ q
1{p2`q
` ∆f pt,0q

1{2 and σpptq
2 “

q
1{`´2
`

p2`q2

ÿ̀

j“1

rj,`

ˆ

}∆f pt, ¨q}2j
∆f pt,0q

˙2j

∆f pt,0q,

where pri,jkqi,j,kPN and pqkqkPN are given in (3.4).
(ii) If i “ sc, then for all k P N, we get that αsc,k “ |ωk| and

µscptq “ Γf ptq and σscptq
2 “

ÿ

xPZ2

r∆f pt,xq.

(iii) if i “ cos, then for all k P N, we get that αcos,k “ 1 and

µcosptq “ Γf ptq{Γf p0q and σcosptq
2 “ Γf p0q

´2

"

}Γf }
2
2

ˆ

1` 2
Γf ptq

2

Γf p0q2

˙

´ 4
Γf ptq

Γf p0q
Γf ˚ qΓf ptq ` Γf ˚ qΓf p2tq

*

.

Proof. The proof is postponed to Appendix D.

For example we have

µ2ptq “ ∆f pt,0q
1{2 , µ4ptq “ 31{4∆f pt,0q

1{2

σ2
2ptq “

1

2

}∆f pt, ¨q}
2
2

∆f pt,0q
, σ2

4ptq “ 2
?

3
}∆f pt, ¨q}

2
2

∆f pt,0q
`

?
3

6

}∆f pt, ¨q}
4
4

∆f pt,0q3
.

(3.6)

We now derive similar asymptotic properties in the template similarity case.

Theorem 3.6 (Discrete case – asymptotic template similarity results). Let pmkqkPN, pnkqkPN be two positive
increasing integer sequences and pωkqkPN be the sequence of subsets defined for any k P N, ωk “ J0,mkKˆ J0, nkK.

Let f P RZ2

, f ‰ 0 with finite support, W a Gaussian white noise over Z2, U “ f ˚W and let v, a real valued
function on Z2. For i “ tp, pp, pq, sc, cosu with p “ 2` and ` P N, if i “ p or pp, pq assume (A3.1) and (A3.2), if
i “ sc assume (A3.1) and (A3.3) and if i “ cos assume (A3.1), (A3.2) and (A3.3). Then there exist µi, σ

2
i P R

and pαi,kqkPN a positive sequence such that for any t P Z2 we get

1. limkÑ`8
1
αi,k

T SipU, v, t, ωkq “
a.s

µi;

2. limkÑ`8 |ωk|
1
2

´

1
αi,k

T SipU, v, t, ωkq ´ µiptq
¯

“
L
N

`

0, σ2
i

˘

.

Note that contrarily to Theorem 3.4 we could not obtain such a result for all p P p0,`8q but only for even
integers. Indeed, in the general case the convergence of the sequence

`

|ωk|
´1E rT Sp,ppU, v, t, ωkqs

˘

kPN, which
is needed in order to apply Theorem B.3, is not trivial. Assuming that v is bounded it is easy to show that
`

|ωk|
´1E rT Sp,ppU, v, t, ωkqs

˘

kPN is also bounded and we can deduce the existence of a convergent subsequence.
In the general case, for Theorem 3.6 to hold with any p P p0,`8q, we must verify that for any t P Ω, there exist
µp,pptq ą 0 and σ2

p,pptq ě 0 such that

(a) limkÑ`8 |ωk|
1
2

´

1
|ωk|

E rT Sp,ppU, v, t, ωkqs ´ µp,pptq
¯

“ 0;

(b) limkÑ`8
1
|ωk|

Var rT Sp,ppU, v, t, ωkqs “ σ2
p,pptq.

We now turn to the proof of Theorem 3.6.

Proof. As for the proof of Theorem 3.4, the proof is divided into three parts. First we show 1 and 2 for i “ pp, pq
and extends the result to i “ p. Then we show 1 and 2 for i “ sc. Finally, we show 1 and 2 for i “ cos.
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1. Let p P p0,`8q, t P Z2 and define Vp,t the random field on Z2 for any x P Z2, by Vp,tpxq “ |vpxq´Upx` tq|p.
We remark that for any k P N we have

T Sp,ppU, v, t, ωkq “
ÿ

xPωk

Vp,tpxq.

By Lemma B.5, U is R-independent with R ą 0. Since for any x P Z2 we have that Vp,tpxq depends only on Upx`
tq we also have that Vp,t is R-independent. We define the random field V 8p,t for any x P Z2, V 8p,tpxq “ psupZ2 |v| `

Upx ` tqqp. We have that V 8p,tpxq ` E
“

V 8p,tp0q
‰

uniformly almost surely dominates Vp,tpxq ´ E rVp,tpxqs. The
random field V 8p,t admits moments of every order since it is the pth power of the absolute value of a Gaussian
random field and is stationary because U is. Thus Vp,t is a Rt-independent random field and Vp,tpxq´E rVp,tpxqs
is uniformly stochastically dominated by V 8p,tpxq ` E

“

V 8p,tp0q
‰

, a second-order stationary random field. Using
(A3.2) and Lemma B.8, we can apply Theorem B.3 and B.4 and we get
(a) limkÑ`8

1
|ωk|

T Sp,ppU, v, t, ωkq “
a.s.

µp,pptq;

(b) limkÑ`8 |ωk|
1
2

´

1
|ωk|

T Sp,ppU, v, t, ωkq ´ µp,pptq
¯

“
L
N

`

0, σ2
p,pptq

˘

.

Note that since U is stationary we have for any t P Z2, µp,p “ µp,pp0q “ µp,pptq and σ2
p,p “ σ2

p,pp0q “ σ2
p,pptq.

By continuity of the pth root over r0,`8q we get 1 for i “ p with

αp,k “ |ωk|
1{p , µp “ µ1{p

p,p.

By Lemma B.8, we have that µp,p ą 0. Since the pth root is continuously differentiable on p0,`8q we can apply
the Delta method and we get 2 for i “ p with

αp,k “ |ωk|
1{p , µp “ µ1{p

p,p , σ2
p “ σ2

p,pµ
2{p´2
p,p {p2 . (3.7)

2. We now prove the theorem for i “ sc. Let t P Z2 and define Vsc,t the random field on Z2 such that for any
x P Z2, Vsc,tpxq “ ´vpxqUpx` tq. We remark that for any k P N we have

T SscpU, v, t, ωkq “
ÿ

xPωk

Vsc,tpxq.

It is clear that for any k P N, T SscpU, v, t, ωkq is a R-independent Gaussian random variable with
E rT SscpU, v, t, ωkqs “ 0 and

Var rT SscpU, v, t, ωkqs “
ÿ

x,yPωk

E rVsc,tpxqVsc,tpyqs “
ÿ

x,yPωk

vpxqvpyqΓf px´ yq “
ÿ

xPZ2

Γf pxqvk ˚ v̌kpxq ,

where we recall that vk is the restriction of v to ωk. The last sum is finite since Supp pfq finite implies that
Supp pΓf q is finite. Using (A3.3) we obtain that for any k P N,

ÿ

xPωk

pE rVsc,ts pxq ´ µscq “ 0 , lim
kÑ`8

|ωk|
´1

ÿ

x,yPωk

Cov rVsc,tpxq, Vsc,tpyqs “ σ2
sc , (3.8)

with µsc “ 0 and σ2
sc “

ř

xPZ2 Γf pxqγpxq, where γ is given in (A3.3). Since Vsc,t is a R-independent second-order
random field using (3.8) we can apply Theorems B.3 and B.4 to conclude.
3. We now consider the case i “ cos. First, notice that

T ScospU, v, t, ωkq “
|ωk|

´1T SscpU, v, t, ωkq
`

|ωk|´1
ř

xPωk
vpxq2

˘1{2 `
|ωk|´1

ř

xPωk
Upxq2

˘1{2
. (3.9)
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Using that limkÑ`8 |ωk|
´1T SscpU, v, t, ωkq “ 0, limkÑ`8 |ωk|

´1
ř

xPωk
Upxq2 “ Γf p0q by Lemma B.6 and

limkÑ`8 |ωk|
´1

ř

xPωk
vpxq2 “ v1 ‰ 0 by (A3.2), we get that

lim
kÑ`8

T ScospU, v, t, ωkq “ 0.

In addition, using Slutsky’s theorem and the fact that limkÑ`8 |ωk|
´1{2T SscpU, v, t, ωkq “ N p0, σ2

scq we obtain
that limkÑ`8 |ωk|

´1{2T ScospU, v, t, ωkq “ N p0, σ2
cosq with

σ2
cos “

xγ,Γf y

v1Γf p0q
.

Proposition 3.7 (Explicit constants – template similarity). In Theorem 3.6 we have the following constants
for any t P Z2.

(i) If i “ p with p “ 2` and ` P N, then we get that αp,k “ |ωk|
1
p , and

µp “

˜

ÿ̀

j“0

ˆ

2`

2j

˙

q`´jΓf p0q
´jβj

¸1{2`

Γf p0q
1{2 ,

σ2
p “

˜

ÿ̀

i,j“0

ˆ

2`

2i

˙ˆ

2`

2j

˙`´i^`´j
ÿ

m“1

rm,`´i,`´jΓf p0q
´pi`j`2mq

@

Γ2m
f , γi,j

D

¸˜

ÿ̀

j“0

ˆ

2`

2j

˙

q`´jΓf p0q
´jβj

¸1{`´2
Γf p0q

p2`q2
,

where pβjqjPN, pγi,jqi,jPN are given in (A3.2) and pri,jkqi,j,kPN and pqkqkPN are given in (3.4).
(ii) If i “ sc then for all k P N, we get that αsc,k “ |ωk| and

µsc “ 0 , σ2
sc “ xγ,Γf y.

(iii) If i “ scos then for all k P N, we get that αscos,k “ 1 and

µscos “ 0 , σ2
scos “

xγ,Γf y

v1Γf p0q
.

Proof. The proof is postponed to Appendix D.

For example we have

µ2 “ p2Γf p0q ` β1q
1{2 , µ4 “ p3Γf p0q

2 ` 12Γf p0q
3β1 ` β2q

1{4 ,

σ2
2 “

1

4

}Γf }
2
2

Γf p0q
p2` Γf p0q

´1β1q
´1 ,

σ2
4 “

1

16

`

288Γf p0q
´1}Γf }

2
2 ` 144Γf p0q

´2xΓ2
f , γ0,1y ` 24Γf p0q

´3}Γf }
4
4 ` Γf p0q

´3xΓ2
f , γy

˘

ˆ
`

3` 12Γf p0q
´1β1 ` Γf p0q

´2β2

˘´3{2
.

(3.10)

Note that the limit mean and standard deviation do not depend on the offset anymore. Indeed, template
similarity functions are stationary in t. If v has finite support then (A3.2) holds with βi “ 0 and γi,j “ 0 as
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soon as i ‰ 0 or j ‰ 0. Remarking that β0 “ 1 and γ0,0 “ 1 we obtain that

µp “ q
1{p2`q
` Γf p0q

1{2 , σ2
p “

q
1{`´2
`

p2`q2

ÿ̀

j“1

rj,`

ˆ

}Γf }2j
Γf p0q

˙2j

Γf p0q.

3.2. Continuous case

We now turn to the continuous setting. Theorem 3.8, respectively Theorem 3.10, is the continuous counterpart
of Theorem 3.4, respectively Theorem 3.6.

Theorem 3.8 (Continuous case – asymptotic auto-similarity results). Let pmkqkPN, pnkqkPN be two positive
increasing integer sequences and pωkqkPN be the sequence of subsets defined for any k P N by, ωk “ r0,mks ˆ

r0, nks. Let U be a zero-mean Gaussian random field over R2 with covariance function Γ. Assume (A2.2) and
that Γ has finite support. For i P tp, pp, pq, sc, cosu with p P p0,`8q there exist µi, σ

2
i , real valued functions on

R2, and pαi,kqkPN a positive sequence such that for any t P R2z t0u we get

1. limkÑ`8
1
αi,k

ASipU, t, ωkq “
a.s

µiptq ;

2. limkÑ`8 |ωk|
1
2

´

1
αi,k

ASipU, t, ωkq ´ µiptq
¯

“
L
N

`

0, σ2
i ptq

˘

.

Proof. The proof is the same as the one of Theorem 3.4 replacing Lemmas B.6 and B.7 by Lemma C.3 and
Lemma C.4.

Proposition 3.9 (Explicit constants – Continuous auto-similarity). Constants given in Proposition 3.5 apply
to Theorem 3.8 provided that Γf is replaced by Γ in (3.5).

Proof. The proof is the same as the one of Proposition 3.5.

Theorem 3.10 (Continuous case – asymptotic template similarity results). Let pmkqkPN, pnkqkPN be two positive
increasing integer sequences and pωkqkPN be the sequence of subsets defined for any k P N by, ωk “ r0,mks ˆ

r0, nks. Let U be a zero-mean Gaussian random field over R2 with covariance function Γ. Assume (A2.2) and
that Γ has finite support. For i P tp, pp, pq, sc, cosu with p P p0,`8q, if i “ p or pp, pq assume (A3.1) and (A3.2),
if i “ sc assume (A3.1) and (A3.3) and if i “ cos assume (A3.1), (A3.2) and (A3.3). Then there exist µi, σ

2
i P R

and pαi,kqkPN a positive sequence such that for any t P R2 we get

1. limkÑ`8
1
αi,k

T SipU, v, t, ωkq “
a.s.

µi ;

2. limkÑ`8 |ωk|
1
2

´

1
αi,k

T SipU, v, t, ωkq ´ µiptq
¯

“
L
N

`

0, σ2
i

˘

.

Proof. The proof is the same as the one of Theorem 3.6.

Proposition 3.11 (Explicit constants – Continuous auto-similarity). Constants given in Proposition 3.7 apply
to Theorem 3.10 provided that Γf is replaced by Γ in (3.5).

Proof. The proof is similar to the one of Proposition 3.7.

3.3. Speed of convergence

In the discrete setting, Theorem 3.4 justifies the use of a Gaussian approximation to compute ASipU, t, ωq.
However this asymptotic behavior strongly relies on the increasing size of the patch domains. We define the patch
size to be |ω|, the cardinality of ω, and the spot size |Supp pfq | to be the cardinality of the support of the spot
f . The quantity of interest is the ratio r “ patch size

spot size . If r " 1 then the Gaussian random field associated to f can
be well approximated by a Gaussian white noise from the patch perspective. If r « 1 this approximation is not
valid and the Gaussian approximation is no longer accurate, see Figure 5. We say that an offset t is detected in
a Gaussian random field if ASipU, t, ωq ď aptq for some threshold aptq. In the experiments presented in Figure 6
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Figure 5. Gaussian moment matching. In this experiment, 104 samples of 128ˆ 128 Gaussian
images are computed with a spot of size 5 ˆ 5 (the spot is the indicator of this square).
Scalar product auto-similarities and squared L2 auto-similarities are computed for a fixed offset
p70, 100q. We then plot the normalized histogram of these values. The red curve corresponds to
the standard Gaussian N p0, 1q. On the top row r “ 100 " 1 and the Gaussian approximation
is valid. On the bottom row r « 1 and the Gaussian approximation is not valid.

and Table 1 the threshold is given by the asymptotic Gaussian inverse cumulative distribution function evaluated
at some quantile. The parameters of the Gaussian random variable are given by Proposition 3.5. We find that
except for small spot sizes and large patches, i.e. r " 1, the approximation is not valid. More precisely, let
U “ f ˚W with f a finitely supported function over Z2 and W a Gaussian white noise over Z2. Let ω Ă Z2 and
let Ω0 be a finite subset of Z2. We compute

ř

tPΩ0
1ASipU,t,ωqďaptq, with aptq defined by the inverse cumulative

distribution function of quantile 10{|Ω0| for the Gaussian N pµ, σ2q where µ, σ2 are given by Theorem 3.4 and
Proposition 3.5. Note that aptq would satisfy P rASipU, t, ωq ď aptqs « 10{|Ω0| if the approximation for the
cumulative distribution function was correct. In other words, if the Gaussian asymptotic was always valid, we
would have a number of detections equal to 10 independently of r. This is clearly not the case in Table 1.
One way to interpret this is by looking at the left tail of the approximated distribution for s2,2 and ssc on
Figure 5. For ssc the histogram is above the estimated curve, see (a) in Figure 6 for example. Whereas for s2,2

the histogram is under the estimated curve. Thus for ssc we expect to obtain more detections than what is
predicted whereas we will observe the opposite behavior for s2,2. This situation is also illustrated for similarities
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Figure 6. Theoretical and empirical cumulative distribution Function. This experiment illus-
trates the non-Gaussianity in Figure 5. In both cases, the red curve is the inverse cumulative
distribution function of the standard Gaussian and the blue curve is the empirical inverse cumu-
lative distribution function of normalized auto-similarity functions computed with 104 samples
of Gaussian models. We present auto-similarity results obtained for t “ p70, 100q and similarity
function ssc (on the left) and s2 (on the right). We note that for rare events, see the magnified
region, the theoretical inverse cumulative distribution function is above the empirical inverse
cumulative distribution function. The opposite behavior is observed for similarity s2. These
observations are in accordance with the findings of Table 1.

Table 1. Asymptotic properties. Number of detections with different patch domains from
5 ˆ 5 to 70 ˆ 70 and spot domains from 1 ˆ 1 to 25 ˆ 25 for the s2,2 (left table) or ssc (right
table) auto-similarity function. We only consider patch domains larger than spot domains. We
generate 5000 Gaussian random field images of size 256 ˆ 256 for each setting (with spot the
indicator of the spot domain). We set α “ 10{2562. For each setting we compute aptq the inverse
cumulative distribution function of N pµiptq, σ2

i ptqq evaluated at quantile α, with µi and σ2
i given

by Proposition 3.5. For each pair of patch size and spot size we compute
ř

tPΩ 1ASipu,t,ωqďaptq,
namely the number of detections, for all the 5000 random fields samples. The empirical averages
are displayed in the table. If ASipu, t, ωq had Gaussian distribution with parameters given by
Proposition 3.5 then the number in each cell would be

ř

tPΩ P rASipU, t, ωq ď aptqs « 10.

5 10 15 20 40 70

1 0.3 1.4 3.2 4.6 7.4 9.0
2 0.3 0.4 1.2 2.2 5.8 8.5
5 0.3 0.4 0.4 0.5 1.3 4.1
10 0.4 0.5 0.5 0.4 1.4
15 0.5 0.5 0.5 0.5
20 0.5 0.5 0.5
25 0.5 0.5

5 10 15 20 40 70

1 18.1 11.6 10.9 10.4 10.1 10.0
2 34.2 16.5 12.8 11.5 10.4 9.9
5 93.9 49.3 30.8 20.9 13.2 11.5
10 86.7 57.6 46.0 19.7 14.5
15 83.9 63.8 30.0 18.2
20 79.5 36.7 24.7
25 51.5 26.6

s2 and ssc in Figure 6 in which we compare the asymptotic cumulative distribution function with the empirical
one.

In the next section we address this problem by studying non-asymptotic cases for the s2,2 auto-similarity
function in both continuous and discrete settings.
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4. A non-asymptotic case: internal Euclidean matching

4.1. Discrete periodic case

In this section Ω is a finite rectangular domain in Z2. We fix ω Ă Ω. We also define f a function over Ω. We
consider the Gaussian random field U “ f ˚W (we consider the periodic convolution) with W a Gaussian white
noise over Ω.

In the previous section, we derived asymptotic properties for similarity functions. However, a necessary
condition for the asymptotic Gaussian approximation to be valid is for the spot size to be very small when
compared to the patch size. This condition is not often met and non-asymptotic techniques must be developed.
For instance it should be noted that the distribution of the ssc template similarity, T SscpU, v, t, ωq, is Gaussian
for every ω. We might also derive a non-asymptotic expression for the template similarity in the cosine case if the
Gaussian model is a white noise model. In what follows we restrict ourselves to the auto-similarity framework
and consider the square of the L2 norm auto-similarity function, i.e. AS2,2pU, t, ωq. In this case we present an
efficient method to compute the cumulative distribution function of the auto-similarity function even in the
non-asymptotic case.

Proposition 4.1 (Squared L2 auto-similarity function exact probability distribution function). Let Ω “

pZ{MZq2 with M P N, ω Ă Ω, f P RΩ and U “ f ˚W where W is a Gaussian white noise over Ω. The
following equality holds for any t P Ω up to a change of the underlying probability space

AS2,2pU, t, ωq “
a.s

|ω|´1
ÿ

k“0

λkpt, ωqZk , (4.1)

with Zk independent chi-square random variables with parameter 1 and λkpt, ωq the eigenvalues of the covari-
ance matrix Ct associated with function ∆f pt, ¨q, see equation (3.5), restricted to ω, i.e. for any x1,x2 P ω,
Ctpx1, x2q “ ∆f pt,x1 ´ x2q.

Proof. Let t P Ω and Vt be given for any x P Ω by Vtpxq “ Upxq ´ Upx` tq. It is a Gaussian vector with mean
0 and covariance matrix CV given for any x1,x2 P Ω by

CV px1,x2q “ 2Γf px1 ´ x2q ´ Γf px1 ´ x2 ´ tq ´ Γf px1 ´ x2 ` tq “ ∆f pt,x1 ´ x2q.

The covariance of the random field PωpVtq, the restriction of Vt to ω, is given by the restriction of CV to ω. This
new covariance matrix, Ct, is symmetric and the spectral theorem ensures that there exists an orthonormal
basis B such that Ct is diagonal when expressed in B. Thus we obtain that PωpVtq “

ř

ekPBxPωpVtq, ekyek. It
is clear that, for any k P J0, |ω| ´ 1K, xPωpVtq, eky is a Gaussian random variable with mean 0 and variance
eTkCtek “ λkpt, ωq ě 0. We set K “ tk P J0, |ω| ´ 1K, λkpt, ωq ‰ 0u and define X a random vector in R|ω| such
that

Xk “ λkpt, ωq
´1{2xPωpVtq, eky, if k P K , and XK´ “ Y ,

where XK´ is the restriction of X to the indices of K´ “ J0, |ω| ´ 1KzK and Y is a standard Gaussian ran-

dom vector on R|K´| independent from the sigma field generated by tpXkq, k P Ku. By construction we have
E rXkX`s “ 0 if ` P K and k P K´, or ` P K´ and k P K´. Suppose now that k, ` P K. We obtain that

E rXkX`s “ λkpt, ωq
´1{2λ

´1{2
` pt, ωqE

“

eTkCte`
‰

“ 0.
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Figure 7. Eigenvalues approximation. We consider a Gaussian random field generated with
f ˚W with W a Gaussian white noise and f is a fixed sample of an independent Gaussian
white noise over Ω. We consider patches of size 10 ˆ 10 and study the approximation of the
eigenvalues for the covariance matrix of the random field restricted to a domain of size 10ˆ 10,
similarly to Proposition 4.1. (A) shows the Normalized Root-Mean Square Deviation between
the eigenvalues computed with standard routines and the ones given by the approximation
for each offset, see (4.2). Offset zero is at the center of the image. (B) and (C) illustrate the
properties of Proposition 4.2. Blue circles correspond to the 100 eigenvalues computed with
Matlab routine for offset p5, 5q in (B), respectively p10, 20q in (C), and red crosses correspond
to the 100 approximated eigenvalues for the same offsets. Note that a standard routine takes
273s for 10ˆ 10 patches on 256ˆ 256 images whereas it only takes 1.11s when approximating
the eigenvalues using the discrete Fourier transform.

Thus X is a standard Gaussian random vector and we have PωpVtq “
ř|ω|´1
k“0 λ

1{2
k pt, ωqXkek, where the equality

holds almost surely. We get that

AS2,2pU, t, ωq “ }PωpVtq}
2
2 “

ÿ

ekPB
xPωpVtq, eky

2 “

|ω|´1
ÿ

k“0

λkpt, ωqX
2
k.

Setting Zk “ X2
k concludes the proof.

Note that if ω “ Ω then we obtain that the covariance matrix Ct is block-circulant with circulant blocks and
the eigenvalues are given by the discrete Fourier transform.

In order to compute the true cumulative distribution function of the auto-similarity square L2 norm we need
to: (1) compute the eigenvalues of a covariance matrix in M|ω|pRq; (2) compute the cumulative distribution
function of a positive-weighted sum of independent chi-square random variable with weights given by the
computed eigenvalues. Storing all covariance matrices for each offset t is not feasible. For instance considering
a patch of size 10 ˆ 10 and an image of size 512 ˆ 512 we have approximately 2.6 ˆ 109 coefficients to store,
i.e. 10.5GB in float precision. In the rest of the section we suppose that t and ω are fixed and we denote by
Ct the covariance matrix associated to the restriction of ∆f pt, ¨q to ω ` p´ωq. In Proposition 4.2 we propose a
method to approximate the eigenvalues of Ct by using its specific structure. Indeed, as a covariance matrix, Ct

is symmetric and positive and, since its associated Gaussian random field is stationary, it is block-Toeplitz with
Toeplitz blocks, i.e. is block-diagonally constant and each block has constant diagonals. In the one-dimensional
case these properties translate into symmetry, positivity and Toeplitz properties of the covariance matrix.
Proposition 4.2 is stated in the one-dimensional case for the sake of simplicity but two-dimensional analogous
can be derived. Note that this approximation is not always sharp as shown in Figure 7.
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We recall that the Frobenius norm of a matrix of size n ˆ n is the L2 norm of the associated vector of
size n2.

Proposition 4.2 (Eigenvalues approximation). Let b be a function defined over J´pn ´ 1q, n ´ 1K with n P
Nz t0u. We define Tbpj, `q “ bpj ´ `q for j, ` P J0, n´ 1K. The matrix Tb is a circulant matrix if and only if b is
n-periodic. Tb is symmetric if and only if b is symmetric. Let b be symmetric, defining ΠpTbq the projection of
Tb onto the set of symmetric circulant matrix for the Frobenius product, we obtain that

1. the projection satisfies ΠpTbq “ Tc with cpjq “
`

1´ j
n

˘

bpjq ` j
nbpn ´ jq for all j P J0, n ´ 1K and c is

extended by n-periodicity to Z;

2. the eigenvalues of ΠpTbq are given by
´

2 Repd̂pjqq ´ bp0q
¯

jPJ0,n´1K
with dpjq “

`

1´ j
n

˘

bpjq, and d̂ is the

discrete Fourier transform over J0, n´ 1K;
3. let pλjqjPJ1,nK be the sorted eigenvalues of Tb and pλ̃jqjPJ1,nK the sorted eigenvalues of ΠpTbq (in the same

order). For any j P J1, nK, we have |λj ´ λ̃j | ď }Tb ´ΠpTbq}Fr;
4. if Tb is positive-definitive then ΠpTbq is positive-definite.

Proof. (1) Let Tc be an element of the symmetric circulant matrices set. Minimizing }Tb ´ Tc}
2
Fr in cpjqjPJ0,n´1K

we get that cpjq satisfies for any j P J0, n´ 1K

cpjq “ argmin
sPR

`

2pn´ jqps´ bpjqq2 ` 2jps´ bpn´ jqq2
˘

,

which gives the result.
(2) Since Tc “ ΠpTbq is circulant, its eigenvalues are given by the discrete Fourier transform of c. We have

that if i ‰ 0 then cpiq “ 9dpjq ` 9dp´jq with dpjq “
`

1´ j
n

˘

bpjq and 9d its extension to Z by n-periodicity. We
also have cp0q “ bp0q. We conclude the proof by taking the discrete Fourier transform of c.

(3) The proof of the Lipschitz property on the sorted eigenvalues of symmetric matrices with respect to the
L2 matricial norm can be found in [13]. We conclude using the fact that the L2 matricial norm is upper-bounded
by the Frobenius norm.

(4) This result is a special case of the spectrum contraction property of the projection proved in Theorem 2
of [11].

In Figure 7 we display the behavior of the projection for the eigenvalues in the two-dimensional case. The
measure we consider is the Normalized Root Mean Square Deviation

NRMSD “

˜

1
|ω|

|ω|´1
ř

k“0

|λ̃kpt, ωq ´ λkpt, ωq|
2

¸1{2

max pλkpt, ωqqkPJ0,|ω|´1K ´min pλkpt, ωqqkPJ0,|ω|´1K
, (4.2)

with λ̃kpt, ωq the approximation of the eigenvalues, for every possible offset in the image and λkpt, ωq the true
eigenvalues, for every possible offset. Computing the eigenvalues of the projection is done via Fast Fourier
Transform (FFT) which is faster than standard routines for computing eigenvalues of Toeplitz matrices. The
major cons of using such an approximation is that it may not be valid for small offsets t P Ω as shown in
Figure 7. However, in most cases the random field is smooth and in this case, see Figure 8, the approximation is
satisfactory. We also highlight that for similarity detection purposes, see Figure 9, the level of precision achieved
by our approximation is satisfactory, see [7].

Suppose the approximation of the eigenvalues is valid, we need an efficient algorithm to compute the distribu-
tion of the associated positive-weighted sum of chi-square random variables in equation (4.1). Exact computation
has been derived by Imhof in [31] but requires to compute heavy integrals. This exact method, named Imhof
method in the following, will be used as a baseline for other algorithms. Numerous methods such as differential
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Figure 8. Eigenvalues approximation. Same study as the one conducted in Figure 7 with
f “ 1t1,2,3u2 . Note that in this case the approximation is better than the one presented in
Figure 7.

Figure 9. Similarity detection. In this figure we illustrate the accuracy of the different pro-
posed approximations of the cumulative distribution function of AS2,2pU, t, ωq. We say that an
offset t is detected in an image if AS2,2pu, t, ωq ď aptq for some threshold aptq P R. In every
image, in green we display the patch domain ω (in the center of the image) and in red we
display the shifted patch domain for detected offsets with function aptq such that for any t P Ω,
P rAS2,2pU, t, ωq ď aptqs “ 1{2562, where U is given by the Gaussian random field f ˚W where
f is the original image of fabric and W is a Gaussian white noise over Ω “ 256ˆ 256. Approxi-
mations of the cumulative distribution function of AS2,2pU, t, ωq lead to approximations of aptq.
The most precise approximation is given in (A) where the eigenvalues are computed using a
Matlab routine and the cumulative distribution function is given by the Imhof method. In (B)
we approximate the eigenvalues using the projection described in Proposition 4.2 and still use
the Imhof method. It yields twice as many detections. In (C) Wood F method is used instead of
Imhof’s yielding less detections but performing seven times faster. Interestingly errors seem to
compensate and the obtained result with Wood F method is very close to the results obtained
with the baseline algorithm in (A). In (D) HBE method is used instead of Imhof’s, in this case
we obtain too many detections, i.e. the approximation of the cumulative distribution function
is not valid.

equations [19], series truncation [38], negative binomial mixtures [46] approaches were later introduced but all
require stopping criteria such as truncation criteria which can be hard to set. We focus on cumulant methods
which generalize and refine the Gaussian approximations used in Section 3. These methods rely on computing
moments of the original distribution and then fitting a known probability distribution function to the objective
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distribution using these moments. Bodenham et al. in [6] show that the following methods can be efficiently
computed:

– Gaussian approximation (discarded due to its poor results for small patches as illustrated in Sect. 3);
– Hall-Buckley-Eagleson [10, 29] (HBE), (three moments fitted Gamma distribution);
– Wood F [56] (three moments fitted Fischer-Snedecor distribution).

Other methods such as the Lindsay-Pilla-Basak-4 method, which relies on the computation of eight moments,
are slower than HBE by a factor 350 at least, see [6], and are thus discarded. In Figure 9 we investigate the
trade-off between computational speed and accuracy of these methods for the task of detection.

The experiments conducted in Figure 9 show that the HBE approximation does not give good results when
evaluating the probability of rare events. This was already noticed by Bodenham et al. in [6] who stated that
“Hall–Buckley–Eagleson method is recommended for most practitioners [. . .]. However, [. . .], for very small
probability values, either the Wood F or the Lindsay–Pilla-Basak method should be used”.

4.2. Continuous periodic case

To conclude we show that a similar non-asymptotic study can be conducted in continuous settings.

Proposition 4.3 (Squared L2 continuous auto-similarity function exact probability distribution function). Let
Ω “ T2, ω Ă Ω and let U be a zero-mean Gaussian random field on Ω with covariance function Γ. Assume
(A2.2), then the following equality holds for any t P Ω up to a change of the underlying probability space

AS2,2pU, t, ωq “
a.s

ÿ

kPN
λkpt, ωqZk,

with Zk independent chi-square random variables with parameter 1 and λkpt, ωq the eigenvalues of the kernel Ct

associated with function ∆pt, ¨q “ 2Γptq´Γp¨ ` tq´Γp¨ ´ tq restricted to ω, i.e. for any x1,x2 P ω, Ctpx1, x2q “

∆pt,x1 ´ x2q.

Proof. We consider the stationary Gaussian random field PωpVtq over ω defined by the restriction to ω
where for any x P Ω by Vtpxq “ Upxq ´ Upx ` tq. The Karhunen-Loeve theorem [28] ensures the existence
of pλkpt, ωqqkPN P RN

`, pXkqkPN a sequence of independent normal Gaussian random variables and pekqkPN a
sequence of orthonormal function over L2pωq such that

lim
nÑ`8

sup
xPω

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

PωpVtqpxq ´
n
ÿ

k“0

a

λkpt, ωqekpxqXk

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl “ 0 , (4.3)

We define the sequence pInqnPN “ p
ş

ω

´

řn
k“0

a

λkpt, ωqekpxqXk

¯2

dxqnPN. We have, using the Cauchy-Schwarz

inequality on L2pAˆ ωq and (4.3)

E r|AS2,2pU, t, ωq ´ In|s ď E

»

–

ż

ω

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

PωpVtq
2pxq ´

˜

n
ÿ

k“0

a

λkpt, ωqekpxqXk

¸2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dx

fi

fl

ď E

«

ż

ω

pPωpVtqpxq ´
n
ÿ

k“0

a

λkpt, ωqekpxqXkq
2dx

ff1{2

E

«

ż

ω

pPωpVtqpxq `
n
ÿ

k“0

a

λkpt, ωqekpxqXkq
2dx

ff1{2

ď 2E rAS2,2pU, t, ωqs
1{2

ż

ω

E

«

pPωpVtqpxq ´
n
ÿ

k“0

a

λkpt, ωqekpxqXkq
2

ff

dx , (4.4)
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where we used the Fubini theorem in the last inequality. Using the dominated convergence theorem in (4.4)

with integral domination given by supnPN supxPω E
”

pPωpVtqpxq ´
řn
k“0

a

λkpt, ωqekpxqXkq
2
ı

we conclude that

pInqnPN converges to AS2,2pU, t, ωq in L1pAq. Thus there exists a subsequence of pInqnPN which converges

almost surely to AS2,2pU, t, ωq. We also have In “
ş

ω

´

řn
k“0

a

λkpt, ωqekpxqXk

¯2

dx “
řn
k“0 λkpω, kqX

2
k by

orthonormality and thus the sequence pInqnPN is almost surely non-decreasing. We get that pInqnPN converges
almost surely to AS2,2pU, t, ωq which can be rewritten as

AS2,2pU, t, ωq “
ÿ

kPZ
λkpt, ωqX

2
k almost surely.

The characterization of pλkpt, ωq, ekpxqq is given by the Karhunen-Loeve theorem and ekpxq is solution of the
following Fredholm equation for all x P ω

ż

ω

∆pt,x´ yqekpyq dy “ λkpt, ωqekpxq.

Setting Zk “ X2
k concludes the proof.

Note that if ω “ T2 then the solution of the Fredholm equation is given by the Fourier series of Γ.

Appendix A. Multidimensional central limit theorems

In this section we provide an extension of ([35], Thm. 2) to the multidimensional case.
We recall the notion of dependency graph as introduced in [35]. Let pXiqiPN be Rd-valued random variables.

A graph is a dependency graph for pXiqiPN if the two following conditions are satisfied.

1. There is a one-to-one correspondence between pXiqiPN and the vertices of the graph.
2. If two sets of vertices are not connected then the corresponding random variables are independent.

Theorem A.1. Let pXi,jqpi,jqPN2 be a sequence of Rd-valued random variables and pNnqnPN P NN. For any
n P N, assume that there exists An,Mn ě 0 such that for any j P N, }Xn,j} ď An and that the dependency graph

of pXn,jqjPN is of degree Mn at most. For any n P N let Sn “
řNn

j“1Xn,j and Cn “ Cov rSns. Assume that there

exists m0 P N and C PMdpRq such that for any n P N, limnÑ`8pNn{Mnq
1{m0MnAn “ 0 and limnÑ`8 Cn “ C.

Then, Sn ´ E rSns converges (in the weak sense) towards N p0, Cq.

Proof. Let a P Rd and consider pXa
i,jqpi,jqPN2 such that for any i, j P N, Xa

i,j “ xXi,j , ay. We also introduce for

any n P N, San “
řNn

j“1 x
a
n,j . Assume that aJCa “ 0. Then, using the Bienaymé -Tchebychev inequality, we have

for any ε ą 0

lim
nÑ`8

P r|San ´ E rSans | ą εs ď lim
nÑ`8

ε´2aJCna “ 0. (A.1)

Hence, xa, Sn ´ E rSnsy converges (in the weak sense) towards xa, Zy with Z a d-dimensional Gaussian random
variable with zero mean and covariance matrix C. If aJCna ‰ 0 then using [35] we have that xa, Sn ´ E rSnsy
converges (in the weak sense) towards xa, Zy. We conclude using the Cramér-Wold theorem, [15], Theorem 1.

Similarly to ([35], Thm. 2), we can replace the condition }Xn,i} ď An by the following condition: for any
a P Rd with a ‰ 0

lim
nÑ`8

Mn

Nn
ÿ

j“1

E
“

}Xn,j}
21}Xn,j}ąAn}a}

‰

“ 0. (A.2)
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Indeed, this implies that for any a P Rd, limnÑ`8Mn

řNn

j“1 E
“

xa,Xn,jy
21|xa,Xn,jy|ąAn

‰

“ 0, which is the
Lindeberg type condition identified in ([35], Thm. 2).

Appendix B. Asymptotic theorems – discrete case

We start by introducing two notions which will be crucial in order to derive a law of large numbers and a
central limit theorem in broad settings. TheR-independence, see Definition B.1, ensures long-range independence
whereas stochastic domination will replace integrability conditions in the standard law of large numbers or
central limit theorem.

The notion of R-independence generalizes to R2 and Z2 the associated one-dimensional concept, see [5] and
its extension to N2 [44, 53].

Definition B.1 (R-independence). Let d P N, Ω “ R2 or Ω “ Z2 and V be a d-dimensional random field over
Ω. Let K1,K2 Ă Ω be two compact sets, and V |Ki be the restriction of V to Ki, i P t1, 2u. We say that V is
R-independent, with R ě 0, if V |K1 is independent from V |K2 as soon as d8pK1,K2q “ min

xPK1,yPK2

}x ´ y}8 ą R.

Note that in the case of Ω “ Z2, compacts sets K1 and K2 are finite sets of indices. This notion of R-
independence will replace the traditional assumption of independence in asymptotic theorems.

Definition B.2 (Uniform domination). Let Ω “ R2 or Ω “ Z2 and let V, rV be real random fields over Ω. We
say that:

(a) rV uniformly stochastically dominates V if for any α ě 0 and x P Ω, P rV pxq ě αs ď P
”

rV pxq ě α
ı

;

(b) rV uniformly almost surely dominates V if for any x P Ω, V pxq ď rV pxq almost surely.

Note that if rV uniformly almost surely dominates V then rV uniformly stochastically dominates rV .
The following theorem is a two-dimensional law of large numbers with weak dependence assumptions. It is a

slight modification of Corollary 4.1 (ii) in [53].

Theorem B.3. Let d P N. Let pmkqkPN, pnkqkPN be two positive increasing integer sequences and pωkqkPN be the
sequence of subsets such that for any k P N, ωk “ J0,mkK ˆ J0, nkK. Let V be a d-dimensional R-independent

random field over Z2, with R ě 0, such that }V pxq ´ E rV pxqs } is uniformly stochastically dominated by rV , a
real second-order stationary random field over Z2. Then V is a second-order random field. In addition, assume
that there exists µ P Rd such that limkÑ`8 |ωk|

´1
ř

xPωk
E rV pxqs “ µ. Then it holds that

lim
kÑ`8

|ωk|
´1

ÿ

xPωk

V pxq “
a.s
µ. (B.1)

Proof. Without loss of generality we can suppose that d “ 1 and that for any x P Z2, E rV pxqs “ 0. In order to
apply Corollary 4.1 (ii) in [53] we must check that:

(a) V is R´independent;

(b) |V | is uniformly stochastically dominated by a random field rV and there exists r P r1, 2r such that for any

x P Z2, E
”

rV rpxq log`prV pxqq
ı

is finite.

Item (a) is given in the statement of Theorem B.3 and |V | is uniformly stochastically dominated by the random

field rV0 defined for any x P Z2 by rV0pxq “ rV p0q. Since E
”

rV p0q2
ı

is finite so is E
”

rV p0q log`prV p0qq
ı

which

implies (b). Then it holds that

lim
kÑ`8

ÿ

xPωk

pV pxq ´ E rV pxqsq “
a.s

0.
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Using that limkÑ`8 |ωk|
´1

ř

xPωk

E rUpxqs “ µ, we conclude the proof.

We now turn to an extension of the central limit theorem to two-dimensional random fields with weak
dependence assumptions. This result is a consequence of Theorem A.1.

Theorem B.4. Under the hypotheses of Theorem B.3 and assuming that there exist µ P Rd and C PMdpRq
such that

(a) limkÑ`8 |ωk|
´1{2

ř

xPωk
pE rV s pxq ´ µq “ 0 ;

(b) limkÑ`8 |ωk|
´1

ř

x,yPωk
Cov rV pxq, V pyqs “ C.

Then it holds that

lim
kÑ`8

|ωk|
´1{2

ÿ

xPωk

pV pxq ´ µq “
L
N p0, Cq. (B.2)

Proof. For any i, j P N, let Xi,j “ pV pxjq´E rV pxjqsq|ωi|´1{2 with pxjqjPN such that for any k P N, tV pxjq, j P

J1, |ωk|Ku “ tV pxq,x P ωku. For any n P N, let Nn “ |ωn|. Then, we have that for any n P N,
řNn

j“1Xn,j “

|ωk|
´1{2

ř

xPωk
pV pxq ´E rV pxqsq. Since V is R-independent each vertex of the dependency graph of pXi,jqi,jPN2

has its degree bounded by p2R` 1q2 and therefore for any n P N, Mn “ p2R` 1q2. For any n P N, let An “ |ωn|
α

with α P p1{3, 1{2q. Using that Ṽ uniformly stochastically dominates p}V pxq ´ E rV pxqs }qxPZ2 we obtain that
for any a P Rd

Nn
ÿ

j“1

E
“

}Xn,j}
21}Xn,j}2ąA2

n}a}
´2

‰

“ |ωn|
´1

ÿ

xPωn

E
“

}V pxq ´ E rV pxqs }21}V pxq´ErV pxqs}2ąA2
n}a}

´2|ωn|

‰

“ |ωn|
´1

ÿ

xPωn

ż `8

0

P
“

}V pxq ´ E rV pxqs }2 ě maxpA2
n}a}

´2|ωn|, tq
‰

dt

ď |ωn|
´1

ÿ

xPωn

ż `8

0

P
”

Ṽ pxq ě maxpA2
n}a}

´2|ωn|, tq
ı

dt

ď E
”

Ṽ p0q1Ṽ p0qąA2
n}a}

´2|ωn|

ı

.

Hence, since limnÑ`8A
2
n|ωn| “ limnÑ`8 |ωn|

1´2α “ `8 we get that

lim
nÑ`8

Nn
ÿ

j“1

E
“

}Xn,j}
21}Xn,j}2ąA2

n}a}
´2

‰

“ 0. (B.3)

Letting m0 “ 3 we get that

lim
nÑ`8

pNn{Mnq
1{m0MnAn “ p2R` 1q2p1`1{3q|ωn|

1{3´α “ 0. (B.4)

In addition, we have that for any n P N

Cn “ Cov

«

Nn
ÿ

j“1

Xn,j

ff

“ |ωn|
´1 Cov

«

ÿ

xPωn

V pxq

ff

“ |ωn|
´1

ÿ

x,yPωn

Cov rV pxq, V pyqs . (B.5)
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Hence, combining (B.3), (B.4), (B.5), (b) and Theorem A.1, we get that

lim
kÑ`8

|ωk|
´1{2

ÿ

xPωk

pV pxq ´ E rV pxqsq “
L
N p0, Cq. (B.6)

Combining (B.6) and (a) concludes the proof.

The following lemma explicits a class of Gaussian random fields over Z2 such that the R-independence
property holds for some R ě 0.

Lemma B.5. Let f P RZ2

with finite support Supp pfq Ă J´r, rK2, where r P N. Let W be a Gaussian white
noise over Z2 and V “ f ˚W then V is a R-independent second-order random field with R “ 2r.

Proof. V is a Gaussian random field such that for any x,y P Z2

E rV pxqs “ 0 , Cov rV pxq, V pyqs “
ÿ

x1,y1PZ2

fpx´ x1qfpy ´ y1qCov
“

W px1q,W py1q
‰

“ Γf px´ yq. (B.7)

Note that since Supp pfq Ă J´r, rK we have Supp pΓf q Ă J´R,RK with R “ 2r. For any x,y P Z2 such that
}x´ y}8 ą R, using (B.7), we obtain

Cov rV pxq, V pyqs “ Γf px´ yq “ 0. (B.8)

Let K1,K2 Ă Z2 two finite sets with supxPK1,yPK2
}x´ y}8 ą R and consider V |Ki the restriction of V to Ki

for i “ t1, 2u. Using (B.8), we get that for any x P K1, y P K2 we have

Cov rV |K1
pxq, V |K2

pyqs “ 0.

As a consequence, Cov rV |K1
, V |K2

s “ 0 and V |K1
and V |K2

are uncorrelated. Since V |K1
, V |K2

are Gaussian
random fields we get that V |K1

, V |K2
are R-independent.

The following lemma gives specific conditions on random fields in order for Theorems B.3 and B.4 to hold.

Lemma B.6. Let d P N. Let pmkqkPN, pnkqkPN be two positive increasing integer sequences and pωkqkPN be the
sequence of subsets given for any k P N by, ωk “ J0,mkK ˆ J0, nkK. Let V be a d-dimensional R-independent
second-order stationary random field over Z2, with R ě 0. Then for all k P N

(a) |ωk|
´1

ř

xPωk
E rV pxqs “ E rV p0qs ;

(b) limkÑ`8 |ωk|
´1

ř

x,yPωk
Cov rV pxq, V pyqs “

ř

xPZ2 Cov rV pxq, V p0qs .

In addition, equations (B.1) and (B.2) hold with µ “ E rV p0qs and C “
ř

xPZ2 Cov rV pxq, V p0qs which is finite.

Proof. Item (a) is immediate by stationarity. Concerning (b), for any k P N we have by stationarity

|ωk|
´1

ÿ

x,yPωk

Cov rV pxq, V pyqs “ |ωk|
´1

ÿ

x,yPωk

Cov rV px´ yq, V p0qs “
ÿ

xPZ2

Cov rV pxq, V p0qs gkpxq ,

where gk P RZ2

satisfies for any x P Z2, gkpxq “ |ωk|
´11ωk

˚ 1̌ωk
pxq. For any k P N, x P Z2 we have

0 ď gkpxq ď 1 and limkÑ`8 gkpxq “ 1. For any x P Z2 such that }x}8 ą R, Cov rV pxq, V p0qs “ 0 and then
ř

xPZ2 |Cov rV pxq, V p0qs | ă `8. Using the dominated convergence theorem we get that

lim
kÑ`8

|ωk|
´1

ÿ

x,yPωk

Cov rV pxq, V pyqs “
ÿ

xPZ2

Cov rV pxq, V p0qs .
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We obtain equations (B.1) and (B.2) by applying Theorems B.3 and B.4.

Lemma B.7. Let f P RZ2

, f ‰ 0, a function with finite support. Then it holds for any t P Z2, Γf ptq ď Γf p0q,
with equality if and only if t “ 0.

Proof. For any t P Z2, let τtf “ fp¨ ` tq. By the definition of the autocorrelation Γf and using the Cauchy-
Schwarz inequality we get that for any t P Z2

Γf ptq “ xτtf, fy ď }f}
2
2 ď Γf p0q ,

with equality if and only if f “ ατtf , with α ‰ 0 since f ‰ 0. This implies that Supp pτtpfqq “ Supp pfq. As a
consequence t “ 0, which concludes the proof.

The following lemma ensures that items (a) and (b) in Theorem B.4 are satisfied in the template similarity
case when imposing summability conditions over v.

Lemma B.8. Under the hypotheses of Theorem 3.4, assuming (A3.2) with ` P N and p “ 2`. There exist
µp,p ą 0 and σp,p ě 0 such that for any t P Ω

(a) limkÑ`8 |ωk|
1
2

´

1
|ωk|

E rT Sp,ppU, v, t, ωkqs ´ µp,pptq
¯

“ 0 ;

(b) limkÑ`8
1
|ωk|

Var rT Sp,ppU, v, t, ωkqs “ σ2
p,pptq.

Proof. (a) For any k P N we have that

E rT Sp,ppU, v, t, ωkqs “
ÿ

xPωk

E
“

pvpxq ´ Upx` tqq2`
‰

“

2
ÿ̀

j“0

ˆ

2`

j

˙

ÿ

xPωk

p´1qjvpxqjE
“

Upxq2`´j
‰

“
ÿ̀

j“0

ˆ

2`

2j

˙

ÿ

xPωk

vpxq2jE
”

Upxq2p`´jq
ı

“
ÿ̀

j“0

ˆ

2`

2j

˙

E rUp0qs2p`´jq
ÿ

xPωk

vpxq2j.

Let µp,p “
ř`
j“0

`

2`
2j

˘

E rUp0qs2p`´jq βj and using (a) of (A3.2) we get that

lim
kÑ`8

|ωk|
1
2

ˆ

1

|ωk|
E rT Sp,ppU, v, t, ωkqs ´ µp,pptq

˙

“ 0.

Now since µp,p ě E
“

Up0q2`
‰

ě E
“

Up0q2
‰`
ě Γf p0q ą 0 we have that µp,p ą 0.

(b) For any k P N we have that

Var rT Sp,ppU, v, t, ωkqs “
ÿ

x,yPωk

Cov
“

pUpxq ´ vpxqq2`, pUpyq ´ vpyqq2`
‰

“
ÿ

x,yPωk

ÿ̀

i,j“0

ˆ

2`

2i

˙ˆ

2`

2j

˙

vpxq2ivpyq2j Cov
”

Upxq2p`´iq, Upyq2p`´jq
ı

“
ÿ

x,yPZ2

ÿ̀

i,j“0

ˆ

2`

2i

˙ˆ

2`

2j

˙

vkpxq
2ivkpx ` yq2j Cov

”

Upyq2p`´iq, Up0q2p`´jq
ı

“
ÿ̀

i,j“0

ˆ

2`

2i

˙ˆ

2`

2j

˙

A

v2i
k ˚ v̌

2j
k ,Cov

”

Up¨q2p`´iq, Up0q2p`´jq
ıE

.
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Let σp,p “
ř`
i,j“0

`

2`
2i

˘`

2`
2j

˘ @

γi,j ,Cov
“

Up¨q2p`´iq, Up0q2p`´jq
‰D

. Using (b) in (A3.2) we can conclude.

Note that this lemma is also valid in the continuous case.

Appendix C. Asymptotic theorems – continuous case

We now turn to the continuous setting. We start by stating the continuous counterparts of Theorems B.3
and B.4. The following theorem, given here for completeness, can be found with different assumptions (in the
one-dimensional case) in [42].

Theorem C.1. Let d P N. Let pmkqkPN, pnkqkPN be two positive increasing integer sequences and pωkqkPN be
the sequence of subsets given for any k P N by, ωk “ r0,mks ˆ r0, nks. Let V be a d-dimensional R-independent

random field over R2 , with R ě 0, such that }V pxq ´ E rV pxqs } is uniformly stochastically dominated by rV , a
stationary random field of order r ą 2 over R2. Then V is a second-order random field. In addition, assume V
is sample path continuous and that there exists µ P Rd given by limkÑ`8 |ωk|

´1
ş

xPωk
E rV pxqsdx “ µ. Then it

holds that

lim
kÑ`8

|ωk|
´1

ż

xPωk

V pxqdx “
a.s.

µ. (C.1)

Proof. Without loss of generality we can suppose that d “ 1 and that for any x P Ω, E rV pxqs “ 0. Let pσkqkPN P
RN given for any k P N by

σ2
k “ E

«

ˆ

k´2

ż

Ωk

V pxqdx

˙2
ff

, (C.2)

with Ωk “ r0, ks
2. Since V is R-independent, for any x,y P Ω such that }x ´ y}8 ą R, we have Cpx,yq “ 0.

Hence for k large enough we obtain

ż

Ωk

ż

Ωk

Cpx,yqdxdy ď

ż

xPΩk

ż

}y}8ďR

|Cpx,x` yq|dydx ď k2|B̄8p0, Rq| sup
ΩkˆB̄8p0,Rq

|Cpx,x` yq|. (C.3)

Using that rV uniformly stochastically dominates |V |, the stationarity of rV , and the Cauchy-Schwarz inequality,
we obtain for any x,y P Ω,

|Cpx,x` yq| “ |E rV pxqV px` yqs | ď E
”

rV 2pxq
ı1{2

E
”

rV 2px` yq
ı1{2

ď E
”

rV 2p0q
ı

. (C.4)

Combining (C.2), (C.3) and (C.4) we get that for any k P N

σ2
k ďMk´2 ,

with M “ |B̄8p0, Rq|E
”

rV 2p0q
ı

. Thus the series
ř

kPN σ
2
k converges and

ř

kPN

´

k´2
ş

Ωk
V pxqdx

¯2

is finite almost

surely. This proves that limkÑ`8 k
´2

ş

Ωk
V pxqdx “ 0 almost surely. Using [16, p. 95] we get that

lim
kÑ`8

sup
ΩkĂωĂΩk`1

ˇ

ˇ

ˇ

ˇ

|ω|´1

ż

ω

V pxqdx´ k´2

ż

Ωk

V pxqdx

ˇ

ˇ

ˇ

ˇ

“
a.s.

0.
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Combining this result with limkÑ`8 k
´2

ş

Ωk
V pxqdx “ 0 implies that limkÑ`8 |ωk|

´1
ş

xPωk
V pxqdx “

a.s.
0.

The following theorem is an application of ([33], Thm. 1.7.1).

Theorem C.2. Under the hypotheses of Theorem C.1 and assuming that there exist µ P Rd and C PMdpRq
such that

(a) limkÑ`8 |ωk|
´1{2

ş

xPωk
pE rV s pxq ´ µqdx “ 0 ;

(b) limkÑ`8 |ωk|
´1

ş

x,yPωk
Cov rV pxq, V pyqsdxdy “ C.

Then it holds that

lim
kÑ`8

|ωk|
´1{2

ż

xPωk

pV pxq ´ µqdx “
L
N p0, Cq. (C.5)

Proof. Let a P Rd. We consider the d-dimensional random field ξ over R2 defined for any x P R2 by ξpxq “
V pxq ´ E rV pxqs. We define also the weight functions pgnqnPN given for any n P N by gnpxq “ |ωn|

´1{21xPωn
.

For any n P N, let Sn “
ş

R2 gnpxqξpxqdx. We have for any n P N,

Sn “ |ωn|
´1{2

ż

xPωn

pV pxq ´ E rV pxqsqdx.

Let ξa be the one-dimensional random field over R2 such that for any xÃ P R2, ξapxq “ xa, ξpxqy and pSanqnPN
be the sequence of real-valued random variables such that for any n P N, San “ xa, Sny. Then for any n P N,
San “

ş

R2 gnpxqξ
apxqdx. Using (b) we have that

lim
nÑ`8

E
“

pSanq
2
‰

“ lim
nÑ`8

|ωn|
´1

ż

x,yPωn

aJCov rV pxq, V pyqs a “ aJCa. (C.6)

By assumption, ξa is stochastically dominated by }a}rV and therefore for any x P R2 we have

E r|ξa|rs ă `8. (C.7)

Combining (C.6), (C.7), the fact that V is R-independent ([33], Thm. 1.7.1) and (a) we obtain that

lim
kÑ`8

B

a, |ωk|
´1{2

ż

xPωk

pV pxq ´ µqdx

F

“
L
N p0, aJCaq. (C.8)

We conclude the proof upon using the Cramér-Wold theorem ([15], Thm. 1).

The following lemmas are the continuous versions of Lemma B.6 and B.7.

Lemma C.3. Let d P N. Let pmkqkPN, pnkqkPN be two positive increasing integer sequences and pωkqkPN be the
sequence of subsets such that for any k P N, ωk “ r0,mks ˆ r0, nks. Let V be a d-dimensional, R-independent
random field of order r ą 2 over R2, with R ě 0. Assume that V is sample path continuous, then for all k P N

(a) |ωk|
´1

ş

xPωk
E rV pxqsdx “ E rV p0qs ;

(b) limkÑ`8 |ωk|
´1

ş

x,yPωk
Cov rV pxq, V pyqsdxdy “

ş

xPR2 Cov rV pxq, V p0qsdx.

In addition, (C.1) and (C.5) hold with µ “ E rV p0qs and C “
ş

xPR2 Cov rV pxq, V p0qsdx.

Proof. (a) The proof is immediate since for any x P R2, E rV pxqs “ E rV p0qs.
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(b) For any k P N we have by stationarity

|ωk|
´1

ż

x,yPωk

Cov rV pxq, V pyqsdxdy “ |ωk|
´1

ż

x,yPωk

Cov rV px´ yq, V p0qsdxdy.

By the Fubini-Lebesgue theorem we obtain that for any k P N,

|ωk|
´1

ż

x,yPωk

Cov rV pxq, V pyqsdxdy “

ż

xPR2

Cov rV pxq, V p0qs gkpxqdx ,

where gk P L
8pR2q satisfies for any x P R2, gkpxq “ |ωk|

´11ωk
˚ 1̌ωk

pxq. For any k P N, x P R2 we have 0 ď
gkpxq ď 1 and limkÑ`8 gkpxq “ 1. For any x P R2 such that }x}8 ą Rt, Cov rV pxq, V p0qs “ 0 and then

ż

xPR2

|Cov rV pxq, V p0qs |dx ă `8.

Using the dominated convergence theorem we get that

|ωk|
´1

ż

x,yPωk

Cov rV pxq, V pyqsdxdy “

ż

xPR2

Cov rV pxq, V p0qsdx ,

Since V is R-independent we conclude the proof by applying Theorem C.1 and C.2.

Lemma C.4. Let Γ be a function over R2, Γ ‰ 0, such that for any x,y P R2, Cpx,yq “ Γpx´ yq with C the
covariance function of V a second-order random field over R2. Assume that Γ has finite support. Then it holds
for any t P R2, Γptq ď Γp0q, with equality if and only if t “ 0.

Proof. Upon replacing for any x P R2, V pxq by V pxq ´ E rV pxqs we suppose that E rV pxqs “ 0. Using the
Cauchy-Schwarz inequality and the stationarity of V we get for any t P R2 and x P R2

Γptq “ E rV px` tqV pxqs ď E
“

V px` tq2
‰1{2 E

“

V pxq2
‰1{2

ď E
“

V pxq2
‰

ď Γp0q.

with equality if and only if V px` tq “ αpxqV pxq with αpxq P R. Since V is stationary and V ‰ 0 we get that
for any x, t P R2, E

“

V px` tq2
‰

“ E
“

V pxq2
‰

ą 0. Thus αpxq2 “ 1 and for all n P N, V pntq “ ˘V p0q. If t ‰ 0
then there exists n P N such that nt R Supp pΓq and then we have

0 “ Γpntq “ E rV pntqV p0qs “ ˘E
“

V p02q
‰

‰ 0 ,

which is absurd. Thus the equality in the inequality holds if and only if t “ 0.

Appendix D. Explicit constants

In order to derive precise constants in Theorems 3.4 and 3.6 we use the following lemma which is a consequence
of the Isserlis formula [32].
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Lemma D.1. Let U and V be two zero-mean, real-valued Gaussian random variable and k, ` P N. We have

E
“

U2kV 2`
‰

“

k^
ÿ̀

j“0

rj,k,`E
“

U2
‰k´j E

“

V 2
‰`´j E rUV s2j and Cov

“

U2k, V 2`
‰

“

k^
ÿ̀

j“1

rj,k,`E
“

U2
‰k´j E

“

V 2
‰`´j E rUV s2j ,

with rj,k,` defined by (3.4).

Proof. Let k, ` P N. Using Isserlis formula [32] we obtain that E
“

U2kV 2`
‰

is the sum over all the partitions in
pairs of tU, . . . , U

looomooon

2k times

, V, . . . , V
looomooon

2` times

u of the product of the expectations given by a pair partition. Given a pair partition

we identify three different cases, tU,Uu, tV, V u and tU, V u. We only need to count the number of times each
case appears in the sum. We denote the number of tU,Uu couples in a given pair partition p by nU,U ppq. In the
same fashion we define nU,V ppq and nV,V ppq. We have 2k “ 2nU,U ppq ` nU,V ppq which proves that nU,V ppq is
even. We denote by Pj the number of pair partitions p such that nU,V ppq “ 2j, with j P J0, k ^ `K.

The cardinality of Pj is given by rj,k,`. Indeed, in order to select 2j pair tU, V u we select 2j elements among

2k (selection of replicates of U), same for V which gives
`

2k
2j

˘`

2`
2j

˘

possibilities. Considering all the bijections

between these elements we construct all the possible 2j pairs tU, V u. Given 2j pairs tU, V u we must construct
k´ j pairs tU,Uu and `´ j pairs tV, V u in order to obtain a pair partition of Pj . The number of pairs partition
of a set with `´ j elements is given q`´j . As a consequence we obtain for all j P J0, k ^ `K

|Pj | “ qk´jq`´j

ˆ

2k

2j

˙ˆ

2`

2j

˙

p2jq! “ rj,k,`.

Summing over j P J0, k ^ `K we obtain all the possible pair partition and we get

E
“

U2kV 2`
‰

“

k^
ÿ̀

j“0

rj,k,`E
“

U2
‰k´j E

“

V 2
‰`´j E rUV s2j . (D.1)

Using that r0,k “ q2
k, respectively r0,` “ q2

` and E
“

U2k
‰

“ qkE
“

U2
‰k

, respectively E
“

V 2`
‰

“ q`E
“

V 2
‰`

, we

obtain that the first term in the right-hand side sum of (D.1) is equal to E
“

U2k
‰

E
“

V 2`
‰

. Hence by removing
this term we obtain the covariance and conclude the proof.

Proof of Proposition 3.5. The proof is divided into three parts. First we consider the case i “ p then the case
i “ sc and finally the case i “ cos.

1. Let i “ p with p “ 2` and ` P N, t P Z2z t0u and Vt the Gaussian random field given for any x P Z2 by
Vtpxq “ Upxq ´ Upx` tq. Note that for all x P Z2 we have Vtpxq

2` “ Vp,tpxq. For any x,y P Z2 we have

E rVtpxqs “ 0 , Cov rVtpxq, Vtpyqs “ 2Γf px´ yq ´ Γf px´ y ´ tq ´ Γf px´ y ` tq “ ∆f pt,x´ yq , (D.2)

with ∆f given by (3.5). We show in proof of Theorem 3.4, see equation (3.1), that for any t P Z2z t0u

µpptq “ E
“

V 2`
t p0q

‰1{2`
, σpptq

2 “
ÿ

xPZ2

Cov
“

V 2`
t pxq, V

2`
t p0q

‰

E
“

V 2`
t p0q

‰1{`´2
{p2`q2. (D.3)

Combining (D.2), (D.3) and Lemma D.1 we get that
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(a) µpptq “ q
1{p2`q
2` ∆f pt,0q

1{2 ;

(b) σpptq
2 “

ř

xPZ2

´

ř`
j“1 rj,`∆f pt,0q

2p`´jq∆f pt,xq
2j
¯

q
1{`´2
` ∆f pt,0q

1´2`{p2`q2.

Exchanging the sums in (b) we get σpptq
2 “

q
1{`´2
`

p2`q2

ř̀

j“1

rj,`

´

}∆f pt,¨q}2j
∆f pt,0q

¯2j

∆f pt,0q.

2. Let i “ sc, t P Z2z t0u and Vsc,t be a Gaussian random field given for any x P Z2, by Vtpxq “ UpxqUpx` tq.
For any x,y P Z2 we have

E rVsc,tpxqs “ Γf ptq , Cov rVsc,tpxq, Vsc,tpyqs “ Γf px´ yq ´ Γf px´ y ´ tqΓf px´ y ` tq “ r∆f pt,x´ yq ,
(D.4)

with r∆f given by (3.5). We show in the proof of Theorem 3.4, see (3.1), that for any t P Z2z t0u

µscptq “ E rVsc,tp0qs , σscptq
2 “

ÿ

xPZ2

Cov rVsc,tpxq, Vsc,tp0qs . (D.5)

Combining (D.4) and (D.5) we get that
(a) µscptq “ Γf ptq ;

(b) σscptq
2 “

ř

xPZ2
r∆f pt,xq ,

which concludes the proof in the case i “ sc.
3. We now consider the case i “ cos. Recall that in the proof of Theorem 3.4 we show that

ASscospU, t, ωkq “ h

˜

|ωk|
´1

ÿ

xPωk

Vcos,tpxq

¸

,

where for any x P R, y, z ą 0

hpx, y, zq “ xy´1{2z´1{2 , Vcos,tpxq “

¨

˝

´UpxqUpx` tq
Upxq2

Upx` tq2

˛

‚.

Applying Lemma B.6 there exist µ̃cosptq and C̃cosptq such that

(a) limkÑ`8
1
|ωk|

Vcos,t “
a.s.

µ̃cosptq ;

(b) limkÑ`8 |ωk|
1
2

´

1
|ωk|

Vcos,t ´ µ̃cosptq
¯

“
L
N

´

0, C̃cosptq
¯

,

with

µ̃cosptq “

¨

˝

Γf ptq
Γf p0q
Γf p0q

˛

‚ ,

C̃cosptq “

¨

˚

˝

}Γf }
2 ` Γf ˚ qΓf p2tq 2Γf ˚ qΓf ptq 2Γf ˚ qΓf ptq

2Γf ˚ qΓf ptq 2}Γf }
2 2}Γf }

2

2Γf ˚ qΓf ptq 2}Γf }
2 2}Γf }

2

˛

‹

‚

.

(D.6)

In addition, for any x P R, y, z ą 0

∇hpx, y, zq “

¨

˝

y´1{2z´1{2

´p1{2qxy´3{2z´1{2

´p1{2qxy´1{2z´3{2

˛

‚.
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Combining this result, (D.6) and the multivariate Delta method we get that

µcosptq “ hpΓf ptq,Γf p0q,Γf p0qq “ Γf ptq{Γf p0q ,

σcosptq
2 “ ∇hpΓf ptq,Γf p0q,Γf p0qqJ

¨

˚

˝

}Γf }
2 ` Γf ˚ qΓf p2tq 2Γf ˚ qΓf ptq 2Γf ˚ qΓf ptq

2Γf ˚ qΓf ptq 2}Γf }
2 2}Γf }

2

2Γf ˚ qΓf ptq 2}Γf }
2 2}Γf }

2

˛

‹

‚

∇hpΓf ptq,Γf p0q,Γf p0qq

“ Γf p0q
´2

"

}Γf }
2
2

ˆ

1` 2
Γf ptq

2

Γf p0q2

˙

´ 4
Γf ptq

Γf p0q
Γf ˚ qΓf ` Γf ˚ qΓf p2tq

*

,

which concludes the proof.

Proof of Proposition 3.7. The proof is divided in two parts. First we treat the case i “ p then the case i “ sc
and i “ cos.

Let p “ 2` with ` P N. Lemma B.8 gives us that

µp,p “
ÿ̀

j“0

ˆ

2`

2j

˙

E rUp0qs2p`´jq βj and σp,p “
ÿ̀

i,j“0

ˆ

2`

2i

˙ˆ

2`

2j

˙

A

γi,j ,Cov
”

Up¨q2p`´iq, Up0q2p`´jq
ıE

.

Using Lemma D.1 we obtain that

µp,p “ Γf p0q
`
ÿ̀

j“0

ˆ

2`

2j

˙

q`´jΓf p0q
´jβj and σp,p “

ÿ̀

i,j“0

ˆ

2`

2i

˙ˆ

2`

2j

˙ `´i^`´j
ÿ

m“1

rm,k,`
@

γi,j ,Γ
2m
f

D

Γf p0q
2`´i´j´2m.

We conclude using (3.7).
For i “ sc and i “ cos, the result is given in the proof of Theorem 3.6.
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