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REDUNDANCY IN GAUSSIAN RANDOM FIELDS

VALENTIN DE BorroL1"*, AGNES DESOLNEUX?, BRUNO GALERNE®
AND ARTHUR LECLAIRE*

Abstract. In this paper, we introduce a notion of spatial redundancy in Gaussian random fields. This
study is motivated by applications of the a contrario method in image processing. We define similarity
functions on local windows in random fields over discrete or continuous domains. We derive explicit
Gaussian asymptotics for the distribution of similarity functions when computed on Gaussian random
fields. Moreover, for the special case of the squared L? norm, we give non-asymptotic expressions in
both discrete and continuous periodic settings. Finally, we present fast and accurate approximations
of these non-asymptotic expressions using moment methods and matrix projections.
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1. INTRODUCTION

Stochastic geometry [3, 12, 52] aims at describing the arrangement of random structures based on the knowl-
edge of the distribution of geometrical elementary patterns (point processes, random closed sets, etc.). When
the considered patterns are functions over some topological space, we can study the geometry of the associated
random field. For example, centering a kernel function at each point of a Poisson point process gives rise to the
notion of shot-noise random field [18, 50, 51]. We can then study the perimeter or the Euler-Poincaré charac-
teristic of the excursion sets among other properties [2, 4]. In the present work we will focus on the geometrical
notion of redundancy of local windows in random fields. We say that a local window in is redundant if it is
“similar” to other local windows in the same random field. The similarity of two local windows is defined as
the output of some similarity function computed over these local windows. The lower is the output, the more
similar the local windows are.

Identifying such spatial redundancy is a fundamental task in the field of image processing. For instance, in
the context of denoising, Buades et al. in [9], propose the Non-Local means algorithm in which a noisy patch is
replaced by a weighted mean over all similar patches. Other examples can be found in the domains of inpainting
[17] and video coding [34]. Spatial redundancy is also of crucial importance in exemplar-based texture synthesis,
where we aim at sampling images with the same perceptual properties as an input exemplar texture. If Gaussian
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random fields [26, 40, 55, 57] give good visual results for input textures with no, or few, spatial redundancy,
they fail when it comes to sampling structured textures (brick walls, fabric with repeated patterns, etc.). In this
case, more elaborated models are needed [20, 27, 43]. In this work, we derive explicit probability distribution
functions for the random variables associated with the output of similarity functions computed on local windows
of random fields. The knowledge of such functions allows us to conduct rigorous statistical testing on the spatial
redundancy in natural images.

In order to compute these explicit distributions we will consider specific random fields over specific topo-
logical spaces. First, the random fields will be defined either over R? (or T2, where T? is the 2-dimensional
torus, when considering periodicity assumptions on the field), or over Z2 (or (Z/(MZ))®, with M € N when
considering periodicity assumptions on the field). Each of these spaces is embedded with its classical topology.
The first case is the continuous setting, whereas the second one is the discrete setting. In image processing,
the most common framework is the finite discrete setting. The discrete setting (Z?) can be used to define
asymptotic properties when the size of images grows or when their resolution increases [8], whereas contin-
uous settings are needed in specific applications where, for instance, rotation invariant models are required
[54]. All the considered random fields will be Gaussian. This assumption will allow us to explicitly derive
moments of some similarity functions computed on local windows of the random field. Once again, another
reason for this restriction comes from image processing. Indeed, given an input image, we can compute
its first and second-order statistics. Sampling from the associated Gaussian random field gives examples of
images which preserve the covariance structure but lose the global arrangement of the input image. Inves-
tigating redundancy of such fields is a first step towards giving a mathematical description of this lack
of structure.

Finding measurements which correspond to the ones of our visual system is a long-standing problem in
image processing. It was considered in the early days of texture synthesis and analyzed by Julesz [36, 37, 58]
who formulated the conjecture that textures with similar first-order statistics (first conjecture) or that textures
with similar first and second-order statistics (second conjecture) could not be discriminated by the human eye.
Even if both conjectures were disproved [22], the work of Gatys et al. [27] suggests that second-order statistics of
image features are enough to characterize a broad range of textures. To compute features on images we embed
them in a higher dimensional space. This operation can be conducted using linear filtering [47] or convolutional
neural networks [27] for instance. Some recent works examine the response of convolutional neural network
to elementary geometrical pattern [45], giving insight about the perceptual properties of such a lifting. In the
present work, we focus on another embedding given by considering a square neighborhood, called a patch, around
each pixel. This embedding, is exploited in many image processing tasks such as inpainting [30], denoising [9, 39],
texture synthesis [23, 24, 41, 49], etc.

In the special case where the similarity functions are given by the L? norm, explicit distributions can be
inferred even in the non-asymptotic case. Calculating this distribution exactly is demanding since it requires
the knowledge of some covariance matrix eigenvalues as well as an efficient method to compute cumulative
distribution functions of quadratic forms of Gaussian random variables. We propose an efficient algorithm to
approximate this distribution. In [7], this algorithm is applied to denoising and periodicity detection problems
in an a contrario framework.

The paper is organized as follows. We recall basic notions of Gaussian random fields in general settings in
Section 2.1. Similarity functions to be evaluated on these random fields, as well as their statistical properties,
are described in Section 2.2. We give the asymptotic properties of these similarity functions in Gaussian random
fields in the discrete setting in Section 3.1 and in the continuous setting in Section 3.2. It is shown in Section 3.3
that the Gaussian asymptotic approximation is valid only for large patches. In order to overcome this problem
we consider an explicit formulation of the probability distribution function for a particular similarity function:
the square L? norm. The computations are conducted in the finite discrete case in Section 4.1. We also derive an
efficient algorithm to compute these probability distribution functions. Similar non-asymptotic expressions are
given in the continuous case in Section 4.2. Technical proofs and additional results on multidimensional central
limit theorems are presented in the Appendices.
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2. SIMILARITY FUNCTIONS AND RANDOM FIELDS

2.1. Gaussian random fields

Let (A, F,P) be a probability space. Following [1], a random field over a topological space 2 is defined as a
measurable mapping U : A — R, Thus, for all a in A, U(a) is a function over ) and, for any a € A and any
x € Q, U(a)(x) is a real number. For the sake of clarity we will omit a in what follows.

We say that a random field U is of order r > 0 if for any finite sequence (x1,...,x,) € Q" with n € N, the
vector V = (U(x1),...,U(xy)) satisfy E[||V|7] < +o. Assuming that U is a second-order random field, we
define the mean function of U, m :  — R as well as its covariance function, C' : 2? — R for any x,y € Q2 by

m(x) =E[U(x)]  and C(x,y) =E[(U(x) —m(x))(U(y) —m(y))]-

A random field U is said to be stationary if for any finite sequence (x1,...,x,) € Q" with n € N and t € Q,
the vector (U(x1),...,U(x,)) and (U(x1 + t),...,U(x, + t)) have same distribution. A second-order random
field U over a topological vector field is said to be stationary in the weak sense if its mean function is constant
and if for all x,y € Q, C(x,y) = C(x —y,0). In this case the covariance of U is fully characterized by its
auto-covariance function I' : 2 — R given for any x € 2 by

I'(x) = C(x,0) .
A random field U is said to be a Gaussian random field if, for any finite sequence (x1,...,%,) € Q" with
n € N, the vector (U(x1),...,U(x,)) is a n-dimensional Gaussian random vector. The distribution of a Gaussian

random field is entirely characterized by its mean and covariance functions. As a consequence, the notions of
stationarity and weak stationarity coincide for Gaussian random fields.

Since the applications we are interested in are image processing tasks, we consider the case where Q = R? (in
the continuous setting) and = Z? (in the discrete setting). In Section 2.2 we will consider Lebesgue integrals of
random fields and thus need integrability condition for U over compact sets. Let K = [a, b] x [¢, d] be a compact
rectangular domain in R?. Continuity requirements on the function C' imply that § e 9(x)U (x)dx is well-defined
as the quadratic mean limit for real-valued functions g over  such that {,. . g(x)g(y)C(x,y)dxdy is finite,
see [42]. However, we are interested in almost sure quantities and thus we want the integral to be defined almost
surely over rectangular windows. Imposing the existence of a continuous modification of a random field, ensures
the almost sure existence of Riemann integrals over rectangular windows. The following assumptions will ensure
continuity almost surely, see Lemma 2.3 whose proof can be found in ([1], Thm. 1.4.1) and ([48], Lem. 4.2,
Lem. 4.3, Thm. 4.5). We define D : Q x © — R such that for any x,y €

D(x,y) =E[(U(x) = U(y))*] = C(x,x) + Cly,y) = 2C(x,y) + (m(x) — m(y))* .

Assumption 2.1 (A2.1). U is a second-order random field and there exist M, n, a > 0 such that for any x € Q
and y € B(x,n) n Q with y # x we have

M — vl
D(x,y) < .
5 ¥) < Tiogllx —y o) F™=

This assumption can be considerably weakened in the case of a stationary Gaussian random field.

Assumption 2.2 (A2.2). U is a stationary Gaussian random field and there exist M,n,« > 0 such that for
any x € Q and y € B(x,7) n Q with y # x we have

M
< —
[log([x — y[2)[**

D(x,y)
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Lemma 2.3 (Sample path continuity). Assume (A2.1) or (A2.2). In addition, assume that for any x € Q,
m(x) = 0. Then there exists a modification of U, i.e. a random field U such that for any x € Q, P[U(x) =
U(x)] =1, and for any a € A, U(a) is continuous over Q.

In the rest of the paper we always replace U by its continuous modification U. Note that in the discrete case
all random fields are continuous with respect to the discrete topology.

In Sections 3 and 4, we will suppose that U is a stationary Gaussian random field with zero mean. Asymptotic
theorems derived in the next section remain true in broader frameworks, however restricting ourselves to sta-
tionary Gaussian random fields allows for explicit computations of asymptotic quantities in order to numerically
assess the rate of convergence.

2.2. Similarity functions

In order to evaluate redundancy in random fields, we first need to derive a criterion for comparing random
fields. We introduce similarity functions which take rectangular restrictions of random fields as inputs.

When comparing local windows of random fields (patches), two cases can occur. We can compare a patch
with a patch extracted from the same image. We call this situation internal matching. Applications can be
found in denoising [9] or inpainting [17] where the information of the image itself is used to perform the image
processing task. On the other hand, we can compare a patch with a patch extracted from another image. We call
this situation template matching. An application can be found in the non-parametric exemplar-based texture
synthesis algorithm proposed by Efros and Leung [23].

The Ly norm is the usual way to measure the similarity between patches [39] but many other measurements
exist, corresponding to different structural properties, see Figure 1.

Definition 2.4. Let P,Q € R* with w — R? or w < Z%. When it is defined we introduce

(a
(b) the L-similarity, s (P.Q) = supyeu (| P(x) Q)
c
d

) the LP-similarity, s,(P,Q) = [|P — Q|, = (§
)

(c) the p-th power of the LP-similarity, s, ,(P, Q) = s,(P, Q)? , with p € (0, +00);
)
)

XEW

|P(x) — Q(x)|Pdx) """, with pe (0, +0);

(d) the scalar product similarity, s,.(P, Q) = —(P.Q) = 1 (s2.5(P,Q) — | P} — |QI3):

(e) the cosine similarity, scos(P, Q) = %, if | P)2|Qll2 # O.

Depending on the case dx is either the Lebesgue measure or the discrete measure over w.

The locality of the measurements is ensured by the fact that these functions are defined on patches, i.e. local
windows. Following conditions (1) and (3) in [21] one can check that similarity functions (a), (¢) and (e) satisfy
the following properties

— (Symmetry) s(P,Q) = s(Q, P);
— (Maximal self-similarity) s(P, P) < s(P, Q);
— (Equal self-similarities) s(P, P) = s(Q, Q).

Note that since sg., the scalar product similarity, is homogeneous in P, maximal self-similarity and equal self-
similarity properties are not satisfied. All introduced similarities satisfy the symmetry condition and s, satisfies
the maximal self-similarity property. In [21], the authors present many other similarity functions all relying on
statistical properties such as likelihood ratios, joint likelihood criteria and mutual information kernels. In the
present paper we focus only on similarity functions defined directly in the spatial domain.

Definition 2.5 (Auto-similarity and template similarity). Let u and v be two functions defined over a domain
Q< R? or Z2. Let w < Q be a patch domain. We introduce P,(u) = ul,, the restriction of u to the patch
domain w. When it is defined we introduce the auto-similarity with patch domain w and offset t € R? or Z2
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FIGURE 1. Structural properties of similarity functions. In this experiment the image size is
512 x 512 and the patch size is 20 x 20. We show the 20 closest patches (red squares) to
the upper-left patch (green square) among all patches for different similarity functions. All
introduced similarity functions, see Definition 2.4, correctly identify the structure of the patch,
i.e. a large clear part with diagonal textures and a dark ray on the right side of the patch, except
for s, which is too sensitive to outliers. Similarities so, s1 and s¢os have analogous behaviors
and identify correct regions. Similarity ss. is too sensitive to contrast and, as it selects a correct
patch, it gives too much importance to illumination.

such that t + w < Q by
ASi(U,t,W) =8 (Pt+w (U), Pw(u)) )

where s; corresponds to s, with p € (0, +®], s, , with p € (0,400), Ssc O Scos. In the same way, when it is
defined, we introduce the template similarity with patch w and offset t by

TSZ(U) U,t,w) = Si (Pt+w(u)a Pw(’l))) .

Note that in the finite discrete setting, i.e. Q = (Z/(MZ))* with M € N, the definition of AS and TS can be
extended to any patch domain w — Z? by replacing u by 1, its periodic extension to Z2. A similar extension
can be derived in the finite continuous setting, i.e. @ = T2.

Suppose we evaluate the scalar product auto-similarity ASs.(U, t,w) with U a random field. Then the auto-
similarity function is a random variable and its expectation depends on the second-order statistics of U. In
the template case, the expectation of TS.(U,v,t,w) depends on the first-order statistics of U. This shows
that auto-similarity and template similarity can exhibit very different behaviors even for the same similarity
functions.

In the discrete case, it is well-known that, due to the curse of dimensionality, the L? norm does not behave
well in large-dimensional spaces and is a poor measure of structure. Thus, considering v and v two images,
s2(u,v), the L? template similarity on full images, does not yield interesting information about the perceptual
differences between u and v. The template similarity 7S2(u,v,0,w) avoids this effect by considering patches
which reduces the dimension of the data (if the cardinality of w, denoted |w]|, is small) and also allows for fast
computation of similarity mappings, see Figure 1 for a comparison of the different similarity functions on a
natural image.

We extract patches from images as follow. For each position in the image we consider a square w centered
around this position. This operation is called patch lifting. In Figure 2, we investigate the behavior of patch lifting
on different Gaussian random fields. Roughly speaking, patches are said to be similar if they are clustered in
the patch space. Using Principal Component Analysis we illustrate that patches are more scattered in Gaussian
white noise than in the Gaussian random field U = f+W (with periodic convolution, i.e. f*W(x) = > .o W(y)

f(x —y) where f is the periodic extension of f to Z2), where W is a Gaussian white noise over ) (a finite
discrete grid) and f is the indicator function of a rectangle non reduced to a single pixel.
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()

FI1GURE 2. Gaussian models and spatial redundancy. In this experiment we illustrate the notion
of spatial redundancy in two models. In (A), we present a 64 x 64 Gaussian white noise. (B)
Shows an indicator function f . In (C), we present a realization of the Gaussian random field
defined by f =W (with periodic convolution) where W is a Gaussian white noise over {2 (domain
of size 64 x 64). Note that f was chosen so that the two Gaussian random fields (A) and (C)
have the same gray-level distribution for each pixel. To each pixel position in (A) and (C) we
associate the surrounding patch, with patch domain w (of size 3 x 3). Hence, for each image (A)
and (C) we obtain 64 x 64 = 5096 vectors each of size 3 x 3 = 9. These 9-dimensional vectors are
projected in a 3-dimensional space using Principal Component Analysis. In the subfigure (D),
we display the 20 vectors closest to 0 in each case: Gaussian white noise model (in blue) and the
Gaussian random field (C) (in red). The radius of the blue, respectively red, sphere represents
the maximal L? norm of these 20 vectors in the Gaussian white noise model, respectively in
model (C). Since the radius of the blue sphere is larger than the red one the points are more
scattered in the patch space of (A) than in the patch space of (B). This implies that there is
more spatial redundancy in (C) than in (A), which is expected.

We continue this investigation in Figure 3 in which we present the closest patches (of size 10 x 10), for the
L? norm, in two Gaussian random fields U = f * W (where the convolution is periodic) for different functions
f called spots, [25]. The more regular f is, the more similar the patches are. Limit cases are f = 0 (all patches
are constant and thus all the patches are similar) and f = dg, i.e. U = W.

We introduce the notion of autocorrelation. Let f € L?(Z?). We denote by I'y the autocorrelation of f, i.e.
Ty = [+ f where for any x € Z?, f(x) = f(—x) and define the associated random field to a square-integrable
function f as the stationary Gaussian random field U such that for any x € (2

E[Ux)]=0 and T'(x) =Tf(x).

In Figure 4, we compare the patch spaces of natural images and the ones of their associated random fields.
Since the associated Gaussian random fields lose all global structures, most of the spatial information is dis-
carded. This situation can be observed in the patch space. In the natural images, patches containing the same
highly spatial information (such as a white diagonal) are close for the L? norm. In Gaussian random field since
this highly spatial information is lost, close patches for the L? norm are not necessarily perceptually close.

3. ASYMPTOTIC RESULTS

In this section we aim at giving explicit asymptotic expressions for the probability distribution functions of
the auto-similarity and the template similarity in both discrete and continuous settings. Using general versions
of the law of large numbers and central limit theorems we will derive Gaussian asymptotic approximations.

Additional assumptions are required in the case of template matching since we use an exemplar input image v
to compute 7S;(U,v,t,w). Let v € R®, where § is R? or Z2. We denote by (v, the sequence of the restriction
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FI1GURE 3. Patch similarity in Gaussian random fields. In this figure we show two examples
of Gaussian random fields in the discrete periodic case. On the left of the first row we show
a Gaussian spot f and a realization of the Gaussian random field U = f = W, where the
convolution is periodic and W is a Gaussian white noise. The associated random field is smooth
and isotropic. The random field U = f = W associated with a rectangular plateau f is no longer
smooth nor isotropic. Images are displayed on the right of their respective spot. For each setting
(Gaussian spot or rectangular spot) we present 12 patches of size 15 x 15. In each case the top-
left patch is the top-left patch in the presented realization of the random field, shown in green.
Following from the top to the bottom and from the left to the right are the closest patches in
the patch space for the L? norm. We discard patches which are spatially too close (if w; and
wy are two patch domains we impose supy  [x — ¥l = 10).

of v to wy, extended to Z? (or R?) by zero-padding, i.e. vg(x) = 0 for X ¢ wy. We suppose that limy_, ;o |wi| =
+00, where |wg| is the Lebesgue measure, respectively the cardinality, of wy, if 2 = R2, respectively = Z2.
Note that the following assumptions are well-defined for both continuous and discrete settings.

Assumption 3.1 (A3.1). The function v is bounded on .
The following assumption ensures the existence of spatial moments of any order for the function v.

Assumption 3.2 (A3.2). For any m,n € N, there exist 8,, € R\{0} and v, ,, € R® such that

(a) limg—ioo |cuk|1/2 (|w;€|_1 ka vim(x)dx — ﬂm) =0

(b) for any K < Q compact, limg_, 4o Supye g lwi] ™t § 2m

V" (y) oM (x + y)dy — Ymn(x)] = 0.

YEWEK



634 V. DE BORTOLI ET AL.

F1GURE 4. Natural images and Gaussian random fields. In this experiment we present the same
image, f, which was used in Figure 1 and the associated Gaussian random field U = f = W,
where the convolution is periodic and W is a Gaussian white noise. As in Figure 3 we present
under each image the top-left patch (of size 15 x 15 and shown in green in the original images)
and its 11 closest matches for the ¢ similarity. We discard patches which are spatially too
close (if wy and wy are two patch domains we impose sup, y [x — y|lx = 10). Note that if a
structure is clearly identified in the real image (black and white diagonals) and is retrieved in
every patch, it is not as clear in the Gaussian random field.

Note that in the case where Q is discrete, the uniform convergence on compact sets introduced in (b) is
equivalent to the pointwise convergence.

Assumption 3.3 (A3.3). There exists v € R? with for any K < Q compact, limy,_, 4 o SUpye g |wi| ™! SyEwk v (y)
uk(x +y)dy — (%) = 0.

3.1. Discrete case

In the discrete case, we consider a random field U over Z? and compute local similarity measurements. The
asymptotic approximation is obtained when the patch size grows to infinity. In Theorems 3.4 and 3.6 we obtain
Gaussian asymptotic probability distribution in the auto-similarity case and in the template similarity case. In
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Propositions 3.5 and 3.7 we give explicit mean and variance for the Gaussian approximations. We recall that

N (p, 02) is the probability distribution of a Gaussian real random variable with mean y and variance o2.

Theorem 3.4 (Discrete case — asymptotic auto-similarity results). Let (mg)ken, (nk)ken be two positive increas-
ing integer sequences and (wg)ren be the sequence of subsets defined for any k € N by, wy, = [0, my] x [0,n]. Let
fe RZQ f # 0 with finite support W a Gaussian white noise over Z? and U = f+ W. Fori = {p, (p,p), sc, cos}
with p € (0, +00) there exist p;, 02, real valued functions on Z2, and (v k)ren a positive sequence such that for
any t € Z*\ {0} we get

1. limysy o0 5 AS (U, t wk) = ,u,(t)

2. limg o |wk|2 (mASi(U,t,wk) - m(t)) — N (0,03(t)).

1,7

The asymptotics derived in Theorem 3.4 can be extended to vectors of autosimilarities, i.e.
selecting (t;)jeq1..vy @ finite number of shifts the results of Theorem 3.4 hold for the sequence
((AS;(U,tj,wk))jeq1...ny)ken- Note that in Theorem 3.4 if t varies with & such that for any k € N, (wy, + tx) N
wi = & then similar results can be obtained with the usual law of large numbers and central limit theorem
since true independence hold.

Proof. The proof is divided into three parts. First we show 1 and 2 for ¢ = p, p and extends the result to ¢ = p.
Then we show 1 and 2 for i = sc. Finally, we show 1 and 2 for ¢ = cos.

1. Let p € (0,+00), t € Z*\ {0} and define V, ¢ for any x € Z? by, V, ¢(x) = |U(x) — U(x + t)|P. We remark
that for any k£ € N we have

ASpp U,t,CLJk Z ‘/pt

XEWL

We first notice that U is R-independent with R > 0, see Lemma B.5. Since for any x € Z?2, Vp.t(x) depends
only on U(x) and U(x + t) we have that V, ¢ is Ry = R + [t|-independent. Since U is stationary, so is
Vpt- The random field V, ¢ admits moments of every order since it is the pth power of the absolute value
of a Gaussian random field. Thus V,, ¢ is a R¢-independent second-order stationary random field. We can
apply Lemma B.6 and we get

(a) limg— oo ‘TzlASpm(U,t,wk) = Hp p(t);
N(0,07,(t)).

(b) i o [ (1 ASyp (U b,wn) = pip(8)) = N (0,02,
with g, ,(t) = E[V,£(0)] and 0, ,(t)> = X, 7> Cov [V}, ¢(x), V}+(0)]. By continuity of the p-th root over
[0, +00) we get 1 for ¢ = p with
Qp,k = |Wk"1/p ) pp(t) = ,Up,p(t)l/p .
By Lemma B.7 we get that E[(U(0) — U(t))?] = 2(T's(0) — I'y(t)) > 0 thus p,,(t) = E[V,(0)] > 0.

Since the pth root is continuously differentiable on (0, oo) we can apply the Delta method, see [14], and
we get 2 for ¢ = p with

1 _
ap e = wi"? 1p(t) = pp,p(6)77 ap(t)” = ﬁ"pw(t)zﬂp,p(t)z/p g (3.1)
2. We now prove the theorem for i = sc. Let t € Z*\ {0} and define Vit for any x € Z?, Vi.4(x) =
—U(x)U(x + t). We remark that for any k € N we have

A8 (U, t,wy) = Z Ve (x

XEWE
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Since for any x € Z2, V. ¢(x) depends only on U(x) and U(x + t), we have that Vi, is Ry = R + [[t]oo-
independent. Since U is stationary, so is V. ¢. The random field V. admits moments of every order since
it is a product of Gaussian random fields. Thus V. is a R¢-independent second-order stationary random
field. We can again apply Lemma B.6 and we get

() limys oo 7 ASe(U, b, wr) = prac(t);

(b) i o ol (e ASelU; 61) = p1se(t)) = N (0,02(8))

with f15c(t) = E [Viet(0)] and og.(t)% = D xezz Cov [Vie £(%), Vie,t(0)], which concludes the proof.
3. Finally, we consider the case i = cos. Let t € Z*\ {0} and define Vo ¢ for any x € Z2,

-Ux)U(x +t)
‘/cos,t(x) = U<X)2 . (32)
U(x + t)?

We remark that for any k € N we have

'ASSCOS (U,t,Wk) =h <Wk|_1 Z V::os,t(x)> 5 (33)

XEWEK

with h(z,y,z) = xy’1/2z’1/2. Since U is stationary, so is Viog¢. The random field Vo5 admits moments
of every order since it is a vector of products of Gaussian random fields. Thus Ve ¢ is a R¢-independent
second-order stationary random field. We can apply Lemma B.6 and there exist ficos(t) and Ceos(t) such
that

(a> hmk»+oo %chos,t = ﬁcos(t);
lwr| a.s.
(b) hmka+oo |wk‘% (|T1k“/cos,t - ﬂcos(t)) ? N (07 écos(t)> .
We conclude the proof using the multivariate Delta method, [14].

O

In the following proposition we give explicit values for the constants involved in the law of large numbers
and the central limit theorem derived in Theorem 3.4. We introduce the following quantities for k,¢ € N and
J €0,k A €], where k A £ = min(k, £),

20)! 2k\ [ 2/ .
= (6'72)5 Tjke = Qh—jQo—j (2]’) <2j> (25)!. (3.4)

’
We also denote 1 ¢ = 7;¢,¢. Note that for all e N, rq, = qf and >’ Tj¢ = g20. We also introduce the following
3=0

qe

functions:
Af(t,x)=2Ff(x)71“f(x+t)fl“f(xft), Af(t,x)=Ff(x)2+1“f(x+t)1“f(xft). (35)

Note that Ay is a second-order statistic on the Gaussian field U = f * W with W a Gaussian white noise over
Z2, whereas Ay is a fourth-order statistic on the same random field.

Proposition 3.5 (Explicit constants — Auto-similarity). In Theorem 3.4 we have the following constants for
any t € Z*\ {0}.
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(1) If i = p with p = 2¢ and £ € N, then for all k € N, we get that o, = |wi|Y 30 and

120 " g/ ¢ [Af (8, )25\ ¥
N(t>_q Af(t,0) and  oy(t 2€QZ JZ< tO)) Ay (t,0),

where (7 jk)i.j.ken and (qk)ken are given in (3.4).
(i1) If i = sc, then for all k € N, we get that aser = |wi| and

pae(t) =Tp(t) and ou.(t)* = > As(t,x).

x€Z?

(#3) if i = cos, then for all k € N, we get that qcos; = 1 and

po®) = T (0/75(0) and (0 = D0 {1113 (14 2208 ) = 4 pGT ) 41 0 s 20

Proof. The proof is postponed to Appendix D. O

For example we have

M2<t) = Af(t7 0)1/2 ) ,U4(t) = 31/4Af (t70)1/2
2 L[As(t,)]3 2 IAf(t,-)]3 \fl\A (t, )l (3.6)
2(t) =3 Afc(t,O) ;o oi(t) =2v3 A;(t,O) 6 A;(t,o) '

We now derive similar asymptotic properties in the template similarity case.

Theorem 3.6 (Discrete case — asymptotic template similarity results). Let (mg)gen, (nk)ren be two positive
increasing integer sequences and (wy)ken e the sequence of subsets defined for any k € N, wy, = [0, mg] x [0, ng].
Let f e RZQ, f # 0 with finite support, W a Gaussian white noise over Z2, U = f + W and let v, a real valued
function on Z2. Fori = {p, (p,p), sc,cos} withp =2¢ and £ € N, if i = p or (p,p) assume (AS3.1) and (AS3. 2) if
i = sc assume (A3.1) and (A3. 5’) and if i = cos assume (A3.1), (A3.2) and (A3.3). Then there exist p;,o? € R
and (o k)ken @ positive sequence such that for any t € 72 we get

1. limg 4 o0 ﬁTsi(U,U,t,Wk) = s
2. limg_, 4o |wk|% (ﬁTSi(U, vt wi) — ui(t)> = N (0,01»2) )

Note that contrarily to Theorem 3.4 we could not obtain such a result for all p € (0, +o0) but only for even
integers. Indeed, in the general case the convergence of the sequence (|wg| 'E[TS) (U, v,t,wr)]), » which
is needed in order to apply Theorem B.3, is not trivial. Assuming that v is bounded it is easy to show that
(Jwp| 'E [TSpp(U, v, t, wk)])keN is also bounded and we can deduce the existence of a convergent subsequence.
In the general case, for Theorem 3.6 to hold with any p € (0, +00), we must verify that for any t € {2, there exist
fipp(t) > 0 and o2 (t) = 0 such that

() Timpsor [l (B TS (U, v, t)] = ppp(8)) = 0
(b) limg_ 1o \lel Var [TSpm(U,v,t,wk)] = afw(t).
We now turn to the proof of Theorem 3.6.

Proof. As for the proof of Theorem 3.4, the proof is divided into three parts. First we show 1 and 2 for i = (p, p)
and extends the result to ¢ = p. Then we show 1 and 2 for ¢ = sc. Finally, we show 1 and 2 for ¢ = cos.
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1. Let p € (0,+00), t € Z? and define V), ; the random field on Z? for any x € Z?, by V, +(x) = |[v(x) —U(x +t)|P.
We remark that for any k € N we have

TSpp(U,v, t,wi) = Z Vp.t ().

XEWE

By Lemma B.5, U is R-independent with R > 0. Since for any x € Z?* we have that V), ;(x) depends only on U (x +
t) we also have that V), ¢ is R-independent. We define the random field V5 for any x € Z2, V5 (x) = (supg |[v] +
U(x +t))P. We have that V5 (x) + E [foot(ﬂ)] uniformly almost surely dominates V), +(x) — E[V,¢(x)]. The
random field V)¢ admits moments of every order since it is the pth power of the absolute value of a Gaussian
random field and is stationary because U is. Thus V,, ¢ is a R¢-independent random field and V), ¢ (x) — E [V}, +(x)]
is uniformly stochastically dominated by V5 (x) + E[V,5(0)], a second-order stationary random field. Using
(A3.2) and Lemma B.8, we can apply Theorem B.3 and B.4 and we get
(a) limy—s o0 ﬁTSp,p(Ua v, t7wk) ai. :u‘PaP(t);

. 1
(b) T soo o ? (TS0, 6.0k) = 1)) = N (0,02,,(¢)).
Note that since U is stationary we have for any t € Z2, 1, , = f1p,»(0) = pp(t) and o7 , = 07 (0) = 02 (t).
By continuity of the pth root over [0, 4+00) we get 1 for i = p with

Qp ke = |Wk‘1/p ) Hp = /‘117{5-

By Lemma B.8, we have that p, , > 0. Since the pth root is continuously differentiable on (0, +o0) we can apply
the Delta method and we get 2 for i = p with

apr = |weV?, =it o2 =02 uP 7 p? (3.7)

2. We now prove the theorem for i = sc. Let t € Z2 and define Vse,t the random field on 7?2 such that for any
x € 22, Vier(x) = —v(x)U(x + t). We remark that for any k € N we have

T‘Ssc(U7vat7wk) = Z Vsc,t(x)~

XEWE

It is clear that for any k € N, TS, (U,v,t,w;) is a R-independent Gaussian random variable with
E[TSs(U,v,t,w)] =0 and

Var [TSe(Usv,t,wn)] = D) E[Veea(X)Viex @] = D, v(x)o(y)ls(x—y) = Y Tr(x)vn # ox(x) .

X, YEWE X, YEWEk X€E€Z2

where we recall that vy is the restriction of v to wy. The last sum is finite since Supp (f) finite implies that
Supp (I'y) is finite. Using (A3.3) we obtain that for any k € N,

Y EVied () —psc) =0, lim Jr ™0 Y Cov[Viea(), Vieuly)] = 02, (38)

XEWE X, YEWK

with p15c = 0 and 02, = ;> I'y(x)7y(x), where 7 is given in (A3.3). Since V. is a R-independent second-order
random field using (3.8) we can apply Theorems B.3 and B.4 to conclude.
3. We now consider the case i = cos. First, notice that

|4/Jk|_17'SSC(U7 v, t, wi)
(0] Y, 2)2) 7 (Jo0k] 7 S, U%)2)

TSCOS(U7U7tawk> = (39)

1/2°
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Using that limg, 4o [wi| 7' TSee(U, v, t,wx) = 0, limp o [wi| 7! e, U(x)? = Ty(0) by Lemma B.6 and
Mg oo |wWil ™ Ygew, V(X)? = v1 # 0 by (A3.2), we get that

Hm T Seos(U,v,t,wy) = 0.
k—+0o0

In addition, using Slutsky’s theorem and the fact that limy_, o |wg| /2T Sse (U, v, t,wi) = N(0,02,) we obtain
that limy 4 o k| "V2T Seos (U, v, t,w) = N(0,02,,) with

2 <77Ff>

O—COS *
v1I'f(0)

O

Proposition 3.7 (Explicit constants — template similarity). In Theorem 3.6 we have the following constants
for any t € Z2.

1) If i = p with p = 20 and ¢ € N, then we get that o, = |wk %, and
s

¢ 1o 1/2¢
Pp = (Z (Qj) qf—ij(O)jﬂj) ry(0)"2,

=0
¢ C—int—j ¢ 1/6-2
20\ (20 s 2 » r4(0)
2 _ L (i+j+2m) /72m .. ) ) A
U_<Z<2) (3) &y T T O T ’W) (Z (3 J-srs0%5 ) COER

where (B;)jen, (Vi,;)ijen are gven in (A3.2) and (75 ji )i jken and (qx)ren are given in (3.4).
(i1) If i = sc then for all k € N, we get that ascr = |wi| and

tse =0, U?c = <77Ff>'
(#3) If i = Scos then for all k e N, we get that o, =1 and

Ty
=0, o2 = 0bn
/’L cos cos U]Ff(o)

Proof. The proof is postponed to Appendix D. O

For example we have

p2 = (20(0) + A1)V, pa = (8T(0)* +120(0)° By + B2)*

2 1 ||FfH§ -1 -1
09 = il—w (0) (2+Ff(0) 61) )
) f (3.10)
o3 = o (28804(0) 1 |T¢[3 + 14414 (0) " 2(T'F, 70,1) + 24T (0) 2| T4 |5 + T£(0) ¢T3, 7))

X (3 + 12Ff(0)7151 + Ff(0)72ﬂ2)_3/2'

Note that the limit mean and standard deviation do not depend on the offset anymore. Indeed, template
similarity functions are stationary in t. If v has finite support then (A3.2) holds with 8; = 0 and 7, ; = 0 as
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soon as ¢ # 0 or j # 0. Remarking that By = 1 and vp,0 = 1 we obtain that

1/4-2 ¢
_VROR o2 2 qe/ \Fszg 0
Ip = 4y 1(0)7%, o, QZM f( )-

3.2. Continuous case

We now turn to the continuous setting. Theorem 3.8, respectively Theorem 3.10, is the continuous counterpart
of Theorem 3.4, respectively Theorem 3.6.

Theorem 3.8 (Continuous case — asymptotic auto-similarity results). Let (mg)ken, (nk)ken be two positive
increasing integer sequences and (wg)ren be the sequence of subsets defined for any k € N by, wy = [0,my] x
[0,n%]. Let U be a zero-mean Gaussian random field over R? with covariance function T'. Assume (A2.2) and
that T' has finite support. For i € {p, (p,p), sc,cos} with p € (0, +0) there exist p;, o2, real valued functions on
R2, and (ai_k)keN a positive sequence such that for any t € RQ\ {0} we get

1. hmk—>+2XJ o AS (Uatawk) - Nz( ) )
2. limy4o0 |wk|2 (mASi(U,t,wk) —ui(t)) — N (0,03(t).

Proof. The proof is the same as the one of Theorem 3.4 replacing Lemmas B.6 and B.7 by Lemma C.3 and
Lemma C.4. O

Proposition 3.9 (Explicit constants — Continuous auto-similarity). Constants given in Proposition 3.5 apply
to Theorem 3.8 provided that 'y is replaced by ' in (3.5).

Proof. The proof is the same as the one of Proposition 3.5. O

Theorem 3.10 (Continuous case — asymptotic template similarity results). Let (myg)gen, (nk)ren be two positive
increasing integer sequences and (wg)reny be the sequence of subsets defined for any k € N by, wy = [0,mg] x
[0,n%]. Let U be a zero-mean Gaussian random field over R? with covariance function T'. Assume (A2.2) and
that T has finite support. For i € {p, (p,p), sc,cos} with p € (0,400), if i = p or (p,p) assume (A3.1) and (A5.2),
ifi = sc assume (A3.1) and (A3.3) and if i = cos assume (A3.1), (A3.2) and (A3.3). Then there exist j;, 07 € R
and (o ) ken @ posz’tz’ve sequence such that for any t € R? we get

1. limg 4 o0 ow —T8;(U, v,t,wk) = i
2. limp_s o0 |wi|2 (mTSi(U, v,t,wk) - ui(t)> = N(0,02).
Proof. The proof is the same as the one of Theorem 3.6. O

Proposition 3.11 (Explicit constants — Continuous auto-similarity). Constants given in Proposition 3.7 apply
to Theorem 3.10 provided that 'y is replaced by ' in (3.5).

Proof. The proof is similar to the one of Proposition 3.7. O

3.3. Speed of convergence

In the discrete setting, Theorem 3.4 justifies the use of a Gaussian approximation to compute AS; (U, t,w).
However this asymptotic behavior strongly relies on the increasing size of the patch domains. We define the patch
size to be |w]|, the cardinality of w, and the spot size |Supp (f) | to be the cardinality of the support of the spot
f. The quantity of interest is the ratio r = %. If » » 1 then the Gaussian random field associated to f can
be well approximated by a Gaussian white noise from the patch perspective. If r &~ 1 this approximation is not
valid and the Gaussian approximation is no longer accurate, see Figure 5. We say that an offset t is detected in

a Gaussian random field if AS;(U, t,w) < a(t) for some threshold a(t). In the experiments presented in Figure 6
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FIGURE 5. Gaussian moment matching. In this experiment, 10* samples of 128 x 128 Gaussian
images are computed with a spot of size 5 x 5 (the spot is the indicator of this square).
Scalar product auto-similarities and squared L? auto-similarities are computed for a fixed offset
(70,100). We then plot the normalized histogram of these values. The red curve corresponds to
the standard Gaussian A/(0,1). On the top row 7 = 100 » 1 and the Gaussian approximation
is valid. On the bottom row r ~ 1 and the Gaussian approximation is not valid.

and Table 1 the threshold is given by the asymptotic Gaussian inverse cumulative distribution function evaluated
at some quantile. The parameters of the Gaussian random variable are given by Proposition 3.5. We find that
except for small spot sizes and large patches, i.e. r » 1, the approximation is not valid. More precisely, let
U = f+ W with f a finitely supported function over Z? and W a Gaussian white noise over Z2. Let w < Z? and
let Qg be a finite subset of Z2. We compute ZtEQO 1 4s,(U.t,w)<a(t), With a(t) defined by the inverse cumulative
distribution function of quantile 10/|Q| for the Gaussian N (u, %) where p, 0% are given by Theorem 3.4 and
Proposition 3.5. Note that a(t) would satisfy P[AS;(U,t,w) < a(t)] ~ 10/|Q| if the approximation for the
cumulative distribution function was correct. In other words, if the Gaussian asymptotic was always valid, we
would have a number of detections equal to 10 independently of r. This is clearly not the case in Table 1.
One way to interpret this is by looking at the left tail of the approximated distribution for sz o and ss. on
Figure 5. For s, the histogram is above the estimated curve, see (a) in Figure 6 for example. Whereas for s o
the histogram is under the estimated curve. Thus for ss;. we expect to obtain more detections than what is
predicted whereas we will observe the opposite behavior for s 2. This situation is also illustrated for similarities
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D
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FIGURE 6. Theoretical and empirical cumulative distribution Function. This experiment illus-
trates the non-Gaussianity in Figure 5. In both cases, the red curve is the inverse cumulative
distribution function of the standard Gaussian and the blue curve is the empirical inverse cumu-
lative distribution function of normalized auto-similarity functions computed with 10* samples
of Gaussian models. We present auto-similarity results obtained for t = (70, 100) and similarity
function ss. (on the left) and so (on the right). We note that for rare events, see the magnified
region, the theoretical inverse cumulative distribution function is above the empirical inverse
cumulative distribution function. The opposite behavior is observed for similarity so. These
observations are in accordance with the findings of Table 1.

TABLE 1. Asymptotic properties. Number of detections with different patch domains from
5 x 5 to 70 x 70 and spot domains from 1 x 1 to 25 x 25 for the so o (left table) or ss. (right
table) auto-similarity function. We only consider patch domains larger than spot domains. We
generate 5000 Gaussian random field images of size 256 x 256 for each setting (with spot the
indicator of the spot domain). We set v = 10/2562. For each setting we compute a(t) the inverse
cumulative distribution function of N'(11;(t), 0?(t)) evaluated at quantile o, with y; and o2 given
by Proposition 3.5. For each pair of patch size and spot size we compute D . 14s, (u,t,w)<a(t)>
namely the number of detections, for all the 5000 random fields samples. The empirical averages
are displayed in the table. If AS;(u,t,w) had Gaussian distribution with parameters given by
Proposition 3.5 then the number in each cell would be Y, P[AS;(U, t,w) < a(t)] ~ 10.

[ [ 5 [i0[15[2]4 7] [ [ 5 [ 10 ] 15 ] 2 [ 40 [ 70 |
T [[03]14]32]46]74]90 T || 18.1 | 11.6 | 10.9 | 10.4 [ 10.1 | 10.0
2 [[03]04]12]22]58]85 2 [[34.2 [ 165 | 12.8 | 11.5 | 10.4 | 9.9
5 [[0.3 0404051341 5 |[939 | 49.3 | 30.8 | 20.9 | 13.2 | 11.5
10 0405050414 10 86.7 | 57.6 | 46.0 | 19.7 | 14.5
15 05| 05| 05|05 B 83.9 | 63.8 | 30.0 | 18.2
20 05| 05 | 05 20 79.5 | 36.7 | 24.7
25 05 [ 05 25 51.5 | 26.6

s and s, in Figure 6 in which we compare the asymptotic cumulative distribution function with the empirical
one.

In the next section we address this problem by studying non-asymptotic cases for the s o auto-similarity
function in both continuous and discrete settings.
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4. A NON-ASYMPTOTIC CASE: INTERNAL EUCLIDEAN MATCHING

4.1. Discrete periodic case

In this section € is a finite rectangular domain in Z2. We fix w < €. We also define f a function over Q. We
consider the Gaussian random field U = f = W (we consider the periodic convolution) with W a Gaussian white
noise over ().

In the previous section, we derived asymptotic properties for similarity functions. However, a necessary
condition for the asymptotic Gaussian approximation to be valid is for the spot size to be very small when
compared to the patch size. This condition is not often met and non-asymptotic techniques must be developed.
For instance it should be noted that the distribution of the s, template similarity, 7Ss.(U, v, t,w), is Gaussian
for every w. We might also derive a non-asymptotic expression for the template similarity in the cosine case if the
Gaussian model is a white noise model. In what follows we restrict ourselves to the auto-similarity framework
and consider the square of the L? norm auto-similarity function, i.e. AS22(U,t,w). In this case we present an
efficient method to compute the cumulative distribution function of the auto-similarity function even in the
non-asymptotic case.

Proposition 4.1 (Squared L? auto-similarity function exact probability distribution function). Let Q =
(Z/MZ)? with M e N, wc Q, feR? and U = f+ W where W is a Gaussian white noise over Q. The
following equality holds for any t € Q up to a change of the underlying probability space

Jw|—1
ASQ’Q(thvw) = Z )‘k(taw)Zk , (4.1)
.8 =

with Zy, independent chi-square random variables with parameter 1 and \i(t,w) the eigenvalues of the covari-
ance matriz Cy associated with function Ay(t,-), see equation (3.5), restricted to w, i.e. for any X1,X2 € w,
Ct(Xl,Xz) = Af(t,xl — Xz).

Proof. Let t € Q2 and V; be given for any x € Q by V;(x) = U(x) — U(x + t). It is a Gaussian vector with mean
0 and covariance matrix Cy given for any x;,x2 € 2 by

CV(X:[,X2) = QFf(Xl — Xg) — Ff(xl — Xo — t) 7Ff(X1 — Xo + t) = Af(t,xl — Xg).

The covariance of the random field P, (V%), the restriction of Vi to w, is given by the restriction of Cy to w. This
new covariance matrix, Ct, is symmetric and the spectral theorem ensures that there exists an orthonormal
basis B such that Ct is diagonal when expressed in B. Thus we obtain that P, (Vy) = X, cs(Pu(V4), exer. It
is clear that, for any k € [0, |w| — 1], (P,(V%), ex) is a Gaussian random variable with mean 0 and variance
eFCrer, = Mi(t,w) = 0. We set K = {k € [0, |w| — 1], A(t,w) # 0} and define X a random vector in Rl such
that

Xp = (b, w) V2P,(Ve),ex), if ke K,  and Xg_ =Y,

where X _ is the restriction of X to the indices of K_ = [0, |w| — IJ\K and Y is a standard Gaussian ran-

dom vector on RI*-I independent from the sigma field generated by {(X}),k € K}. By construction we have
E[Xy X/ =0iffe Kand ke K_,or € K_ and k € K_. Suppose now that k, £ € K. We obtain that

E[X,X¢] = /\k(taw)fl/QAe_l/z(tvw)E ek Cree] = 0.
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(a)

FIGURE 7. Eigenvalues approximation. We consider a Gaussian random field generated with
f =W with W a Gaussian white noise and f is a fixed sample of an independent Gaussian
white noise over ). We consider patches of size 10 x 10 and study the approximation of the
eigenvalues for the covariance matrix of the random field restricted to a domain of size 10 x 10,
similarly to Proposition 4.1. (A) shows the Normalized Root-Mean Square Deviation between
the eigenvalues computed with standard routines and the ones given by the approximation
for each offset, see (4.2). Offset zero is at the center of the image. (B) and (C) illustrate the
properties of Proposition 4.2. Blue circles correspond to the 100 eigenvalues computed with
MATLAB routine for offset (5,5) in (B), respectively (10, 20) in (C), and red crosses correspond
to the 100 approximated eigenvalues for the same offsets. Note that a standard routine takes
273s for 10 x 10 patches on 256 x 256 images whereas it only takes 1.11s when approximating
the eigenvalues using the discrete Fourier transform.
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Thus X is a standard Gaussian random vector and we have P, (V;) = |,:J=|al )\,lc/ ?(t,w)Xyex, where the equality
holds almost surely. We get that
o] —1
AS25(Ust,w) = [Pu(Ve)l3 = D (Pu(Ve)yen)® = Y Awlt,w) X3
ex€B k=0
Setting Z = X} concludes the proof. O

Note that if w = € then we obtain that the covariance matrix Cy is block-circulant with circulant blocks and
the eigenvalues are given by the discrete Fourier transform.

In order to compute the true cumulative distribution function of the auto-similarity square L? norm we need
to: (1) compute the eigenvalues of a covariance matrix in My, (R); (2) compute the cumulative distribution
function of a positive-weighted sum of independent chi-square random variable with weights given by the
computed eigenvalues. Storing all covariance matrices for each offset t is not feasible. For instance considering
a patch of size 10 x 10 and an image of size 512 x 512 we have approximately 2.6 x 10° coefficients to store,
i.e. 10.5GB in float precision. In the rest of the section we suppose that t and w are fixed and we denote by
C' the covariance matrix associated to the restriction of Af(t,-) to w + (—w). In Proposition 4.2 we propose a
method to approximate the eigenvalues of Cy by using its specific structure. Indeed, as a covariance matrix, Ct
is symmetric and positive and, since its associated Gaussian random field is stationary, it is block-Toeplitz with
Toeplitz blocks, i.e. is block-diagonally constant and each block has constant diagonals. In the one-dimensional
case these properties translate into symmetry, positivity and Toeplitz properties of the covariance matrix.
Proposition 4.2 is stated in the one-dimensional case for the sake of simplicity but two-dimensional analogous
can be derived. Note that this approximation is not always sharp as shown in Figure 7.
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We recall that the Frobenius norm of a matrix of size n x n is the L? norm of the associated vector of

size n2.

Proposition 4.2 (Eigenvalues approximation). Let b be a function defined over [—(n — 1),n — 1] with n €
N\ {0}. We define Ty,(j,¢) = b(j — ) for j,£ € [0,n — 1]. The matriz Ty is a circulant matriz if and only if b is
n-periodic. Ty is symmetric if and only if b is symmetric. Let b be symmetric, defining II(T}) the projection of
Ty onto the set of symmetric circulant matrixz for the Frobenius product, we obtain that

1. the projection satisfies I(T,) = T, with c(j) = (1 — %) b(j) + %b(n —4) for all j € [0,n—1] and c is
extended by n-periodicity to Z;

2. the eigenvalues of II(T}) are given by (2 Re(d(j)) — b(O)) with d(j) = (1 — %) b(j), and d is the

jelo,n—1]
discrete Fourier transform over [0,n — 1]; }

3. let (/\j)je[[l,n]] be the sorted eigenvalues 0f~Tb and (A\j)jeq1,n] the sorted eigenvalues of II(Ty) (in the same
order). For any j € [1,n], we have |A\; — X\;| < |Tp — IL(Tp) || pe;

4. if Ty is positive-definitive then II(T}y) is positive-definite.

Proof. (1) Let T, be an element of the symmetric circulant matrices set. Minimizing |7, — T¢|g, in ¢(4) jefo,n—1]
we get that c¢(j) satisfies for any j € [0,n — 1]

c(j) = argmin (2(n = j)(s = b(j))* + 2j(s — b(n — j))?) .

which gives the result.

(2) Since T, = II(T}) is circulant, its eigenvalues are given by the discrete Fourier transform of ¢. We have
that if i # 0 then c(i) = d(j) + d(—j) with d(j) = (1—2)b(j) and d its extension to Z by n-periodicity. We
also have ¢(0) = b(0). We conclude the proof by taking the discrete Fourier transform of c.

(3) The proof of the Lipschitz property on the sorted eigenvalues of symmetric matrices with respect to the
L? matricial norm can be found in [13]. We conclude using the fact that the L? matricial norm is upper-bounded
by the Frobenius norm.

(4) This result is a special case of the spectrum contraction property of the projection proved in Theorem 2
of [11]. O

In Figure 7 we display the behavior of the projection for the eigenvalues in the two-dimensional case. The
measure we consider is the Normalized Root Mean Square Deviation

wl=1 _ 1/2
(34 2 P(t,) - Ak<t,w>|2)

NRMSD = -
max (Ak(taw))ke[[o,\w|—1]] — min ()‘k(t’w))ke[[oylwl—lll

, (4.2)

with S\k(t,w) the approximation of the eigenvalues, for every possible offset in the image and Ag(t,w) the true
eigenvalues, for every possible offset. Computing the eigenvalues of the projection is done via Fast Fourier
Transform (FFT) which is faster than standard routines for computing eigenvalues of Toeplitz matrices. The
major cons of using such an approximation is that it may not be valid for small offsets t € {2 as shown in
Figure 7. However, in most cases the random field is smooth and in this case, see Figure 8, the approximation is
satisfactory. We also highlight that for similarity detection purposes, see Figure 9, the level of precision achieved
by our approximation is satisfactory, see [7].

Suppose the approximation of the eigenvalues is valid, we need an efficient algorithm to compute the distribu-
tion of the associated positive-weighted sum of chi-square random variables in equation (4.1). Exact computation
has been derived by Imhof in [31] but requires to compute heavy integrals. This exact method, named Imhof
method in the following, will be used as a baseline for other algorithms. Numerous methods such as differential
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FiGURE 8. Eigenvalues approximation. Same study as the one conducted in Figure 7 with
J = 1j123)2. Note that in this case the approximation is better than the one presented in

Figure 7.
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FIGURE 9. Similarity detection. In this figure we illustrate the accuracy of the different pro-
posed approximations of the cumulative distribution function of AS32(U, t,w). We say that an
offset t is detected in an image if AS22(u,t,w) < a(t) for some threshold a(t) € R. In every
image, in green we display the patch domain w (in the center of the image) and in red we
display the shifted patch domain for detected offsets with function a(t) such that for any t € Q,
P[AS22(U, t,w) < a(t)] = 1/2562, where U is given by the Gaussian random field f * W where
f is the original image of fabric and W is a Gaussian white noise over ) = 256 x 256. Approxi-
mations of the cumulative distribution function of ASs 2(U, t,w) lead to approximations of a(t).
The most precise approximation is given in (A) where the eigenvalues are computed using a
MATLAB routine and the cumulative distribution function is given by the Imhof method. In (B)
we approximate the eigenvalues using the projection described in Proposition 4.2 and still use
the Imhof method. It yields twice as many detections. In (C) Wood F method is used instead of
Imhof’s yielding less detections but performing seven times faster. Interestingly errors seem to
compensate and the obtained result with Wood F method is very close to the results obtained
with the baseline algorithm in (A). In (D) HBE method is used instead of Imhof’s, in this case
we obtain too many detections, i.e. the approximation of the cumulative distribution function
is not valid.

100

equations [19], series truncation [38], negative binomial mixtures [46] approaches were later introduced but all
require stopping criteria such as truncation criteria which can be hard to set. We focus on cumulant methods
which generalize and refine the Gaussian approximations used in Section 3. These methods rely on computing
moments of the original distribution and then fitting a known probability distribution function to the objective
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distribution using these moments. Bodenham et al. in [6] show that the following methods can be efficiently
computed:

— Gaussian approximation (discarded due to its poor results for small patches as illustrated in Sect. 3);
— Hall-Buckley-Eagleson [10, 29] (HBE), (three moments fitted Gamma distribution);
— Wood F [56] (three moments fitted Fischer-Snedecor distribution).

Other methods such as the Lindsay-Pilla-Basak-4 method, which relies on the computation of eight moments,
are slower than HBE by a factor 350 at least, see [6], and are thus discarded. In Figure 9 we investigate the
trade-off between computational speed and accuracy of these methods for the task of detection.

The experiments conducted in Figure 9 show that the HBE approximation does not give good results when
evaluating the probability of rare events. This was already noticed by Bodenham et al. in [6] who stated that
“Hall-Buckley—Eagleson method is recommended for most practitioners [...]. However, [...], for very small
probability values, either the Wood F or the Lindsay—Pilla-Basak method should be used”.

4.2. Continuous periodic case

To conclude we show that a similar non-asymptotic study can be conducted in continuous settings.

Proposition 4.3 (Squared L? continuous auto-similarity function exact probability distribution function). Let
Q=T2% wc Q and let U be a zero-mean Gaussian random field on Q with covariance function I'. Assume
(A2.2), then the following equality holds for any t € Q up to a change of the underlying probability space

ASQ,Q(U,t,w) = ZAk(t,w)Zk.,
“% keN

with Zy, independent chi-square random variables with parameter 1 and A\, (t,w) the eigenvalues of the kernel Cy
associated with function A(t,-) = 2I'(t) —T(- + t) —T'(- — t) restricted to w, i.e. for any X1,X2 € w, Cy(X1,X2) =
A(t, X1 — Xz).

Proof. We consider the stationary Gaussian random field P, (Vi) over w defined by the restriction to w
where for any x € Q by V;(x) = U(x) — U(x + t). The Karhunen-Loeve theorem [28] ensures the existence
of (Ag(t,w))ken € Rﬁ, (X&)ren a sequence of independent normal Gaussian random variables and (ey),oy a
sequence of orthonormal function over L?(w) such that

n 2

Z twek )Xk

lim supE =0, (4.3)

n—+0 xew

2
We define the sequence (I,)nen = (Sw ( r—o )\k(t,w)ek(x)Xk) dx),en. We have, using the Cauchy-Schwarz
inequality on L?(A x w) and (4.3)

E[|AS22(U,t,w) — L,|]] <E J P,(Vi)*(x) — (an \/)\k(t,w)ek(x)Xk> dx

1/2

Z (b, w)er(x) X )2dx
k=0

— i V Ak (b, w)e(x 1 dx (4.4)
k=0

<E

L W)= 3 Ve () X0)? ]

k=0

[./482 Q(U,t,w J
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where we used the Fubini theorem in the last inequality. Using the dominated convergence theorem in (4.4)
with integral domination given by sup,,cy SUpPyxe,, E [(Pw (Vo) (%) — Yp_o /e (b, w)er(x) X, k)2] we conclude that
(In,),,eny converges to AS2 (U, t,w) in L'(A). Thus there exists a subsequence of (1), which converges
almost surely to AS22(U,t,w). We also have I, = §_ (ZZ=O \/Wek(x)Xk)zdx = >_o Me(w, k) XE by

orthonormality and thus the sequence (I,,),, .y is almost surely non-decreasing. We get that (I,),,. converges
almost surely to AS22(U, t,w) which can be rewritten as

AS2 (U, t,w) = Z Me(t,w)X?  almost surely.
keZ

The characterization of (Ax(t,w), er(x)) is given by the Karhunen-Loeve theorem and ej(x) is solution of the
following Fredholm equation for all x € w

f At x — y)erly) dy = M(t, w)ex ()

Setting Z = X? concludes the proof. O

Note that if w = T? then the solution of the Fredholm equation is given by the Fourier series of T'.

APPENDIX A. MULTIDIMENSIONAL CENTRAL LIMIT THEOREMS

In this section we provide an extension of ([35], Thm. 2) to the multidimensional case.

We recall the notion of dependency graph as introduced in [35]. Let (X;);en be R%-valued random variables.
A graph is a dependency graph for (X;);en if the two following conditions are satisfied.

1. There is a one-to-one correspondence between (X;);eny and the vertices of the graph.

2. If two sets of vertices are not connected then the corresponding random variables are independent.

Theorem A.1. Let (X ;)i jjen2 be a sequence of Re-valued random variables and (N,)neny € NY. For any
n e N, assume that there exists A, M, = 0 such that for any j € N, | X,, ;|| < A,, and that the dependency graph
of (Xn,j)jen is of degree M, at most. For anyn € N let S,, = Z;\;"l X,,; and Cp, = Cov [S,,]. Assume that there
exists mg € N and C € My(R) such that for anyn € N, lim,_, ;o (N /M,)"/™0 M, A,, = 0 andlim,_, o, C,, = C.
Then, S, — E[S,] converges (in the weak sense) towards N(0,C).

Proof. Let a € R? and consider (X35)(i.j)enz such that for any 4, j € N, Xi, = (X; j,a). We also introduce for

anyne N, §¢ = Z;-V:“l zy, ;. Assume that a'Ca = 0. Then, using the Bienaymé -Tchebychev inequality, we have
for any € > 0

lim P[|S¢ —E[S?]| >¢] < lim e 2a'Cpa=0. (A.1)

n—+00 n—-+wm

Hence, {a, S, — E[S,]) converges (in the weak sense) towards {a, Z) with Z a d-dimensional Gaussian random
variable with zero mean and covariance matrix C. If a' C,a # 0 then using [35] we have that {(a, S, — E[S,])
converges (in the weak sense) towards {a, Z). We conclude using the Cramér-Wold theorem, [15], Theorem 1. O

Similarly to ([35], Thm. 2), we can replace the condition |X, ;|| < A, by the following condition: for any
aeR? with a # 0

“Lyx, ;1> Anfal] = 0. (A.2)

n—+00

Ny,
lim M, Y E[]| Xl
j=1
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Indeed, this implies that for any a € RY, lim,_ 1o M, Z;V:THE[<aaXn,j>2]l|<a7xn,j>\>An] = 0, which is the
Lindeberg type condition identified in ([35], Thm. 2).

APPENDIX B. ASYMPTOTIC THEOREMS — DISCRETE CASE

We start by introducing two notions which will be crucial in order to derive a law of large numbers and a
central limit theorem in broad settings. The R-independence, see Definition B.1, ensures long-range independence
whereas stochastic domination will replace integrability conditions in the standard law of large numbers or
central limit theorem.

The notion of R-independence generalizes to R? and Z? the associated one-dimensional concept, see [5] and
its extension to N? [44, 53].

Definition B.1 (R-independence). Let d € N, Q = R? or = Z? and V be a d-dimensional random field over
0. Let K1, Ko < Q be two compact sets, and Vg, be the restriction of V to K, i € {1,2}. We say that V is
R-independent, with R > 0, if V| g, is independent from V|, as soon as do, (K7, K3) = Kmin X« Ix —¥|w > R.
X€ML, yEL2
Note that in the case of Q = Z?2, compacts sets K; and K, are finite sets of indices. This notion of R-
independence will replace the traditional assumption of independence in asymptotic theorems.

Definition B.2 (Uniform domination). Let Q = R? or Q = Z? and let V, V be real random fields over Q. We
say that:

(a) V uniformly stochastically dominates V' if for any o > 0 and x € Q, P[V(x) = o] <P [‘N/(x) > a] ;

(b) V uniformly almost surely dominates V if for any x € Q, V(x) < V(x) almost surely.

Note that if V uniformly almost surely dominates V' then 1% uniformly stochastically dominates V.
The following theorem is a two-dimensional law of large numbers with weak dependence assumptions. It is a
slight modification of Corollary 4.1 (ii) in [53].

Theorem B.3. Let d € N. Let (mg)ken, (ng)ken be two positive increasing integer sequences and (wg)ren be the
sequence of subsets such that for any k € N, wp = [0, my] x [0,nx]. Let V be a d-dimensional R-independent
random field over Z2, with R > 0, such that |V (x) — E[V(x)]|| is uniformly stochastically dominated by V, a
real second-order stationary random field over Z2. Then V is a second-order random field. In addition, assume
that there exists p € R? such that limg_, o [wp| ™! D] E[V(x)] = . Then it holds that

XEWE
li -1 V(x) = B.1
kir-&l-loo |w}€‘ xgk (X) a.s H ( )

Proof. Without loss of generality we can suppose that d = 1 and that for any x € Z2, E[V(x)] = 0. In order to
apply Corollary 4.1 (ii) in [53] we must check that:

(a) V is R—independent;

(b) |V] is uniformly stochastically dominated by a random field V and there exists r € [1, 2[ such that for any

xeZ* E [‘N/’"(x) 10g+(1~/(x))] is finite.

Ttem (a) is given in the statement of Theorem B.3 and |V| is uniformly stochastically dominated by the random
field Vy defined for any x € Z2 by Vy(x) = V(0). Since E [‘7(0)2] is finite so is E [‘7(0) 1og+(‘~/(0))] which
implies (b). Then it holds that
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Using that limy_, 1o |wi| ™t Y, E[U(x)] = p, we conclude the proof. O

XEWE

We now turn to an extension of the central limit theorem to two-dimensional random fields with weak
dependence assumptions. This result is a consequence of Theorem A.1.

Theorem B.4. Under the hypotheses of Theorem B.3 and assuming that there exist p € R? and C € My(R)
such that

(@) im0 fwie| 72 X, (E[V](x) —p) =0
(b) limy, 4 oo [wp| ™ Zx’yewk Cov[V(x),V(y)] =C.

Then it holds that

Jim 72 (Vi) - ) = N(0,C), (B.2)

Proof. For any i,j € N, let X; ; = (V(x;) — E[V(x;)])|wi| /2 with (x;) en such that for any k € N, {V(x;), j €
[1,|wk]]} = {V(x),x € wg}. For any n € N, let N,, = |wy|. Then, we have that for any n € N, Zjvz"l Xnj =
|| /2 Dixew, V(%) —E[V(x)]). Since V' is R-independent each vertex of the dependency graph of (X; ;); jen:
has its degree bounded by (2R 4 1)? and therefore for any n € N, M,, = (2R +1). For any n € N, let A, = |w,|*
with o € (1/3,1/2). Using that V uniformly stochastically dominates (|V(x) — E[V(x)] |)xezz we obtain that
for any a € R?

N’Vl
D E[IXn Py Az jag 2] = lwnl ™ D5 E[IV() = E[VE) Py oy coi2> 42 al-2lwn ]
Jj=1 XEWn
= |wn| ™! Z J P[|V(x) = E[V(x)]]? > max(A2 || %|w,],t)] dt
Xe(—d

<l 3 [P (760 > mastaZlol el 0] o
<E [V(0>1‘7(0>>Aiuau*2w] :

Hence, since lim,, 4 o0 A2 |wy| = lim, o |wn|' 2% = 400 we get that

Nn
Jim SR [X0 1% 0x, 125 a2 ja)—2] = 0. (B.3)
=1
Letting mg = 3 we get that
lim (N,,/M,)Y™ M, A, = (2R + 1)20F13) |y, |1/3-« — 0, (B.4)

n——+0o0

In addition, we have that for any n € N

Nn
C,, = Cov lz Xn,j] = |wn| 7! Cov Z V()| = |wn| ™! Z Cov [V (x),V(y)]- (B.5)
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Hence, combining (B.3), (B.4), (B.5), (b) and Theorem A.1, we get that

. —1/2 _ _
i, ™7 3 (Vi) VG £ N(O.C) (B.6)
Combining (B.6) and (a) concludes the proof. O

The following lemma explicits a class of Gaussian random fields over Z? such that the R-independence
property holds for some R = 0.

Lemma B.5. Let f € RZ” with finite support Supp (f) < [—r,7]?, where r € N. Let W be a Gaussian white
noise over Z? and V = f « W then V is a R-independent second-order random field with R = 2r.

Proof. V is a Gaussian random field such that for any x,y € Z?2

EVx)]=0, Cov[V(x).V(y)]= ) [flx=x)f(y-y)Cov[W),WE)]=Tsx~-y). (B

x’,y’EZz

Note that since Supp (f) < [—r,7] we have Supp (I'y) = [—R, R] with R = 2r. For any x,y € Z* such that
[x — ¥lloo > R, using (B.7), we obtain

Cov [V(x), V(¥)] = Ts(x ~y) = 0. (B.8)

Let K1, Ko < Z? two finite sets with sup,cje, yer, [X — ¥[oo > R and consider Vg, the restriction of V' to K;
for i = {1,2}. Using (B.8), we get that for any x € K3, y € K5 we have

Cov [V|K1 (X)v V|K2 (Y)] = 0.
As a consequence, Cov [V|k,,V]|k,] =0 and V|g, and V|, are uncorrelated. Since V|g,,V|k, are Gaussian
random fields we get that V|k,, V|k, are R-independent. O
The following lemma gives specific conditions on random fields in order for Theorems B.3 and B.4 to hold.

Lemma B.6. Let d € N. Let (my)ren, (nk)ren be two positive increasing integer sequences and (wy)ren be the
sequence of subsets given for any k € N by, wp = [0,mg] x [0,nt]. Let V be a d-dimensional R-independent
second-order stationary random field over Z2, with R = 0. Then for all k € N

(0) o™ Senn EIV()] = E[V(0)] :
(5) s el Xy, Cov [V(X), V()] = ez Cov [V(x), V(0)].

In addition, equations (B.1) and (B.2) hold with p = E[V(0)] and C = 3,2 Cov [V (x),V(0)] which is finite.
Proof. Ttem (a) is immediate by stationarity. Concerning (b), for any k € N we have by stationarity

o 7H D) Cov[V(x), V()] = wnl™" Y, Cov[V(x—y),V(0)] = Y Cov[V(x),V(0)]gx(x),

X, YEWE X, YEWk x€Z2

where g, € RZ satisfies for any x € Z2, gp(x) = |wk| 'Ly, * fw, (x). For any k € N, x € Z2 we have
0 < gr(x) <1 and limy_, o gi(x) = 1. For any x € Z? such that x|, > R, Cov [V (x),V(0)] = 0 and then
D xezz | Cov [V(x),V(0)]| < 4+00. Using the dominated convergence theorem we get that

Jim ey Y, Cov[V(x),V(y)] = ), Cov[V(x),V(0)].

X,yEWk X€EZ?
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We obtain equations (B.1) and (B.2) by applying Theorems B.3 and B.4. O

Lemma B.7. Let f € RZ2, [ #0, a function with finite support. Then it holds for any t € Z*, T'¢(t) < T';(0),
with equality if and only if t = 0.

Proof. For any t € Z?%, let 7o f = f(- + t). By the definition of the autocorrelation I'y and using the Cauchy-
Schwarz inequality we get that for any t € Z?

Lp(t) = (ref, f) < |f3 <T4(0),

with equality if and only if f = a7 f, with a # 0 since f # 0. This implies that Supp (7¢(f)) = Supp (f). As a
consequence t = 0, which concludes the proof. O

The following lemma ensures that items (a) and (b) in Theorem B.4 are satisfied in the template similarity
case when imposing summability conditions over v.

Lemma B.8. Under the hypotheses of Theorem 8.4, assuming (AS3.2) with £ € N and p = 2¢. There exist
tpp >0 and opp = 0 such that for any t € Q

(0) timi o i (RELT S (U, v, t,01)] = tpp(8)) = 0
(b) limg_ 1o \wkl Var [TSp,p(Um,t,wk)] = a2 ().

p,p

Proof. (a) For any k € N we have that

E[TS, (U, v,t,wg)]

I
=
=
2
=
”
+
=

Il
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e
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S~—
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d
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e
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| S—

7=0 J XEWL
4 20 4 )

= ( ) > v(x)ng[ )2 J)] Z ( ) O 3 w(x)¥.
7=0 2‘] XEWE =0 XEWE

Let ppp = Z?:o @f)E [U(O)]Q(zfj) B; and using (a) of (A3.2) we get that

1
lim |w;€|2 (WE [TSpp(U,v,t,wg)] — ,up,p(t)> =0.

k—+o0

Now since i1, , = E[U(0)%] = E[U(0)?]° = T;(0) > 0 we have that s, > 0.
(b) For any k € N we have that

Var [TS, (U, v, t,wy)] = 2 Cov [(U(x) — v(x))?, (U(y) — v(y))%]

Il
M
I M*‘
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Let 0, , = Zf,j:o 29 @f) (Yi,j, Cov [U(-)24=9,U(0)2*=)]). Using (b) in (A3.2) we can conclude.

Note that this lemma is also valid in the continuous case.

APPENDIX C. ASYMPTOTIC THEOREMS — CONTINUOUS CASE

We now turn to the continuous setting. We start by stating the continuous counterparts of Theorems B.3
and B.4. The following theorem, given here for completeness, can be found with different assumptions (in the
one-dimensional case) in [42].

Theorem C.1. Let d € N. Let (mg)gen, (nk)ren be two positive increasing integer sequences and (wk)ken be
the sequence of subsets given for any k € N by, wy, = [0, mg] x [0,nx]. Let V be a d-dimensional R-independent
random field over R? | with R > 0, such that |V (x) — E[V(x)] | is uniformly stochastically dominated by V, a
stationary random field of order r > 2 over R?. Then V is a second-order random field. In addition, assume V
is sample path continuous and that there exists € R? given by limy_, 4o lwi| ™1 § E[V(x)]dx = p. Then it
holds that

XEWE

lim |wk|_1f V(x)dx = p. (C.1)
k—+o0 XEWH, a.s.

Proof. Without loss of generality we can suppose that d = 1 and that for any x € Q, E [V (x)] = 0. Let (0% )ken €
RN given for any k € N by

o} =E [(1(2 o V(x)dx)Q] , (C.2)

with € = [0,k]2. Since V is R-independent, for any x,y € € such that |x — y|| > R, we have C(x,y) = 0.
Hence for k large enough we obtain

| ] comaxay< | | jcbextylaydx < RBLOB| s [Cxxty)l (C3)
O Jou %€, Jlylo<R Qe xBoo (0,R)

Using that 1% uniformly stochastically dominates |V, the stationarity of 17, and the Cauchy-Schwarz inequality,
we obtain for any x,y € 2,

~ ~

Clex+y) = [E[VEV(x+y)]| <E [‘72(x)]1/2 E|72(x+ y)]l/2 <E[7%(0)]. (C.4)
Combining (C.2), (C.3) and (C.4) we get that for any ke N

o < Mk™2,

_ ~ 2
with M = |By (0, R)|E [V2 (0)] Thus the series Y., o7 converges and >, (k’Q So, V(x)dx) is finite almost
surely. This proves that limy_, ;o k2 SQk V(x)dx = 0 almost surely. Using [16, p. 95] we get that

= 0.

a.s.

lim sup
k—+0 QpcwcQpia

|| Jw V(x)dx — k2 f V(x)dx

Qp
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Combining this result with limy, ;o0 k72§, V(x)dx = 0 implies that limy o w7 § ., V(x)dx = 0. O

XEWEK a.s

The following theorem is an application of ([33], Thm. 1.7.1).

Theorem C.2. Under the hypotheses of Theorem C.1 and assuming that there exist € R? and C € Mg(R)
such that

(0) i 2, (BIV] (0 — ) dx = 0
(b) limy_, o0 lwi| ™t § Cov [V (x),V(y)]dxdy = C.

Then it holds that

X, YEWLK

—+00

lim [w| 2 J (V(x) — ) dx = N(0,0) (C.5)

Proof. Let a € R?. We consider the d-dimensional random field & over R? defined for any x € R? by £(x) =
V(x) — E[V(x)]. We define also the weight functions (g, )nen given for any n € N by g,(x) = |wn| " ?1xes, -
For any n e N, let S,, = SRQ gn(x)€(x)dx. We have for any n € N,

&z@Jﬂﬂ‘<wm—EW@mw.

XEWn,

Let £ be the one-dimensional random field over R? such that for any xA € R?, £%(x) = (a,£(x)) and (S%)nen
be the sequence of real-valued random variables such that for any n € N, S¢ = {(a, S, ). Then for any n € N,
S = (g2 gn(x)€*(x)dx. Using (b) we have that

n——+0o0 n——+0o0

lim E[(52)%] = lim |w,|™" J a’ Cov[V(x),V(y)]la=a'Ca. (C.6)

By assumption, £ is stochastically dominated by HaH‘N/ and therefore for any x € R? we have
E[|€*"] < 4o0. (C.7)

Combining (C.6), (C.7), the fact that V is R-independent ([33], Thm. 1.7.1) and (a) we obtain that

Jim <a, |22 Lm (V(%) - 1) dx> = N (0,07 Ca) (C.8)

k—+00

We conclude the proof upon using the Cramér-Wold theorem ([15], Thm. 1).

The following lemmas are the continuous versions of Lemma B.6 and B.7.

Lemma C.3. Let d € N. Let (mg)ken, (nk)ken be two positive increasing integer sequences and (wg)ren be the
sequence of subsets such that for any k € N, wy = [0, mg] x [0,n%]. Let V be a d-dimensional, R-independent
random field of order r > 2 over R?, with R > 0. Assume that V is sample path continuous, then for all k € N

(a) |wil ™! §yep, EIV(x)]dx = E[V(0)] ;
(b) limy_, o |wi| ™t Sx,yewk Cov [V (x), V(y)]dxdy = §__z. Cov [V (x),V(0)] dx.

In addition, (C.1) and (C.5) hold with = E[V(0)] and C = §__;, Cov [V (x),V(0)] dx.
Proof. (a) The proof is immediate since for any x € R?, E[V(x)] = E[V(0)].
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(b) For any k € N we have by stationarity

|owr|~* J ] Cov [V(x), V(y)] dxdy = |wi| ™! J Cov [V(x—y),V(0)] dxdy.

X, YEWE

By the Fubini-Lebesgue theorem we obtain that for any k € N,

ol Cov V. Vldxdy = [ Cov[V (0, VO)]gix)ix

where g, € L®(R?) satisfies for any x € R?, gx(x) = |wi| 11y, * 1, (x). For any k € N, x € R? we have 0 <
gr(x) < 1 and limy_, 10 g (x) = 1. For any x € R? such that |x[, > R¢, Cov[V(x),V(0)] = 0 and then

J | Cov [V(x), V(0)] |dx < +50.
xeR2
Using the dominated convergence theorem we get that

|wk|_1f Cov [V (x), V(y)] dxdy :f | Cov V). V(0)]dx.

Since V is R-independent we conclude the proof by applying Theorem C.1 and C.2.
O

Lemma C.4. Let T be a function over R%, T' # 0, such that for any x,y € R?, C(x,y) = I'(x — y) with C the
covariance function of V. a second-order random field over R%. Assume that T' has finite support. Then it holds
for any t € R%, T'(t) < ['(0), with equality if and only if t = 0.

Proof. Upon replacing for any x € R?, V(x) by V(x) — E[V(x)] we suppose that E[V(x)] = 0. Using the
Cauchy-Schwarz inequality and the stationarity of V' we get for any t € R? and x € R?

1/2 1/2

L) =E[Vx+t)Vx)]<E[V(x+t)’] "E[V(x)’]"" <E[V(x)*] <T(0).

with equality if and only if V(x + t) = a(x)V(x) with a(x) € R. Since V is stationary and V # 0 we get that
for any x,t € R?, E [V(x + t)?] = E[V(x)?] > 0. Thus a(x)? = 1 and for all n € N, V(nt) = £V(0). If t # 0
then there exists n € N such that nt ¢ Supp (I') and then we have

0=T(nt) =E[V(nt)V(0)] = +E[V(0%)] #0,

which is absurd. Thus the equality in the inequality holds if and only if t = 0. O

APPENDIX D. EXPLICIT CONSTANTS

In order to derive precise constants in Theorems 3.4 and 3.6 we use the following lemma which is a consequence
of the Isserlis formula [32].
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Lemma D.1. Let U and V be two zero-mean, real-valued Gaussian random variable and k,¢ € N. We have

kat . . )
E[U*V] = Y r B[V T EVA VEUV]Y  and  Cov[U%, V]
§=0
knt i v )
= > B[V EVE] T E[UV]Y

j=1

with rj i ¢ defined by (3.4).

Proof. Let k,¢ € N. Using Isserlis formula [32] we obtain that E [U%Vﬂ] is the sum over all the partitions in
pairs of {U,...,U,V,..., V} of the product of the expectations given by a pair partition. Given a pair partition
—_—— ——

2k times 2/ times

we identify three different cases, {U,U}, {V,V} and {U,V}. We only need to count the number of times each
case appears in the sum. We denote the number of {U, U} couples in a given pair partition p by ny,u(p). In the
same fashion we define ny v (p) and ny,y (p). We have 2k = 2ny y(p) + nu,v(p) which proves that ny, v (p) is
even. We denote by &?; the number of pair partitions p such that ny v (p) = 24, with j € [0,k A £].

The cardinality of &?; is given by r; x ¢. Indeed, in order to select 2;j pair {U, V'} we select 2j elements among
2k (selection of replicates of U), same for V' which gives @I;) @f) possibilities. Considering all the bijections

between these elements we construct all the possible 2j pairs {U, V'}. Given 2j pairs {U, V'} we must construct
k — j pairs {U,U} and £ — j pairs {V,V'} in order to obtain a pair partition of &7;. The number of pairs partition
of a set with ¢ — j elements is given g,—;. As a consequence we obtain for all j € [0,k A {]

2k\ (20 .
1251 = e (1) (B ) @)t = e

Summing over j € [0,k A £] we obtain all the possible pair partition and we get

knt ) . )
E[U*V?] = N B[V B[V T E[UV]Y. (D.1)
§j=0

Using that 7o = q,%, respectively rg, = qf and E [U%] = qE [UQ]k, respectively E [V%] = @E [VQ]Z, we
obtain that the first term in the right-hand side sum of (D.1) is equal to E [U%] E [V%]. Hence by removing
this term we obtain the covariance and conclude the proof. O

Proof of Proposition 3.5. The proof is divided into three parts. First we consider the case ¢ = p then the case
i = sc and finally the case i = cos.

1. Let i = p with p = 2¢ and £ € N, t € Z?\ {0} and V; the Gaussian random field given for any x € Z? by
Vi (x) = U(x) — U(x + t). Note that for all x € Z? we have V;(x)% = V,,¢(x). For any x,y € Z? we have

EVi(x)] =0,  Cov[W(x),Vi(y)] =20 (x —y) =Ts(x =y = t) = Ts(x =y +t) = As(t,x —y), (D.2)
with Ay given by (3.5). We show in proof of Theorem 3.4, see equation (3.1), that for any t € Z*\ {0}

() =E[V20)]7 o6 = Y Cov [V (x), V2(0)] E[V2(0)]

x€Z2

Y200y, (D.3)

Combining (D.2), (D.3) and Lemma D.1 we get that
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(2) up(t) = ap) PO Af(t,0)1/2;
(b) O'p(t)Q = Zx622 (2521 Tj,ZAf(ta O)Q(f*J)Af(t’ X)Q]) q;/e_2Af(t, 0)1722/(25)2'

o/ § ENICOI AN
Exchanging the sums in (b) we get o, (t)% = Gor LT (W) Af(t,0).
j=1 ’

2. Let i = sc, t € Z?\ {0} and Vst be a Gaussian random field given for any x € Z?2, by Vi(x) = U(x)U(x + t).
For any x,y € Z? we have

E[Vies()] =Ts(t),  Cov[Veeo(x), Veex(v)] = T(x —y) =Tr(x =y = )T p(x —y +t) = As(t,x —y),
(D.4)
with A given by (3.5). We show in the proof of Theorem 3.4, see (3.1), that for any t € Z2\ {0}
frse(t) = E[Vic,t(0)] USC(t)Q = 2 Cov [Vse,t(x), Vse,t(0)]. (D.5)
x€Z?

Combining (D.4) and (D.5) we get that
(a) ;Ufsc(t) = Ff(t) )

(b) USC(t)Q = erZ2 Ap(t,x),
which concludes the proof in the case i = sc.
3. We now consider the case i = cos. Recall that in the proof of Theorem 3.4 we show that

ASSCOS(U,t,Wk) =h <|Wk1 Z V;:os,t(x)> )

XEWE

where for any x € R, y,z2 >0

“Ux)U(x+t)
h(ZL’,y, Z) = xy71/2z’1/2 ’ ‘/cos,t(x) = U(X>2
U(x+t)2
Applying Lemma B.6 there exist ficos(t) and Cloos (t) such that
(a) limk4,+00 ‘lel‘/cos,t a=5 ﬁcos(t) ;
. 1 - ~
(b) hmk4>+oo ‘Wk:| 2 (‘leﬂ/cos,t - Mcos(t)) ? N (0; Ccos<t)) )
with
i Ly(t)
/u/cos(t) = Ff(O) )
I's(0)
, . - - (D.6)
) IT#l1% + Ty # Dp(28) 20p = Tp(t) 20p = Dp(t)
Ceos(t) = 20+ Ly (t) 2|T¢ | 2|7
20y = D(t) 2|Ty|? 2|0y
In addition, for any z € R, y,z > 0
y=1/2,-1/2
Vh(w,y,2) = | —(1/2)zy3/2: 112

—(1/2)ay 22
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Combining this result, (D.6) and the multivariate Delta method we get that

feos(t) = h(L'¢(t),T£(0),I'(0)) = I'¢(t)/T'¢(0) ,
HFfH2 + Ff * f‘f(2t) 2Ff * f‘f(t) 2Ff * f‘f(ii)

0cos(t)” = VR(T'f(t),T£(0),I4(0))" 2y« T4(t) 2T 2|02 | VA(T(t),T1(0),T(0))
o0+ I'4(t) 2[T 4| 2T
- Ly(t) Ly(t)
—T(0) 2,2 (14 2=1 Dyl +T,#1 (2t
5@ il (1420485 ) — a8 o £y 4y e
which concludes the proof. O

Proof of Proposition 3.7. The proof is divided in two parts. First we treat the case i = p then the case i = sc
and ¢ = cos.
Let p = 2¢ with ¢ € N. Lemma B.8 gives us that

4

Lipp = Ze: (Z)E[U(O)]wy‘) Bj and op,= Y. @f)( )<%,J7Cov[ ()2(e—i),U(0>2<e—j)]>,

7=0 i,7=0

Using Lemma D.1 we obtain that

P (2 » So(20 20\ T om 2 i_2m
tpp = Lf(0) Z 2j q—;Ly(0)773; and oy, = Z 2i )\ 2j Z Tm,kl<7i,j>rf >Ff(0) .

=0 4,j=0 m=1

We conclude using (3.7).
For i = sc and i = cos, the result is given in the proof of Theorem 3.6.
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