
HAL Id: hal-01931471
https://hal.science/hal-01931471v1

Submitted on 20 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-Supervised Clustering With Multiresolution
Autoencoders

Dino Ienco, Ruggero G. Pensa

To cite this version:
Dino Ienco, Ruggero G. Pensa. Semi-Supervised Clustering With Multiresolution Autoencoders.
IJCNN: International Joint Conference on Neural Networks, Jul 2018, Rio de Janeiro, Brazil. pp.8,
�10.1109/IJCNN.2018.8489353�. �hal-01931471�

https://hal.science/hal-01931471v1
https://hal.archives-ouvertes.fr

Semi-Supervised Clustering with Multiresolution
Autoencoders

Dino Ienco
TETIS, IRSTEA, Univ. Montpellier

LIRMM
Montpellier, France
dino.ienco@irstea.fr

Ruggero G. Pensa
Department of Computer Science

University of Turin
Turin, Italy

ruggero.pensa@unito.it

Abstract—In most real world clustering scenarios, experts
generally dispose of limited background information, but such
knowledge is valuable and may guide the analysis process.
Semi-supervised clustering can be used to drive the algorithmic
process with prior knowledge and to enable the discovery of
clusters that meet the analyst’s expectations. Usually, in the
semi-supervised clustering setting, the background knowledge is
converted to some kind of constraint and, successively, metric
learning or constrained clustering are adopted to obtain the final
data partition. Conversely, we propose a new semi-supervised
clustering algorithm that directly exploits prior knowledge, under
the form of labeled examples, avoiding the necessity to derive
constraints. Our algorithm employs a multiresolution strategy to
generate an ensemble of semi-supervised autoencoders that fit
the data together with the background knowledge. Successively,
the network models are employed to supply a new embedding
representation on which clustering is performed. The proposed
strategy is evaluated on a set of real-world benchmarks also
in comparison with well-known state-of-the-art semi-supervised
clustering methods. The experimental results highlight the benefit
of directly leveraging the prior knowledge and show the quality
of the representation learnt by the multiresolution schema.

Index Terms—semi-supervised clustering, background knowl-
edge, autoencoders, ensemble

I. INTRODUCTION

Clustering is by far one of the most popular machine
learning techniques due to the wide range of unsupervised
application settings [14]. Although unsupervised problems are
very common, analysts/data scientists are often unsatisfied
of clustering algorithms, since their expectation is frequently
violated by the results. Indeed, some (limited) knowledge
about the data is likely to be owned by the expert who
may know the expected cluster structure of few samples
of interest. Semi-supervised clustering [13] addresses exactly
this problem: by driving the algorithmic process with prior
knowledge, it enables the discovery of clusters that meet the
analyist’s expectations.

Prior knowledge may come in form of known cluster
labels [27] or pairwise constraints [25], i.e., a set of must-
link and cannot-link constraints that state whether two data
examples should be in the same cluster or not. In the for-
mer setting, usually adopted in semi-supervised classification
scenarios, side information is kept in the form of labels. The
known labels are propagated to the unlabeled data samples

and the prediction is usually evaluated directly on the labels
[28], [30]. In the latter — more popular — scenario, semi-
supervised clustering is often referred to as constraint-based
or constrained clustering [4]. Most research works address
the problem of semi-supervised clustering inducing pairwise
constraints from the background knowledge. Such constraints
are successively exploited by either learning a distance met-
ric [9], [15], [16] or forcing constraints during the clustering
process [25], [26], although the most effective methods usually
combine both strategies [3], [5], [18]. However, it has been
shown that using labels is equivalent to converting them
into constraints [27]. In addition, labels are more expressive
than pairwise constraints (a set of pairwise constraints may
not correspond to a unique labeling). Thus, in this paper,
we propose a semi-supervised clustering method that directly
processes labels by skipping the unnecessary conversion step.

In particular, our contribution consists in a semi-supervised
clustering technique based on semi-supervised autoencoders.
Autoencoders are usually adopted to learn a low-dimensional
representation of the data via an encoding-decoding schema.
In addition, in a semi-supervised autoencoder, the bottleneck
layer is also trained to deal with the prediction task. Further-
more, inspired by image processing and remote sensing, we
leverages a multiresolution strategy to perform clustering by
training multiple autoencoders of different sizes. The intuition
behind this choice is that autoencoders at multiple resolutions
capture better the multifaceted diversity relationships among
attributes during the clustering process. We assess the effec-
tiveness of our framework by comparing its performances
to several competitors’ ones. In our experimental study, we
show that our algorithm outperforms state-of-the-art semi-
supervised clustering techniques, whether they are based on
pairwise constraints, on metric-learning or on both approaches.

The remainder of the paper is organized as follows: Sec-
tion II presents some closely related works; Section III in-
troduces the theoretical foundations of our framework; we
describe our semi-supervised clustering method in Section IV
and report the experimental results in Section V; finally,
Section VI concludes and provides some ideas for future
research directions.

II. RELATED WORK

Semi-supervised clustering is a fifteen years old albeit
still very active research field (see, e.g., [4] for a state-of-
the-art survey). It supports classification tasks when labeled
data are limited and/or expensive to collect. As such, it
has been mainly studied in the context of semi-supervised
learning where two alternative classes of methods have been
studied: metric-based methods, consisting in learning a metric
considering labeled data before applying standard clustering,
and constraint-based methods, which force pairwise (e.g.,
must-link and cannot-link) constraints satisfaction during the
clustering process. A solution is to use the knowledge provided
by the few available labeled instances within a clustering algo-
rithm. In [26], a simple adaptation of k-means which enforces
must-link and cannot-link constraints during the clustering
process is described. [2] proposes a constrained clustering
approach that leverages labeled data during the initialization
and clustering steps. An example of metric-based approach is
given in [16]. Instead, [5] integrates both constraint-based and
metric-based approaches in a k-means-like algorithm. In [3],
the authors propose a probabilistic model for semi-supervised
clustering, which also combines constraints and metric learn-
ing. [27] proposes to exploit labeled examples to generate
pairwise constraints via a label propagation process. The
derived constraints are successively integrated in a constrained
spectral clustering algorithm. Davis et al., instead, propose
an information-theoretic approach to learning a Mahalanobis
distance function [9]. They leverage a Bregman optimization
algorithm [1] to minimize the differential relative entropy
between two multivariate Gaussians under constraints on the
distance function. This approach has been recently extended
by Nogueira et al., who combine distance metric learning and
cluster-level constraints [18], while in [15] the authors propose
an integration of kernelization technique with Mahalanobis-
based distance metric learning.

In more recent works, Zhu et al. present a pairwise similar-
ity measure framework to perform a more effective constraint
diffusion and handle noisy constraints [29], whereas Ganji et
al. introduce a Lagrangian constrained clustering algorithm
that gives high priority to satisfying constraints [10]. Recent
research has also addressed scalability issues. For instance,
in [7], the authors present a fast constrained spectral clustering
approach based on a generalized eigenvalue problem in which
both matrices are graph Laplacians.

In our work, we address the semi-supervised clustering
problem using semi-supervised autoencoders. Autoencoders
[20] are frequently used in unsupervised learning and dimen-
sionality reduction but very few research works use them in
semi-supervised settings. In [19], the authors propose a model
trained to simultaneously minimize the sum of supervised and
unsupervised cost functions by backpropagation. Gogna and
Majumdar [11], instead, propose a stacked architecture that
acts as a standard unsupervised autoencoder for unlabeled data,
while learning a linear classifier for labeled data. Contrary
to these works, which are intended as a way to improve

classification when few labels are available, we specifically
focus on semi-supervised clustering by leveraging an adap-
tive learning strategy to train an ensemble of stacked semi-
supervised autoencoder architectures.

III. SEMI-SUPERVISED CLUSTERING WITH
AUTOENCODERS

In this section, we provide the theoretical foundations of
our semi-supervised clustering approach. Before presenting the
core part of our method, we introduce some notations and
preliminaries.

A. Semi-supervised clustering

In a typical semi-supervised learning scenario there are
two different sets of examples: a set Xu = {xi}Ni=1 of
N instances with no available class information, and a set
X l = {(xj , yj)}Mj=1 of M instances for which the class
information is available. In particular, each data instance
xj ∈ X l is associated to a class variable yj ∈ C, where
C the set of possible labels. The general assumption is that
|Xu| >> |X l| with the extreme (and more realistic) case
where only very few examples (e.g., one) per class exist.

The goal of semi-supervised clustering is to group together
data examples belonging to X = Xu ∪ X l in k clusters
exploiting as much as possible the knowledge provided by
the labeled set X l.

B. Autoencoders

Figure 1(a) visually summarizes the structure of a generic
autoencoder. An autoencoder is a particular kind of feed-
forward multi-layer neural networks that performs successive
linear (or non linear) transformations with the aim of re-
constructing the original data. An autoencoder is composed
of two parts: i) an encoder that compresses the original
data into a low-dimensional representation, and ii) a decoder
that reconstructs the original data from the low-dimensional
representation. The outputs of the smallest layer constitute
the low-dimensional representation of the original data. This
layer is usually named bottleneck layer (the central layer in
Figure 1(a)).

Formally, the autoencoder optimizes the following Loss
funciton:

Lae(Θ1,Θ2) =
1

|X|

|X|∑
i=1

||Xi −AE(Xi,Θ1,Θ2)||2 (1)

where ||·|| is the L2 norm, Θ1 and Θ2 are the parameters of the
encoder (resp. decoder) part of the autoencoder, and AE is the
function implemented by the autoencoder. The goal is to train
the model (AE(X,Θ1,Θ2)) with the aim of reconstructing
the input X as closely as possible.

In a typical autoencoder structure, the number of nodes in
the output layer is the same as in the input layer and the net-
work structure is layered and symmetric. In the encoder part,
the number of neurons in the internal layers decrease gradually.
Symmetrically, it increases in the decoder part. Therefore, the
only way to reconstruct the original data accurately is to learn

Θ1,Θ2 so that the encoding-decoding process achieves good
data compression and reconstruction abilities.

Bottleneck Layer

Encoder Decoder

Approximate Reconstruction

(a)

Bottleneck
Layer

Encoder Decoder

Prediction
R

econstruction

(b)

Fig. 1. Layered architecture of an autoencoder (a) and of a semi-supervised
autoencoder (b).

C. Semi-supervised autoencoders

A semi-supervised autoencoder (SSAE) [11], [19] is a
particular kind of neural network architecture that solves two
different tasks at the same time: i) a data reconstruction task
via a classic encoding-decoding schema and ii) a classification
task through the encoding part of the network. In this work, we
employ a semi-supervised autoencoder in which the bottleneck
layer of the autoencoder also deals with the prediction task.
Figure 1(b) visually presents our semi-supervised autoencoder.
In addition to the reconstruction task (Equation 1), a part of
the parameters is also optimized to address the classification
task. In particular, the loss function for the classification task
is the categorical cross-entropy between the labels and the
prediction of the SSAE:

Lcl(Θ1,Θ3) = − 1

|X|

|X|∑
j=1

|C|∑
c=1

yjc · log(ŷjc) (2)

where yj. is the one hot encoding of the class label for
the example j, ŷj. = SSAE(Xj ,Θ1,Θ3) is the probability
distribution of the SSAE prediction over the set of possible
labels, Θ1 are the parameters of the encoder (the same as in
Equation 1), and Θ3 are the parameters used to perform classi-
fication starting from the bottleneck layer of the autoencoder.

The overall loss function optimized by the semi-supervised
autoencoder is then:

LSSAE(Θ1,Θ2,Θ3) = Lae + λLcl (3)

where

Lae =
1

|X|

|X|∑
i=1

||Xi − SSAE(Xi,Θ1,Θ2)||2 (4)

Lcl = − 1

|X l|

|Xl|∑
j=1

|C|∑
c=1

yjc · log(ŷjc) (5)

In our architecture, the two loss functions involve two
sets of data: Lae is trained on the whole dataset X , while

Algorithm 1 Semi-supervised autoencoder optimization
Require: Xu, Xl, N EPOCHS, fl size, b size
Ensure: Θ1,Θ2,Θ3.
1: i = 0
2: X = Xu ∪ {x|(x, y) ∈ Xl}
3: initSSAE(fl size, b size)
4: while i < N EPOCHS do
5: Update Θ1 and Θ2 by descending the gradient:
6: ∇Θ1,Θ2

1
|X|

∑|X|
i=1 ||Xi − SSAE(Xi,Θ1,Θ2)||2

7: Update Θ1, Θ2 and Θ3 by descending the gradient:
8: ∇Θ1,Θ2,Θ3

1
|Xl|

∑|Xl|
j=1 ||Xj − SSAE(Xj ,Θ1,Θ2)||2 −

λ
(

1
|Xl|

∑|Xl|
j=1 yj · log(SSAE(Xj ,Θ1,Θ3))

)
9: i = i + 1

10: end while
11: return Θ1,Θ2,Θ3

Lcl is learnt by exploiting only the labeled subset Xl. This
supports the learning of low-dimensional representations that
well summarize the information carried by the original data
while taking into account the background knowledge supplied
by the few available labeled examples. In the following,
we provide the details of the procedure we employ for the
optimization of Equation 3.

D. Semi-Supervised autoencoder structure and optimization

The internal structure of our network uses Rectifier Linear
Units (ReLU [17]) as activation functions for all the encoder
and decoder layers with the exception of the last layer. In the
latter, in fact, we employ a sigmoid activation function. To
this purpose, all data attributes are normalized in the range
[0, 1] before feeding the network. As regards the classification
task, we link the bottleneck layer of the autoencoder to the
classification output by a linear activation function followed
by a softmax.

The optimization strategy we adopt is reported in Al-
gorithm 1. During each epoch, the algorithm performs the
minimization of the reconstruction loss involving Θ1 and Θ2

parameters on the whole dataset (line 5-6) and the minimiza-
tion of the reconstruction and classificaton loss involving Θ1,
Θ2 and Θ3 parameters for the subset of labeled instances (line
7-8). The optimization is realized via the use of mini-batches.

IV. THE MSAEClust MODEL

In this section, we present the details of our Multiresolu-
tion Semi-supervised AutoEncoder-based Clustering, namely
MSAEClust. It follows a multiresolution schema sketched
in Algorithm 2. The intuition behind MSAEClust is related
to the low-dimensional representation supplied by a generic
semi-supervised autoencoder. As we discussed before, a semi-
supervised autoencoder produces a low-dimensional embed-
ding of the original data addressing a reconstruction task (on
the whole dataset) and a classification task (on the set of
labeled examples) at the same time. Following the general idea
of ensemble learning [12] in which a committee is preferred
to one single model, we leverage an ensemble of semi-
supervised autoencoders with the aim of computing different
low-dimensional embeddings. However, directly combining a

Algorithm 2 MultiResolution Strategy
Require: Xu, Xl, ENS SIZE
Ensure: XnewR.
1: XnewR = ∅
2: n attrib = getNumAttributes(Xu)
3: i = 0
4: while i < ENS SIZE do
5: fl size = random(n attrib/2, n attrib)
6: b size = random(n attrib/4, n attrib/2)
7: SSAE = buildSSAE(Xc, Xl, f l size, b size)
8: current emb = extractEmbedding(SSAE,Xu, Xl)
9: XnewR = juxtapose(XnewR, current emb)

10: i+ +
11: end while
12: return XnewR

set of semi-supervised autoencoders with exactly the same net-
work structure will generate very similar low-dimensional rep-
resentations that would not be helpful to the semi-supervised
clustering task. This lack of diversity is unhelpful from the
point of view of variance reduction. To address this issue, in
our strategy we use several models at different resolutions to
enforce diversity among the different embeddings learnt by
our approach. Diversity is deemed to be a key property in the
conception of ensemble learning schema and it is crucial to
ameliorate the performances of ensemble methods [6]. Chang-
ing the size of the different hidden and bottleneck layers results
in different granularities of the new learnt representations.
The embeddings have different sizes highlighting different
coexisting properties of the original data: low-dimensional
embeddings capture coarse relationships among the data, while
higher-dimensional ones capture finer-grained interactions.

In order to enforce diversity in MSAEClust, we randomly
sample the size of the different layers in each of the semi-
supervised autoencoders composing the ensemble. For each
model, we have four layers. The last one has the same
dimensionality of the input layer and the penultimate layer
has the same dimensionality of the first (hidden) layer. This
means that, for each model we need to sample two values, one
for the size of the first/penultimate layer and one for the size
of the bottleneck layer. The random layer sampling proceeds
as follows. We assume that our input data has a dimensionality
equals to d and we force the size of the first (penultimate) layer
to be sampled uniformly in the interval [d/2, d). Similarly, the
size of the bottleneck layer is drawn uniformly in the interval
[d/4, d/2). In addition, if the value d/4 is lower than 3, the
size of the layer is set to 3. This is done to avoid an excessive
level of compression in the bottleneck layer so that the data
cannot be properly reconstructed. The intervals [d/2, d) and
[d/4, d/2) are fixed in this way because their aim is to define
the two biggest (and not overlapping) ranges from which the
hidden layer sizes can be sampled.

Once the set of semi-supervised autoencoders (at different
resolutions) is built, the algorithm proceeds by training such
models on the original data and, successively, by stacking
together all the different low-dimensional representations in
order to obtain the new data embedding (line 4-9 of Algo-
rithm 2). The final partition is obtained by applying k-means

on the stacked representation.
It is worth noting that our strategy is fundamentally different

from dropout [21] and other similar methods. Our ensemble
strategy is built on a completely independent (different) set
of neural networks and the results are successively combined.
The main objective of dropout, instead, is to mask the different
connections among neurons with the aim of avoiding co-
adaptation of the weights within the same network. The idea
behind our framework is to use an ensemble to increase
the diversity through several network structures that represent
the different granularities of the relationships existing in the
original data.

V. EXPERIMENTS

In this section we report the results of several experiments
we perform to assess the behavior and the performances of
our algorithm. First, we compare MSAEClust to other semi-
supervised clustering methods. Then, we perform an in-depth
analysis of MSAEClust’s results to assess its sensitivity w.r.t.
to the ensemble size. Finally, we investigate qualitatively the
new embedding generated by our algorithm through visual
inspection.

A. Competitors

For the comparative study, we consider the following com-
petitors: Information Theoretic metric learning (ITML), pair-
wise constrained k-means (PCKmeans), metric-pairwise con-
strained k-means (MPCKmeans), and seeded k-means (Seed-
edKmeans). ITML exploits information theory to learn a suit-
able metric space that meets the supervision supplied as side-
information on the distance function [9]. Since it only supplies
a new metric space, we use k-means to successively obtain
the data partition. PCKmeans leverages must-link and cannot-
link constraints to modify the internal objective function [3].
MPCKmeans combines metric-learning and constrained clus-
tering to exploit as much as possible the supplied supervi-
sion [5]. SeededKmeans uses labeled instances to initialize a
standard k-means clustering algorithm [2]. Finally, we also
include k-means in the comparative study, so as to have a
simple fully unsupervised baseline.

B. Datasets

To evaluate the comparative and in-depth analysis results,
the experiments are performed over six publicly available
datasets published in the UCI machine learning repository1.

TABLE I
MAIN CHARACTERISTICS OF THE DATASETS

Dataset # Instances # Features # Classes
Splice 3190 60 3
Landsat 4 435 36 6
Mushroom 8 124 22 2
Spambase 4 601 57 2
Letter 20 000 16 26
USPS 9 298 256 10

1http://archive.ics.uci.edu/ml/index.php

(a) Splice (b) Landsat (c) Mushroom

(d) Spambase (e) Letter (f) USPS

Fig. 2. NMI values of the comparative study (best viewed in color version, available in electronic format).

A summary of the information about the datasets is shown
in Table I, where, for each dataset, we report the number of
instances, the number of features, and the number of classes.
These datasets have been chosen because they exhibit a variety
of properties in terms of type of tasks/data, number of objects
and number of features.

C. Experimental settings

To measure the clustering performances of all the competi-
tors, including MSAEClust, we use the Normalized Mutual
Information (NMI) [22]. This measure takes its maximum
value when the clustering partition completely matches the
original one, i.e., the partition induced by the available class
labels. NMI may be considered as an indicator of the purity
of the clustering result.

We analyze the behavior of the different methods according
to increasing levels of supervision. More in detail, we vary
the number of labeled examples per class from 10 to 50, with
a step of 10. For ITML, MPCKmeans and PCKmeans, the la-
beled examples are used to generate the necessary constraints.
Due to the randomness of the sample selection process and the
non deterministic nature of the clustering algorithms, we repeat
the sample selection step 30 times for each number of per-class
labels and, successively, we repeat the clustering process 30
times. In practice, for each combination of dataset, method
and number of labeled samples, the statistics are computed on
900 runs: 30 random sample selections times 30 repetitions of
the clustering process. Finally, we report the average values
of NMI.

MSAEClust is implemented via the Keras python library2

with Theano3 as back end. For the comparison, we set the
ensemble size equal to 30. To train the model, we set the
learning rate to 5 × 10−4 with a decay factor of 5 × 10−5.
We use the RMSProp4 optimizer [23] to learn the parameters
of the models. The basic idea of this strategy is to divide the
gradient by a running average of its recent magnitude. For
all the datasets, the models are trained for 200 epochs with a
batch size equals to 16 (resp. 8) for the reconstruction (resp.
classification) task. Finally, we fix hyperparameter λ equal to
1. Experiments are carried out on a workstation equipped with
an Intel(R) Xeon(R) E5-2667 v4@3.20Ghz CPU, with 256Gb
of RAM and one TITAN X GPU. The implementation of our
approach is publicly available online 5.

D. Comparative study

Figure 2 reports the performances of the different ap-
proaches varying the level of labeled examples over the
benchmarks. At first glance, we can observe that MSAEClust
outperforms the competitors for all the different values of
labeled examples most of the time (5 datasets over 6). The
only dataset for which MSAEClust does not obtain the best
performances is Spambase). However, we observe that its
performances are in general close to those achieved by MPCK-
means (the leading algorithm for this dataset) and always

2https://github.com/fchollet/keras
3http://deeplearning.net/software/theano/
4http://climin.readthedocs.io/en/latest/
5https://github.com/tanodino/Semi Supervised Auto Encoder

(a) Splice (b) Landsat (c) Mushroom

(d) Spambase (e) Letter (f) USPS

Fig. 3. NMI values considering only the instances involved in the background knowledge (best viewed in color version, available in electronic format).

better than those obtained by the rest of competitors. Note
that, when the number of labeled instances is equal to 30,
the average NMI value of MSAEClust is very close to the
one obtained by MPCKmeans. Then, with 40 and 50 labeled
samples per class, the performances of our algorithm degrade
significantly (although it still outperforms the other meth-
ods). This is not that strange, indeed. Most semi-supervised
clustering algorithms are affected by fluctuating response to
constraints (see, for instance, MPCKmeans in Figure 2(b) and
PCKmeans in Figure 2(c)).

As second general remark, we observe that our approach is
the only one that always outperforms the fully unsupervised
baseline (the k-means algorithm). This result stresses the abil-
ity of MSAEClust to systematically leverage the background
information w.r.t. a fully unsupervised clustering process. We
point out that this is not the case for any of the other methods
considered in this study: ITML only outperforms the baseline
on Spambase data; PCKmeans fails to perform better than
baseline on Mushroom; MPCKmeans has issues regarding the
results on USPS; finally, SeededKmeans has the same behavior
of its fully unsupervised counterpart on three datasets over six
(Landsat, Mushroom and Letter).

To better understand how much each method complies with
the injected background knowledge, we compute the NMI
by only considering the labeled examples in an experiment
conducted similarly to the previous one. Logically, for this
analysis, we discard the k-means algorithm. The results are
reported in Figure 3. The behavior we obtain is coherent
with the results we have observed in the previous compar-

ison. Generally, the more the algorithm fits the background
knowledge, the more it achieves good performances on the
whole benchmark data. The only exception concerns dataset
Spambase. In this case, MSAEClust is the method that best
fits the background knowledge but, overall, the best perfor-
mances on the whole dataset are obtained by MPCKmeans
(Figure 2(d)). As explained before, this is not unusual in
constraint-based clustering, and it is even more noticeable by
observing Figure 3: higher quantities of background knowl-
edge do not guarantee better performances on the data. This
is not unexpected. In semi-supervised clustering, it is well-
known that the quality of the background knowledge is more
important than its quantity [8].

Fig. 4. Sensitivity of MSAEClust w.r.t. the ensemble size for all benchmark
datasets.

(a) ITML on Splice (b) ITML on Landsat

(c) MSAEClust on Splice (d) MSAEClust on Landsat

Fig. 5. Visual projection of the embeddings learnt by ITML and MSAEClust on Splice and Landsat data. (Best viewed in color version, available in electronic
format.)

E. Sensitivity analysis

To evaluate how the performances of MSAEClust change
according to the chosen number of semi-supervised autoen-
coders, we vary this parameter between 10 to 50 with a step
of 10. In this case, for each configuration (dataset, ensemble
size) we generate ten sets of embeddings and, for each of them,
we run k-means 30 times. The values reported in Figure 4
constitute the average of such runs.

We observe that the ensemble size has little or no influence
on the performances of MSAEClust. The only exception is
related to Spambase. However, variations of the ensemble size
only result in slight fluctuations of the NMI (from 0.32 with
10 as the ensemble size, to 0.36 for an ensemble size equal
to 30 or 40). This analysis allows us to conclude that the
ensemble size parameter does not influence the performance
of MSAEClust significantly, at least for the benchmark datasets
considered in our study. We also observe that setting the size
of the ensemble to a value between 30 and 40 help achieving
good performances for all the datasets.

F. Qualitative investigation of the embedded space

The aim of this analysis is to provide a qualitative eval-
uation of the embedding learnt by our approach. Figure 5
shows two-dimensional projections of the embeddings learnt
by MSAEClust and ITML on datasets Splice and Landsat
when the number of labeled examples per class is equal to
10. To obtain the two dimensional representations, we apply
principal component analysis (PCA) on the embeddings to
extract the first ten principal components and, successively, we
apply the t-distributed stochastic neighbor embedding (TSNE)
approach [24] to obtain the final bidimensional space used for
the visualization. PCA is applied because the representations
learnt by both methods are high-dimensional and TSNE fails
to manage such kind of data directly.

Figure 5(a) and 5(c) depict the visual results obtained by
processing Splice data as described beforehand. This dataset
involves instances belonging to three different classes. While
the two dimensional projection of ITML (Figure 5(a)) seems
not adequate to distinguish between the three different classes,

MSAEClust (Figure 5(a)) supplies an embedding that naturally
allows to distinguish the original classes by simply looking at
the resulting visual patterns. In Figure 5(b) and 5(d) we show
the embeddings produced by both approaches on Landsat
data. As in the previous case, we observe that the represen-
tation learnt by MSAEClust induces a better discrimination
compared to the one supplied by ITML. While, in this case,
the representation learnt by ITML (Figure 5(b)) allows to
visually distinguish some cluster structures, we still observe
very few coherent visual clusters; the majority of the visual
groups are heterogeneous and involve examples of different
classes. Conversely, the embeddings produced by MSAEClust
(Figure 5(d)), unless some small confusion regarding the
black triangle class, generally produce visual groups that seem
more coherent and exhibit more clear visual patterns. The
visual results we obtain are consistent with the performances
in terms of NMI reported in Section V-D: the higher the
visual separability induced by a method, the higher the values
of Normalized Mutual Information achieved by the semi-
supervised clustering method.

VI. CONCLUSIONS

In this work we have introduced MSAEClust, a semi-
supervised clustering algorithm that directly exploits labeled
examples to produce the final data partitioning. Our approach
leverages an ensemble of semi-supervised autoencoder to
produce a new representation space that is successively used
to perform clustering. The ensemble construction leverages
a multiresolution strategy that enables the injection of di-
versity in the set of network models generated. Extensive
experimentations in comparison with state-of-the-art semi-
supervised clustering algorithms have shown the benefit of
the framework proposed in this paper. As future work we will
study how to couple the embedding learnt by our framework
with constrained clustering algorithms in order to exploit the
background knowledge at both levels of the semi-supervised
clustering process.

VII. ACKNOWLEDGMENTS

The authors acknowledge the support of the National Re-
search Agency within the framework of the program ”In-
vestissements d’Avenir” for the GEOSUD project (ANR-10-
EQPX-20).

REFERENCES

[1] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering with
bregman divergences,” Journal of Machine Learning Research, vol. 6,
pp. 1705–1749, 2005.

[2] S. Basu, A. Banerjee, and R. J. Mooney, “Semi-supervised clustering
by seeding,” in Proceedings ICML 2002, Sydney, Australia, 2002, pp.
27–34.

[3] S. Basu, M. Bilenko, and R. J. Mooney, “A probabilistic framework
for semi-supervised clustering,” in Proceedings ACM SIGKDD 2004,
Seattle, USA, 2004, pp. 59–68.

[4] S. Basu, I. Davidson, and K. W. (Editors), Constrained Clustering:
Advances in Algorithms, Theory and Applications. Chapman &
Hall/CRC Press, Data Mining and Knowledge Discovery Series, 2008.

[5] M. Bilenko, S. Basu, and R. J. Mooney, “Integrating constraints and
metric learning in semi-supervised clustering.” in Proceedings ICML
2004, Banff, Canada, 2004, pp. 81–88.

[6] J. Chen, S. Sathe, C. C. Aggarwal, and D. S. Turaga, “Outlier detection
with autoencoder ensembles,” in SDM, 2017, pp. 90–98.

[7] M. Cucuringu, I. Koutis, S. Chawla, G. L. Miller, and R. Peng, “Simple
and scalable constrained clustering: a generalized spectral method,” in
Proceedings of AISTATS 2016, Cadiz, Spain, ser. JMLR Workshop and
Conference Proceedings, vol. 51. JMLR.org, 2016, pp. 445–454.

[8] I. Davidson and S. S. Ravi, “Identifying and generating easy sets of
constraints for clustering,” in AAAI, 2006, pp. 336–341.

[9] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic metric learning,” in ICML, 2007, pp. 209–216.

[10] M. Ganji, J. Bailey, and P. J. Stuckey, “Lagrangian constrained cluster-
ing,” in Proceedings of SIAM SDM 2016, Miami, Florida, USA. SIAM,
2016, pp. 288–296.

[11] A. Gogna and A. Majumdar, “Semi supervised autoencoder,” in ICONIP,
2016, pp. 82–89.

[12] F. Gullo, C. Domeniconi, and A. Tagarelli, “Metacluster-based projective
clustering ensembles,” Machine Learning, vol. 98, no. 1-2, pp. 181–216,
2015.

[13] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recog-
nition Letters, vol. 31, no. 8, pp. 651–666, 2010.

[14] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, 1999.

[15] W. Kalintha, S. Ono, M. Numao, and K. Fukui, “Kernelized evolutionary
distance metric learning for semi-supervised clustering,” in Proceedings
of AAAI 2017. AAAI Press, 2017, pp. 4945–4946.

[16] D. Klein, S. D. Kamvar, and C. D. Manning, “From instance-level con-
straints to space-level constraints: Making the most of prior knowledge
in data clustering,” in Proceedings ICML 2002, Sydney, Australia, 2002,
pp. 307–314.

[17] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of ICML 2010. Omnipress, 2010,
pp. 807–814.

[18] B. M. Nogueira, Y. K. B. Tomas, and R. M. Marcacini, “Integrating
distance metric learning and cluster-level constraints in semi-supervised
clustering,” in Proceedings of IJCNN 2017. IEEE, 2017, pp. 4118–
4125.

[19] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko, “Semi-
supervised learning with ladder networks,” in NIPS, 2015, pp. 3546–
3554.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[21] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[22] A. Strehl and J. Ghosh, “Cluster ensembles — A knowledge reuse
framework for combining multiple partitions,” Journal of Machine
Learning Research, vol. 3, pp. 583–617, 2002.

[23] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
Networks for Machine Learning, 2012.

[24] L. van der Maaten, “Accelerating t-sne using tree-based algorithms,”
Journal of Machine Learning Research, vol. 15, no. 1, pp. 3221–3245,
2014.

[25] K. Wagstaff and C. Cardie, “Clustering with instance-level constraints.”
in Proceedings ICML 2000, Standford, USA, 2000, pp. 1103–1110.

[26] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl, “Constrained k-
means clustering with background knowledge,” in Proceedings ICML
2001, Williamstown, USA, 2001, pp. 577–584.

[27] X. Wang, B. Qian, and I. Davidson, “Labels vs. pairwise constraints: A
unified view of label propagation and constrained spectral clustering,”
in 12th IEEE International Conference on Data Mining, ICDM 2012,
Brussels, Belgium, December 10-13, 2012, 2012, pp. 1146–1151.

[28] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” in NIPS. MIT Press, 2003, pp. 321–
328.

[29] X. Zhu, C. C. Loy, and S. Gong, “Constrained clustering with imperfect
oracles,” IEEE Trans. Neural Netw. Learning Syst., vol. 27, no. 6, pp.
1345–1357, 2016.

[30] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” in ICML. AAAI Press,
2003, pp. 912–919.

