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Abstract: The use of Very High Spatial Resolution (VHSR) imagery in remote sensing applications
is nowadays a current practice whenever fine-scale monitoring of the earth’s surface is concerned.
VHSR Land Cover classification, in particular, is currently a well-established tool to support decisions
in several domains, including urban monitoring, agriculture, biodiversity, and environmental
assessment. Additionally, land cover classification can be employed to annotate VHSR imagery with
the aim of retrieving spatial statistics or areas with similar land cover. Modern VHSR sensors provide
data at multiple spatial and spectral resolutions, most commonly as a couple of a higher-resolution
single-band panchromatic (PAN) and a coarser multispectral (MS) imagery. In the typical land cover
classification workflow, the multi-resolution input is preprocessed to generate a single multispectral
image at the highest resolution available by means of a pan-sharpening process. Recently, deep
learning approaches have shown the advantages of avoiding data preprocessing by letting machine
learning algorithms automatically transform input data to best fit the classification task. Following
this rationale, we here propose a new deep learning architecture to jointly use PAN and MS imagery
for a direct classification without any prior image sharpening or resampling process. Our method,
namely MultiResoLCC, consists of a two-branch end-to-end network which extracts features from
each source at their native resolution and lately combine them to perform land cover classification at
the PAN resolution. Experiments are carried out on two real-world scenarios over large areas with
contrasted land cover characteristics. The experimental results underline the quality of our method
while the characteristics of the proposed scenarios underline the applicability and the generality of
our strategy in operational settings.

Keywords: deep learning; single-sensor multi-resolution data fusion; image classification; land cover
mapping; image retrieval by land cover

1. Introduction

The production of precise and timely Land Use/Land Cover (LULC) maps for monitoring human
and physical environment is nowadays a matter of fact. Their use in a multitude of different domains,
ranging from ecology, agriculture, mobility to health, risk monitoring and management policies is
by now a consolidated practice [1]. The range of LULC maps applications has even increased since
the large-scale availability of Very High Spatial Resolution (VHSR) imagery. They are particularly
helpful to retrieve fine-scale thematic information over territories [2] supporting spatial analysis in
many real-world contexts (urban monitoring, road network updating, cadastral abuses, environmental
police, etc.). LULC maps also constitute thematic layers that can be associated with satellite images to
retrieve and contextualize zonal statistics and/or feed geospatial data warehouses that will successively
queried by decision-makers.
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The use of VHSR imagery have been raising specific challenges in remote sensing image analysis,
mostly because the majority of VHSR optical sensors provide data at different spectral and spatial
resolution. More precisely, users generally dispose of a multispectral (MS) and a panchromatic (PAN)
image acquired simultaneously and covering the same geographical area, with the spatial resolution
of PAN images higher than that of MS images [3]. Examples are the IKONOS, Quickbird and GeoEye
sensors (4 m MS and 1 m PAN images), Pléiades (2 m MS and 0.5 m PAN images) and SPOT6/7
(6 m MS and 1.5 m PAN images).

Common techniques to deal with multi-resolution information coming from the same sensor
are related to the use of pan-sharpening [4,5]. The pan-sharpening process aims to “sharpen”
a multispectral image using a panchromatic (single-band) image. More generally, the common
classification pipeline of multi-resolution VHSR images involves three main steps: (1) produce a
single resolution dataset by means of a down-sampling/up-sampling or pan-sharpening procedure
starting from the multi-resolution sources [5], (2) extract spatio-spectral features in a hand-crafted
fashion and (3) classify the resulting feature set by means of machine learning techniques [6]. A notable
example is given in [7], where the authors propose to extract hand-crafted spatio-spectral features
(attribute and morphological profiles) directly from the pansharpened image as a new representation
of the input data. Successively, a Random Forest classifier is fed with the extracted features to perform
the final classification. With respect to the first step of the aforementioned pipeline, performances can
be affected by artifacts or noise introduced upstream by the pan-sharpening process [5]. So far, only
few techniques were proposed to directly manage multi-resolution classification avoiding the image
fusion step to limit the impact of radiometric errors and spatial artifacts produced at this stage [3,8,9].
Concerning the two last steps, an emerging trend in remote sensing is to leverage Deep Learning
methods to encompass feature extraction and classification in a unique optimization framework [10].
Our work also follows this approach, focusing especially on the possibility to enclose the whole
pipeline in a Deep Learning solution, including the preprocessing of the multi-resolution sources
(step 1 of the common pipeline).

In particular, the overall contributions of this paper can be summarized as follows:

• provide a Deep Learning architecture for the supervised classification of MS and PAN sources
from VHSR imagery which avoids any prior error prone preprocessing such as pan-sharpening;

• leverage Convolutional Neural Networks (CNNs) to exploit spatial and spectral information at
both available spatial resolutions and evaluate their ability as feature extractors;

• deliver an end-to-end solution for Land Cover classification of VHSR images which is suitable
for real-world scenarios characterized by large areas as well as spatially sparse and limited
reference data.

The rest of the article is organized as follows: a discussion on current deep learning approaches
for land cover classification from VHSR images, as well as the positioning of this paper in this context,
is proposed in Section 2, Section 3 introduces the proposed deep learning architecture for the joint
classification of PAN and MS imagery. The study sites and the associated data are presented in Section 4
while, the experimental setting and the evaluations are carried out and discussed in Section 5. Finally,
Section 6 draws conclusions.

2. Related Works

The deep learning revolution [10] has shown that deep neural network models are well adapted
tools for automatically managing and classifying remote sensing data [11–15]. The main characteristic
of this type of model is their ability to extract features optimized for the task at hand and perform the
classification in a unified optimization framework [16].

Considering VHSR land cover classification [3,17–21], most of the proposed strategies encompass
the last two steps of the common classification pipeline of multi-resolution VHSR images while they
still consider single resolution preprocessed data (e.g., pansharpened images) as input. For example,
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the method proposed in [18] avoids the generation of hand-crafted features and exploits features
extracted by a single branch CNN-based deep learning model. Such features are then used by a
standard machine learning model to produce the land cover classification of the VHSR image. Deep
features are extracted from the pansharpened image.

In [17,19,21], the task of VHSR image classification is addressed via an encoding/decoding scheme,
and the land cover classification task is modeled as a semantic segmentation problem [17,21]. All these
methods do not predict the label for a single pixel but, conversely, they are able to predict labels for an
entire output patch (a spatial adjacent area) of the image. In all these cases the input of the network is
the pansharpened image, except for [21], in which the authors also integrate Digital Surface Model
(DSM) information as a further potentially discriminative input, leveraging a two-branch architecture
to deal with multisource (pansharpened image and DSM) data.

A step towards the separate exploitation of PAN and MS sources in Deep Learning-based
classification of VHSR image is provided by [3,20]. In [20], authors again resort to a semantic segmentation
approach to provide VHRS land cover classification. In this work, the designed architecture includes
several upstream layers which only process the panchromatic image and, later in the process, integrates
the multispectral information stacking the MS image with middle level feature maps. The originality
of this approach lies in the fact that it stacks together several encoding/decoding schemes increasing
the number of hidden layers with a relative gain in the final performance.

All such methods leverage semantic segmentation for the combination of PAN and MS
information. Unfortunately, semantic segmentation poses rigid constraints about the quantity and
the density of the reference data. Quoting the discussion proposed in the conclusion section of [17],
the authors underlined that “the main challenge to transfer such approach to the processing of
satellite images would be the availability of densely annotated ground truth, to train discriminatively
CNN models”. In real-world scenarios such densely annotated data are rarely available and,
more realistically, reference data are spatially sparse, and possibly noisy and limited, due to the
time-consuming, labor-intensive, and costly field missions devoted to collecting reference data. For
this main reason, the strong constraints associated with semantic segmentation, as of now, limit the
applicability of these approaches to operational scenarios.

Conversely to approaches leveraging semantic segmentation, a new architecture has been recently
proposed in [3], named Deep Multiple Instance Learning (DMIL), to cope with VHSR image land
cover classification combining MS and PAN information producing classification at pixel-level without
requiring densely annotated reference data. To the best of our knowledge, DMIL is the only approach
that encompasses the three steps of the common classification pipeline of multi-resolution VHSR
images avoiding the necessity of densely annotated data. DMIL is a two-branch neural architecture
that takes PAN and MS information separately as input. Internally, it up-samples the MS information,
by means of deconvolution operators [17,22,23], at the same resolution of the PAN one. Successively,
it employs a CNN to manage the spatial information carried out by the PAN image while it employs
stacked autoencoder (SAE) to elaborate the multispectral data. The SAE module does not exploit
spatial information since it flattens the multispectral patch in a 1-D vector of features. This approach
performs classification supplying the prediction one pixel at a time.

Our proposal is more related to this latter strategy. In consonance with recent Remote sensing
developments in the field of VHSR land cover classification [3,20,24], in this paper we propose a
two-branch (double CNNs) approach that performs classification at pixel-level taking as input PAN
and MS imagery at their native resolution. Our model , similarly to [3,20], encloses all the three steps
of the common classification pipeline of multi-resolution VHSR images. Unlike [20], MultiResoLCC
delivers an end-to-end solution suitable for real-world scenarios characterized by large areas as
well as spatially sparse reference data. Furthermore, differently from [3], MultiResoLCC bypasses
up-sampling of the MS information at the same spatial resolution of the PAN one and exploits spectral
as well as spatial information from both sources, using two CNN branches and avoiding discarding
possible useful knowledge.
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3. Method

In this Section we describe the proposed classification framework (A preliminary version of our
work is available at this URL: https://arxiv.org/abs/1806.11452). Figure 1 supplies a global overview
of our proposal.
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Figure 1. General Overview of MultiResoLCC. The model is based on a two-branch CNN architecture
to deal with panchromatic and multispectral information sources at their native resolution. The P-CNN
branch is dedicated to panchromatic information while the MS-CNN branch deals with multispectral
data. The extracted features are concatenated together and directly processed by a SoftMax classifier to
provide the final land cover classification. Details about the P-CNN (respectively MS-CNN) branch are
supplied in Figure 2 (respectively Figure 3).

Our objective is to provide a per-pixel classification of the source dataset at the PAN spatial
resolution. To exploit the spatio-spectral contextual information coming from the two sources, in our
workflow each pixel is represented by means of a pair of patches, extracted respectively from PAN
and MS images and covering the same geographical area. For this purpose, supposing that the
spatial resolution ratio between the PAN and MS image is equal to r, we set the size of the PAN
patch equals to (d × d), hence a patch size of d/r × d/r for the MS image. To ensure the best spatial
correspondence between PAN and MS patches, d is here chosen as a multiple of r, hence producing
even-sized patches at PAN resolution since r is typically an even number (e.g., r = 4 for most VHSR
imagery). By convention, each pair of patches is associated with the pixel in position (d/2, d/2) on the
PAN patch, as well as the land cover class label associated with that pixel.

Based on this sampling strategy, our deep learning architecture is composed of two parallel
branches that process PAN and MS patches through a dedicated Convolutional Neural Network
(CNN) module. Each CNN module transforms the input patch, hence two feature sets are produced
(one for the PAN and one for the MS source) that summarizes the spatial and spectral joint information.
We name P-CNN (respectively MS-CNN) the CNN working on the PAN image (respectively the MS
image). Successively, the two feature sets are combined by means of a simple concatenation and the
whole set of features is directly used to perform the final classification via a SoftMax [10] classifier.
The model is trained end-to-end from scratch.

The P-CNN branch takes as input a tensor of size d × d × 1 (since in the general case we
only dispose of a single panchromatic band) where the parameter d is used to define the patch size.

https://arxiv.org/abs/1806.11452
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Conversely, the branch associated with the MS-CNN takes as input a tensor of size (d/r × d/r × c)
where c is the number of channels contained in the MS image.

Coherently to the model training, at inference time, the PAN grid is scanned, and for each pixel
the PAN and MS patches are extracted and processed to provide the final class for that pixel, eventually
producing a full PAN resolution land cover map.

We remind that, conversely to [3] in which the MS image was up-sampled inducing bias related
to interpolation as well as increasing the amount of data to manage, MultiResoLCC directly deals
with the different spatial resolutions avoiding additional interpolation biases and limiting the quantity
of data to process. The prediction of MultiResoLCC is performed at the same resolution of the PAN
image. This means that our approach can be employed to produce LULC maps at the finest spatial
resolution among those of the input sources.

In the rest of this section we describe the Convolution Neural Networks (MS-CNN and P-CNN)
that are the core components of our framework. We also describe the training strategy we adopt to
learn the parameters of our architecture.

3.1. CNN Architectures for the Panchromatic and the Multispectral Information

Both branches of our model are inspired from the VGG model [25], one of the most well-known
network architectures usually adopted to tackle with standard computer vision tasks. More in detail,
for both branches we constantly increase the number of filters along the network until we reach a
reasonable size of the feature maps.

Considering the P-CNN module (see Figure 2), we perform a max pooling operation after each
convolution to reduce the number of features to process and to force the network to focus on the most
important part of the input signal. All max pooling operations are performed with a pooling size
(window on which the max pooling is applied) of 2 × 2 with a stride equals to 2.

1@d x d 128 128 512256 256 512@1

Conv(128, 7x7)
MaxPooling(2x2, 
s=2)

MaxPooling(
2x2, s=2)Conv(256, 3x3)

Conv(512, 
3x3)

GlobalMax
Pooling

4@d/r x d/r 256 512 1024 1024@1

Conv(256, 3x3) Conv(1024, 
3x3)

GlobalMax
PoolingConv(512, 3x3)

Figure 2. P-CNN: Dedicated CNN Structure to manage Panchromatic information.

The first convolution has a kernel of 7 × 7 and it produces 128 feature maps. The second and the
third convolutions have a kernel of 3 × 3 and they produce respectively, 256 and 512 feature maps.
At the end of the process, a global max pooling is applied to extract 512 features. The global max
pooling extracts one feature for each feature maps obtained after the last convolution. The pooling
operation, generally speaking, reduces the amount of information to manage (and the number of
parameters to learn) as well as it acts as a high-pass filter on the entry signal.

For the MS-CNN module (Figure 3), no max pooling operation between two successive convolution
stages is performed. This is done to preserve as much as possible all the spectral information along the
processing flow. For the same reason, in each convolutional layer (three total layers as for P-CNN) the
size of the kernel is limited to 3 × 3. Moreover, each of these layers produces respectively 256, 512 and
1024 feature maps (doubled with respect to the corresponding P-CNN layers) to deal with the richness
of the spectral information with the aim to better exploit the correlations among the original MS bands.
The final set of features summarizing the MS information is derived similarly to the P-CNN model.
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Also in this case, we apply a global max pooling extracting 1024 features (one feature for each feature
maps obtained after the last convolution).

1@d x d 128 128 512256 256 512@1

Conv(128, 7x7)
MaxPooling(2x2, 
s=2)

MaxPooling(
2x2, s=2)Conv(256, 3x3)

Conv(512, 
3x3)

GlobalMax
Pooling

4@d/r x d/r 256 512 1024 1024@1

Conv(256, 3x3) Conv(1024, 
3x3)

GlobalMax
PoolingConv(512, 3x3)

Figure 3. MS-CNN: Dedicated CNN Structure to manage Multispectral information.

The features extracted by each branch of the architecture are successively merged by concatenation.
Such set of concatenated features, 512 (1024) from the PAN branch (respectively MS branch) supplies
a total of 1536 features that are directly fully connected to the SoftMax classifier to perform the final
classification. The SoftMax layer [10] produces a kind of probability distribution over the class labels.
The model weights are learned by back-propagation.

In both branches, each convolution is associated with a linear filter, followed by a Rectifier Linear
Unit (ReLU) activation function [26] to induce non-linearity and a batch normalization step [27].
The ReLU activation function is defined as follows:

ReLU(x) = Max(0, W · x + b) (1)

This activation function is defined on the positive part of the linear transformation of W · x + b.
The choice of ReLU nonlinearities is motivated by two factors: (i) the good convergence properties it
guarantees and (ii) the low computational complexity it provides [26]. Furthermore, batch normalization
accelerates deep network training convergence by reducing the internal covariate shift [27].

3.2. Network Training Strategy

Due to the network architecture peculiarity (two branches, multi-scale input, different number of
channels for branch) we learn the network weights end-to-end from scratch since we cannot reuse any
existing available pre-trained architecture. The cost function associated with our model is:

LOSS = L([PAN f eat, MS f eat], W, b) (2)

where

L( f eat, W, b) = L(Y, So f tMax( f eat · W + b))

with Y being the true value of the class variable. The cost function is modeled through categorical
cross entropy, a typical choice for multi-class supervised classification tasks [28].

Although the number of parameters of our architecture is not prohibitive, training of such
models might be difficult and the final model can suffer by overfitting [29]. To avoid such phenomena,
following common practice for the training of deep learning architecture we leverage dropout [29] and
data augmentation [30].

Dropout has been proposed to avoid co-adaptation of neurons during training [29]. Dropout
randomly “turning off” a given percentage of neurons (dropout rate hyperparameter) and their
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connections, corresponds to train a different, less correlated, model at every epoch. At inference
time the neuron contribution is weighted by the dropout rate. In our architecture we decide to apply
dropout (rate equals to 0.4) on the feature sets extracted by the two branches of MultiResoLCC just
before the concatenation operation. This strategy will avoid extracting co-adapted features among the
set of features successively employed to make the final decision.

Data augmentation [30] is a common strategy to further increase the size of the training set
and achieve higher model generalization. It consists in creating new synthetic training examples
from those already available, by applying label preserving (random) transformations. In our case
the (random) transformations are sampled from standard data augmentation techniques (90-degree
rotation, vertical/horizontal flips, and transpose). For each example, each technique is simultaneously
performed on both the PAN and the corresponding MS patch. On average, the final training set has a
size around three times the original training set.

4. Data

4.1. REUNION Dataset

We use a SPOT6 image, acquired on 6 April 2016 consisting of a 1.5 m Panchromatic band
and 4 multi-spectral bands (blue, green, red, and near infrared) at 6 m resolution Top of Atmosphere
reflectance. The Panchromatic image has a size of 44,374 × 39,422 while the Multi-Spectral one has a
size of 11,094 × 9,856. Panchromatic and Multi-Spectral satellite images are reported in Figure 4.

The field database constituting the ground truth has been built from various sources: (i) the Registre
parcellaire graphique (RPG) reference data of 2014 (RPG is part of the EU Land Parcel Identification
System (LPIS) provided by the French Agency for services and payment), (ii) GPS records from June
2017 and (iii) photo interpretation of the VHSR image conducted by an expert, with knowledge of the
territory.

(a) (b)

Figure 4. SPOT6 panchromatic (a) and multispectral (b) images of the REUNION site.

4.2. GARD Dataset

The SPOT6 image, acquired on 12 March 2016 consists of a 1.5 m Panchromatic band and
4 Multi-Spectral bands (Blue, Green, Red and Near Infrared) at 6 m resolution Top of Atmosphere
reflectance. The Panchromatic image has a size of 24,110 × 33,740 while the Multi-Spectral image has a
size of 6028 × 8435. Panchromatic and Multi-Spectral satellite images are reported in Figure 5.
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The field database, constituting the ground truth, was built from various sources: (i) the Registre
parcellaire graphique (RPG)0 reference data of 2016 and (ii) photo interpretation of the VHSR image
conducted by an expert, with knowledge of the territory, for distinguishing between natural and
urban areas.

(a) (b)

Figure 5. SPOT6 panchromatic (a) and multispectral (b) images of the GARD site.

4.3. Ground Truth Statistics

Considering both datasets, ground truth comes in GIS vector file format containing a collection of
polygons each attributed with a unique land cover class label. To ensure a precise spatial matching
with image data, all geometries have been suitably corrected by hand using the corresponding VHSR
image as a reference. Successively, the GIS vector file containing the polygon information has been
converted in raster format at the spatial resolution of the PAN image (1.5 m in our case).

The final ground truth is constituted of 464,650 pixels distributed over 13 classes for the Reunion
dataset (Table 1) and 400,970 pixels distributed over 8 classes for the Gard benchmark (Table 2).
We remind that the ground truth, in both cases, was collected over large areas. Due to the practical
constraints associated with such missions (time consumption, costs, and human effort), reference data
are spatially sparse, noisy, and limited with respect to the study areas on which land cover classification
is performed. As previously mentioned, all these constraints hinder the applicability of semantic
segmentation-based approaches in such realistic context [17].
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Table 1. Per-Class ground truth statistics of the Reunion Dataset.

Class Label # Polygons # Pixels

1 Crop Cultivations 168 50,061
2 Sugar cane 167 50,100
3 Orchards 167 50,092
4 Forest plantations 67 20,100
5 Meadow 167 50,100
6 Forest 167 50,100
7 Shrubby savannah 173 50,263
8 Herbaceous savannah 78 23,302
9 Bare rocks 107 31,587

10 Urban areas 125 36,046
11 Greenhouse crops 49 14,387
12 Water Surfaces 96 2711
13 Shadows 38 11,400

Table 2. Per-Class ground truth statistics of the Gard Dataset. .

Class Label # Polygons # Pixels

1 Cereal Crops 167 50,100
2 Other Crops 167 50,098
3 Tree Crops 167 50,027
4 Meadows 167 49,997
5 Vineyard 167 50,100
6 Forest 172 50,273
7 Urban areas 222 50,275
8 Water Surfaces 167 50,100

5. Experiments

In this section, we present and discuss the experimental results obtained on the study sites
introduced in Section 4.

To provide a suitable insight on the behavior of MultiResoLCC, we perform different kinds of
analysis. Firstly we analyze the global classification performances considering different evaluation
metrics, secondly we inspect the per-branch informativeness supplied by the representation learned
by our proposal, thirdly we inspect the per-class results of the different approaches, then we perform
a sensitivity analysis of a portion of the hyperparameters of our approach and, finally, we supply a
qualitative discussion considering the land cover maps produced by our framework.

5.1. Competitors

With the purpose to compare our approach (MultiResoLCC) to techniques tailored for the
classification of VHSR images, different competitors are involved in the analysis. Firstly, we compare
MultiResoLCC with other deep learning approaches and then, similarly to what is proposed in [28],
we investigate the possibility to use the deep learning methods as feature extractor to obtain new
data representation for the classification task. In this context, we compare the deep learning features
to spatio-spectral representations commonly employed for the land cover classification of VHSR
images [7,17].

Regarding deep learning competitors, the first method we consider is a CNN classifier that takes
as input the pansharpened image and it has the same architecture structure of the P-CNN module
(three convolutional, two max pooling and a final global max pooling layers) with 256, 512 and 1024
as number of filters for each convolutional layer respectively. The number of filters is augmented
with respect to the P-CNN architecture due to the amount of radiometric information (four bands) as
input of such CNN. We refer to this competitor as CNNPS. The second deep learning competitor we
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consider is the model proposed in [3], named DMIL, since it can be trained from sparsely annotated
data to produce classification at pixel-level from PAN and MS images. DMIL is a two-branch neural
architecture that takes PAN and MS information separately as input. Internally, it up-samples the MS
information, by means of deconvolution operators [17,22,23], at the same resolution of the PAN one.
Successively, it employs a CNN to manage the spatial information carried out by the PAN image while
it employs stacked autoencoder (SAE) to elaborate the multispectral data. This approach performs
classification supplying the prediction one pixel at a time.

Regarding the feature extraction analysis, we compare the features extracted by MultiResoLCC
with respect to the features extracted by the other deep learning approaches as well as hand-crafted
features obtained by common spatio-spectral methods. To this end, we feed a random forest classifier
(with several trees equals to 400) with the features extracted by each of the different deep learning
methods. To refer to this setting, we use the notation RF(·). For instance, RF(MultiResoLCC) indicates
the random forest trained on the representation (features) learned by MultiResoLCC. With the
objective to supply a more complete evaluation scenario, we consider two other competitors based
on spatio-spectral features [7]. The first one involves a random forest classifier trained on the data
patches extracted from the pansharpened image. The final feature set is composed of 4096 features
(32 × 32 × 4). We refer to this method as RF(PATCH). For the second one, similarly to what is
proposed in [17], we extract a spatio-spectral hand-crafted features from the pansharpened image.
More precisely, for each raw band of the pansharpened image (Red, Blue, Green and NIR) we extract
four mathematical morphology operators (opening, closing, dilation and erosion) as well as a texture
statistic (entropy). Each filter is operated in three window size (7, 11, 15 pixels). The final feature set
is composed of 60 spatio-spectral features. We named this representation MRSSF (Multi-Resolution
Spatial Spectral Features) and the related classification method RF(MRSSF). The Pansharpened image,
derived from the combination of the panchromatic and multispectral sources, is obtained using the
Bayesian Data Fusion technique [4] implemented by the Orfeo ToolBox [31].

5.2. Experimental Setting

All the deep learning methods are implemented using the Python Tensorflow library. The source
code for the implementation of MultiResoLCC is available online (https://github.com/tanodino/
MultiResoLCC).

We adopt standard Glorot initialization [32], also called Xavier uniform initialization, to initialize
parameter weights. During the learning phase, we adopt the Adam optimizer [33] (Adaptive Moment
Estimation) that is commonly employed in the parameter optimization of both CNN and Recurrent
Neural Networks. Adam is an optimization algorithm, based on adaptive estimates of lower-order
moments, that can be used instead of the classical stochastic gradient descent procedure to iteratively
update network weights based on training data. We set the learning rate equal to 2× 10−4. The training
process is conducted over 250 epochs with a batch size of 64. The model that reaches the lowest value
of the cost function (at training time) is used in the test phase.

The dataset consists in pairs of patches (PAN, MS) associated with land cover class labels. We set
the value of d, the PAN patch size, to 32. The patches sizes are respectively (32 × 32 × 1) and (8 × 8 × 4)
for the PAN and MS images, as the physical pixel spacing ratio between SPOT6 PAN and MS is 4,
and because the MS image has 4 spectral bands. Coherently to what explained in Section 3, each pair
of patches is associated with the pixel in position (16,16) of the PAN patch and its associated land cover
class label. Prior to patch extraction, each spectral band is normalized in the interval [0, 1]. Considering
the CNNPS and RF(PATCH) approaches, these methods take as input a patch of size (32 × 32 × 4)
coming from the pansharpened image and, also in this case, the label information refers to the pixel in
position (16,16).

We divide the dataset into two parts, one for learning and the other one for testing the performance
of the supervised classification methods. We used 30% of the objects for the training phase while the
remaining 70% are employed for the test phase, to force a relative parsimony in the training stage

https://github.com/tanodino/MultiResoLCC
https://github.com/tanodino/MultiResoLCC
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with respect to the available reference data while ensuring a more robust validation. We impose that
pixels of the same object belong exclusively to the training or to the test set to avoid spatial bias in
the evaluation procedure [34]. More in detail, the training data for the Gard (respectively Reunion)
study site involves around 977 objects (respectively 1859) while the test data for the Gard (respectively
Reunion) study site involves around 419 (respectively 797) objects.

Table 3 reports the training time of each deep learning method on a workstation with an Intel (R)
Xeon (R) CPU E5-2667 v4@3.20Ghz with 256 GB of RAM and TITAN X GPU. The average learning time
are reported in Table 3. CNNPS is the approach that demands more time. DMIL and MultiResoLCC
consume very similar training time. The difference among the different methods is because CNNPS,
for a fixed geographical area, needs to manage more information as input.

Table 3. Training time of the different deep learning approaches on the two study sites.

Dataset CNNPS DMIL MultiResoLCC

Gard 9h30m 7h20m 7h30m
Reunion 11h10m 8h30m 8h30m

The assessment of the classification performances is done considering global precision (Accuracy),
F-Measure [35] and Kappa measures. The F-Measure is the harmonic average of the precision and recall,
where an F1 score reaches its best value at 1 (perfect precision and recall) and worst at 0. This measure
is especially suited to evaluate unbalanced classification tasks considering class distributions.

It is known that, depending on the split of the data, the performances of the different methods
may vary as simpler or more difficult examples are involved in the training or test set. To alleviate this
issue, for each dataset and for each evaluation metric, we report results averaged over ten different
random splits performed with the strategy previously presented.

5.3. General Classification Results

Tables 4 and 5 summarize the results obtained by the different methods on the Gard (respectively
Reunion) study site. The first (upper part) of each table shows the performances of the deep learning
competing methods (CNNPS, DMIL and MultiResoLCC) while the second (lower part) summarizes
the results of the random forest classifier trained on the features learned by the different deep learning
architectures as well as the spatio-spectral representation obtained from the Pansharpened image.

Considering the results of the main competing approaches, we can observe that MultiResoLCC
always outperforms the other approaches for all the three evaluation metrics. Systematically,
MultiResoLCC obtains the best performances followed by CNNPS and DMIL respectively. We can also
underline that, considering both study sites, the difference between the best and the second-best result
is always higher than four points for the Accuracy measure. Similar behavior is exhibited considering
the other evaluation metrics. These experimental findings support our intuition that, when using
a CNN-based deep learning approach for land cover classification, letting the architecture exploits
sources at their native resolution (considering both spatial and spectral information) is more adequate
than performing a prior pan-sharpening.

Regarding the use of the different deep learning approaches to extract features that are successively
injected as input to standard machine learning method, we can note that this practice do not degrade the
classification performances while, most of the time, it results in an improvement of the classification
performances (with respect to the deep learning classification counterparts) of one or two points
considering the whole set of evaluation metrics.

We can also note that the RF classifier combined with a patch-based input (RF(PATCH)) and
with multi-resolution spatio-spectral features (RF(MRSSF)) supplies results that are competitive with
respect to CNNPS and DMIL on the Gard study site while, on the Reunion dataset, RF(MRSSF) obtains
the second-best average performances while RF(PATCH) is outperformed by the other methods.
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Finally, we can highlight that MultiResoLCC still provides better performances than all the other
competing approaches considering it as direct classification strategy as well as feature extraction tool.

Generally, performance trends are similar between the two study sites. We can note that better
results are achieved on the Reunion Island study with respect to those obtained on the Gard. This can be
explained by the fact that, the SPOT6 image acquired on the Reunion Island depicts this site during a
period in which contrasts among the considered classes are more evident. More in detail, crops are
easy to observe and highly distinguishable. This point positively influences the learning phase of all
the competing methods. On the other hand, the image describing the Gard site is acquired at the end
of March when crops are not yet visible and most of the image is covered by bare soil.

This evaluation highlights that data quality and data informativeness related to seasonal behaviors
(considering the task at hand) are crucial issues that (positively or negatively) impact the construction
of effective classification models for land cover classification when agricultural classes are involved.

Table 4. Accuracy, F-Measure and Kappa results achieved on the GARD study site with different
competing methods. For each method and measure we report the mean and standard deviation value
averaged over ten different runs. The upper part of the Table reports results obtained with deep
learning approaches while the lower part of the Table resumes results obtained with a Random Forest
classifier learned on hand-crafted or deep learning features. Best results are reported in bold.

Accuracy F-Measure Kappa

CNNPS 66.14 ± 0.78 65.80± 0.77 0.6131 ± 0.0089
DMIL 61.96 ± 1.00 61.76 ± 1.01 0.5652 ± 0.0115

MultiResoLCC 70.48 ± 0.55 70.19 ± 0.67 0.6627 ± 0.0063
RF(PATCH) 69.93 ± 0.76 69.55 ± 0.77 0.6564 ± 0.0087
RF(MRSSF) 68.30 ± 0.33 68.18 ± 00.51 0.6377 ± 0.0038
RF(CNNPS) 68.04 ± 0.82 67.72 ± 0.84 0.6348 ± 0.0093
RF(DMIL) 64.79 ± 0.73 64.43 ± 0.82 0.5976 ± 0.0084

RF(MultiResoLCC) 71.98 ± 0.58 71.73 ± 0.54 0.6797 ± 0.0066

Table 5. Accuracy, F-Measure and Kappa results achieved on the Reunion Island study site with different
competing methods. For each method and measure we report the mean and standard deviation value
averaged over ten different runs. The upper part of the Table reports results for the deep learning
approaches while the lower part of the Table resumes results where a Random Forest classifier is
learned on hand-crafted as well as deep learning features. Best results are reported in bold.

Accuracy F-Measure Kappa

CNNPS 74.49 ± 1.20 74.25 ± 1.24 0.7195 ± 0.0131
DMIL 69.40 ± 1.11 69.34 ± 1.12 0.6637 ± 0.0121

MultiResoLCC 79.65 ± 0.87 79.56 ± 0.91 0.7764 ± 0.0096
RF(PATCH) 72.22 ± 1.31 71.53 ± 1.4 0.6943 ± 0.0144
RF(MRSSF) 76.24 ± 0.71 75.97 ± 0.66 0.7387 ± 0.0077
RF(CNNPS) 75.77 ± 1.14 75.56 ± 1.19 0.7334 ± 0.0125
RF(DMIL) 71.98 ± 0.46 71.94 ± 0.47 0.6918 ± 0.0051

RF(MultiResoLCC) 79.67 ± 0.82 79.52 ± 0.86 0.7763 ± 0.0090

5.4. Inspecting the Per-Branch Informativeness of the Extracted Features

In this experiment, we investigate the informativeness related to the per-branch features extracted
by MultiResoLCC. More in detail, still considering the scenario in which a Random Forest is fed with
learned features, we consider the representation obtained by the P-CNN and MS-CNN independently.
We refer to RF(MultiResoLCCPAN) (respectively RF(MultiResoLCCMS)) as the Random Forest learned
on the subset of features corresponding to the P-CNN (respectively MS-CNN) branch. Table 6 reports
the obtained F-Measure results considering the two benchmarks.
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Table 6. F-Measure results achieved on the GARD and Reunion study site considering a Random
Forest classifier fed with per-branch (P-CNN and MS-CNN) generated features. For each method and
measure we report the mean and standard deviation value averaged over ten different runs.

Datasets RF(MultiResoLCCPAN ) RF(MultiResoLCCMS) RF(MultiResoLCC)

Gard 58.72 ± 0.93 68.00 ± 0.48 70.19 ± 0.67
Reunion 73.78 ± 0.92 57.40 ± 1.11 79.56 ± 0.91

We can observe that, on both study sites, the method exploiting the whole set of learned features
obtains the best results. Inspecting the results, we do not have a similar behavior on the two study
sites. On the Reunion benchmark, we can note that most of the information seems to be carried out
by the features generated by the P-CNN branch while on the Gard study site the features obtained
by the MS-CNN branch are more effective for the classification task. The proposed two-branch
CNN architecture can exploit the complementarity of PAN and MS information adapting itself to the
underlying data distribution.

Importantly, we remind that the features extracted by a deep learning model are the results of
multiple nonlinear combinations of the input data. Due to the nature of the learning process, the neural
network adapts the generated features (neural activations) with the objective to spread the useful
information as much as possible over all the connections. This aspect is also enforced using Dropout at
training time. More in detail, once a model is learned (in our case a two-branch model) and optimized
to distinguish among a set of classes, it will be difficult to select a subset of features that will work
better than the original feature set since the network has arranged its internal structure with the aim to
exploit the complementarity presents in the data.

5.5. Per-Class Classification Results

Tables 7 and 8 depict the per-class F-Measure results for the Reunion Island and the Gard study
sites, respectively. For each study site, we differentiate between the main competing methods (CNNPS,
DMIL and MultiResoLCC) and experiments with random forest classifier learned on hand-crafted or
deep learning features.

For both study sites, MultiResoLCC obtains better or very similar per class F-Measure with respect
to the others competing approaches. For the classification of the Reunion Island dataset, we can note
significant improvement in classes (1), (3), (5), (8) and (11) (respectively Crop Cultivations, Orchards,
Meadow, Herbaceous savannah and Greenhouse crops). Here, the improvement ranges between six points
(Meadow) and twelve points (Greenhouse crops) with respect to the second-best method. The analysis of
per-class results on the Gard site also shows improvement for certain classes: (1) and (3) (Cereal Crops
and Tree Crops) with an average gain of 7 points of Accuracy.

Table 7. Per-Class F-Measure results achieved on the Gard study site with different competing methods.
The upper part of the Table reports results for the deep learning approaches while the lower part of
the Table resumes results where a Random Forest classifier is learned on hand-crafted as well as deep
learning features. Best results are reported in bold.

Method 1 2 3 4 5 6 7 8

CNNPS 44.67 57.04 50.63 51.0 57.14 86.75 83.37 95.59
DMIL 40.78 51.1 47.87 47.63 54.85 86.16 70.01 95.52

MultiResoLCC 51.74 60.2 58.51 55.36 61.15 89.07 88.94 96.3

RF(PATCH) 48.28 62.56 56.54 56.17 62.13 87.71 85.25 97.46
RF(MRSSF) 47.65 58.77 54.82 53.27 61.56 87.97 83.98 97.39
RF(CNNPS) 45.86 60.07 54.9 53.56 58.33 88.33 84.47 96.06
RF(DMIL) 41.17 54.89 52.02 51.83 59.14 86.97 73.52 95.76

RF(MultiResoLCC) 52.53 64.13 60.49 58.14 63.85 89.1 88.95 96.46
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Table 8. Per-Class F-Measure results achieved on the Reunion Island study site with different competing
methods. The upper part of the Table reports results for the deep learning approaches while the lower
part of the Table resumes results where a Random Forest classifier is learned on hand-crafted as well as
deep learning features. Best results are reported in bold.

Method 1 2 3 4 5 6 7 8 9 10 11 12 13

CNNPS 64.49 75.03 69.38 83.97 67.63 77.69 74.63 57.47 75.52 83.06 67.37 93.04 96.96
DMIL 58.95 69.13 56.86 81.63 60.59 72.37 72.54 56.13 72.86 79.67 64.27 92.56 95.09

MultiResoLCC 72.15 78.48 77.81 83.82 73.97 81.52 79.48 66.58 79.69 87.91 80.23 95.23 94.78

RF(PATCH) 59.47 75.02 67.89 81.99 67.67 75.28 73.33 63.46 73.62 75.15 31.95 93.01 97.93
RF(MRSSF) 66.58 76.81 78.52 85.99 74.23 80.99 75.63 61.04 74.91 78.36 46.53 92.62 95.88
RF(CNNPS) 66.18 77.06 71.44 84.55 69.25 79.98 76.11 59.36 75.51 83.04 65.9 93.38 97.69
RF(DMIL) 60.8 72.21 61.14 83.84 65.56 75.41 75.08 58.76 74.25 80.84 65.03 93.07 95.37

RF(MultiResoLCC) 71.33 79.05 77.94 86.04 74.57 83.31 79.65 63.42 80.71 86.15 73.81 94.89 96.88

We can also note that the random forest approach coupled with the features learned by the
different methods (lower part of Tables 7 and 8) provides systematic improvement with respect to
almost all the land cover classes compared to the pure deep learning classification approaches.

To further advance the understanding of our method, we report in Figure 6 the confusion matrices
associated with the CNNPS, DMIL and MultiResoLCC methods respectively on the two study sites.
Figure 6a–c depict the confusion matrices of CNNPS, DMIL and MultiResoLCC on the Reunion Island
study site. We can note that the confusion matrix associated with MultiResoLCC has clearly a stronger
diagonal (towards dark red) compared to the confusion matrices of the other approaches.

(a) (b) (c)

(d) (e) (f)

Figure 6. Confusion matrices of the deep learning approaches on the Reunion Island dataset ( CNNPS (a),
DMIL (b) and MultiResoLCC (c) ) and on the Gard dataset ( CNNPS (d), DMIL (e) and MultiResoLCC
(f) ). Values are normalized per class (row sum) in the interval [0,1].

Figure 6d–f represent the confusion matrices of CNNPS, DMIL and MultiResoLCC, respectively,
on the Gard study site. Here, the different confusion matrices share a more similar appearance with
respect to those shown for the Reunion Island dataset. Nevertheless, we can still observe a slightly more
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suitable behavior exhibited by MultiResoLCC: (i) a slightly darker diagonal on both strong and weaker
classes and( ii) a generally less intense “noise” outside the diagonal compared to the competitors.

5.6. Stability of MultiResoLCC Considering Training, Patch and Batch Size

To assess the stability of our approach, we carry out a sensitivity analysis varying the training,
patch, and batch size for the land cover classification of the Gard and Reunion Island study sites. More
precisely: (i) the training size ranges over the list of values 20%,30%,40% and 50%; (ii) the PAN (MS)
patches sizes cover the values 28 × 28 (7 × 7), 32 × 32 (8 × 8), 36 × 36 (9 × 9), 40 × 40 (10 × 10) and
44 × 44 (11 × 11) and (iii) 32, 64, 128 and 256 are tested as batch size values. Tables 9–11 report average
Accuracy, F-Measure and Kappa statistics considering training, patch, and batch size, respectively.

The behavior of MultiResoLCC according to the training size is reported in Table 9. Not surprisingly,
we can observe that as the amount of available training data augments the classification performances
improve as well.

Table 10 reports the results considering the variation of the patch size. Also, in this case, we can
pinpoint that increasing the patch size positively influences the performances on the two benchmarks.
The use of a bigger patch size (e.g., 44 × 44) allows to gain around two points of accuracy in both cases.
An exception can be highlighted considering the patch value 40 × 40 on the Gard dataset. In this case,
the performance slightly decreases with respect to the previous value of patch size. Probably, this size
of patch, for this dataset, introduces some spatial noisy affecting the stability of our approach. This is
also supported by the fact that the standard deviation associated with this prediction is much higher
than in the other cases.

The batch size experiments are reported in Table 11. Here, we can note that the performance results
are quite stable. Nevertheless, we can underline that batch constituted of 128 examples supplying
the best performances while batch size of 256 examples still exhibits a more than reasonable behavior.
This result is interesting from a computational point of view since, fixing the number of epochs,
increasing the batch size will reduce training time.

Table 9. Accuracy, F-Measure and Kappa results achieved on the GARD and Reunion Island study sites by
MultiResoLCC varying the training percentage. Best results are reported in bold.

Training %
Gard Reunion

Accuracy F-Measure Kappa Accuracy F-Measure Kappa

20% 67.85 ± 0.87 67.6 ± 0.79 0.6325 ± 0.01 78.46 ± 1.68 78.36 ± 1.7 0.7633 ± 0.0184
30 % 70.48 ± 0.55 70.19 ± 0.67 0.6627 ± 0.0063 79.65 ± 0.87 79.56 ± 0.91 0.7764 ± 0.0096
40 % 71.24 ± 0.71 71.05 ± 0.7 0.6713 ± 0.0081 83.26 ± 0.67 83.21 ± 0.7 0.8160 ± 0.0074
50 % 72.8 ± 1.36 72.59 ± 1.32 0.6892± 0.0155 83.4 ± 0.66 83.35 ± 0.68 0.8175 ± 0.0073

Table 10. Accuracy, F-Measure and Kappa results achieved on the GARD and Reunion Island study sites
by MultiResoLCC varying the patch size with reference to the panchromatic grid. Best results are
reported in bold.

Patch Size (d ×d)
Gard Reunion

Accuracy F-Measure Kappa Accuracy F-Measure Kappa

28 × 28 69.8 ± 0.3 69.7 ± 0.33 0.6548 ± 0.0034 79.91 ± 0.57 79.8 ± 0.57 0.7792 ± 0.0063
32 × 32 70.48 ± 0.55 70.19 ± 0.67 0.6627 ± 0.0063 79.65 ± 0.87 79.56 ± 0.91 0.7764 ± 0.0096
36 × 36 71.6 ± 0.55 71.4 ± 0.63 0.6754 ± 0.0063 80.02 ± 1.11 79.99 ± 1.18 0.7804 ± 0.0121
40 × 40 70.92 ± 1.29 70.78 ± 1.42 0.6677 ± 0.0147 82.26 ± 0.97 82.2 ± 0.99 0.8051 ± 0.0106
44 × 44 71.63 ± 0.54 71.47 ± 0.58 0.6757 ± 0.0062 82.62 ± 1.0 82.55 ± 0.98 0.8091 ± 0.0011
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Table 11. Accuracy, F-Measure and Kappa results achieved on the GARD and Reunion Island study sites
by MultiResoLCC varying the batch size. Best results are reported in bold.

Batch Size
Gard Reunion

Accuracy F-Measure Kappa Accuracy F-Measure Kappa

32 70.19 ± 1.14 70.04 ± 1.19 0.6593 ± 0.013 80.19 ± 1.32 80.13 ± 1.32 0.7824 ± 0.0145
64 70.48 ± 0.55 70.19 ± 0.67 0.6627 ± 0.0063 79.65 ± 0.87 79.56 ± 0.91 0.7764 ± 0.0096
128 70.53 ± 0.98 70.25 ± 0.97 0.6632 ± 0.0112 80.75 ± 0.83 80.7 ± 0.87 0.7885 ± 0.009
256 70.42 ± 1.3 70.19 ± 1.28 0.6619 ± 0.0149 80.71 ± 0.84 80.63 ± 0.84 0.788 ± 0.0092

5.7. Qualitative Inspection of Land Cover Map

In Figures 7 and 8 we report some representative map classification details on the Gard and
Reunion Island datasets considering the DMIL, CNNPS and MultiResoLCC, respectively.

VHSR Image DMIL CNNPS MultiResoLCC

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. Visual inspection of Land Cover Map details produced on the Gard study site by DMIL,
CNNPS and MultiResoLCC on three different zones: (a–d) mixed area (tree crops, urban settlement
and forest); (e–h) rural area and (i–l) wetland area.

Regarding the Gard study site, the first example (Figure 7a–d) depicts an area mainly characterized
by tree crops, urban area, and forest. Here, we highlight three representative zones on which
classification differences are more evident. From the top to the bottom, the first two circles point out a
field characterized by tree crops and forest zone, respectively. On these two zones, we can observe
that both DMIL and CNNPS present confusion between these two classes and do not preserve the
geometry of the scene. Conversely, we can observe that MultiResoLCC supplies a better (and more
homogeneous) characterization of the two zones reducing confusion between the two classes and
more correctly detecting parcel borders. The first zone highlighted in this example also involves an
urban area. We can note that, MultiResoLCC provides a more homogeneous classification of this zone
with respect to the other two approaches that make some confusion between urban areas and other
crops classes.
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The second example (Figure 7e–h) represents a rural area mainly characterized by different crop
types. Also in this case we highlight three zones to pinpoint the differences among the deep learning
approaches. From the top to the bottom, the first focus is on a vineyard field. DMIL and CNNPS
have some issues to correctly assign the vineyard class to the entire field making confusion among Tree
crops and Other Crops. This is not the case for MultiResoLCC that provides a more correct delimitation.
The other two zones pointed out in this example involve an urban area and a forest field. We can
observe that, also in this case, MultiResoLCC shows better performance on both Urban Areas and Forest
classes than the other approaches.

The third example (Figure 7i–l) involves a wetland area. Here, we can clearly observe that the first
two approaches (DMIL and CNNPS) have serious issues to recognize non-water area and they tend to
overestimate the water class. Conversely, MultiResoLCC achieves better performance to discriminate
between water and other classes.

On this study area, MultiResoLCC seems to be more effective on some particular classes such
as Tree Crops, Forest and Urban areas. These results are consistent with those reported in Table 7.
Considering a finer visual inspection of the land cover maps, we can observe that the land cover map
produced by CNNPS shows some horizontal strip artifact evident on the Tree Crops class (orange color).
CNNPS exhibits similar artifacts also on the second example.

This behavior is not shared by the other approaches, which probably mean that such artifacts are
due to some slight radiometric inconsistency of the pansharpened source.

VHSR Image DMIL CNNPS MultiResoLCC

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. Visual inspection of Land Cover Map details produced on the Reunion Island study site by
DMIL, CNNPS and MultiResoLCC on three different zones: (a–d) coastal area; (e–h) forest area and
(i–l) mixed area (urban settlement and agricultural plots).

Concerning the Reunion Island dataset, the first example (Figure 8a–d) depicts a coastal area of the
west coast of the island. Here, we highlight a zone that is characterized by an underwater coral reef.
DMIL and CNNPS have some troubles classifying this zone as water; more in detail they confused the
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true class and the Bare Rocks and Urban areas classes. Conversely, MultiResoLCC does not have any
issue with this point and it supplies a coherent water classification.

The second example (Figure 8e–h) represents a zone mainly characterized by forest. In this case,
both DMIL and CNNPS provide a noisy classification mixing Forest with Sugar Cane and Orchards.
Conversely, when we analyze the land cover map produced by MultiResoLCC (Figure 8h), we observe
that the Forest classification is more spatially homogeneous and consistent with the reference data
available in the corresponding VHSR image.

The third and last example related to the Reunion Island dataset is supplied in Figure 8i–l. This area
is mainly characterized by an urban settlement surrounded by some agricultural plots. The three zones
highlighted in this example involve zones belonging to Urban Areas and Bare rocks. Comparing the
maps provided by DMIL and CNNPS with respect to the one provided by MultiResoLCC, we can note
that the formers made more confusion between Urban Areas/Bare rocks and Water Surfaces than the latter.
DMIL and CNNPS tend to overestimate the prediction of the Water Surfaces class. This phenomenon is
more remarkable on the land cover map provided by CNNPS than the one supplied by DMIL. On the
other hand, our approach has a more precise behavior on such classes and, as well as DMIL, it exploits
the low-resolution information (multispectral bands) to regularize its spatial prediction.

Also on this study site MultiResoLCC exhibits a satisfactory behavior considering the competing
approaches. Similarly, to the analysis performed on the Gard study site, results are consistent with
those reported in Table 8. Conversely to what was proposed in DMIL, the joint use of spatial and
spectral information of the MS and PAN images at their native resolution, without any intermediate
up-sampling step, provides useful regularization decreasing, at the same time, the confusion between
land cover classes (i.e., Urban Areas vs Water Surfaces and Forest vs Orchards/Sugar Cane).

6. Conclusions

In this paper, a novel Deep Learning architecture to leverage PAN and MS imagery for land cover
classification has been proposed. The approach, named MultiResoLCC, exploits multispectral and
panchromatic information at their native resolutions. The architecture is composed of two branches, one
for the PAN and one for the MS source. The final land cover classification is achieved by concatenating
the features extracted by each branch. The framework is learned end-to-end from scratch.

The evaluation on two real-world study sites has shown that MultiResoLCC achieves better
quantitative and qualitative results than recent classification methods for optical VHSR images.
In addition, the visual inspection of the land cover maps has underlined the effectiveness of our
strategy and it advocates the use of both spatial and spectral information, at their native resolution,
coming from PAN and MS imagery. Improving the quality of LULC maps will positively impacts the
quality of the services built upon such thematic layer. For instance, the retrieval of zonal statistics on a
geographical area as well as information retrieved querying a geospatial data warehouse to support
environmental and urban planning.

As future work, we plan to extend the approach on other optical remote sensing images,
for instance dealing with classification on Sentinel-2 satellite images where the spectral information is
available at different spatial resolutions.
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Abbreviations

The following abbreviations are used in this manuscript:
LULC Land Use Land Cover
VHSR Very High Spatial Resolution
PAN Panchromatic
MS multispectral
MultiResoLCC MultiResolution Land Cover Classification
CNN Convolutional Neural Network
DSM Digital Surface Model
DMIL Deep Multiple Instance Learning
SAE Stacked AutoEncoder
RPG Registre Parcellaire Graphique
RF Random Forest
MRSSF Multi-Resolution Spatial Spectral Features
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