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Abstract 
Dislocation dynamics simulation is used to investigate the effect of grain size and grain shape 
on the flow stress in model copper grains. We consider grains of 1.25 – 10 µm size, three 
orientations (<135>, <100> and <111>) and three shapes (cube, plate and needles). Two types 
of periodic aggregates with one or four grains are simulated to investigate different 
dislocation flux at grain boundaries. It is shown that in all cases the flow stress varies linearly 
with the inverse of the square root of the grain size, with a proportionality factor varying 
strongly with the grain orientation and shape. Simulation results are discussed in the light of 
other simulation results and experimental observations. Finally, a simple model is proposed to 
account for the grain shape influence on the grain size effect.     
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1. Introduction 

Intensive research has been dedicated to the effect of grain size on the mechanical properties 
of metals and alloys (Armstrong, 2014; Cordero et al., 2016; Lasalmonie and Strudel, 1986; 
Li et al., 2016). At the beginning of 1950, Hall (Hall, 1951) used the dislocation pileup model 
proposed by Cottrell (Cottrell, 1953) to explain the relation observed experimentally between 
the lower yield stress of mild steels and the grain size, d. This relation is recognized today as 
the Hall-Petch (HP) law: 
 σ" = σ$ + 𝐾𝑑()/+ , (1) 
where 𝜎$ is a reference stress generally called friction stress and K the HP constant. In the 
following, the quantity K𝑑()/+ is called the HP term. Some years later, Petch (Petch, 1953) 
has shown that the cleavage stress of mild steels also varies consistently with the HP law and 
Armstrong et al. (Armstrong et al., 1962) provided evidence that the HP law applies to the 
whole stress-strain curve and remains valid for most polycrystalline metals and alloys. It was 
also shown by Conrad and Schoeck (Conrad and Schoeck, 1960) and Petch (Petch, 1958) that 
the HP law applies to BCC metals at low temperature, with a temperature quasi-independent 
HP constant. In some experiments, K is found to be constant or to slightly decrease with 
deformation in BCC (P. Pechkovskii et al., 1989; Tsuchida et al., 2008), FCC (Feaugas and 
Haddou, 2003; Meyers et al., 1995) and HCP (Chia et al., 2005) metals and alloys. However, 
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Cordero et al. (Cordero et al., 2016) have shown that some pure metals show an opposite 
behavior with increasing K with deformation. On the other hand, Li et al. (Li et al., 2016) 
have shown that statistical analysis of the ensemble of experimental data on the Hall-Petch 
effect does not allow discriminating between the dependencies on 1/Öd, 1/d, ln(d)/d, etc. This 
has been attributed by Li et al. to the dispersion of results and the experimental errors in 
determining the grain size. 
While the grain size effect applies to many mechanical properties of crystalline materials 
(including microhardness (Hughes et al., 1986)), several phenomenological rationalizations 
are possible (Hirth, 1972). Among the different interpretations, one can cite dislocation pileup 
models (ex. (Navarro and de los Rios, 1988; Smith and Worthington, 1964)), which refer to 
the original mechanism proposed by Hall and assume a stress concentration at the head of the 
dislocation pileup leading to the deformation propagation to the neighbouring grain by either 
activating dislocation sources in the next grain or enabling the transmission of dislocation 
across the grain boundaries (GBs). The incompatibility-type model relies on the original work 
of Ashby (Ashby, 1970) who introduced the concept of Geometrically Necessary Dislocations 
(GNDs) versus Statistically Stored Dislocations (SSDs). Such models interpret the HP effect 
as a result of the GND accumulation, necessary to accommodate strain incompatibility 
between grains. In this approach, the HP constant K is proportional to the square root of the 
plastic strain. However, Cordero et al. (Cordero et al., 2016) have shown that even in the 
cases where K increases with deformation, the increasing rate is not found to follow a square 
root. Also, Li et al. (Li et al., 2016) has pointed out another serious concern about this type of 
models: as K goes to zero in the absence of plastic deformation, the grain size effect must 
vanish at the threshold of plastic strain. Such behavior is not supported by experimental 
observations. A third type of models assumes a composite behavior of polycrystals where the 
grain interior and a layer bounding GBs have different strength (Kocks, 1970). Plastic flow is 
initiated in the GBs region owing to the incompatibility in elastic deformation of adjacent 
grains (Benson et al., 2001; Meyers and Ashworth, 1982). In another approach, Li (Li, 1963) 
(see also (Bata and Pereloma, 2004)) suggested that grain size effects are induced by 
dislocation emission from GB ledges. More recently, Sinclair et al. (Sinclair et al., 2006) 
proposed a new model accounting for dislocation storage at GBs and for their interaction with 
dislocations on the opposite side of the grain. The resulting elastic screening decreases the 
back stress, which in turn predicts a decrease of K with deformation. 
A strong limitation of all existing models is that they do not provide a detailed description of 
dislocation arrangement and interactions in the vicinity of GBs. Numerical simulations are 
then needed to develop more physically justified models. Molecular dynamics are frequently 
used to analyze the GB response to one or few impinging dislocations (e.g. (Dewald and 
Curtin, 2007; Wang et al., 2014)). But the collective dislocation properties responsible for the 
HP effect can only be investigated with larger scale simulations such as discrete Dislocation 
Dynamics (DD). Based on 2D-DD simulations, Biner and Morris (Morris, 2002) studied the 
evolution of the flow stress in polycrystals with one slip system per grain and grain size 
ranging from 2–16 µm. Lefebvre et al. (Lefebvre et al., 2007) made simulations with grains in 
the range 0.5–2 µm size and two slip systems per grain. In both studies, the yield stress was 
found to vary as dn, with an exponent n rather different from -½. 3D-DD simulations appear 
to be the only approach for quantitative investigations. Very few 3D-DD simulations of 
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polycrystalline aggregate have been reported. Ohashi et al. (Ohashi et al., 2007) studied the 
effect of grain size on the stress necessary to activate Frank-Read sources. Their results 
suggest that sources with lengths close to one third of the grain size are the first to be 
activated. This effect was accounted for by introducing an addition hardening term 
proportional to the inverse of the grain size. On the other hand, the accumulation of GNDs at 
GBs was reproduced by Zhang et al. (Zhang et al., 2014) and connected to strain gradient in 
crystal plasticity. Only, De Sansal et al. (de Sansal et al., 2009) investigated the plasticity of a 
periodic polycrystalline aggregate made with regular polyhedral grains. The calculated yield 
stress in these simulations was found to vary with a HP exponent n between -½ and -1. In 
addition, this study underlined the absence of dislocation pileups and intensive cross-slip 
activity in the simulations with grain sizes lower than 1 µm. On the other hand, using 3d-DD 
simulations, El-Awady (El-Awady, 2015) has shown that, depending on the initial dislocation 
density, size effects may result from dislocation starvation, single-source strengthening or 
exhaustion hardening.     
Remarkably, most published studies are concerned with the HP effects in polycrystals made 
of homogeneous equiaxed grains. Nevertheless, many materials of technological importance 
are composed of heterogeneous and non-equiaxed grains, such as bainitic and martensitic 
steels. Using the self-consistent scheme, Berbenni et al (Berbenni et al 2007) have shown that, 
not only the average grain size, but the type of the grain size distribution function and its 
standard deviation strongly affect the flow stress as well. The heterogeneity in grain size 
basically reduces the sensitivity to grain size. On the other hand, although grain shape is 
suspected to have strong effect on the flow stress (Van Houtte, 1982), little is known about 
the influence of grain shape on the HP Law (Delannay and Barnett, 2012; Hansen et al., 2010). 
Using DD simulations, only Yellakara and Wang (Yellakara and Wang, 2014) investigated 
the response of polycrystalline thin films and reported a variation of the HP exponent with the 
simulated volume shape. In the latter study, only cubic and hexagonal shapes were 
investigated, with close aspect ratios.    
Giving the above underlined difficulties in measuring, interpreting, simulating and predicting 
the grain size effects in polycrystals, it is necessary to split the problem into different issues: 
(i) the effect of grain size and shape on the flow stress of individual grains and small 
aggregates with impenetrable boundaries as a function of the loading direction, (ii) the effect 
of dislocation – GB interactions such as absorption, repulsion, transmission, etc. (ex. (Lee et 
al., 1990; Shen et al., 1988)) and (iii) the elasto-plastic interactions between adjacent grains 
(ex. (Raabe et al., 2003; Sachtleber et al., 2002)). Clearly, the Hall-Petch effect cannot be 
correctly addressed without accounting for these three issues together. However, these 
features cannot be investigated by any individual simulation technique because they pertain to 
different scales. Feature (ii) involves the GB atomic structure and disorientation, while feature 
(iii) requires simulations at the macroscopic scale of a representative volume element. In 
contrast, feature (i) is related to the collective dislocation behavior inside one grain, which is 
the scope of mesoscopic simulations such as dislocation dynamics. The complete 
investigation of the Hall-Petch effect is thus still beyond the reach of one numerical 
simulation method. Many simulations at the three relevant scales are still necessary to provide 
a comprehensive picture of grain size effect.  
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In this paper, we report on 3D-DD simulations at the mesoscopic scale, pertaining to feature 
(i). It must be noted that the assumption of impenetrable GBs used in the present study does 
not give a fully description of the dislocation-GB interactions. Such proposition is made for 
reason of simplicity and because the development of more realistic constitutive rules 
accounting for all the phenomena observed at GBs in experiments or in atomistic simulations 
does not exist today. The development of such rules goes far beyond the goal of the present 
study. Still, 2D and 3D-DD simulations, accounting for dislocation transmission at GBs, have 
been proposed with some success (Zhou and Lesar, 2012; Quek et al., 2014; Fan et al., 2015; 
Burbery et al., 2017) to model plastic strain hardening in ultrafine-grains polycrystalline 
aggregates. These studies are considering grain size smaller than 1.5µm and therefore 
dislocation dynamics at very high stress. Contrarily, the present investigation considers grain 
sizes from 1.25 to 10µm and small plastic strain up to 0.2%. Hence, the stress on the 
dislocation arrested at GBs is always relatively low. This is why, the assumption of 
impenetrable GBs is expected to be an appropriate solution to investigate the Hall-Petch 
effect. The objective is to shed light on the evolution of the flow stress of one grain and small 
periodic clusters of grains as a function of the grain/cluster size, shape and orientation. In 
particular the collective dislocation properties are explored and a simple method is proposed 
to account for the grain shape effect. The paper is organized as follows: simulation technique 
and conditions are given in Section 2; then DD calculations on the grain size effect (Section 3) 
and on the grain shape effects (Section 4) are presented. The obtained results are discussed in 
Section 5 and general conclusions are summarized in section 6.    
 

2. Simulation technique and conditions 

The 3D-DD simulation code used in this study is microMegas. The basic features of this code 
are presented in reference (Devincre et al., 2011). In the following, only features important for 
the present simulations are specified. Pure copper is the model FCC material considered in the 
study. As illustrated in Figure 1a, initial dislocation microstructures are built up from random 
distributions of dipolar loops with square shape inside the simulated volumes. Every loop is 
composed of two pairs of edge segments belonging to a given slip system s and two edge 
segments belonging to the collinear system of s, i.e. sharing the same Burgers vector in a 
different glide plane. Dipolar loop distribution is preferred here to a distribution of Frank-
Read sources, because it avoids infinitely strong dislocation pinning points that come with the 
use of sources (Mohles, 2001) and favors the emergence of a realistic 3D dislocation 
networks. At the beginning of simulations, the initial dislocation configuration is relaxed to 
generate an energy-minimized microstructure where dislocation segments are free to form 
junctions or annihilate. This relaxed 3D interconnected microstructure is thus closer to the 
“real” microstructure of un-deformed crystals and avoid using a distribution of Frank-Read 
sources with arbitrary length. The faces bounding the simulated volume are perpendicular to 
the <100> axes of the FCC lattice. Tensile tests are usually simulated by imposing a constant 
uniaxial strain rate in three specific crystalline directions ([100], [111] and [135] directions) in 
order to investigate different slip dynamics in single and multi-slip conditions. Unless 
specified, all values of the yield stress 𝜎- are taken at 0.1% of plastic strain. The copper 
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elastic constants, the Burgers vector and the Schmid factors calculated for the 3 tensile 
directions are listed in Table 1. 

  
Shear 
modulus 
G (GPa) 

Poisson 
ratio n 

Burgers 
vector b (A°) 

Lattice 
friction 
𝝉𝒇 (MPa) 

Schmid 
factor 
𝒎𝟎𝟎𝟏 

Schmid 
factor 
 𝒎𝟏𝟏𝟏 

Schmid 
factor 
𝒎𝟏𝟑𝟓 

42 0.431 2.5525 2.5 0.408 0.272 0.49 
 

Table 1: Main 3D-DD simulation parameters used to model Cu plastic strain 

To make sure that simulations are close to quasi-static conditions, all computations are made 
at relatively low strain rate amplitude. It must be noted here that the strain rate used in 
simulations must be decreased when increasing the grain size since a fixed dislocation 
displacement produces less plastic deformation. The strain rate solutions used with each grain 
size are given in Table 2. Tests have been made systematically to control that the simulation 
results are not modified when the simulated strain rate is decreased by a factor 2. 
Screw dislocation segments are allowed to cross-slip following a framework described in 
(Raabe et al., 2003). As previously discussed in (Dewald and Curtin, 2007), cross-slip is a key 
mechanism in the simulation of polycrystals with grains in the micrometer range. This 
mechanism is needed to avoid rapid exhaustion of dislocation sources when artificial pinning 
points are not considered in the initial dislocation microstructure. 

2.1 Boundary conditions 
Periodic conditions (PC) are applied to the simulated volume in all calculations and two types 
of boundaries are used. With the transparent boundary (TB) condition, dislocations are free 
to cross the simulated volume borders and they automatically reinter the simulated volume 
from the opposite face due to the PC. Alternatively, the impenetrable boundary (IB) condition 
confines dislocation motion inside the grain. Dislocations inside these grains are then 
immobilized when they reach an IB. Hence, TB condition is used to investigate the properties 
of an infinite single crystal (or bulk crystal) and the IB condition is employed to simulate 
plastic slip in grains with non-penetrable boundaries. 
In this study two sets of calculations that make use of IB condition are performed. The first 
geometry is made with one grain occupying the total simulated volume. This simulation 
condition reproduces a polycrystal made of one periodic grain, which is named as the “one-
grain polycrystal” simulation. Comparison between the one-grain polycrystal simulations and 
single crystal simulations that make use of TBs is illustrated in Figure 1. In the one-grain 
simulations, by virtue of the PCs, dislocations accumulating against the IBs experience elastic 
interactions with dislocations accumulated on the other side of the IB. Obviously, this feature 
is a strong limitation of the one-grain simulations since in real polycrystals, dislocations on 
one side of a GB experience interactions with dislocation belonging to an adjacent grain with 
different orientation and therefore different slip activity. 
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Figure 1(a): example of an initial dislocation configuration with a random distribution of dipolar loops; each 
color corresponds to a specific slip system. (b) and (c) are the dislocation microstructures obtained after 
deformation using transparent boundaries (TBs) and impenetrable boundaries (IBs), respectively. 

 
In order to check the pertinence of the one-grain simulations, a second type of geometry with 
larger simulation volumes made of four grains is also considered (see Figure 2). In these 
“four-grain simulations”, adjacent grains are loaded along different axes and contain initially 
different distributions of dislocation loops. This results in different slip activity on both sides 
of the IBs.  

2.2 Grain size and initial dislocation density 
To ideally simulate the HP effect, the influence of grain size on the flow stress should be 
computed, keeping all other microstructure features (such as dislocation density) unchanged. 
It turns out that this requirement is hard to fulfill for the following reason. The initial 
dislocation density is given by 𝜌 = (𝑛 × 4𝑙) 𝑑<⁄ , where n is the number of dislocation loops 
with a squared shape randomly inserted in a grain; l the dislocation loop size and d the grain 
size (see Fig. 1a). As the grain size is increased by a factor of 10 in the simulations, 
considering initial loops size independent of the grain size imposes a variation up to a factor 
of 1000 in the dislocation number between simulations to keep the dislocation density 
unchanged. Hence, working at constant dislocation density leads to strong computational time 
issues as well as geometrical difficulties to set up a realistic 3D dislocation network whatever 
the grains size. Rather, it is simpler to fix an initial loops size proportional with the grain size 
and to keep their number n and distribution unchanged. This simpler solution, similar to the 
one previously used in micro-pillars simulations (see for instance El-Awady, 2015), allows 
for simulations at different grain size with a dislocation density variation smaller than a factor 
100 in good agreement with experimental observations. This is why the dislocation density 
we used in the DD simulations varies with the grain size as reported in Table 2. In addition, as 
discussed by many authors (see for instance El-Awady, 2015), many experimental evidences 
show that it is unrealistic to expect that the dislocation density in the different grain sizes 
would be the same.  
Since the interaction coefficient of the Taylor equation (see Section 3.1) varies with the initial 
dislocation density, the corresponding coefficient (usually called forest interaction strength or 
Taylor coefficient) is calculated from the simulations. The corresponding values are given in 
Table 2. 
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Cubic grain size dimension d (µm) 1.25 2.5 5 10 
Dislocation loop size l (µm) 0.375 0.75 1.5 3 
Dislocation density rini (1012 m-2) 30 7.7 2 0.48 
Strain rate amplitude (s-1) 250 200 50 15 
Average dislocation strength a 0.33 0.38 0.42 0.45 
 

Table 2: Simulation conditions and initial dislocation microstructure definition as function of grain size. The 
Taylor coefficient is calculated from the simulated stress-strain curves at yield. 

 

2.3 Simulated grain shapes 
One of the main goals of this work is to quantitatively evaluate the impact of grain shape on 
the HP law. Hence, three different grain shapes are considered (see Figure 2). We consider 
cube, plate and needle grain shapes, to simulate the shapes frequently found in polycrystals. 
These shapes are close to those observed in recrystallized polycrystals with equiaxed grains, 
or lathes and needles observed during allotropic transformations (bainite, perlite and 
martensite, etc (Bhadeshia and Honeycombe, 2006)) and thin film (Yoshinaga et al., 2008). 

      
Figure 2: (a, b, c) the three grain shapes investigated with the simulations. One {111} FCC slip plane at the 
center of each grain is drawn to illustrate the variation of the slip plane area; (d, e, f) the three different types of 
four-grained simulated aggregates. Grains of the same color are mechanically loaded identically but contain 
different dislocation distributions. 

 
The ratios between the linear dimensions of the three grain shapes are as follows: three almost 
equal dimensions (5;5;5) for the cube grain, two large dimensions (8;8;2) in the plate grain 
and one large dimension (31;2;2) in the needle grain. By convention, the grain size in all cases 
is defined as 𝑑 = √𝑉@ . 
 
 

3. The grain size effects 

Given the limitation of DD calculations, it is clear that DD cannot entirely address the grain 
size effect observed in polycrystals. However, a formulation similar to that in Eq. 1 represents 
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a useful framework for the analysis and interpretation of our results. In this context, the 
friction stress so in the HP law accounts for the intragranular yield stress, as suggested by 
Cordero et al. (Cordero et al., 2016). so is material dependent and this quantity must be 
defined to calculate the HP term. We suppose in the simulations that so is equal to the yield 
stress of an ideal Taylor polycrystal, i.e. a polycrystal of random texture and very large grains. 
For such polycrystals, so is directly related to the Critical Resolved Shear Stress tc measured 
in a single crystal made with the same material. In addition, in the one-grain polycrystal 
simulations, so reduces to the yield stress of an infinitely large grain and the HP law becomes:   
 σ" =

AB
C
+ KdF (2) 

with m is the highest Schmid factor of slip systems calculated in the simulated grain. Here, it 
must be noted that this is the main advantage of the one-grain simulations. Such simulations 
give the possibility to study the grain size effect at the slip system level and to reduce the HP 
law on the active slip systems to: 
 τ" = τH + kdF (3) 
where ty = msy, tc = mso and k = mK the reduced HP constant. 
 
To test the validity of Eq. 2 or Eq. 3, the plastic behavior of a single crystal is first determined 
to calculate the value of tc in all simulations. In single crystals, tc is controlled by forest 
interactions and is expected to follow the Taylor equation: 
 τH = τJ + αGbNρ (4) 
where 𝜏Q  is a lattice friction (solid solution) accounting for dislocation interaction with 
impurities. In the present study, 𝜏Q is fixed to the value of 2.5 MPa in the simulation to mimic 
common copper polycrystals with a low purity. 
In the Taylor equation, the coefficient a is the forest strength coefficient, which was directly 
calculated by DD simulations (Madec et al., 2002). In the following, a simple procedure 
proposed by Devincre et al. (2006) is used to account for the variation of a with the 
dislocation density ρ: 

                                                 (5) 

where αref  is evaluated to 0.4 at ρref= 1012m-2 in the case of a uniform distribution of slip 
systems.  
 
Since the initial dislocation density increases with decreasing grain size (see Table 2), the 
friction stress so in the HP law is following Eq.4 expected to increase with decreasing grain 
size. This variation in so cannot be neglected when calculating the HP term (Kdn). This is why 
so must be assessed. In order to do so, simulations of copper single crystals with increasing 
initial dislocation density are reported in the next section.   

3.1 Assessment of the single crystal behavior 
For each tested initial dislocation density (see Table 2), three different tensile axes were 
considered: [001], [111] and [135]. As explained in section 2, single crystal simulations are 

α =
ln 1/αref b ρ( )
ln 1/αref b ρref( )

αref
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made replacing in the one-grain simulations the impenetrable boundary (IB) condition by the 
transparent boundary (TB) condition. 
As illustrated in Figure 3a, the resolved shear stress t computed in the single crystal 
simulations does not evolve rapidly with the strain. Hence, strain hardening is low. To 
complete this general remark, it can be seen that the [111] orientation as a higher strain 
hardening rate than the [001] orientation while both are under multiple-slip condition. On the 
other hand, the orientation [135], leading to single slip condition, has non-visible strain 
hardening. The computed strain hardening rates are: θ001≈170MPa, θ111≈320MPa and θ135≈0. 
Such behavior is in good agreement with experiments where strain hardening is in the order 
of G/200 in multislip and G/3000 in single slip conditions (Devincre et al. 2008). In these 
conditions, it is possible to evaluate without ambiguity tc in each simulation. The computed 
values are plotted as a function of the initial dislocation density in Figure 3b. As expected, all 
the simulation results are in good agreement with the predictions of the Taylor equation (eq. 
5), when the drift of the forest strength coefficient α associated to the variation of the 
dislocation line tension with the dislocation density ρ is considered. 

  
Figure 3: (a) Stress-strain curves of 3 single crystal simulations with 3 different crystal orientations. 
Computations are made using transparent boundaries of simulation volume of 5µm size. (b) Evolution of the 
CRSS as a function of the initial dislocation density (see Table 2). The full line is the prediction of the Taylor 
equation (Eq. 4). 

Two additional observations can be made from Figure 3b: (i) tc is only slightly affected by 
the orientation of the tensile axis. Hence, the nature and number of active slip systems have 
little influence on the yield stress of single crystal. (ii) Predictions of Eq. 4 constitute a lower 
bound for the values of tc obtained in DD simulations. This is the signature of the effective 
stress needed to impose plastic strain by imposing a finite velocity of mobile dislocations, 
which necessarily causes a shift from the quasi-static critical stress prediction made with the 
Taylor equation. Nevertheless, the difference between the computed values and the model 
predictions never exceeds a few percent. 

3.2 Impenetrable boundaries and plastic strain hardening 
In a second step, comparison is made between the results of the single crystal and the one-
grain polycrystal using the same simulation volumes and the same initial dislocation 
configurations. Going from one simulation to the other implies only to switch from TB to IB 
condition. In Figure 4 we show an example of the evolution of the applied stress (a) and the 
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dislocation density (b) as a function of the plastic strain in a cubic volume of 5 µm loaded in 
the [001] orientation. One can easily see that the flow stress and the dislocation density 
increase with strain much faster in the one-grain simulation than in the single crystal 
simulations. This is a direct outcome of IB condition and a signature of the size effect. The 
large dislocation storage rate observed in the one-grain simulation is a consequence of 
dislocation accumulation at the GBs. 
  

 
Figure 4. Comparison between simulations using transparent boundaries (TBs) and impenetrable boundaries (IBs) 
in a 5 µm cubic simulation volume loaded in the [001] tensile axis: (a) stress-strain curves and (b) dislocation 
density as a function of plastic strain. Dashed lines in (a) correspond to the prediction of Eq. 4 with the 
dislocation density recorded in (b). 

Strain hardening calculated in the one-grain simulation is almost constant and amounts to 
approximately 13 GPa in Figure 4, which corresponds to approximately G/3. This hardening 
rate is 100 times larger than that found in the single crystal simulation. It is computed up to a 
plastic strain of 0.2%, i.e. the conventional elastic limit considered for the determination of 
yield stress in most experiments. As revealed in Figure 4a, the huge hardening rate we found 
in the one-grain simulation takes place from the very beginning of the plastic deformation and 
cannot be justified by an increase of forest hardening induced by the increase of the 
dislocation storage rate (see § Discussion). 

3.3 Hall-Petch effects in the one-grain simulations 
Now, we investigate the effect of the grain size on the yield stress using the one-grain 
simulations. Variations of the grain size are tested from 1.25	𝜇𝑚 to 10	𝜇𝑚 (see Table 2). In 
this section, the grains are cubic and tensile tests are made in different orientations: [001], 
[111] and [135]. Examples of stress-strain curves computed for the one-grain simulations 
deformed in the [135] direction are shown in Figure 5a. Results of these simulations are 
compared with the single crystal behavior obtained with the same dislocation configuration, 
i.e. an initial dislocation density of 2.1012 m-2. One sees that the flow stress increases 
substantially with decreasing grain size. Again, it must be emphasized that this strengthening 
cannot be explained by the modification of initial dislocation density with the grain size. 
Moreover, when comparing the different curves in Figure 5a, it appears that strain hardening 
is weakly sensitive to grain size in those simulations.   
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Figure 5 (a) Example of stress-strain curves obtained with the one-grain simulations for tensile tests along the 
[135] axis and for different grain sizes. The stress-strain curve simulated with TBs is added for comparison; (b) 
evolution of the HP term calculated at plastic strain equal to 0.1% and with the grain size of different 
orientations (full diamonds correspond to solutions obtained with 0.2% offset of plastic strain). 

In order to investigate the grain size effect using Eq. 3, the critical stress tc computed from the 
single crystal simulation is subtracted from the resolved yield stress 𝜏- recorded in the one-
grain simulations. Results of those calculations are plotted as a function of grain size d in 
Figure 5b for the twelve simulations we performed. Simulation results systematically exhibit 
linear dependency on the inverse of the square root of the grain size. In addition, in the case of 
the one-grain simulations oriented for single slip deformation, the grain size effect is tested at 
two plastic strain amplitude (0.1% and 0.2%). From this last set of simulation results, it is 
clear that the slope of the linear fit increases with the selected plastic strain offset.  
Hence, the HP constant K given by the slope of the linear fit (see dashed lines in Figure 5b) 
varies with the loading axis and selected offset of the yield stress. Such variation is not a 
discrepancy of the simulations, but the consequence of the one-grain simulation condition. 
We will see in the discussions section that a realistic value of K can be defined as an average 
of those obtained from the one-grain simulations with different plastic strain amplitudes and 
different grain orientations. 
 

4. Results on the grain shape effects 

4.1 The one-grain simulation  
The same set of simulations described in the previous section was repeated with grains of 
plate and needle shapes.  The increase in the critical stress as a function of the grain size for 
the three tensile directions is depicted in Figure 6. For the sake of clarity, simulation results 
are split into three figures depending on the loading axis. 
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Figure 6. Variation of the HP term as function of the grain size for the three simulated grain shapes and loading 
axis.   

As can be seen, the HP term, i.e. the term (ty - tc), is always approximately proportional to 
1/√d. The HP law seems to be still valid in the case of non-equiaxed grains. However, the 
slope of the curves, i.e. the HP constant K, depends strongly on the grain shape. For the three 
investigated shapes, K has the largest value in the case of needles and weakest for cubic 
grains. On the other hand, the HP constant is higher in the single slip condition ([135] 
orientation), while it remains substantially the same in multislip conditions ([001] and [111] 
axes).  

4.2 Four-grain simulations  
In the previously reported simulations, the HP effect is investigated with particular aggregates 
made of one grain surrounded by its periodic images. We can suspect this configuration to 
induce artifacts due to the equal slip activity on both sides of the GBs. To investigate the 
effect of plastic strain incompatibility at GBs, the behavior of four-grain aggregates 
(described in Sec. 2) is now investigated. For the sake of simplicity, these simulations are 
performed at imposed stress rate (stress-controlled mode). As the previous simulations have 
been made at constant strain rate (strain controlled mode), we first check the consistency 
between the two controlling modes in the simulation. In Figure 7a, the results of one-grain 
simulations with a 2.5µm cubic grain deformed along the [001] and the [111] axis are shown 
as a function of loading modes. From such tests, we see that the two controlling modes give 
basically the same mechanical response and both controlling modes can be used 
indiscriminately in the aggregate simulations.  
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Figure 7. (a) Comparison between stress-controlled (full lines) and strain-controlled (dotted lines) modes for the 
one-grain simulations. The cubic grain is 2.5µm size and two loading axes ([100] and [111]) are considered. For 
comparison, two stress-strain curves calculated with the four-grain simulations using the same grain shape, same 
size and two loading orientations are reproduced in red curves. The two reported four-grain simulations only 
differ in the initial dislocation distributions. The black dashed line is the average of the one-grain simulations; (b) 
evolution of the HP term calculated with the four-grain simulations (open symbols) and calculated as an average 
of the one-grain simulations made with the [100] and [111] loading axis (full symbols). 

 
In addition, in Figure 7a two stress-strain curves taken from simulations of four-grain 
aggregate with grains alternatively oriented in [001] and [111] and different in their random 
initial dislocation distribution are presented. Again, it can be seen that both stress-strain 
curves are very close to each other. This ensures that the initial dislocation microstructure has 
little influence on the simulation results. 
Furthermore, it can be noted in Figure 7a that the four-grain aggregate stress-strain curves are 
close to the average of the stress-strain curves (black dashed line) of the one-grain 
simulations of the [111] and [001] orientations.  
Results relative to the evolution of the HP term calculated with the four-grain simulations as a 
function of grain size and for different grain shapes (cube, plate and needle) are reported in 
Figure 7b. In this figure, we see that the linear dependency of the HP term on the inverse of 
the square root of the grain size applies in all cases. Also, the values of the HP constant K 
(slope of the straight lines in Figure 7b) vary substantially with the grain shapes. The largest 
value of K is obtained with the needle shapes and the lowest for the cubic grains. 

4.3 The Bauschinger effect 
Since most of the dislocation content in the grains are accumulated at grain boundaries, it is 
interesting to investigate a possible Bauschinger effect in our simulation conditions. To do so, 
a specific simulation is performed on the 5 µm grain using the impenetrable boundary 
condition. The tensile axis is [135] and the loading is reversed at 0.3% of plastic slip. The 
corresponding stress-strain curve is given in Erreur ! Source du renvoi introuvable.. 
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Figure 8: Stress strain curve associated to the Bauschinger test made for the 5 µm grain size simulation and the 
loading axis [135].    

As can be noticed on the curve, the strain reversion leads first to a vertical drop of the stress 
with respect to the plastic strain axis. This elastic unload step is followed by approximately 
0.1% of plastic strain reversal. This plastic strain relaxation reveals that one third of the 
dislocation microstructure accumulated at the grain boundary is pushed back when unloading. 
In addition, plastic strain in the compression direction is observed at stress amplitude smaller 
than -5MPa. The Bauschinger effect we calculate is thus very strong and indicates the 
presence of a strong back-stress with an amplitude close to the flow stress. This test clearly 
shows that kinematic hardening is predominant with respect to the isotropic hardening in our 
simulations. 

5. Discussion 

According to the usual interpretation of the HP effects (Armstrong et al., 1962; Cordero et al., 
2016), the yield stress of polycrystals is composed of two linearly superposed contributions: 
the intragranular one, represented by the friction stress so and the intergranular component 
represented by the HP term (Kdn). The main objective of this work is to investigate the 
evolution of the HP term as a function of the grain size and shape when assuming that GBs 
are impenetrable barriers to dislocation motion (i.e. in the relatively low stress and low strain 
conditions). To do so, the HP term must be isolated from the friction stress so in the simulated 
flow stress. In the periodic aggregates models we investigated (one-grain and four-grain 
simulations), so is by definition the flow stress of the same aggregates, but with very large 
grain size. Because of DD simulation limitations, it is not possible to compute directly so. 
This is why the friction stress of each simulation condition must be evaluated. In the case of 
the one-grain simulations, so becomes the yield stress of a large single crystal oriented in the 
same direction as the grain in the simulation. The results reported in Figure 4 prove that so 
can be precisely evaluated by the Taylor equation (Eq. 4) provided that the variation of the 
forest strength a with the initial dislocation density is taken into account. In the four-grain 
simulations, the results reported in Figure 7 show that so can be considered as the average of 
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the Taylor equation predictions of the critical stress of all grain orientations present in the 
aggregate. 

5.1 Size effects in equiaxed grains      
In all simulations performed in this work, we calculated the HP term and examined the 
dependency on d, as given in Eq. 2. Our results show good alignment with dn when -0.7 < n < 
0.3. This is in partial agreement with the statistical analysis made by (Dunstan and Bushby, 
2014) which shows that there is no conclusive experimental evidence of the linearity with 
n = -0.5 dependency. However, when we impose that the fitting lines pass by the origin, only 
values of -0.5 < n < -0.4 provide good fit to our results. This is why, we consider in this 
discussion the exponent to be equal to -0.5. The good alignment with 1/Öd is evidenced, in 
Figure 5 and Figure 6 for the one-grain simulations and in Figure 7 for the four-grain 
simulations. This choice is consistent with the initial HP relation (Hall, 1951)  and many 
experimental investigations (Armstrong et al., 1962; Cordero et al., 2016; Li et al., 2016).  
Since dislocation storage strongly increases when grain size decreases, it is interesting to 
check whether the obtained size effects can be explained by an isotropic hardening resulting 
from the increase in dislocation density. To this end, we first calculate the forest strengthening 
as a function of the recorded dislocation density. Dislocation density increases basically only 
on active slip systems. Therefore, the use of the Taylor equation with an average forest 
strength α is not justified at finite strain. Instead, the tensor form of the Taylor equation 
accounting for dislocation density on each slip system proposed by Franciosi et al. (Franciosi 
et al., 1980) is preferable:  
 
 τZ = τJ + µbN∑ aZ^ρ^)+

^_) .        (6)  
 
In Eq. 6, 𝑎ab is the interaction matrix known from previous DD simulations investigations 
(Hansen et al., 2010), accounting for the interaction strength between slip system i and s. 
Since dislocation density evolution on every slip system is recorded in the simulations, Eq. 6 
gives a precise evaluation of the flow stress all along the stress strain curves. This is done in 
Figure 4a, where predictions of Eq. 6 are plotted in dashed lines for a single crystal simulation 
(transparent boundaries) and for the equivalent one-grain simulations (impenetrable 
boundaries). It can be seen that Eq. 6 correctly predict the flow stress of the single crystal 
simulation but not that of the aggregate simulation, where the predicted shear stress is far 
below the recorded flow stress. Indeed, in the presence of IBs a large number of dislocations 
(with the same Burgers vector and direction) is accumulated close to the boundaries. This 
phenomenon of polarized dislocation structure at GBs leads to a strong intergranular 
strengthening that cannot be predicted by the Taylor equation, used to calculate forest 
strengthening.  
Another feature of interest is the effect of grain size on the evolution of the dislocation density 
storage. It is interesting to compare the dislocation storage computed within the DD 
simulations with a simple geometrical analysis. Neglecting forest interactions, every 
dislocation loop accommodates in cubic grains a shear increment dg » bd2/V, and contributes 
to an increase in dislocation density dr » 4d/V. The rate of dislocation storage is thus dr/dg » 
4/(bd).  
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Figure 9: Rate of dislocation storage as a function of grain size. The dashed line represents the geometrical 

prediction proposed in this work. 

This prediction is compared with simulation results in Figure 9, gathering the results of all the 
one-grain simulations with grains of cubic shape and different sizes and orientations. It can be 
seen that the storage rate recorded in DD simulations is inversely proportional to the grain 
size. Furthermore, the above geometrical prediction is in good agreement with DD results, 
which confirm that almost all stored dislocations are accumulating at the IBs. In other terms, 
we checked that, in the present simulation conditions, dislocation storage in the bulk of the 
grains is almost negligible with respect to that at GBs. The forest dislocation storage term 
(𝛼N𝜌/𝑏) frequently used in the literature when modeling the HP effect is not justified. These 
results are in full agreement with the classical Kocks-Mecking formulation of crystal 
plasticity simulations of polycrystal behavior by Haouala et al (Haouala et al., 2018).   

5.2 Estimation of the HP constant K 
As discussed before, the HP exponent n is found close to -0.5 in all simulations. Therefore, 
the square root dependency is adopted in the following discussion. By subtracting the flow 
stress of large single crystal (so) estimated with Eq. 6, it is possible to calculate the HP 
constant K as a function of grain size and shape. For the one-grain simulations of cubic shape, 
the computed values of K (in MPa√𝑚) is found to vary with respect to the tensile axis: 0.1 for 
the [135] axis, 0.06 for the [111] axis and 0.07 for the [001] axis. This variation is expected 
because the arrangement of dislocations accumulated at the IBs depends on the number of 
active slip systems.  
As discussed in the introduction, the evolution of the flow stress of one grain or small grain 
clusters as a function of the grain size and shape is only one feature of the grain size effects in 
real polycrystals. Therefore, it is useful to compare the value of K calculated in the 
simulations with experimental observations. To do so, one must bear in mind that the 
experimental values are usually obtained on polycrystals with many grain orientations, while 
we have only one grain orientation in the one-grain periodic simulation. Using the Taylor 
hypothesis, which has been confirmed in copper (Kocks et al., 2000), the macroscopic stress 
becomes the average of the loading stress of the different constituent grains. Considering that 
the three simulated orientations are representative of common polycrystal texture, the HP 
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constant measured in experiment can be compared with the average of the K values obtained 
in the simulations. The simple average of our results is K = 0.092 MPa m-0.5, which is below 
the values reported in the literature (in MPa√𝑚): 0.14 (Thompson et al., 1973), 0.19 (Meyers 
et al., 1995), 0.11 (Feltham and Meakin, 1957), 0.15 (Thompson and Backofen, 1971), 0.16 
(Hansen and Ralph, 1982). The latter values yield an average experimental value K = 0.15 
MPa√𝑚, which is 39% larger than that estimated with the simulations. 
Additional thinking suggests that the difference observed between simulations and 
experiments may be due to the selection of the 0.1% strain offset for the definition of yield in 
the simulations, while it is 0.2% strain in the experimental investigations. The 0.1% offset 
was considered in order to reduce the significant computation times. Examining the stress-
strain curves of the one-grain simulations (see for example Figure 5a), it is clear that the flow 
stress increases strongly and monotonously with the strain. The value of K must thus increase 
when fixing the offset of yield strain at 0.2% in the simulation. Only four simulations with 
grains oriented parallel to the [135] tensile axis was conducted to 0.2% of plastic strain. The 
HP terms calculated for these simulations are reported in Figure 5b (full diamond marks). The 
corresponding HP constant K is 0.16 MPa√𝑚, which better matches with the experimental 
values. It is worth noting that the presence of solute element in the grain boundary layer 
increases the stability of grains, which is known to raise the value of K in industrial Cu alloys 
compared to pure Cu (see for ex. Thompson et al. 1973). This finding has recently been 
confirmed in atomistic simulations of the Cu-Al systems by Borovikov et al. (Borovikov et al. 
2017).         

5.3 Effect of grain shape 
As revealed in Figure 6, for all grain orientations the HP constant K increases strongly when 
the grain shape considered in simulation is not cubic. The largest value of K is found with the 
needle shape, with a value two times larger than that obtained for cubic grains. This indicates 
that the HP effect increases when the aspect ratio of the grain is different from 1. We propose 
the following model to account for this property.  
Let us consider grains in the form of parallelepipeds with three independent dimensions. As 
the accumulation of polarized dislocations close to IBs and its associated back stress is at the 
heart of the interpretations of the HP effect, we consider a dislocation loop expanding on a 
slip plane from the center of the grain. Its final length C is equal to the circumference of the 
surface of the slip plan bounded by the grain faces. During expansion, the accommodated 
plastic deformation is proportional to the area S of this surface. If the back stress is mainly 
associated with the polarized dislocation accumulated against IBs, it must be proportional to 
C. On the other hand, during deformation, the back stress increase with deformation is likely 
to be inversely proportional to S. Consequently, we expect K to be proportional to C/S. This 
factor has dimensionality [m-1] and has to be normalized by the corresponding factor of a 
cubic grain shape to recover a factor of unity in the case of equiaxed grains. One can thus 
define a shape factor as: 
 
 ψ =	 f

g
	gBhij
fBhij

 (7) 
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When considering FCC slip system symmetry and parallelepipedic grains with boundaries 
perpendicular to <100> directions, this shape factor takes the value ψ = 1 (cube), ψ = 1.51 
(plate) and ψ = 2.52 (needle). The HP terms deduced from Figure 6 are plotted in Figure 10 as 
a function of 1/√𝑑 weighted by the shape factor. It can be seen that all data now collapse on 
the same straight line going through zero at very large grains. This confirms that the effect of 
grain shape revealed in the simulations is well taken into account using the shape factor 
defined in Eq. 7.  

 
Figure 10. Evolution of the HP term with the grain size multiplied by the shape factor 𝜓 for the three tested grain 
orientations and three grain shapes. 

In other words, our simulations suggest that in order to apply the HP relation in the case of 
non-isotropic grain shapes of a volume V, one should define an effective grain size deff 
accounting for the shape factor given in Eq. 7. The present model is based on the calculation 
of the average dislocation loop length C and the average area swept by dislocations S, 
suggesting the following generalized Hall-Petch relation: 
 

 σ" = σ$ +
l

Nmjnn
        with         doJJ = pqg

f
r
+
× )

√s@
  (8) 

 
Eq. 8 involves three independent parameters because it is developed for parallelepipedic 
grains of three independent dimensions. Of course, for the geometries used in our simulations 
(needles and plates), Eq. 8 reduces to only two independent parameters.  
 

5.4 Plastic strain incompatibility in the four-grain simulations  
 

As shown in Figure 7, the stress-strain curve of four-grain simulations including [001] and 
[111] grains is close to the average of the stress-strain curves calculated with the one-grain 
simulations for the [001] and [111] grain orientations. This result is surprising, since every 
grain is surrounded by grains of different slip activity in the four-grain simulations, while slip 
activity is identical on both sides of the boundaries in the one-grain simulations. The long 
range stress field associated with the polarized dislocation density accumulated at IBs is then 
expected to be different. Thus, in the case of periodic cluster simulations, it seems that the 
flow stress is little sensitive to the details of the grain neighborhood; the overall behavior is a 
simple average of the individual responses of its grains. This result supports the assumption 
made in homogenization methods (Roters et al., 2010) and XRD observations made on grain 
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rotations in polycrystals deformation (Poulsen et al., 2003; Winther et al., 2004), at least, at 
the beginning of plastic deformation. 
Consequently, it is relevant to check if the shape factor defined in the previous section still 
applies to the four-grain simulations with non-cubic grains (see results in Figure 7b). The 
corresponding HP analysis as a function of the effective grain size deff is plotted in Figure 11a 
in which deff was normalized by the norm of the Burgers vector b.  

 
 

 
Figure 11. HP term vs different functions of the effective grain size deff  and the smallest edge length of grain dmin, 
including simulations results on cubic (circles), plate (triangles) and needle (diamonds) shapes on one-grain (full 

symbols) and four-grain clusters with [001] and [111] orientations (open symbols).    

It can be seen that results of the four-grain simulations with different grain shapes (cube, plate 
and needles) are again aligned on the same line passing roughly by the origin. The 
corresponding HP constant K is equal to 0.087 MPa√𝑚, which is quite close to the average of 
the values obtained for the [001] and [111] one-grain simulations (given in full symbols in 
Figure 11). In addition, this value is lower than that obtained from averaging the K values we 
obtained in section 5.2 when accounting for all the one-grain simulations. This discrepancy 
comes from the absence of grains oriented for single slip condition (e.g. <135> orientation) in 
the four-grain simulations. Indeed, we show in Figure 6 that these grains induce the largest 
HP effect. Hence, our simulations show that polycrystal aggregates with texture endorsing 
single slip deformation in the grains are expected to provide enhanced HP effect at the yield 
strain. 
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Following the analyses made by Li et al. (Li et al., 2016), where it has been shown that 
experimental results fit well on different functions : 1/Ö deff, 1/deff and  ln deff /deff, it is 
important to check if this feature applies also on our results. In Figure 11c and d, we plot the 
values of the HP term given in  Figure 11a as a function of 1/deff and ln deff /deff, respectively. 
Also, as sometime proposed in the literature, we plot in Figure 11b calculated values of the 
HP term as a function of dmin, the smallest edge length of grains. It can be noticed that any of 
these tests gives data aligned on a straight line passing by the origin. The trends observed in 
Figure 11c and d cut the y-axis at a significantly high value (» 30 MPa). This feature cannot 
be easily rationalized using physical arguments. Consequently, the best rationalization of our 
results seems to be given using the inverse of the square root of the effective grain size.        
 
 

6. Conclusion 

In this paper, we investigated the flow stress of periodic grains and 4-grain clusters of 
different sizes and shapes with impenetrable boundaries. The following conclusions can be 
drawn from the DD simulations reported in this paper: 

- The critical resolved shear stress of single crystals is correctly predicted by the forest 
model given by the Taylor equation providing that the logarithmic dependency on the 
dislocations density of the forest strength (a) is appropriately accounted for. 

- Strengthening induced by dislocations accumulated at GBs cannot by predicted using 
the Taylor equation. An alternative constitutive equation will be proposed in a 
forthcoming paper. 

- The yield stress at 0.1% and 0.2% offset of plastic strain in grains of orientations 
<100>, <111> and <135> and shapes cube, plate and needle, is found to vary almost 
linearly with the inverse of the square root of the grain size. 

- The grain size effect on the flow stress varies strongly with the grain orientation. The 
average of the HP constant values (K) calculated at 0.2% offset of plastic strain is 
close to the values reported in experiments on copper polycrystals. This suggests that 
the strong assumption we made when considering GBs as impenetrable captures the 
basic mechanical features that take place at low plastic strain and low stress. 

- The HP constant varies strongly with the grain shape. A shape factor is proposed to 
account for this sensitivity and an effective grain size is defined in order to keep using 
the HP relation in the case of non-equiaxed grains.   

- The mechanical response of periodic four-grain aggregates is well approximated by 
the average of responses of its constituent periodic grains. 
 

Modeling the grain boundary interactions with moving dislocations (absorption, repulsion, 
emission) requires specific physically based constitutive rules for the boundary response. 
Such rules can only be addressed in atomistic simulations, where the atomic structures and 
thermodynamics of the boundaries are fully accounted for. On the other side, only DD 
simulation gives the possibility to reproduce the kinematic conditions associated to realistic 
dislocation patterns accumulated in the vicinity of grain boundaries. This information is 
essential to investigate the long-range internal stresses and stress concentrations affecting 
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plastic deformation of polycrystals. Multiscale modeling of the inter- and intragranular 
features of plastic deformation of polycrystals is an exciting perspective that remains to be 
explored. 
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