
HAL Id: hal-01931420
https://hal.science/hal-01931420v3

Submitted on 9 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fine-grained statistical structure of speech
François Deloche

To cite this version:
François Deloche. Fine-grained statistical structure of speech. PLoS ONE, 2020, 15 (3), pp.e0230233.
�10.1371/journal.pone.0230233�. �hal-01931420v3�

https://hal.science/hal-01931420v3
https://hal.archives-ouvertes.fr


Fine-grained statistical structure of speech

François Deloche*

francois.deloche@polytechnique.org

March, 2020

Abstract

In spite of its acoustic diversity, the speech signal presents statistical regularities that can be
exploited by biological or artificial systems for efficient coding. Independent Component Analysis
(ICA) revealed that on small time scales (∼ 10 ms), the overall structure of speech is well captured
by a time-frequency representation whose frequency selectivity follows the same power law in
the high frequency range 1–8 kHz as cochlear frequency selectivity in mammals. Variations in
the power-law exponent, i.e. different time-frequency trade-offs, have been shown to provide
additional adaptation to phonetic categories. Here, we adopt a parametric approach to investigate
the variations of the exponent at a finer level of speech. The estimation procedure is based on a
measure that reflects the sparsity of decompositions in a set of Gabor dictionaries whose atoms
are Gaussian-modulated sinusoids. We examine the variations of the exponent associated with the
best decomposition, first at the level of phonemes, then at an intra-phonemic level. We show that
this analysis offers a rich interpretation of the fine-grained statistical structure of speech, and that
the exponent values can be related to key acoustic properties. Two main results are: i) for plosives,
the exponent is lowered by the release bursts, concealing higher values during the opening phases;
ii) for vowels, the exponent is bound to formant bandwidths and decreases with the degree of
acoustic radiation at the lips. This work further suggests that an efficient coding strategy is to
reduce frequency selectivity with sound intensity level, congruent with the nonlinear behavior of
cochlear filtering.
Keywords: Independent Component Analysis, efficient coding hypothesis, sparse coding, Gabor dictionaries,
acoustic phonetics, auditory coding

Introduction

Persons with normal hearing can effortlessly grasp the meaning of utterances from an acoustic
signal that has a rich structure even on short time scales. Discovering the attributes that efficient
speech processing systems need to incorporate can help us to better understand how hearing
works. It is also important for the development of more effective hearing aids or automatic speech
recognition devices. A concern in the study of these systems is how they can efficiently represent
speech sounds, a question that can be addressed within the framework of Shannon’s information
theory. The assumption that the brain processes sensory signals by optimizing an information
theoretic criterion is called the efficient coding hypothesis [1]. The original formulation of this
hypothesis states that sensory systems reduce the redundancy of neural signals in order to make
maximum use of coding capacity [2, 3, 4]. Redundancy is reduced if natural stimuli are represented
with a set of features as independent as possible, a principle that is translated in practice into
a method of data analysis known as Independent Component Analysis (ICA). ICA seeks a
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transformation – in most works linear – that makes the components of high dimensional data
statistically independent. When applied to a specific class of data, the representation produced by
ICA reveals its overall structure [5], and at the same time gives an insight into an efficient sensory
coding scheme [6]. The sparseness of activation patterns is another popular criterion for coding
efficiency [7]. It corresponds both to the idea that the brain seeks to limit neural activity in an
attempt to save neuronal resources, and to a sparsity hypothesis on the underlying structure of the
input signals. Sparse coding is similar to Independent Component Analysis when the independent
components are associated with sparse activations, and algorithms of sparse coding have been
used to investigate the structure of sensory signals as well [8, 9]. The efficient coding approach
initiated numerous studies on the properties of the visual system [10], and is also the basis for
comparable studies on the auditory system, whether on peripheral processing [11, 9, 12], or more
recently on higher level processing (e.g. modulation filters) [13, 14, 15, 16].

Independent Component Analysis applied to speech waveforms results in a time-frequency
representation whose frequency selectivity follows the same power law in the high frequency
range 1–8 kHz as the frequency selectivity of the mammalian cochlea [11]. While this finding is
consistent with the hypothesis that speech statistics are adapted to peripheral auditory processing,
it cannot be easily interpreted in terms of signal structure. The diversity of phones in a language
makes it difficult to offer a single interpretation of the decomposition revealed by ICA that would
apply to any speech sound. In addition, it is possible that some regularities that are not captured
by ICA, applied to speech data as a whole, exist at a finer level. In order to get a description of
the statistical structure of speech based on concrete properties of the signal, one approach is to
split the speech data into categories of sounds that share common acoustic features. In 2013, Stilp
and Lewicki applied ICA to phonetic categories (e.g. fricatives, stops, affricates, vowels) instead of
speech as a whole [17]. They found that the trade-off between time and frequency resolution was
different depending on the class used at the input of ICA and assumed that the time-frequency
resolution is mostly explained by the transiency of sounds within a class. Rapid changes in
time would make the optimal filters shift towards a time representation with poorer frequency
selectivity. This view, however, does not fully explain why vowels result in a representation that
is more localized in time than fricatives for example. We also do not know if the predefined
broad phonetic categories that were used are the most relevant to signal structure. Phonemes
and categories of phonemes have been extensively described by their acoustic properties, but a
comprehensive account of how these properties affect the statistical structure of speech is still
missing.

This article aims to provide a description of the fine-grained statistical structure of speech using
a simplified representation model. Previous work on the efficient coding of speech has shown
consistent properties for the representations learned. When ICA is applied to speech data, it
produces a bank of filters that resemble Gabor filters – i.e. Gaussian modulated sinusoids [18, 11, 9],
whose frequency selectivity is related to center frequency by a power law [11]. Recent analyses
took advantage of this fact and used one parameter, the regression slope of the quality factor Q10
on center frequency fc – on a logarithmic scale – to discriminate between representations learned
from different speech data [17, 19]. The Q10/ fc coefficient, referred to as the parameter β in this
article, characterizes the time-frequency resolution trade-off in the high frequencies: frequency
accuracy at the expense of time accuracy, or inversely. In this study, we fully adopt the parametric
approach to analyze the statistical structure of speech at a fine subdivision of speech. We use a
cost function that reflects the sparsity of decompositions in Gabor dictionaries to estimate β, then
we investigate the variations of this single parameter over different phonetic categories or over
different time points of single phonemes. The main acoustic properties that play a role in the
determination of β can be inferred from these analyses. Along with actual speech data, we also
use artificial signals with explicit structure to support the interpretation of the results. In addition
to revealing the relationships between acoustic features and the best time-frequency trade-offs, this
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work further suggests that an efficient strategy for speech coding is to reduce frequency selectivity
with sound intensity level, consistent with the nonlinear behavior of cochlear filtering.

Materials and methods

The analyses in this work are based on the parameter β, the Q10 on fc exponent, which has been
shown to summarize many speech representations learned with Independent Component Analysis
in previous work. The optimal β value is estimated for many subsets of speech data, using a set of
overcomplete dictionaries of Gabor filters. The outline of the method is as follows: the speech
slices are decomposed in the dictionaries indexed by β, and a cost function h(β) reflecting the lack
of sparsity is computed for the resulting decompositions. The dictionary that minimizes the cost
function averaged over the selected samples, offering the most sparse representation, provides an
estimate of the best value β? for the corresponding data:

β? = arg min
β

h(β) .

In the rest of the article, β refers to β?, the optimal choice of the parameter, when there is no
possible confusion with the other values.

In the methods section, we first justify the representation model and describe the construction
of the Gabor dictionaries. The cost function is then introduced, and at this occasion a formal link
with ICA is proposed. The last subsection details the analyses that were conducted, both on real
speech data and artificial signals.

Gabor dictionaries and interpretations of the β parameter

The candidates for the best representations were a set of 30 overcomplete dictionaries of Gabor
filters corresponding to different β values, ranging from 0.3 to 1.2 with a constant step. A Gabor
filter w(t) is a Gaussian-modulated sinusoid (imaginary part is ignored), associated with the
best time-frequency resolution allowed by the Heisenberg-Gabor inequality [20]. A more precise
mathematical argument in favor of Gabor filters is that they offer the most sparse patterns for
cross Wigner–Ville distributions [21]. This choice is also consistent with the filter shapes found
empirically with ICA [18, 11, 9]. The equation of a Gabor filter is:

w(t) = C sin(ωt + φ) exp(− (t− τ)2

4σ2
t

) (1)

where τ, σt, φ, fc are respectively the time shift, time deviation, phase, and center frequency,
and C is a normalization factor that ensures that all atoms have the same root mean square value.
Each dictionary was composed of 600 Gabor filters uniformly distributed in time, frequency and
phase. The only parameter that remained to be set was the width of each atom, also determined
by the frequency selectivity. A measure of frequency selectivity is the quality factor Q10, defined
by fc divided by the 10 dB-bandwidth ∆ f . When ICA is applied to sufficiently broad subclasses of
speech sounds, the Q10 factor of the resulting filters, plotted against center frequency, is well fitted
by a line on a log-log scale. The intercept was found redundant with the slope of the regression in
recent analyses, with most of the lines crossing around the point ( f0 = 1 kHz, Q0 = 2) for various
speech data at the input of ICA [17, 19]. We relied on these previous studies by considering that
the β parameter, corresponding to the regression slope of Q10 on fc, is a synthetic parameter of
the representations learned.

The parameter β describes a fundamental property of time-frequency analysis as it makes
the distinction between constant resolution (β = 1) and multi-resolution (β→ 0) decompositions
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(Fig 1A). A constant resolution decomposition is associated with a unique characteristic bandwidth
whereas in a multi-resolution decomposition, filter bandwidths are proportional to center frequen-
cies. This parametrization corresponds to a class of dictionaries called flexible Gabor-wavelets
or α−atoms in the field of time-frequency analysis, with the correspondence β = 1 − α [22].
Another interpretation of β is that it controls the time-frequency trade-off in the high frequency
range (Fig 1B). We will say that the representation shifts towards a time decomposition when β
approaches the minimum value.

The range for the β values [0.3, 1.2] was chosen to encompass all the values of β found in
previous work. To ensure more diversity of filters, some randomness was added to the Q-factor
with multiplicative noise. It follows that

log Q10( f ) = log Q0 + β(log f − log f0) + 0.04η (2)

where the log is taken in base 10 and η is i.i.d. noise drawn from the normal distribution.
As for the other parameters that follow a uniform distribution, the ranges were respectively
[1–6.5 kHz], [2–14 ms] and [0, π] for center frequency, time shift and phase. The time shift did not
cover the full range of the time window (T=16 ms) in order to avoid potential boundary effects
due to truncated filters.

Figure 1: a. Interpretation of the β parameter. β is the slope of the quality factor Q10 on center frequency
fc (both axes are on a logarithmic scale). β = 1 characterizes unique resolution decompositions (e.g.
Windowed Fourier Transform), whereas β = 0 characterizes multi-resolution decompositions (e.g. Constant-
Q Transform, Wavelet Transform). The most sparse decomposition of speech is obtained with β = 0.75.
b. Examples of filters that compose the Gabor dictionaries indexed by β. These dictionaries are
the candidates for the most sparse decompositions of the speech signals. The β parameter controls the
time-frequency trade-off in the high frequencies: for β = 0.4, the filters are localized in time but poorly
selective in frequency (top), contrarily to filters for the higher value β = 1 (bottom). left: time waveforms.
right: Corresponding frequency responses (gain in dB).

Data

The speech data was retrieved from the TIMIT database [23]. It provides recordings of sentences
in American English as well as labels on their phonetic content segment by segment. Slices
of 16 ms of speech were considered, representing n = 256 samples at fs = 16 kHz. The slices
were preprocessed with a filtering and normalization step. They were filtered by a high pass
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Butterworth filter of order 8 with a cut-off frequency at 1.5 kHz. The choice of a high cut-off
frequency is not common for speech analysis as frequency components below f0 = 1 kHz also
contain much information, but the focus of this study is on the high frequency region above
the intersection point of the power laws at f0. In addition, the dictionaries are all the same at
f0, meaning that the region of discrimination is in even higher frequencies. The normalization
step was done by dividing each slice by its root mean square (RMS value). The TIMIT database
indicates the time of releases for stops and affricates. This information was used several times in
the analyses, in particular the closure part, which contains no high frequency information, was
always ignored.

In addition to real speech data, we also analyzed artificial signals with similar structure to
speech sounds. The generation of this synthetic data is described further in the paragraph Artificial
signals.

Cost function

Given some speech data, we need a criterion to select the best representation among the Gabor
dictionaries. We adopted the view of sparse coding by considering that the sparseness of response
activations has to be maximized [7]. We consider n−dimensional vectors X, representing the
time waveforms of the preprocessed 16 ms slices. Our goal is to select the best set of filters
Wβ = (W1, ..., Wm) among the Gabor dictionaries indexed by β. Let Yβ = WT

β X be the output
vectors obtained by decomposing the input vectors in the Gabor dictionaries. A raw measure of
sparseness is expressed by the average sum of the response activations:

hraw(β) = E
(
||Yβ||1

)
= E

(
∑

i

∣∣∣[WT
β X]i

∣∣∣) . (3)

This measure is the L1 norm of the output vector. This method differs slightly from many
other sparse coding methods [8, 24] in that there is no attempt to reconstruct the input signal from
the output. This corresponds to a first step of processing (an analysis step) where the complete set
of decompositions is computed, but there is no subsequent selection of atoms.
The actual cost function included weights as normalization factors:

h(β) = E

(
∑

i
γi

∣∣∣[WT
β X]i

∣∣∣) . (4)

The choice of the weights is explained in the paragraph Weighting strategy. In a final step, we
normalized the cost function with h(β) set to 1 for the less sparse signals.

The cost defined as above measures the lack of structure, and related to a coarse measure of
entropy, as explained in next paragraph. Average values of h over the set of Gabor dictionaries were
considered simultaneously with β. Low values of h characterizes sounds that present structure,
typically vowels. On the contrary, maximum values of β characterize sounds that are similar to
noise (ex: obstruents: fricatives, stops. . . ). Another interpretation of h that applies to many speech
sounds is that it is a measure of localization. A signal with a single peak will be associated with a
minimum cost h: β will reach the minimal value if this peak is on the time axis (and the maximal
value if it is localized in frequency).

Link with Independent Component Analysis

The cost function has a formal link with the entropy minimization formulation of Independent
Component Analysis [1, 5]. From this perspective, the goal of ICA is to minimize the mutual
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information between the components of the output vector Y = WTX :

I(Yi, · · · , Ym) = ∑
i

H(Yi)− H(Y) . (5)

This expression is nonnegative and equals zero if and only if the components are independent.
However, one needs a probabilistic model to estimate the sum of entropy terms. For speech,
marginal distributions for various time-frequency decompositions are well approximated by
Laplace distributions q(y) [25] characterized by:

log[q(y)] = log γ/2− γ|y| (6)

where γ is a scale parameter proportional to the quadratic mean. The Laplace distribution
encourages the sparsity of decomposition coefficients, as most of the values of Yi are around zero
under this prior. It has been used multiple times for ICA applied to speech [9, 17]. Under this
prior, the entropy terms in the sum ∑i H(Yi) can be replaced by cross-entropy terms, yielding the
following approximation:

∑
i

H(Yi) ≈ −E

(
∑

i
log qi(yi)

)
= −∑

i
log γi/2 + E

(
∑

i
γi

∣∣∣[WT
β X]i

∣∣∣) , (7)

where the variable term is the cost function previously defined (Eq 4).
The above reasoning did not take into account the last term −H(Y) in Eq 5. If W is a square

matrix, this term is related to the entropy of the input and can be replaced by − log |det W|. This
behaves as a penalty term that ensures that the column vectors of W represent all directions of the
n-dimensional space and avoids the collapse of filters during learning. However, the penalty term
has no natural expression for overcomplete families of filters (m > n) [26]. In our method, the
diversity of filters is ensured by the construction of dictionaries, since the filters that compose the
dictionaries are uniformly distributed in time, frequency, phase. Therefore, the dictionaries were
considered to be on an equal footing and the penalty term was ignored. With this cost function,
our method produced β values that are consistent with previous studies on the statistical structure
of speech based on ICA, and a part of the results obtained in this work was reproduced with ICA
(discussed further in Results and Discussion sections).

Weighting strategy

The actual cost function includes weights as normalization factors:

h(β) = E

(
∑

i
γ( fi)

∣∣∣[WT
β X]i

∣∣∣) . (8)

where fi is the center frequency of the i-th filter and γ( f ) typically is an increasing function of
the frequency. We define three weighting strategies:

• Strategy A (raw scores): we make no difference between the components, setting γ( f ) = γ0
to a constant.

• Strategy B (spectral whitening): we set γ( f ) to be inversely proportional to the amplitude
spectral density (for speech: +5dB/octave).

• Strategy C is a balance between the two strategies defined above. It consists in applying a
slighter gain of +2.5dB/octave.
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As seen in the previous paragraph, strategy B is mathematically justified and corresponds to the
normalization of the marginal distributions. It ensures that medium frequencies do not override
high frequencies due to the natural decrease in energy along the frequency axis. However, it has
the opposite effect on high frequency sounds (e.g. sibilant fricatives), leading to erratic behaviors
for these classes of sounds. The more naive Strategy A is also interesting in this respect because it
considers the response patterns without any assumption about the global power spectrum. The
results presented in the core of the article were obtained with the intermediary strategy (Strategy
C). We also provide the central figure on phonemes, obtained with Strategies A&B, as supporting
information (S1 Appendix).

Data analysis

The results of two analyses on speech data are presented in this article. Analysis 1 is an esti-
mation of the β parameter for phonemes or categories of phonemes, in the continuation of Stilp
and Lewicki’s work. Analysis 2 goes further by describing the temporal behavior of β within
phonemes.

Analysis 1: The purpose of this analysis is to estimate the β value associated with the most
sparse decomposition for different classes of speech sounds: broad phonetic categories (fricatives,
stops, vowels. . . ) or single phonemes. We retrieved occurrences from the TIMIT database for each
class of speech sounds, randomly sampled from throughout the database: 400 occurrences for
single phonemes, or 800 occurrences for phonetic categories. We used 800 samples for the phonetic
categories to get more robust estimations of β? since they contain a greater diversity of sounds. A
16 ms slice was selected at random for each occurrence, and the cost functions h(β) were computed
according to Eq 8. The scores were then smoothed with a Gaussian filter (σ = 0.03) along the β
axis, and the minimum score was obtained for β = β?. The values plotted in this article are the
means and 70% confidence intervals of bootstrap distributions. They were obtained by repeating
the estimation of β? 3 000 times with re-sampled versions of the 400 (or 800) slices with repetitions.
Alternatively, bootstrap distributions can be represented by box plots as done in Fig 2. Examples
of histograms for the bootstrap distributions are shown in S2 Appendix. For the broad phonetic
categories, the phonemes were divided into vowels, stops, fricatives, affricates, laterals/glides
(semivowels) and nasals (as defined in the analysis by Stilp and Lewicki, see Table 1 in Ref 17
for the detailed division of phonemes). We chose not to represent the confidence intervals on h
because the variations are small (standard deviation of order 0.01).

Analysis 2: The purpose of the second analysis is to describe the variations of β?, the optimal
value of β, on a finer time scale. The motivation behind Analysis 2 is that some phonemes like
affricates or stops are subject to acoustic changes even within an occurrence, which can have
an impact on the time course of β? within phonetic units. 400 occurrences were retrieved from
the TIMIT database for each phoneme, as in Analysis 1. This time, eight 16 ms slices at regular
intervals were considered for each occurrence, possibly with some overlap, instead of a single
slice by occurrence. As the occurrences do not have the same duration, the eight steps represent
relative time rather than absolute time (1 is the start of occurrence, 8 is the end). The procedure for
estimating β? was the same as described for Analysis 1. This yields 8 values of β? that represent
the temporal evolution of β?. Additional figures on this analysis (e.g. duration histograms) are
included in S3 Appendix.

As an additional verification of our methods and results, we also reproduced Analysis 1 on
vowels and nasals using Independent Component Analysis (ICA). The analysis essentially follows
the same procedure described in the work by Stilp and Lewicki [17], therefore not detailed here.
The main difference of approach is that the regression slopes (β?) were estimated by constraining
the regression line to cross the point ( f0, Q0). This choice was made in order to be consistent with
the parametric representation model used in the current study. The description and discussion of
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this analysis can be found in the appendix S4 Appendix. In the main text, we mention the results
of this analysis when they differ from the parametric method, or when they can provide other
insights.

Artificial signals

In parallel to the real speech data, we simulated and analyzed two kinds of synthetic signals to
support the interpretation of the results. The first kind of synthetic sounds is noises windowed
in time or in frequency, with similar structure to consonants. The second kind of synthetic
signals simulates sounds emitted by a uniform cylindrical waveguide with different radii. These
simulations were conducted so as to illustrate two key factors that are shown to affect the value of
β in this paper: the localization of noises in time or frequency for consonants (obstruents), and the
degree of acoustic radiation at the lips for vowels.

Simulation 1: The generated signals were created by applying a Gaussian window on noise in
time or frequency. The purpose of Simulation 1 is to compare the behavior of β? on noise sounds
when they are localized in time or frequency. 200 samples of 16 ms were generated with the
following procedure. Initially, the noise sounds are samples of Gaussian white noise filtered by a
low pass filter of order 1 (cut-off at 2 kHz). Each sample is associated with a parameter u ranging
from 0 to 1, that controls the time/frequency modulations (u = 0: first sample, localized in time,
u = 1: last sample, localized in frequency). At u = 0, the samples of noise are windowed by a
Gaussian of time deviation σt = 0.01× T = 0.16 ms. At u = 1, the noise is convolved by a Gaussian
filter (windowed in the frequency space) of frequency deviation σf = 0.01× fs/2 = 80 Hz. The
sounds of intermediate values make the transition between these two configurations. From 0 to
0.5, they go through time windowing with σt increasing. From 0.5 to 1, they are windowed in
frequency with σf decreasing. u = 0.5 is pink noise that goes through little modulation. Some
values for the modulation widths are given in Table 1. More details are given in supporting
information (S1 File). We also provide an audio file (S2 File) showing the transition between all
the samples.

Simulation 2: The second kind of generated signals simulates sounds emitted by a uniform
cylindrical waveguide, open at one end, and with different values for the cross-sectional area. The
goal is to synthesize vowel-like sounds with various bandwidths. The termination impedance was
chosen as for a radiating sphere of radius r [27] :

Z = ρ0c
[

(kr)2

1 + (kr)2 + j
kr

1 + (kr)2

]
, (9)

where k = ω/c, ρ0 and c are resp. air density and the speed of sound. To account for other
surface losses in the waveguide, k was substituted with k = ω/c− jα, α = 1.2e− 5

√
ω/0.01 as in

Ref [28]. The waveguide length was similar to the length of the vocal tract (in average 16.5 cm).
We generated again 200 samples. This time, the parameter u ∈ [0, 1] controlled linearly the radius
r of the cylinder, ranging from r = 0.2 cm (u = 0) to r = 1.3 cm (u = 1). Some values of u and r
are given in Table 1. See S3 File for more details on the generation and S4 File for a sound file
showing the transition between all the samples.

For Simulations 1&2, we estimated β? for the 200 generated samples with a procedure similar
to Analyses1&2. More precisely, after the decompositions and the computation of the scores on
each sample were done, we obtained a 200× 30 score matrix h(u, β). We applied a Gaussian filter
(σ = 1) on the u-axis, then we computed β? on each row.
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Table 1: Correspondence between the control parameter u and modulation widths (Simulation 1)/aper-
ture radius (Simulation 2).

u σt (ms) σf (Hz) r (cm)
0 0.2 – 0.20 ([U])

0.2 1.0 – 0.42 ([u], [O])
0.4 4.5 – 0.64 ([2], [I])
0.6 – 2000 0.86 ([i], [E])
0.8 – 470 1.08 ([æ])
1 – 80 1.30 ([A])

For reference, we give examples of vowels that have comparable sectional area under the assumption of a
circular aperture (see Ref 29 for more precise data).

Results

It is recalled that in the following, β refers to β?, the exponent of the power law satisfied by
Q10, with respect to center frequency, offering the most sparse decomposition of the data. The
results are presented going each time at a finer level of speech, first for non-structured sounds
(stops, fricatives, and affricates), then for structured sounds (vowels, semivowels, and nasals).
This distinction is justified in the next paragraph. This comprehensive description suggests a
level dependence of the statistical structure of speech, which is analyzed in the last subsection of
Results.

The distinction between structured and non-structured sounds

The distribution of values β obtained for the broad phonetic categories (Fig 2) is consistent with the
distribution of exponents found by Stilp and Lewicki (a further comparison is in Discussion). The
addition of the average value of the cost function h, reflecting the lack of structure, demonstrates
the existence of two separate types of sounds being structured sounds (h < 0.7: semivowels,
vowels, nasals) and non-structured sounds (h > 0.7: stops, affricates, fricatives). The latter are
characterized by poor time and/or frequency structure. It does not mean that consonants have no
structure at all on a larger time scale (e.g. stops have a clear time pattern closure - burst - opening
phase). It means, however, that non-structured sounds are more easily related to noise on small
times scale of about 10 ms. The distinction between structured and non-structured sounds is
relevant to our analysis because we found that the factors determining β are different for each
type. They are described separately in the following paragraphs. Most sparse signals are the
approximant [ô] (β = 0.82) and the related vowels [Ä] (β = 0.85) and [Ç] (β = 0.88) with h = 0.47
for the three phonemes, not represented in Fig 3. h is more than twice larger for the least sparse
sounds being the fricatives [f] (h = 1.00, maximal value) and [S] (h = 0.95).

The phonetic categories are unequal in terms of variability. The bootstrap confidence intervals
on β reflect the diversity of acoustic features within a category. For example, affricates, which
borrow acoustic features from both stops and fricatives, are characterized by large confidence
intervals covering almost the entire range of values. The consistency of bootstrap confidence
intervals is confirmed in the following paragraphs when the statistical structure of the phonetic
categories is described in more details. The figure at the finer level of phonemes (Fig 3) shows
that variability can sometimes be explained by opposite values of β within a class. Most of the
fricatives are in the region β > 1, but we find other fricatives ([v], [D], [f]) in the opposite region
β < 0.5. Other times, the same variability is observed at the level of phonemes, showing that
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Figure 2: Distribution of American English broad phonetic categories in the (β, h) plane. The box plots
show the quartiles Q1, Q2, Q3, the [5%, 95%] percentiles (whiskers) and the mean (dot) of the bootstrap
distributions based on 800 samples for each category. stops_rl and stops_rl2 are for first parts and second
parts of stop releases (see paragraph Stops, fricatives, and affricates). The diamonds show the values found by
Stilp and Lewicki for the same categories using Independent Component Analysis [17].

Figure 3: Distribution of American English phonemes in the (β, h) plane. β is the exponent of the power law
satisfied by the quality factor with respect to center frequency for the most sparse representation of the data.
High values of h characterize the lack of structure. The labels are positioned on the means of the bootstrap
distribution. The lines represent 70% bootstrap confidence intervals. The bootstrap distributions are based on
400 samples for each phoneme and 3000 repetitions.
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this variability still exist at finer level. For example, the affricate [dZ], the fricative [T] or the stops
[t] and [k] still have large confidence intervals. Although there is some scattering among the
fricatives and stops, phonetic categories form consistent groups. Most of the time, phonemes that
are close in the acoustic space are also close in the (β, h) space. However, the phonetic categories
that were used for Fig 2 do not always offer the best clustering of the data for statistical structure.
Some phonemes appear to belong to a cluster different from their attributed category. The main
examples are the aspirant [h] going with the cluster of fricatives, the fricatives [v] and [D] with
stops, the stop [g] with the laterals [j] and [l], the flap [R] with approximants.

Another measure of the significance of β is contrast, defined by the relative difference between
the maximum and minimum value of h. By noting hmin = minβ h(β) and hmax = maxβ h(β),
contrast c is defined by

c =
hmax − hmin

hmax
.

It is small for a flat cost function and large when the cost function has a clear minimum. c = 1% for
speech as a whole when the scores are averaged over all the samples. The phonetic categories are
in increasing order of c: affricates (0.4%), stops (0.7%), fricatives (1.7%), vowels and approximants
(1.8%), and then nasals (2.1%). Contrast again indicates a strong variability for stops and affricates
which requires to be examined at a finer level. This is done in the following subsection.

Stops, fricatives, and affricates

Stops, fricatives, and affricates are non-structured sounds (associated with the highest values of
the cost function h), meaning that they are more easily assimilated as noise. Gaussian noises
windowed in time or in frequency (Simulation 1) provide a coarse model for non-structured
sounds. Gaussian white noise maximizes entropy for fixed output power. In the case of non-
structured sounds, the coding strategy amounts to reduce the noise in the output components, by
decreasing the mean amplitude value. In the ideal case of a decomposition that maintains total
power throughout the transformation, the most efficient strategy is to have filters with an almost
zero output and filters with maximum response. This strategy increases the sparsity of the signal
decomposition as it puts as many outputs as possible with zero response. More generally, the
optimal decomposition of noise sounds shifts toward a time (or frequency) decomposition if it
has a sharp power increase/decrease in the time (or frequency) domain. We illustrate this fact
with Simulation 1 on modulated noises (Fig 4A). β takes the lowest value (time representation)
when the noise is multiplied by a Gaussian function localized in time. Then, β increases up to
a median value as the Gaussian expands. At the same time, h increases because any structure
is lost. Halfway through the simulation, at u = 0.5, the generated samples lose most structure,
and h is maximum. β has a rather erratic behavior and the score function becomes flatter as
indicated by the low contrast value. The symmetrical pattern takes place when the simulation
goes on frequency modulations. At u = 1, β takes the highest value (frequency representation).
For a stop, the modulation function can be thought as a gate function in the time domain with
random time for the burst. This is close to simulation with u=0 when the modulated noises show
a rapid increase in intensity for a short amount of time. Based on this very simplified model, we
expect the time representation to be optimal. Stops are indeed associated with low β values (Fig 3
from Analysis 1), but the large bootstrap confidence intervals indicate a more complex behavior
described further on.

Fricatives are more explicit for now with Analysis 1 because they can be well approximated
by stationary processes. Fricatives are the result of turbulent airflow occurring at a constriction
in the vocal tract. The noise produced at the place of constriction is then filtered by the vocal
tract, similar to the generated sounds passing through frequency modulations in Simulation 1
(u > 0.5). Most fricatives are characterized by values of β close to 1 consistent with this frequency
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Figure 4: Best decompositions of artifical signals. Scatter plot, left: distribution of generated signals in the (β, h)
plane. Right : contrast against the control parameter u. a. Simulation 1: Modulated noises from time
windowing (u = 0) to frequency windowing (u = 1). Samples at u = 0.5 are neither modulated in time
nor in frequency (white noise). This simulation shows that β is related to localization for noise sounds:
time localization corresponds to a minimal β value (as for stop onsets), frequency localization corresponds
to a maximal β value (as for sibiliant fricatives). b. Simulation 2: Radiated sounds at the output of a
uniform cylindrical waveguide with different radii, from r = 0.2 cm (u = 0) to r = 1.3 cm (u = 1). Greater
apertures means greater losses, wider bandwidths, hence lower values of β.

description (Fig 3). It is at least true for the sibilant fricatives (β > 1). Sibilant fricatives are filtered
with a short cavity after the alveolar ridge and therefore present sharp increase/decrease of power
in the high frequency range. It is a clear trend for the hissing alveolar fricatives [s] (c = 4%) and
[z] (c = 3%) and it remains valid for the hushing post-alveolar fricative [S] (c = 1%). However, the
wide-band labial or dental fricatives [f], [T], which are less affected by vocal filtering, are associated
with lower β values (c = 1%, c = 0.6%, resp.) and maximal h values (poor structure). Voiced
fricatives are an intermediary case for what has been seen as they are affected by both time and
frequency modulations. In addition to vocal filtering, the sound intensity follows the repeated
openings and closures of the glottis. The coincidence of time and frequency modulations is likely
to explain the shift to bottom-left on the (β, h) plane when replacing the unvoiced versions of the
fricatives by the voiced ones (compare [s], [h], [T], [f] with [z], [H], [D], [v], resp.).

The description of stops and affricates must be refined to take into account dynamic aspects.
Stops and affricates change in time following the pattern closure - release burst - release transition.
During the closure, no sound is emitted (or a low frequency sound only as in [b]). Closures were
always ignored in the analyses because they do not contain high frequency information. After
the closure, the release can be divided into two phases. The first phase is the burst following
the instant of the occlusion release. During this phase of small duration (few milliseconds), the
intensity increases and decreases rapidly and the power spectrum is typically flat. In the second
phase – the opening or aspiration phase – there is still some obstruction at the place of articulation
and/or aspiration at the glottis, resulting in sounds similar to fricatives [30]. We conducted a
specific analysis to determine if the biphasic nature of stops and affricates has an impact on the
parameter β. We performed the procedure described Analysis 1, but this time we separated the
releases into two parts of equal duration. The results, reported in Figure 5, show that the dual
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nature of stops and affricates is also revealed by β. While the first parts containing the bursts
(suffix _rl) are characterized by minimal values of β, the second parts (_rl2) are characterized by
higher values close to 1. Values for stops as a category are also reported in Figure 2 with the same
suffixes. This analysis shows that the opening phase of stops is in reality similar to fricatives with
regard to statistical structure.

We can describe further the temporal behavior of β for stops and affricates with the results of
Analysis 2. Figure 6 provides the time evolution of β within some phonemes. The parameter β is
stable for vowels or nasals – apart from diphthongs – but it increases during the occurrences of
stops and affricates, joining the extreme values. This behavior is consistent with the description in
the previous paragraph. However, this transition is more or less abrupt depending on the nature
of the opening phase. The stop [t], whose opening phase is similar to the sibilant fricative [s], has
a fast transition after the burst. In contrast, the stop [p] has a more gradual transition. We explain
this gradual transition by the fact that the opening phase of the stop [p] is similar to the low β
fricative [f] on which some formant structure appears gradually when the back cavity plays a role
again (as for the high β fricative [h]). Although the change is less pronounced, fricatives have also
an upward shift of β at their onset.

Figure 5: Detailed distribution of stops and affricates in the (β, h) plane. When stop or affricate releases are
separated into two parts of same duration, first parts _rl (including the bursts) are best represented in a
dictionary with a low β value (time representation) but second parts _rl2 are best represented in a dictionary
with a high β value (frequency representation), similar to fricatives. The figure shows the means of the
bootstrap distributions and the 70% bootstrap confidence intervals.

Vowels, semivowels, and nasals

The reasoning in the previous section cannot apply to structured sounds, in particular vowels. For
these sounds, structure has to be made explicit.

The structure of vowels can be seen both in time and in frequency. Along the frequency axis,
vowels are characterized by spectral peaks arranged at intervals of about 1 kHz, corresponding
to the resonances of the vocal tract (formants). However, we make the remark here that the
harmonics of F0 are not resolved on the time scale we consider, and therefore do not play any role
on statistical structure in our analysis. On the time axis, the signal presents peaks of intensity at
the instant of glottal closure remaining true if the signal is band-passed around formants. The
latter statement stands at least for the first formants as higher formants can be excited at other
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Figure 6: Temporal evolution of β for some phonemes. The time steps represent the relative times between the
beginning (Start) and end (End) of the occurrences at regular intervals. The region filled represents 70%
confidence intervals. Stop onsets are associated with minimal values of β (time representation), but the
opening phases are associated with higher values. a. Vowel: A, diphtong: eI, nasal: m b. Affricates: tS, dZ,
fricative: D c. Stops: d, k, p, t d. Fricatives: f, z, s, S.

instants, especially at the glottal opening [31]. On one glottal cycle, a naive image of the underlying
structure in the time-frequency plane can be a comb shape whose “teeth” represent the formants.
The complete structure cannot be perfectly covered by a single Gabor filter bank: a representation
is always a compromise between time and frequency favoring either the glottal pulse or the tails of
the formant oscillations. From a frequency point of view, it means that either the wideband parts
of the signal associated with low response and low group delay, or the narrow bands associated
with the formants, are favored. This competition between the pulse and the formant oscillations
has a visible effect on the quality factor of the efficient coding filters at medium frequencies,
especially between 1 and 2 kHz. When ICA is performed on back vowels, which have low second
formants, the quality factor increases at 1 kHz more steeply than for front vowels (see Fig 1 of
Ref 17). This effect is also visible when ICA is conducted on single phonemes (as reported in S4
Appendix).

The optimal representation, regardless of the point raised in the previous paragraph, is expected
to be related to formant bandwidths. Formant bandwidths are determined by the level of damping,
hence by acoustic losses, in particular wall losses at low frequencies and radiation losses at high
frequencies [32, 33]. Since higher formants play a greater role in the determination of β, a key
factor for the statistical structure of vowels is the degree of acoustic radiation at the lips. The level
of acoustic radiation depends on the termination impedance, which increases with frequency and
lip opening [27, 34] . Simulation 2 shows the impact of aperture radius on β with synthetic vowels
generated by simulating a uniform cylindrical waveguide (Fig 4B). We obtain a maximal value of β
with the smallest aperture (u = 0), associated with low damping and narrow bandwidths, but we
get the opposite for a larger aperture (u = 1). The two end points are separated by a steep phase
transition occurring between u=0.5 and u=0.7 (r=0.7–0.9 cm). The correction of the wave number
that we used in the simulation corresponds to a low estimate of surface losses. Hanna and al.
proposed instead to increase this correction by a factor 5 [28] : we found that this change makes
the transition to be close to u = 0. The estimation of acoustic radiation with aperture radius is an
approximation, in particular it does not take into account inner reflexions [32]. The same trend

Fine-grained statistical structure of speech - 14



can still be observed for real data although the transition is less pronounced. The vowels form a
tight cluster around β = 0.6± 0.2, but the unrounded vowels and diphthongs [æ], [E], [eI], [aU],
and [aI] yield lower β values than the rounded vowels [u] and [U] (Fig 3). The intermediate sounds
[O], [@], [2], [i] and [I] are found in between. The vowel [A], however, does not match the rest of
the distribution – this may be the consequence of the constriction at the back of the vocal tract
weakening the effect of acoustic radiation at the lips. This analysis on vowels has been reproduced
using Independent Component Analysis (ICA). The results, shown in S4 Appendix, confirm the
trend described above. The largest differences in the β values are found for the low back vowels
[O] (ICA: 0,68, parametric method: 0.78) and [A] (ICA: 0.63, param.: 0.7). ICA also demonstrates
that the biggest disparity in quality factors between vowels is found in the region 1–5 kHz. The
analysis on generated samples revealed the other trend that h decreases at the same time as β
(Fig 4B). The most likely reason for this phenomenon is that narrow bandwidths (high β values)
fill the time-frequency domain with longer tails while damped signals (low β values) are localized
in time, therefore sparser. However, the trend is not sufficiently clear on phonemes to conclude
that this rule applies to real data.

The nasals are found in the continuity of the vowels, with higher values of β and h, meaning
that nasals are better adapted to a frequency decomposition. We explain this fact by the presence
of antiresonances surrounding the formants which have the effect of cutting the bandwidths of
the nasals. An element that supports this argument is that we find high quality factors close to
fc = 3 kHz when ICA is applied to the [m] sound (S4 Appendix). This frequency is associated
with the second antiresonance of the mouth cavity. The above explanation is rather contrary
to the known fact that nasals have wider bandwidths due to greater surfaces losses. This is
not contradictory since the region of interest is in the high frequency range and the values of
wide bandwidths (e.g. 10dB bandwidths) are more significant here than the usual narrower 3dB
bandwidths. The estimates of β using ICA, although in the upper part of the cluster of vowels and
nasals, are smaller than those obtained by the parametric method, particularly for the [n] sound
(ICA: 0.75 , param.: 0.92).

Semivowels are within the same range of values of β and h as vowels. The rhotic approximant
and r-colored vowels occupy the lower right part of the cluster (β = 0.8, h = 0.47) in the (β, h) plane.
A possible explanation for the low score h for r-sounds is that they present a strong frequency
decrease in high frequencies, hence the underlying structure for the high-passed filtered signal is
essentially a prominent peak in frequency close to 1 kHz.

Level dependence of the statistical structure of speech

The above-described variations in statistical structure are effectively summarized by describing
the level dependence of the parameter β. This analysis is also significant because the frequency
selectivity of the inner ear changes with sound intensity level (see in Discussion: Agreement with
the efficient coding hypothesis and cochlear signal processing). Fig 7 shows the value of β as a
function of intensity level by intervals of 5dB. The left part of the figure corresponds to the lower
sounds of speech, which are mainly the non-structured sounds (Stops, fricatives, and affricates).
We have seen that, at least if we ignore the onsets of plosives and affricates, non-structured sounds
are better decomposed with a value of β close to 1, congruent with the plateau observed in
Fig 7 when these parts are removed. The right part of Fig 7, corresponding mostly to vowels,
is characterized by a decrease in β. It can be explained by the fact that, for vowels, formant
bandwidths increase at the same time than lip opening, then sound intensity level. To verify this
explanation, we reproduced Fig 7 with the synthetic vowels generated by Simulation 2. We found
the same decrease in β with sound intensity level, but with a steeper transition (S1 Fig).
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Figure 7: Exponent β with respect to intensity level. Exponent β associated with the most sparse decomposition
of speech sounds of same intensity, in 5dB intervals (ref:max). In blue: Full speech, in red: same but with the
first parts of stop and affricate releases removed. The box plots show the quartiles, the [5%, 95%] percentiles
(whiskers) and the mean (dot) of bootstrap distributions obtained from 2 500 16 ms-slices of speech. Contrast
is under 1% before the knee and above after.

Discussion

Distribution of the parameter β for phonetic categories

The overall distribution of β values for the broad phonetic categories (fig 2) is in agreement with
the regression slopes of Q10 on fc (on log-log scale) found by Stilp and Lewicki using Independent
Component Analysis. In particular, the slope β is found between 0.7 and 0.8 for speech data as a
whole, with both ICA and our method. The most noticeable gap is for nasals (0.9 compared to
1.05 in Stilp and Lewicki [17]). However, when the regression line is constrained to cross the point
(Q0 = 2, f0 = 1 kHz), in accordance with our setting, ICA generates β estimates that are lower
than those found by Stilp and Lewicki for nasals and vowels, and consistent with the parametric
estimation (the correlation coefficient is r=0.90 between the β values found with the two methods
on vowels and nasals). The discussion of these results is developed in S4 Appendix. The exact
value of β using the parametric method depend on several experimental settings, in particular: the
values of f0 and Q0, the preprocessing of data, the weighting strategy. However, we have found
that the distribution of β values, and their interpretation in terms of statistical structure, are robust
to changes in these parameters.

Phonemes that are close acoustically were found together in the (β, h) plane, showing the
consistency of β with acoustic properties. The detailed distribution at the level of phonemes (Fig 3)
shows the consistency of the phonetic categories used by Stilp and Lewicki. These categories,
however, could be adjusted. For example, the aspirant [h] belongs to the cluster of fricatives rather
to the cluster of semivowels, in the (β, h) plane.

Relationship between the parameter β and acoustic features

In the Results section, we inferred the main acoustic factors that affect the β parameter based on
the distribution of β values at the level of phonemes (or below). Some of these properties coincide
with previous proposals, but others are new or clarify some previous ideas.

In 2002, Lewicki examined whether the spectral tilt – the natural decrease of power spectrum
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density – could explain the power law satisfied by the quality factor [11]. His conclusion was that
there is no connection between the two. The average power spectrum density indeed has a low
impact on signal structure, because the efficient coding filters are localized in frequency – it has an
effect on the weighting between midrange and high frequencies but not on the atomic components.
An exception is that the addition of a decrease or increase in the power spectrum leads to the
emergence of frequency structure in the case of non-structured sounds. This reasoning applies
in particular to fricatives: the high-pass filtered hissing sounds [s] and [z] are associated with a
higher value of β compared to fricatives with broadband spectrograms (e.g. [f]).

In 2013, Stilp and Lewicki listed three others acoustic factors that could affect the value of
β: harmonicity, acoustic transience and bandwidths [17]. We argue that the F0 periodicity plays
little if no role because the efficient coding filters are shorter than the period length. Therefore,
harmonicity in the usual sense (F0 harmonics) does not add any frequency structure on this
time scale (unlike formant structure). More generally, acoustic changes of characteristic time
greater than the duration of a glottal cycle (e.g. coarticulation, formant transitions) do not have a
significant impact on the efficient coding filters as such. We have found that an acoustic factor
more significant than harmonicity for the statistical structure of speech is voicing. The fact that
voiced sounds are characterized by scarce time-localized excitations has the effect of enhancing
time localization, and decreasing both β and h. Consequently, vowels have been shown to be
associated with relatively low values of β, a result that could appear counterintuitive. Vowels are
sustained sounds that are often believed to be better captured by a frequency representation. This
view might be biased by the source-filter model that focuses on the resonances in the frequency
space and makes extensive use of Fourier analysis. The analysis of the statistical structure of
speech supports the opposite view that a time decomposition, i.e. characterized by a low quality
factor, would be more appropriate for the efficient coding of vowels. This work reinforces the
view that transiency is a key acoustic factor for the statistical structure of speech, since the lowest
values of β are reached for stop bursts because of the sudden increase in intensity. It also supports
the hypothesis that β is related to formant bandwidths for vowels and nasals. It suggests that, for
these phonemes, two key acoustic factors are the degree of acoustic radiation at the lips and the
existence of antiresonances. A factor related to the degree of acoustic radiation is vowel openess
(but more specifically lip opening). The value of β is decreased by greater opening but increased
by antiresonances, however these two parameters alone do not explain the entire distribution of
values for vowels and nasals.

Because β is bound to a small number of acoustic factors, the description of the statistical
structure of speech could be extended to non-speech sounds (animal vocalizations and other
environmental sounds). However, this assertion must be verified by a separate analysis.

Agreement with the efficient coding hypothesis and cochlear signal processing

Early in the study of the efficient coding of speech using ICA, a parallel was drawn between the
theoretical optimal decomposition of speech and cochlear tuning [11]. Estimates of the frequency
selectivity of the inner ear based on physiological measurements in mammals are consistent with
the power law model used in our model [35, 36]. The exponent is about the same than for ICA
filters, although slightly lower (0.6 compared to 0.7-0.8). This agreement is a replication in the field
of audition of a result in visual neuroscience: ICA or algorithms of sparse coding applied to natural
images produce oriented Gabor wavelet-like filters similar to the receptive profiles in the primary
visual cortex [8, 37]. Speech, however, is special in that it is a human-controlled stimulus, even if it
is subject to acoustic constraints. At the time of the first analyses of speech using ICA, Lewicki
proposed the hypothesis that speech evolved to be optimally coded by the auditory system, rather
than the contrary. The specificity of human auditory tuning is still a subject of controversy. While
it has been argued that it is not very different from unspecialized mammals [38], there is increasing

Fine-grained statistical structure of speech - 17



evidence that frequency selectivity is significantly higher in humans [39, 36], especially in response
to low intensity sounds [40]. Lewicki also suggested that an explanation for the median β value is
the right balance between transient and sustained sounds in speech. The same agreement with
physiological data was obtained with a mixture of environmental sounds and animal vocalizations
[11]. The scattering of β when ICA is performed on subclasses of speech could however imply
a more efficient coding scheme. Stilp and Lewicki suggested that the distribution of values is
congruent with the diversity of time-frequency trade-offs of the characteristic responses found
in the cochlear nucleus [17]. But they admitted that these observations for the neurons of the
cochlear nucleus stand for single tones but maybe not for complex stimuli. It can be added that
the recombination of filters subsequent to the cochlear decomposition is a compute intensive task,
difficult to integrate in an efficient coding scheme.

Instead, we argue that if an efficient coding strategy is implemented in the auditory system
to adapt the neural representation to the input, it should be achieved at the periphery. The
assumption that the auditory filters are fixed does not reflect the actual behavior of the inner
ear. Due to compressive nonlinearities in the cochlea, the shape of the auditory filters changes
with the input signal. As a first approximation, this nonlinearity can be characterized by a level
dependence, with a broadening of filter bandwidths when sound intensity level is increased. This
nonlinearity is stronger in high frequencies [41, 42, 43], consistent with the initial assumption
that the variations in the quality factor are small at 1kHz but large at 8kHz. The description of
the fine-grained statistical structure of speech shows that an agreement with nonlinear cochlear
signal processing is plausible. The β parameter is indeed negatively correlated to sound intensity
(Fig 7), at least if the first parts of stops and affricates containing the bursts are ignored. However,
it would require further investigation to determine if the specificity of onsets reflects one aspect of
the temporal processing of the inner ear (e.g. short-term adaptation).

One of the limitations of comparisons with the auditory system based on Gabor filters is that
cochlear filters are not symmetric in the time domain [44]. The filters at the output of ICA do not
present a strong asymmetry, but asymmetric filters can be obtained if sparse response patterns are
reinforced by a matching pursuit algorithm [12]. Another limitation of the method used in this
study is that the results of ICA can depart from the power law model when considering specific
classes of speech sounds (some cases have been described in S4 Appendix). The parametric model
is still convenient because speech sounds can be compared at a fine level with a single parameter.
Including the intensity level as a control parameter provides a simple strategy to adapt dynamically
the coding to the input, in addition reflecting the nonlinear behavior of the cochlea. An adaptive
code based on phonemes would not be feasible in practice because it would take too long to
recognize a phoneme before the representation could be adjusted, on the contrary the sound
intensity level is a parameter that can be captured instantaneously. However, the fine-grained
statistical structure of speech, as described in this article, is only one aspect of the regularities
present in the speech signal. In particular, the correlations involved in the determination of β are
under 10 ms, but speech coding systems have also to exploit regularities on higher time scales to
be fully efficient.

Conclusion

This work showed that a parametric approach, based on dictionaries of Gabor filters and a sparsity
score, can be used instead of ICA to investigate the power laws characterizing the frequency
selectivity of efficient speech decompositions. The power-law exponent, the β parameter, provides
a rich interpretation of the fine-grained statistical structure of speech. The analyses, based on
real and simulated data, made explicit the relationships between the exponent and the acoustic
features of speech. The key acoustic factors were enumerated according to the dichotomy between
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structured and non-structured sounds. For non-structured sounds (obstruents), which can be
related to noise, the value of the exponent is explained by the localization of intensity or spectral
power. Among non-structured sounds, stops and affricates have been shown to be biphasic after
the closure: the transient part (burst) is better captured by a time representation, but the end of
the release is a fricative-like sound better captured by a frequency representation. For structured
sounds, mainly vowels, the power laws are related to formant bandwidths and the degree of
acoustic radiation, partly determined by lip opening. The analysis predicted that the exponent
should be negatively correlated with sound intensity to be adapted to speech statistics. Cochlear
frequency selectivity in mammals also follows a power law whose exponent decreases with sound
intensity level; hence, the present study suggests a connection between nonlinear cochlear filtering
and the fine-grained statistical structure of speech. Further analyses will have to be carried out to
determine whether the efficient coding hypothesis can be extended for peripheral auditory coding.
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