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Résumé— Prédiction de la pression miscibilité minimum (MMP) du CO2 en utilisant un algorithme

basé sur l’ACE (Alternating Conditional Expectation) — L’injection de gaz miscibles est une des

méthodes les plus utilisées pour améliorer la récupération d’hydrocarbures (Enhanced Oil

Recovery, EOR). En raison du coût important de cette technique, un haut degré de précision

est requis pour prédire le processus. Une telle précision comprend les paramètres de dépistage

préliminaires pour le déplacement de gaz miscible, la pression minimale de miscibilité

(Minimum Miscibility Pressure, MMP) et de la disponibilité du gaz.

Toutes les méthodes de mesure du MMP conventionnelles sont des processus consommateurs

de temps requérant de ce fait des coûts importants. Par conséquent, afin de répondre aux

demandes de réponses rapides du secteur, une approche non paramétrique basée sur

l’algorithme ACE (Alternating Conditional Expectation) due à Brieman et Friedman [Brieman

L., Friedman J.H. (1985) J. Am. Stat. Assoc. 80, 391, 580-619], est utilisée dans cette étude

pour estimer les MMP. Cet algorithme recherche les transformations optimales d’un ensemble

de facteurs prédictifs (ici C1, C2, C3, C4, C5, C6, C7+, CO2, H2S, N2, Mw5+, Mw7+ et T) et

d’une réponse (ici MMP) à modéliser qui produisent le maximum de corrélations entre les

facteurs et la réponse transformée. Cent treize points de données MMP sont considérés, issus à

la fois de la littérature et de travaux expérimentaux. Cinq mesures MMP correspondant à un

champ pétrolier koweı̈tien sont incluses dans les données de test. Le modèle proposé est validé

en utilisant une analyse statistique détaillée ; un coefficient de corrélation de 0,956 est obtenu

par comparaison avec les corrélations existantes. De même, l’écart type et la moyenne des

valeurs d’erreurs absolues sont minimales : respectivement 139 psia (8,55 bar) et 4,68 %. Par

conséquent, il s’avère que les résultats sont plus fiables que les corrélations existantes pour

l’injection de CO2 pur pour améliorer la récupération du pétrole. En plus de sa précision,

l’approche ACE est plus puissante, rapide et peut gérer un ensemble de données énormes.

Abstract— Predicting CO2 MinimumMiscibility Pressure (MMP) Using Alternating Conditional

Expectation (ACE) Algorithm — Miscible gas injection is one of the most important enhanced oil

recovery (EOR) approaches for increasing oil recovery. Due to the massive cost associated with this

approach a high degree of accuracy is required for predicting the outcome of the process. Such accu-

racy includes, the preliminary screening parameters for gas miscible displacement; the “Minimum

Miscibility Pressure” (MMP) and the availability of the gas.
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All conventional and stat-of-art MMPmeasurement methods are either time consuming or decidedly

cost demanding processes. Therefore, in order to address the immediate industry demands a nonpara-

metric approach, Alternating Conditional Expectation (ACE), is used in this study to estimate

MMP. This algorithm Breiman and Friedman [Brieman L., Friedman J.H. (1985) J. Am. Stat.

Assoc. 80, 391, 580-619]estimates the transformations of a set of predictors (here C1, C2, C3,

C4, C5, C6, C7+, CO2, H2S, N2, Mw5+, Mw7+ and T) and a response (here MMP) that produce

the maximum linear effect between these transformed variables. One hundred thirteen MMP data

points are considered both from the relevant published literature and the experimental work. Five

MMP measurements for Kuwaiti Oil are included as part of the testing data. The proposed model

is validated using detailed statistical analysis; a reasonably good value of correlation coefficient

0.956 is obtained as compare to the existing correlations. Similarly, standard deviation and average

absolute error values are at the lowest as 139 psia (8.55 bar) and 4.68% respectively. Hence, it

reveals that the results are more reliable than the existing correlations for pure CO2 injection to

enhance oil recovery. In addition to its accuracy, the ACE approach is more powerful, quick and

can handle a huge data.

NOMENCLATURE

AARE Average Absolute Relative Error (%)

ARE Average Relative Error (%)

C1 Methane mole fraction

C2 Ethane mole fraction

C3 Propane mole fraction

C4 Butane mole fraction

C5 Pentane mole fraction

C6 Hexane mole fraction

C7+ Heptane plus mole fraction

CO2 Carbon dioxide mole fraction

E Mathematical expectation

e2 Regression error

f Function

HCcomp A group, mole fractions of hydrocarbon

composition

H2S Hydrogen sulphide mole fraction

Ln Natural log

Mw5+ Molecular wt of pentane plus

Mw7+ Molecular wt of heptane plus

MMP Minimum Miscibility Pressure (bar)

NHCcomp A group, mole fractions of non-hydrocarbon

composition

N2 Nitrogen mole fraction

r Correlation coefficient (%)

RE Relative Error

r2 Ratio of data variability

RMSE Root Mean Square Error

SD Standard Deviation of the errors

SSE Sum of Squares of the Errors

SSR Regression Sum of Squares

SST Total Sum of Squares

T Temperature (oC)

Tr Transform

INTRODUCTION

The injection gases most commonly used for enhanced

oil recovery processes are generally not miscible upon

first contact with the reservoir fluids that they are dis-

placing. Miscible gas injection into an oil reservoir is

among the most widely used enhanced oil recovery tech-

niques and its applications are increasingly evident in oil

production worldwide. Two important concepts associ-

ated with the description of miscible gas injection pro-

cesses are the Minimum Miscibility Pressure (MMP)

and Minimum Miscibility Enrichment (MME). The

MMP has typically been accepted as the pressure at

which practical maximum recovery efficiency is

observed. In other words, it is the lowest pressure at

which gas and oil become miscible at a fixed temperature

and the displacement process becomes very efficient

(Ayirala and Rao, 2006). It is considered as one of the

most important factors in the selection of candidate res-

ervoirs for gas injection at which miscible recovery takes

place and it determines the efficiency of oil displacement

by gas.

MMP can be measured by employing experimental

and non-experimental methodologies. In the industry,

there are many experimental techniques available to esti-

mate MMP such as; slim tube (Yellig and Metcalfe,

1980; Huang and Dyer, 1993), rising bubble apparatus

(Christiansen and Haines, 1984), multi-contact experi-

ment or mixing-cell experiment (Bryant and Monger,

1988; Menzie and Nielsen, 1963; Turek et al., 1988),

pressure-composition diagram (Orr and Jensen, 1984),
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vanishing interfacial tension (Gasem et al., 1993), falling

drop technique (Zhou and Orr, 1995), vapour density

(Harmon and Grigg, 1988) and high pressure visual sap-

phire cell (Hagen and Kossack, 1986). The non-experi-

mental methods consist of both analytical and

numerical approaches. All empirical correlations (Al-

ston et al., 1985; Kuo, 1985; Glaso, 1985; Orr and Silva,

1987) and Equation of State (EOS) also belong to the

analytical techniques. In EOS techniques for MMP cal-

culations, the complex multicomponent system is

streamlined into its lite, medium and heavy ends along-

with pseudo components. A two phase region is devel-

oped and subsequently the critical region identification

gives the value of MMP (Yurkiw and Flock, 1994).

Non-experimental computational methods are fast and

convenient alternatives to otherwise slow and expensive

experimental procedures. This research focuses on

the analytical aspect of MMP estimation. It introduces

a non-parametric model to improve the MMP

estimation.

1 MMP DETERMINATION (EXPERIMENTAL TECHNIQUES)

Slim-tube experiment is widely accepted as the industry

standard experimental procedure to estimate the

MMP. Because of lack of sufficient data points and the

small amount of dispersion in the displacements, esti-

mating the slim-tube MMP may be difficult (Johns

et al., 2002). P-X (Pressure-Composition) diagram, multi

contact, core flooding tests and vapour density experi-

ments of injected gas versus pressure at low temperatures

are generally reliable because they use real fluids and can

capture the complex interactions between fluid flow and

phase behaviour in a porous medium. These experi-

ments, however, are very slow (usually take number of

days or weeks) and relatively expensive to conduct,

and thus, after a long laborious endeavour a very few

MMP are obtained.

Other experimental MMP methods, such as Rising

Bubble Apparatus (RBA) experiments and Vanishing

Interfacial Tension (VIT) tests are not reliable and

mostly unaccepted because usually they miscarry the

reproduction of fluid flow and phase behaviour relations

in Condensing-Vaporizing floods (Jessen and Orr, 2008).

The RBA test is a fast way to estimate the MMP during

vaporizing gas drive injection study. The test involves

direct visual observation of the behaviour of a bubble

of injection gas as it rises through a column of reservoir

oil contained in the RBA cell.

Many investigators (Novosad et al., 1989; Elsharkawy

et al., 1992; Huang and Dyer; 1993; Srivastava et al.,

1994) had conducted comparison studies between slim

tube and RBA techniques. VIT experimental technique

is quite simple in terms of its principles. This method is

based on the concept that, at miscibility conditions there

is zero Interfacial Tension (IFT) between the two

phases. Actually, IFT is measured between the injected

gas (solvent) and crude oil at reservoir temperature at

varying pressures or enrichment levels of gas phase.

Finally, an extrapolation of the plot between IFT and

pressure to zero interfacial tension determines MMP

(Rao, 1997).

Further to this, a few researchers also investigated

the modification of existing experimental methods;

Srivastava and Huang (1998) suggested a single bubble

injection technique to extend the applicability of RBA

to measure MMP for solvent gases exhibiting enriched

gas drive behaviour. Kechut et al. (1999) proposed

Vapour Liquid Equilibrium-Interfacial Tension

(VLE-IT) approach that measures the IFT between the

injected gas (solvent) and the oil at reservoir temperature

and varying pressures using a prototype equipment.

2 MMP DETERMINATION (NON-EXPERIMENTAL
TECHNIQUES)

Computational methods provide fast and cheap alterna-

tives to MMP experimental approaches. They are also

requisite tools in tuning equations of state to calculate

MMP for compositional simulations. Incorporating the

MMP in the process of tuning can improve the accuracy

of equations of state in gas displacement simulations

(Jessen et al., 2004; Yuan et al., 2004). The non-

experimental methods for MMP determination are clas-

sified into; numerical methods and analytical method.

2.1 Numerical Methods

Assuming appropriate Equation of State (EOS) based

fluid phase behaviour characterization is available then

MMP can be calculated numerically. EOS’s reliability

depends on the quality of the data used and the oil com-

position. It is also demonstrated by Wang and Peck

(2000) that among the various available numerical

MMP calculation approaches, one-dimensional compo-

sitional simulation MMP predictions are very consistent

and agree with the slim-tube test data, provided an

appropriate fluid phase behaviour characterization is

available and numerical dispersion has already been

taken into considerations. Dispersion will result in loss

of miscibility, as it causes the composition route to enter

into the two-phase region. Zick (1986), Stalkup (1987)

and Stalkup et al. (1990) and others also indicate that

O. Alomair et al. / Predicting CO2 Minimum Miscibility Pressure (MMP) Using Alternating
Conditional Expectation (ACE) Algorithm
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numerical simulation and 1D slim-tube simulation give

excellent match to the experimental data. Simulation of

a slim-tube is significantly cheaper and faster than run-

ning the actual experiments but the phase behaviour of

the oil and gas must be well-described by an EOS for a

reliable MMP estimation. Slim-tube simulation has a

number of drawbacks. First, it is slower and more

time-consuming compared to other computational

methods. The setup and calibration time is considerably

longer than other computational method. In addition,

several simulations with varying number of grid blocks

are needed for a reliable MMP estimate. Estimating

the MMP by 1-D compositional simulation clones the

flow in porous media that occurs in slim-tube experi-

ments (Yellig and Metcalfe, 1980).

It is observed that coarse-grid compositional simula-

tions can suffer from numerical dispersion effects, caus-

ing the MMP to be in error (Stalkup, 1987; Johns et al.,

2002). The effect of dispersion can be reduced but not

eliminated. Addition to this, if cells are fine and quite

enough so that the numerical dispersion effect can be

alleviated then both 2D or 3D compositional simulation

models can also be used to calculate MMP very pre-

cisely. Though, selecting fine grid blocks will reduce

the numerical dispersion detriments but these simulation

approaches are generally time-consuming. In addition,

when the number of pressure points at which simulations

are performed is not large enough to obtain a reasonably

well defined recovery curve, the numerically calculated

MMP are subjected to the visual interpretation of the

recovery curve (Johns et al., 2002).

2.2 Analytical Methods

Analytical methods of estimating MMP use the Method

of Characteristics (MOC) (Jessen et al., 1998; Orr et al.,

1993; Wang and Orr, 1997). The MOC relies on an equa-

tion of state to find a set of key tie lines that govern the

oil displacement by gas. The MMP estimation algo-

rithms based on MOC tracks these key tie lines with

pressure to find the MMP of the displacement. The

MMP occurs at the pressure at which any one of the

key tie lines first intersects a critical point (or its length

becomes zero). These methods are based on the analyti-

cal theory of multi component gas injection processes.

Because of their improved speed, analytical methods

offer significant promise for developing improved fluid

correlations and for use in compositional streamline sim-

ulations. Correlations for predicting MMP have been

proposed by a number of investigators and are impor-

tant tools for rapid and accurate MMP calculation.

Enich et al. (1988) explained that any correlation

for the prediction of MMP should be a function of

thermodynamic or physical principles that affect the

miscibility of fluids, and should be directly related to

the multiple contact miscibility process. For an initial

and quick estimate, operators use correlation currently

available in the literature. For screening purposes, corre-

lations gave a fair first guess depending on the data used.

However, the success of the correlations is usually lim-

ited to the composition range in which these correlations

were developed. The CO2 MMP correlations fall into

two categories: the pure and impure CO2; while the other

category treats MMP’s of other gases. Benham et al.

(1960) presented empirical curves for predicting MMP

for reservoir oils that are displaced by rich gas. Further,

he proposed equations that have been derived from his

graphical correlations. Cronquist (1978) used the tem-

perature and C5+ molecular weight as correlation

parameters in addition to the volatile mole percentage

(C1 and N2). Yellig and Metcalfe (1980) from their

experimental study proposed a correlation for predicting

the CO2 MMP’s that uses the temperature T as the only

correlating parameter. Alston et al. (1985) presented an

empirically derived correlation for estimating the

MMP of live oil systems by pure and impure CO2

streams. MMP has been correlated with temperature,

oil C5+ molecular weight, volatile oil fraction, interme-

diate oil fraction and composition of CO2 streams. Glaso

(1985) presented a generalized correlation for predicting

the MMP required for multi-contact miscible displace-

ment of reservoir fluids by hydrocarbon, CO2 or N2

gas. The equations are derived from graphical correla-

tions given by Benham et al. (1960) and give MMP as

a function of reservoir temperature, C7+ molecular

weight, mole per cent methane in the injection gas, and

the molecular weight of the intermediates (C2 through

C6) in the gas. Orr and Jensen (1984) suggested that

the vapour pressure curve of CO2 can be extrapolated

and equated with the MMP to estimate the MMP for

low temperature reservoirs. However, none of these cor-

relations gives adequate emphasis to oil properties and

composition and all fail to accurately predict the misci-

bility pressure for variety of crude oil types.

3 ANALYTICAL METHODS REGRESSION TECHNIQUES

Regression analysis is a statistical tool for the investiga-

tion of relationships between different (independent and

dependent) variables. The key benefits of using regres-

sion analysis are that it can: indicate if independent vari-

ables have a significant relationship with a dependent

variable; indicate the relative strength of different inde-

pendent variables’ effects on a dependent variable and

make predictions.
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3.1 Parametric Regression Analysis

Sometimes, the response (dependent variable) can also

depend on a nonlinear function of the explanatory inde-

pendent variables (predictors). In some cases, the

expected form of the non-linear function is known and

can be parameterised in terms of functions. For example,

polynomial regression consists of performing multiple

regressions with different variables in order to find the

polynomial coefficients (parameters). These types of

regression are known as parametric regression since they

are based on models that require the estimation of a

finite number of parameters.

3.2 Non-Parametric Regression Analysis

Conventional multiple regression techniques (as

explained in earlier section) are very inadequate because

they usually necessitate pre-requisite assumptions about

the functional forms that relate several (predictor and

response) variables. When the relationship between inde-

pendent and dependent variable is unidentified or indef-

inite, linear parametric regression is not very promising,

rather than misleading. Contrary to parametric-regres-

sion, in non-parametric regression there is a considerable

flexibility to accept the regression surface. This all leads

and inclines to unconventional non-parametric regres-

sion (Friedman and Stuetzle, 1981).

It is a form of regression analysis in which the predic-

tor does not take a predetermined form instead is con-

structed (transformed) according to information

derived from the data. Nonparametric regression

requires larger sample sizes than regression based on

parametric models because the data must supply the

model structure as well as the model estimates. Optimum

transformations of independent variables facilitate and

explain the effect of predictors on response. In nonpara-

metric regression analysis, a number of transformations

of variables are available and appraising the optimal

transformation of each variable is the most significant

(Brieman and Friedman, 1985). This type of regression

techniques is based on successive refinements by

attempting to define the regression surfaces in an itera-

tive fashion while remaining ‘data driven’ as opposed

to ‘model driven’. Non-parametric regression is easy to

use and can quickly provide results that reveal the dom-

inant independent variables and relative characteristics

of the relationships (Wu et al., 2000). There are many

non-parametric tests (Sign test, Wilcoxon Signed-Ranks

test, Mann-Whitney U test, Kruskal-Wallis H-test, Jonc-

kheere test, Friedman ANOVA, etc.) being used for

analysis purposes. In this particular study, we have

considered an approach called Alternating Conditional

Expectations (ACE).

4 ALTERNATING CONDITIONAL EXPECTATIONS (ACE)

Non-parametric regression methods can be broadly clas-

sified into those which do not transform the response

variable (such as generalised additive models) and those

which do (such as Alternating Conditional Expectations,

ACE). Moreover, the ACE algorithm can handle vari-

ables other than continuous predictors such as categori-

cal (ordered or unordered), integer and indicator

variables (Wang and Murphy, 2004).

The present approach to estimate MMP is guided by

the view that statistical methods for dealing with data

that exhibit strong linear associations are well devel-

oped; consequently, many non-standard problems are

best addressed by transforming the data to achieve

increased linear association. The analysis given here also

serves to illustrate the exploratory use of the ACE algo-

rithm to suggest expressions, and the use of r2 from the

ACE transformed variables as a benchmark. In ACE

method, the transformed variables exhibit substantially

greater linear association than the untransformed vari-

ables. One of the principal benefits of the ACE algorithm

is that it provides a theoretical standard against which

more analytically appealing transformation can be

judged (De Veaux, 1989). Another great advantage by

using ACE approach lies in its ability to recover the

functional forms of variables and to uncover compli-

cated relationships (Wang and Murphy, 2004). It can

be applied both in bivariate and multivariate cases and

it yields maximum correlations in transformed space

(Malallah et al., 2006). A modification of ACE

algorithm with graphical (GRACE) interface was later

proposed by Xue et al. (1997).

5 DEVELOPMENT OF ACE MMP MODEL

This study uses an algorithm (ACE) of Brieman and

Friedman (1985) for estimating the transformations of

a response and a set of predictor variables in multiple

regression problems in enhanced oil recovery.

5.1 Optimal Transformations

In the current study, we have a dataset consisting of a

response variable Y (Minimum Miscibility Pressure)

and predictor variables X1, X2, X3, X4, . . ., XP (C1, C2,

C3, C4, C5, C6, C7+, CO2, H2S, N2, Mw5+, Mw7+

O. Alomair et al. / Predicting CO2 Minimum Miscibility Pressure (MMP) Using Alternating
Conditional Expectation (ACE) Algorithm
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and T). ACE algorithm defines arbitrary measurable

mean-zero transformations as h(Y), /1(X1), /2(X2),

/3(X3), . . ., /P(XP). The regression error (e2) in (under

the constraint, E(h2(Y) = 1) the transformation of the

dependent and independent variables will be optimal

for this regression (Datta-Gupta et al., 1996) if they sat-

isfy the following:

e2 h�; /�
1; /

�
2;/

�
3; . . . ; /

�
p

� �
¼

Lim
h;/1;...;/pð Þ!min

e2 h;/1;/2; . . . ;/p

� � ð1Þ

The correlation coefficient between these optimal

transforms variables (with constraints, E[h2(Y)] = 1

and E[/s
2(X)] = 1) are defined as follows:

q h; /sð Þ ¼ E h Yð Þ/s Xð Þ½ � ð2Þ

where:

/s Xð Þ ¼
Xp

l¼1

/l X lð Þ

By the same reasoning, transformation h**(Y),
/1

**(X1), /2
**(X2), /3

**(X3), . . ., /P
**(XP) will be opti-

mal for the correlation if:

q� h��; /s
��ð Þ ¼ Limit

h;/1;:::;/pð Þ!max
q h; /sð Þ ð3Þ

5.2 ACE Algorithm

The objective is to minimise the error (e2) equation

(under the constraint, E(h2(Y) = 1) (Datta-Gupta

et al., 1996) as:

e2 h; /ð Þ ¼ E h Yð Þ � / Xð Þ½ �2
n o

ð4Þ

Minimization of error (e2) with respect to a predictor

/ (X) for a given h(Y) is defined (Datta-Gupta et al.,

1996) by:

/ Xð Þ ¼ E h Yð Þ=X½ � ð5Þ

Similarly, the minimization of error (e2) with respect

to a response h(Y) for a given / (X) is defined (Datta-

Gupta et al., 1996) by:

h Yð Þ ¼ E / Xð Þ=Y½ �=E/ Xð Þ=Y ð6Þ

Equations (4), (5) and (6) are the foundation of the

ACE algorithm.

5.3 ACE Predictions

An important application of ACE technique is for the

estimation or prediction of dependent variable

(response) yj
pre given independent variables {xlj, . . .,

xlp}. The dependent variable for any data point is calcu-

lated (Datta-Gupta et al., 1996) as:

Ypre
j ¼ h�

�1 Xp

l¼1

/�
l X lj

� � ð7Þ

The prediction methodology using Equation (8) con-

sists of three steps; the derivation of optimal transforma-

tions {h*(Y), /1*(X1), /2*(X2), . . ., /P*(XP)} based

on observed data, followed by forward transformations

of {xlj, ..., xpj} to {/*xlj, . . ., /*pj} and finally a backward

transformation (Datta-Gupta et al., 1996) as:

h�
�1 Xp

l¼1

/�
l X lj

� � ð8Þ

6 INVESTIGATING THE FACTORS AFFECTING MMP

MMP depends upon the composition of the injected gas,

the reservoir temperature, and the characteristics of the

in place fluid. On the other hand, this pressure of misci-

bility is independent of the nature of the porous media or

of the velocity of displacement. Generally, MMP

increases steadily with increasing temperature, and oils

with higher density and molecular weight have a higher

MMP. It has been reported that even small impurities,

can significantly affect the miscibility pressure (Glaso,

1985). Alston et al., (1985) documented the fact that

the achievement of miscibility is strongly related to reser-

voir temperature and oil composition, particularly C5+

molecular weight. Holm and Josendal (1974) found that

MMP was only affected by the type of hydrocarbons

present in the range C5 to C30 fractions of the crude

oil. Yellig and Metcalfe (1980) found little significance

of C7+ properties of the oil on the CO2 MMP. Alston

et al. (1985) have shown that the reservoir oil volatile

and intermediate fractions can significantly affect the

MMP when their ratios depart from unity. This also

explained the effects of both solution gas (live oil sys-

tems) and impurity of CO2 sources (Alston et al., 1985).

Johnson andPollin (1981) presented an empirical corre-

lation which predicted the MMP for a wide variety of live

oils and stock oils with both pure and diluted CO2. This

correlation, requiring only the oil gravity, molecular

weight, reservoir temperature and injection gas com-

position, showed substantially better agreement with

experiment tests. Many correlations relating the MMP to
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the physical properties of the oil and the displacing gas

have been proposed to facilitate screening procedures

and to gain insight into the miscible displacement process

(Alston et al., 1985; Orr and Silva, 1987; Rathmell et al.,

1971).

To study the effect of these parameters on tested data,

several sensitivity analyses were conducted. Figure 1

shows the relationship between the independent vari-

ables and MMP for the data used in this study. The cor-

relation coefficient of each independent variable is

shown. It is clear that the temperature is the most dom-

inant factor. The parameters C1, C2, C5 and Mw5+ have

the same proportional effect with C5 and Mw5+ having

insignificant roles. On the other side, intermediate com-

ponents (C3, C4) and heavy ends (C6, C7+) are showing

inverse effects. Addition to this, all the non-hydrocarbon

gases (CO2, N2 and H2S) show an inverse relationship

with a considerable role.

7 PROPOSED CO2 MMP MODEL FORMULATION

As discussed earlier, MMP is a function of temperature,

crude oil composition and composition of the solvent.

To understand the in situ crude oil composition impact

on MMP, the functional form of MMP Model is:

MMP ¼ f HCcomp; NHCcomp; T ; Mw5þ; Mw7þ
� � ð9Þ

HCcomp Mole fraction of hydrocarbons (C1, C2, . . .,

C7+)

NHCcomp Mole fraction of non-hydrocarbons (H2S,

CO2, N2)

T Temperature

Mw5+ Molecular weight of pentane Plus

Mw7+ Molecular weight of heptane Plus

7.1 Data Distribution

The data set used in this study consisted of 113 MMP

measurements (pure CO2) taken from worldwide gas

injection projects published in the literature. The ranges

of independent variables and MMP used for this study

are shown in Table 1. The collected data cover a wide

range of API gravities (13 to 48 oAPI) and reservoir tem-

peratures (21.67�C / 71�F to 129.44�C / 265�F). The data
were divided into two sets. The training set consisted of

96 MMP measurements and a testing set of 17, which

Tr

Mw7+

Mw5+

C7+

C6

C5

C4

C3

C2

C1

N2

CO2

H2S

-0.45 -0.30 -0.15 0.00 0.15 0.30 0.45 0.60 0.75

Figure 1

CO2 MMP sensitivity analysis.
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TABLE 1

Data range used for input variables

H2S CO2 N2 C1 C2 C3 C4 C5 C6 C7+ MC5

+

MC7

+

T (�C) (F) MMP

(bar)

(psig)

Max 17.56 24.00 16.44 76.43 23.16 18.40 11.23 9.49 16.00 73.61 262 286 129 (265) 256

(3 705)

Min 0.001 0.001 0.001 2.56 0.01 0.89 0.28 0.25 0.79 5.70 132 151 22 (71) 76

(1 101)
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C4 ACE optimal transform.
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were randomly selected from the total set of data. Out of

17 testing set, 5 were taken from MMP measurements of

Kuwait oil fields studied in Kuwait University PVT Lab.

Both, the detailed compositional analyses andMinimum

Miscibility Pressure measurements were experimentally

determined.

7.2 Optimal ACE Regression

The proposed ACE algorithm provides a nonparametric

optimization of the dependent (MMP) and independent

variables (HCcomp, NHCcomp, T, Mw5+, Mw7+), it does

not provide a computational model for these variables.

However, the optimal data transforms can be fitted by

simple polynomials that can be used to predict the

dependent variable. The default polynomial is of degree

two but for any improvement the degree can be

increased. After testing all possible combinations of the

independent and dependent variables, the complete suite

of fitting polynomials is listed in appendix. Coefficients

of this fitted polynomial will be incorporated in the final

SUM equation to estimate MMP.

In the proposed nonparametric ACE model for MMP

estimation, there are 13 predictors. The sum of all these

optimal transformed independent variables is:

SUM ¼
X13
i¼1

pi ð10Þ
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ACE predicted/calculated MMP will be:

MMP ¼ p�1
O SUMð Þ ð11Þ

A thorough investigation and detailed scrutiny of

several scenarios for different transforms of predicting

variables was exercised. This yields the best combina-

tion, that has the highest correlation coefficient

(r2 = 0.956), the lowest Average Absolute Relative

Error (AARE = 4.68%), the lowest Average Relative

Error (ARE= �0.66%), and the lowest Standard Devi-

ation (SD = 139) is;

MMP ¼ a2SUM
2 þ a1SUMþ a0 ð12Þ

8 RESULTS AND DISCUSSION

8.1 Optimal Transforms Predictions

The nonparametric independent variables proposed in

this study (HCcomp, NHCcomp, T, Mw5+, Mw7+) were

investigated thoroughly to find their optimal transforms

using ACE. Similarly, the nonparametric dependent var-

iable (MMP) was investigated.
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976 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 70 (2015), No. 6



In case of hydrocarbon transforms, all mole fractions

are found more optimal to their respective transforms in

the logarithmic space instead of real space. These

optimal transforms defined by ACE are explained in

Figures 2-8. The default polynomial interpreted by

Graphical Representation of ACE (GRACE) is of

degree 2 like in case of C1 and C7+, however there are

some higher degrees polynomials; C2 and C4 with degree

6, C6 with degree 5, and C3 and C5 with degree 4. Each

ACE defined transform shows a specific pattern.

The non-hydrocarbon transforms of all mole frac-

tions are found more optimal to their respective trans-

forms in the logarithmic space instead of real space.

These optimal transforms defined by ACE are explained

in Figures 9-11. In this group, we have higher degrees of

fitting polynomials; CO2 with degree 6 and H2S and N2

both with degree 4.

The real space optimal transforms for both plus

fraction molecular weights (Mw5+ and Mw7+) and

temperature transforms are more optimal to their
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respective transforms in the real space. These

optimal transforms defined by ACE are explained in

Figures 12-14. Both Mw7+ and T transforms are fitted

at default polynomials of degree 2, whereasMw5+ trans-

form is fitted at degree 4.

Finally, the real space of dependent variable (MMP)

optimal transform is shown in Figure 15. This transform

has a fitting polynomial of default degree 2. Coefficients

of this fit polynomial will be incorporated in the final

SUM equation to estimate MMP.

All transformed independent variables (predictors)

are found numerically, finally they are added up and

correlate with the transform of MMP. It is shown in

Figure 16 that an excellent correlation is obtained and

this match is modelled by Equation (13), as shown

below. The correlation coefficient for this optimized

regression is 0.98014. This proves the power of ACE

algorithm.

MMP ¼ 25:923 SUM� Tr2 þ 651:360 SUM

� Tr þ 2009:7
ð13Þ

8.2 Comparison of Proposed Model with Existing
Correlations

A detailed comparison study was conducted between the

proposed CO2 MMP model and the existing published

and well acknowledged CO2 MMP correlations. Table 2

presents the statistical analysis between the results pre-

dicted by ACE model and that by published correla-

tions. It is inferred from the analysis that our proposed

method shows high accuracy as compared to other

correlations.

All statistical parameters; AARE, ARE, SD, SSE,

RMSE, r and r2 are depicting good commitment. There-

fore, it is inferred from the statistical analysis that ACE

is a powerful tool and shows high accuracy as compared

to other available predicting correlations.

8.3 Validation of Proposed ACE Model for CO2 MMP

To check the validity/credibility of ACE model and to

check its predictive capability for MMP, all the derived

polynomials of variables (both predictors and response)

were examined using testing data of 17 points. Five of

these are the experimental measurements made for Ku-

waiti oil fields.

Hence, a good match between the experimentally

measured and ACE estimated values for MMP is

observed in Figure 17. This proves the validity of our

proposed ACE model.

Once again a detailed comparison study was con-

ducted for theses 17 data points between the proposed

CO2 MMP model and the existing published and well

acknowledged CO2 MMP correlations. A detailed statis-

tical analysis with different statistical parameters is

explained in Table 3.

Once again, statistical parameters; SD and SSE are

proving good commitment as compared to the other pre-

dicting methods. Hence, the overall performance of our

proposed method for predicting CO2 MMP is better and

acceptable.

CONCLUSIONS

A nonparametric model to predict MMP is developed

based on 96 measurements. Our proposed method using

ACE model is shown to be more accurate than the exist-

ing conventional regression correlations. This model is

able to predict MMP for pure CO2 as a function of tem-

perature and composition (all possible factors affecting

MMP). The model has certain advantages:

It provides a straightforward method for identifying

functional relationships between dependent and

independent variables and solves the general problem

of establishing the linearity assumption that is generally

required in regression analysis. Examination of these

results can give the data analyst insight into the relation-

ships between these variables, and further suggest if

transformations are required.

This non-parametric approach is exclusively data dri-

ven and does not assume a priori functional form as

parametric models do. This feature gives a model more

flexible for self-adjustment in order to adjust various

ranges of data. The proposed technique can easily be

incorporated into integrated flow modelling, production

optimization and reservoir simulation softwares.
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APPENDIX

Variable Optimal transform polynomials

C1 ln_ C1_Tr = 1.3912E-02x2 + 3.2202E-02x � 1.8611E-01

C2 ln_ C2_Tr = 5.5795E-04x6 � 6.7876E-03x5 + 1.0678E-02x4 +

1.2248E-01x3 � 4.5724E-01x2 + 5.2793E-01x � 2.0734E-01

C3 ln_ C3_Tr= 1.6381E-02x4� 1.3052E-01x3 + 2.6607E-01x2� 1.2019E-

01x � 4.3356E-02

C4 ln_ C4_Tr = �5.1912E-02x6 + 2.7982E-01x5 � 3.7272E-01x4 �
2.4664E-01x3 + 7.1682E-01x2 � 2.7774E-01x � 1.3485E-02

C5 ln_ C5_Tr = �1.9674E-04x4 � 2.7402E-02x3 + 1.8143E-03x2 +

1.4054E-01x � 7.2174E-02

C6 ln_ C6_Tr = �5.4686E-02x5 + 2.6628E-01x4 � 3.6496E-01x3 +

7.6998E-02x2 � 8.3604E-04x + 1.1194E-01

C7+ ln_ C7+Tr = �2.4459E-02x2 + 3.8895E-02x + 2.1657E-01

CO2 ln_ CO2_Tr = 9.4029E-06x6 � 3.2025E-05x5 � 1.0969E-03x4 �
8.1253E-04x3 + 2.0166E-02x2 + 1.3278E-02x � 3.2906E-02

H2S ln_ H2S_Tr = 3.0640E-04x4 + 2.7747E-03x3 + 6.3899E-03x2 �
4.0849E-03x � 7.9337E-02

N2 ln_ N2_Tr = �3.3252E-04x4 + 6.1601E-04x3 + 8.4462E-03x2 �
2.5561E-02x � 8.4381E-03

Mw5+ Mw5+_Tr= 1.9056E-08x4� 1.5287E-05x3 + 4.5136E-03x2� 5.7789E-

01x + 2.6867E+01

Mw7+ Mw7+_Tr = 1.5634E-05x2 � 1.5754E-03x � 4.4180E-01

Temp Temp_Tr = �7.9731E-06x2 + 2.1085E-02x � 2.8306E+00

MMP MMP= 2.5923E+01 SumTr2 + 6.5136E+02 SumTr + 2.0097E+03
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