
ActivMetaL:
Algorithm Recommendation
with Active Meta Learning

Lisheng Sun-Hosoya1, Isabelle Guyon1,2, and Michèle Sebag1

1 UPSud/CNRS/INRIA, Univ. Paris-Saclay. 2 ChaLearn

Abstract. We present an active meta learning approach to model selec-
tion or algorithm recommendation. We adopt the point of view “collab-
orative filtering” recommender systems in which the problem is brought
back to a missing data problem: given a sparsely populated matrix of
performances of algorithms on given tasks, predict missing performances;
more particularly, predict which algorithm will perform best on a new
dataset (empty row). In this work, we propose and study an active learn-
ing version of the recommender algorithm CofiRank algorithm and com-
pare it with baseline methods. Our benchmark involves three real-world
datasets (from StatLog, OpenML, and AutoML) and artificial data. Our
results indicate that CofiRank rapidly finds well performing algorithms
on new datasets at reasonable computational cost.

Keywords: Model Selection · Recommender · Active Meta Learning.

1 Introduction

While Machine Learning and Artificial Intelligence are taking momentum in
many application areas ranging from computer vision to chat bots, selecting the
best algorithm applicable to a novel task still requires human intelligence. The
field of AutoML (Automatic Machine Learning), aiming at automatically select-
ing best suited algorithms and hyper-parameters for a given task, is currently
drawing a lot of attention. Progress in AutoML has been stimulated by the orga-
nization of challenges such as the AutoML challenge series1. Among the winning
AutoML approaches are AutoWeka and Auto-SkLearn, developed by the
Freiburg team [6,5,7] (more in Section 2). These approaches, taking inspiration
from Bayesian optimization [4], alternatively learn an inexpensive estimate of
model performance on the current dataset, and use this estimate to reduce the
number of model candidates to be trained and tested using the usual expensive
cross-validation procedure. A novel ingredient of AutoSkLearn, referred to as
“meta-learning”, takes in charge the initialization of the Bayesian optimization
process, with a predictor using “meta-features” describing the datasets. Meta-
learning reportedly yields significant improvements over random initializations.

1 http://automl.chalearn.org

http://automl.chalearn.org

2 L. Sun-Hosoya, I. Guyon et M. Sebag

Another approach targeting AutoML is based on recommender systems (RS),
popularized by the Netflix challenge [2]. RS approaches seek the item best suited
to a given user, based on historical user-item interactions and user preferences.
By analogy [15] proposed first to treat algorithm selection as a recommender
problem in which datasets “prefer” algorithms solving their task with better
performance. Along this line, the “Algorithm Recommender System” Alors [9],
combines a recommender system and an estimate of model performance based
on predefined meta-features, to achieve AutoML (more in Section 2).

In this paper, we propose an active meta-learning approach inspired by Au-
toSklearn and Alors. Formally (Section 3), given a matrix of historical algo-
rithm performance on datasets, we aim at finding as fast as possible the model
with best performance on a new dataset. The originality compared to the for-
mer approaches lies in the coupled search for the meta-features describing the
dataset, the model performance based on these meta-features, and the selection
of a candidate model to be trained and tested on the dataset.

This paper is organized as follows: After briefly reviewing the SOTA in Sec-
tion 2, we formalize our problem setting in Section 3. We then describe the
benchmark data in Section 4 and provide an empirical validation of the ap-
proach in Section 5. While the validation considers only the “classical” machine
learning settings, it must be emphasized that the proposed approach does not
preclude of any type of tasks or algorithms, hence is applicable to a broader
range of problems.

2 State of the art

It is notorious that the success of model search techniques can be dramatically
improved by a careful initialization. In AutoSkLearn, the search is improved
by a sophisticated initialization using a form of transfer learning [10] called
“meta-learning”. The meta-data samples include all the datasets of openml.org
[12] (a platform which allows to systematically run algorithms on datasets).
Systematically launching AutoSkLearn on each dataset yields the best (or
near best) models associated with each dataset.

Independently, each dataset is described using so-called meta-features. Meta-
features are generally of two kinds: i) simple statistics of the dataset such as
number of training examples, number of features, fraction of missing values,
presence of categorical variables, etc.; ii) performance on the current dataset
of “landmark algorithms”, namely a well-chosen set of algorithms that can be
trained and tested with moderate computational effort such as one nearest neigh-
bor (1NN) or decision trees.

When considering a new dataset, AutoSkLearn first determines its nearest
neighbors in the meta-feature space, and initializes the search using the best
models associated with these neighbors. Other meta-learning formalisms, not
considered further in this paper, are based on learning an estimate of the model
performance from meta-features [11], or learning to predict the best performing
algorithm, as a multi-class classification problem [17].

Title Suppressed Due to Excessive Length 3

The delicate issue is to control the cost of the initialization step: considering
many landmark algorithms comes with an expected benefit (a better initial-
ization of the search), and with a cost (the computational cost of running the
landmarks).

As said, recommender systems (RS) aim at selecting the item best suited to
a particular user, given a community of users, a set of items and some historical
data of past interactions of the users with the items, referred to as “collaborative
matrix” [16,3], denoted S (for “score”) in this paper. As first noted by [15], algo-
rithm selection can be formalized as a recommender problem, by considering that
a dataset “likes better” the algorithms with best performances on this dataset.
Along this line, one proceeds by i) estimating all algorithm performances on this
dataset (without actually evaluating them by training and testing); and ii) rec-
ommending the algorithm(s) with best estimated performance on this dataset.

The merits of RS approaches regarding algorithm selection are twofold. Firstly,
RS approaches are frugal (like other methods, e.g. co-clustering). RS pro-
ceeds by estimating the value associated with each (user, item) pair − here, the
performance associated with each (algorithm, dataset) − from a tiny fraction of
the (user, item) ratings, under the assumption that the collaborative matrix is of
low rank k. More precisely the (usually sparse) matrix S of dimensions (p,N) is
approximated by UV ′, with U a (p, k) matrix and V a (N, k) matrix, such that
〈Ui,·, Vj,·〉 is close to Si,j for all pairs i, j (e.g. using maximum margin matrix
factorization in [14]). U (respectively V) is referred to as latent representation
of the users (resp. the items). In the model selection context, RS approaches are
thus frugal: they can operate even when the performance of a model on a dataset
is known on a tiny fraction of the (model, dataset) pairs. Secondly, most-recent
RS approaches are ranking methods. Estimating algorithm performance is
a harder problem than ranking them in order of merit. A second benefit of RS is
that they can rank items conditionally to a given user. The CofiRank algorithm
[18] accordingly considers the rank matrix (replacing Si,j with the rank of item
j among all items user i has rated) and minimizes the Normalized Discounted
Cumulative Gain (NDCG) in which correctness in higher ranked items is more
important. As optimizing NDCG is non-convex, CofiRank thus instead optimizes
a convex upper-bound of NDCG.

In counterpart for these merits, mainstream RS is not directly applicable to
AutoML, as it focuses on recommending items to known users (warm-start rec-
ommendation). Quite the contrary, AutoML is concerned with recommending
items (models) to new users (new datasets), a problem referred to as cold-start
recommendation [13,8]. This drawback is addressed in the general purpose Alors
system [9], where external meta-features are used to estimate the latent repre-
sentation Û· of the current dataset; this estimated latent representation is used
together with the latent representation of any model to estimate the model per-
formance (as 〈Û·, Vj〉) and select the model with best estimated performance.
The novel active meta-learning approach presented in this paper proposes a dif-
ferent approach to warm start, not requiring external meta-features: Previously
evaluated algorithm scores are themselves used as meta-features (see Section 3).

4 L. Sun-Hosoya, I. Guyon et M. Sebag

3 Problem setting and algorithms

We define the active meta-learning problem in a collaborative filtering
recommender setting as follows:
GIVEN:
– An ensemble of datasets (or tasks) D of elements d (not necessarily finite);
– A finite ensemble of n algorithms (or machine learning models) A of ele-

ments aj , j = 1, · · · , N ;
– A scoring program S(d, a) calculating the performance (score) of algo-

rithm a on dataset d (e.g. by cross-validation). Without loss of generality we
will assume that the larger S(d, a), the better. The evaluation of S(d, a)
can be computationally expensive, hence we want to limit the number of
times S is invoked.

– A training matrix S, consisting of p lines (corresponding to example datasets
di, i = 1, · · · p drawn from D) and n columns (corresponding to all algorithms
in A), whose elements are calculated as Sij = S(di, aj), but may contain
missing values (denoted as NaN).

– A new test dataset dt ∈ D, NOT part of training matrix S. This setting
can easily be generalized to test matrices with more than one line.

GOAL: Find “as quickly as possible” j∗ = argmaxj(S(dt, aj)).

For the purpose of this paper “as quickly as possible” shall mean by eval-
uating as few values of S(dt, aj), j = 1, · · · , n as possible. More generally, it
could mean minimizing the total computational time, if there is a variance in
execution time of S(dt, aj) depending on datasets and algorithms. However, be-
cause we rely in our experimental section on archival data without information
of execution time, we reserve this refinement for future studies. Additionally, we
assume that the computational cost of our meta-learning algorithm (excluding
the evaluations of S) is negligible compared to the evaluations of S, which has
been verified in practice.

In our setting, we reach our goal iteratively, in an Active Meta Learn-
ing manner (ActivMetaL), see Algorithm 1. The variants that we compare
differ in the choices of InitializationScheme(S) and SelectNext(S, t), as
described in Algorithms 2-5: Given a new dataset (an empty line), we need to
initialize it with one or more algorithm performances, this initialization is done
by InitializationScheme(S) and is indispensable to fire CofiRank. Algorithms
2-5 show 2 initialization methods: randperm in Algorithm 2 (the first algorithm
is selected at random) and median in Algorithms 3-5 (the algorithms are sorted
by their median over all datasets in training matrix S and the one with highest
median is selected as the first algorithm to evaluate). Once we have evaluated
the first algorithm, the next algorithms can be chosen with or without active
learning, this is done by SelectNext(S, t): Algorithm 2-3 without active meta
learning select next algorithms at random or according to median over training
datasets, i.e. the knowledge from evaluated algorithms on the new dataset is not
taken into account; Algorithm 4-5 run CofiRank for active meta learning, which,
initialized with performances of evaluated algorithm, returns a ranking of algo-
rithms on the new dataset. The difference is that in Alg. 4 we run CofiRank for

Title Suppressed Due to Excessive Length 5

each selection of next algorithm, i.e. CofiRank is initialized with more and more
known values. In Alg. 5 CofiRank is run only once at the beginning, initialized
with 3 landmark values.

Algorithm 1 ActivMetaL

1: procedure ActivMetaL(A, S, S, dt, nmax)
2: n← size(S, 2) . Number of algorithms to be evaluated on dt
3: t← NaNvector(n) . Algorithm scores on dt are initialized w. missing values
4: j+ ←InitializationScheme(S) . Initial algorithm aj+ ∈ A is selected
5: while n < nmax do
6: t[j+]← S(dt, aj+) . Complete t w. one more prediction score of aj+ on dt
7: j+ = SelectNext(S, t)
8: n←length(notNaN(t)) . number of algorithms evaluated on dt

9: return j+

Algorithm 2 Random

1: procedure InitializationScheme(S)
2: r←randperm(size(S, 2)) . Replaced by something more clever elsewhere
3: return j+ ← argmax(r)

4: procedure SelectNext(S,t)
5: evaluated←notNaN(t)
6: r←randperm(size(S, 2)) . Replaced by something more clever elsewhere
7: r(evaluated)← −Inf
8: return j+ ← argmax(r)

Algorithm 3 SimpleRankMedian

1: procedure InitializationScheme(S)
2: r←median(S, 2) . Column-wise median
3: return j+ ← argmax(r)

4: procedure SelectNext(S,t)
5: evaluated←notNaN(t)
6: r←median(S, 2) . Column-wise median
7: r(evaluated)← −Inf
8: return j+ ← argmax(r)

Algorithm 4 ActiveMetaLearningCofiRank

1: procedure InitializationScheme(S)
2: r←median(S, 2) . Column-wise median
3: return j+ ← argmax(r)

4: procedure SelectNext(S,t)
5: evaluated←notNaN(t)
6: r← CofiRank(S,t) . Collaborative filtering on [S; t] returning last line
7: r(evaluated)← −Inf
8: return j+ ← argmax(r)

6 L. Sun-Hosoya, I. Guyon et M. Sebag

Algorithm 5 MedianLandmarks1CofiRank

1: procedure InitializationScheme(S)
2: r←median(S, 2) . Column-wise median
3: return j+ ← argmax(r)

4: procedure SelectNext(S,t)
5: evaluated←notNaN(t)
6: if length(evaluated) < num landmarks then
7: r←median(S, 2) . Column-wise median
8: else if length(evaluated) == num landmarks then
9: static r← CofiRank(S,t) . Keep the CofiRank predictions thereafter

10: r(evaluated)← −Inf
11: return j+ ← argmax(r)

4 Benchmark data

To benchmark our proposed method, we gathered datasets from various sources
(Table 1). Each dataset consists of a matrix S of performances of algorithms
(or models) on tasks (or datasets). Datasets are in lines and algorithms in
columns. The performances were evaluated with a single training/test split or by
cross-validation. The tasks were classification or regression tasks and the metrics
quasi-homogeneous for each S matrix (e.g. Balanced Accuracy a.k.a. BAC for
classification and R2 for regression). We excluded data sources for which metrics
were heterogeneous (a harder problem that we are leaving for further studies).
Although ActivMetaL lends itself to using sparse matrices S (with a large
fraction of missing values), these benchmarks include only full matrices S.

The artificial dataset was constructed from a matrix factorization to create
a simple benchmark we understand well, allowing to easily vary the problem
difficulty. Matrix S is simply obtained as a product of three matrices UΣV , U
and V being orthogonal matrices and Σ a diagonal matrix of “singular values”,
whose spectrum was chosen to be exponentially decreasing, withΣii = exp(−βi),
β = 100 in our experiments. The other benchmarks were gathered from the
Internet or the literature and represent the performances of real algorithms on
real datasets. We brought back all metrics to scores that are “the larger the
better”. In one instance (StatLog), we took the square root of the performances
to equalize the distribution of scores (avoid a very long distribution tail). For
AutoML, many algorithms were aborted due to execution time constraints. We
set the corresponding performance to 0. To facilitate score comparisons between
benchmark datasets, all S matrices were globally standardized (i.e. we subtracted
the global mean and divided by the global standard deviation). This scaling does
not affect the results.

We conducted various exploratory data analyses on the benchmark data ma-
trices, including two-way hierarchical clustering, to visualize whether there were
enough similarities between lines and columns to perform meta-learning. See our
supplemental material referenced at the end of this paper.

Title Suppressed Due to Excessive Length 7

Table 1: Statistics of benchmark datasets used. #Datasets=number of datasets,
#Algo=number of algorithms, Rank=rank of the performance matrix.

Artificial Statlog OpenML AutoML

#Dataset 50 21 76 30

#Algo 20 24 292 17

Rank 20 21 76 17

Metric None Error rate Accuracy BAC or R2

Preprocessing None Take square
root

None Scores for
aborted algo.
set to 0

Source Generated by
authors

Statlog Dataset
in UCI database

Alors [9]
website

AutoML1
(2015-2016)

5 Results

Table 2: Results of meta-learning methods for all 4 meta-datasets. Perfor-
mances of meta-learning algorithms are measured as the area under the meta learn-
ing curve (AUMLC) normalized by the area of the best achievable curve. Active Meta
Learning w. CofiRank (our proposed method) performs always best, although not sig-

nificantly considering the 1-sigma error bars of the leave-one-dataset-out procedure.

Artificial Statlog OpenML AutoML

Active Meta
Learning w.

CofiRank

0.91 (±0.03) 0.802 (±0.117) 0.96 (±0.04) 0.84 (±0.11)

Random 0.81 (±0.05) 0.77 (±0.05) 0.95 (±0.03) 0.79 (±0.07)

SimpleRank w.
median

0.7 (±0.2) 0.798 (±0.102) 0.95 (±0.04) 0.82 (±0.12)

Median
LandMarks w.

1-CofiRank

0.88 (±0.04) 0.795 (±0.099) 0.92 (±0.08) 0.83 (±0.11)

In this section, we analyze the experimental results of Table 2 and Figure 1.
The graphs represent meta-learning curves, that is the performance of the best
algorithm found so far as a function of the number of algorithms tried.2 The
ground truth of algorithm performance is provided by the values of the bench-
mark matrices (see Section 4).

We remind the reader that in a meta-learning problem, each sample is a
dataset. To evaluate meta-learning we use the equivalent of a leave-one-out esti-
mator, i.e. leave-one-dataset-out. Hence, we use as meta-learning training data

2 In the future, when we have meta-learning datasets for which the computational
run time of algorithms is recorded, we shall tackle the harder and more interesting
problem of meta-learning performance as a function of “total” computational time
rather than number of algorithms tried.

http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
https://www.lri.fr/~sebag/Alors/as_datasets/openml-ai-accuracy.csv
https://www.lri.fr/~sebag/Alors/as_datasets/openml-ai-accuracy.csv
https://competitions.codalab.org/competitions/2321
https://competitions.codalab.org/competitions/2321

8 L. Sun-Hosoya, I. Guyon et M. Sebag

all datasets but one, then create the learning curve for the left-out dataset.
Thus, given a benchmark data matrix, we generate meta-learning curves using
as matrix S a sub-matrix with one line left out (held out), which serves as tar-
get vector t for the dataset tested. Subsequently, we average all meta-learning
curves, step-by-step. Thus the result shown in Figure 1 are the averaged learn-
ing curves obtained with the leave-one-dataset-out scheme, i.e. averaged over all
datasets, for a given benchmark dataset.

To evaluate the significance of the efficiency of our proposed method, we
ran 1000 times the Random search algorithm, in which algorithms are ran in
a random sequence. We drew the curves of median performance (blue curves)
and showed as blue shadings various quantiles. The fact that the red curves,
corresponding to the proposed algorithm Active Meta Learning w. CofiRank is
generally above the blue curve comforts us that the method is actually effective.
It is not always significantly better than the median of Random search. However,
this is a very hard benchmark to beat. Indeed, the median of Random search is
not a practical method, it is the average behavior of random search over many
runs. Thus, performing at least as good as the median of Random search is
actually pretty good.

We also compared our method with two other baselines. (1) The SimpleRank
w. median (green curves) uses the median performance of algorithms on all but
the left-out dataset. Thus it does not perform any active meta-learning. (2) The
Median Landmark w. 1 CofiRank (pink curves) makes only one call of CofiRank
to reduce computational expense, based on the performance of only 3 Landmark
algorithms, here simply picked based on median ranking.

The first benchmark using artificial data (Figure 1(a)) a relative position of
curves that we intuitively expected: SimpleRankw.median (in green) does not
perform well and Active Meta Learning w. CofiRank (in red) is way up in the
upper quantiles of the random distribution, close to the ideal curve that goes
straight up at the first time step (selects right away the best algorithm). Median
Landmark w. 1 CofiRank (in pink) quickly catches up with the red curve: this
is promising and shows that few calls to CofiRank might be needed, should this
become a computational bottleneck.

However, the analysis of the results on real data reveals a variety of regimes.
The first benchmark using the datasets of the AutoML challenge (Figure 1(b))
gives results rather similar to artificial data in which Active Meta Learning
w. CofiRank still dominates, though SimpleRank w. median performs surpris-
ingly well. More surprisingly, Active Meta Learning w. CofiRank does not beat
SimpleRank w. median on the StatLog benchmark and beats it with difficulty (af-
ter more than 10% of the algorithms have been trained/tested) on the OpenML
benchmark. Also, the cheap algorithm calling CofiRank just once (Median Landmark
w. 1 CofiRank, performing no active learning) which looked promising on other
benchmark datasets, performs poorly on the OpenML dataset. This is unfortu-
nate since this is the largest dataset, on which running active-learning is most
computationally costly. We provide a discussion of computational considerations
in Section 6.

Title Suppressed Due to Excessive Length 9

Table 2 sums up the results in terms of area under the meta-learning curves
(AUMLC). Active Meta Learning w. CofiRank consistently outperforms other
methods, although not significantly according to the error bars.

6 Discussion and conclusion

We have presented an approach to algorithm recommendation (or model selec-
tion) based on meta-learning, capitalizing on previous runs of algorithms on a
variety of datasets to rank candidate algorithms and rapidly find which one will
perform best on a new dataset. The originality of the paper lies in its active
learning approach based on a collaborative-filtering algorithm: CofiRank. Col-
laborative filtering is a technique to fill in missing data in a collaborative matrix
of scores, which in our case represents performances of algorithms on datasets.
Starting from the evaluation of a single algorithm on a new dataset of interest,
the CofiRank method ranks all remaining algorithms by completing the missing
scores in the collaborative matrix for that new dataset. The next most promising
algorithm is then evaluated and the corresponding score added to the collabora-
tive matrix. The process is iterated until all missing scores are filled in, by trying
all algorithms, or until the allotted time is exhausted.

We demonstrated that Active Meta Learning w. CofiRank performs well on
a variety of benchmark datasets. Active Meta Learning w. CofiRank does not
always beat the naive SimpleRank w. median baseline method, but it consistently
outperforms the “hard-to-beat” median of Random ranking, while SimpleRank
w. median does not.

We also investigated whether the (meta-) active learning aspect is essential or
can be replaced by running CofiRank a single time after filling in a few scores for
Landmark algorithms. This technique (called Median Landmark w. 1 CofiRank)
seemed promising on the smallest benchmark datasets, but gives significantly
worse results that Active Meta Learning w. CofiRank on the largest benchmark
dataset on which it would help most (computationally). One avenue of future
research would be to put more effort in the selection of better Landmarks.

Further work also includes accounting for the computational expense of model
search in a more refined way. In this work, we neglected the cost of performing
meta-learning compared to training and testing the algorithms. This is justified
by the fact that their run time is a function of the volume of training data,
which is considerably smaller for the collaborative matrix (of dimension usually
' 100 datasets times ' 100 algorithms) compared to modern-times “big data”
datasets (tens of thousands of samples times thousands of features). However,
as we acquire larger meta learning datasets, this cost may become significant.
Secondly, we assumed that all algorithms had a comparable computational time
(to be able to use meta-learning datasets for which this information was not
recorded). In the future, we would like to take into account the duration of each
algorithm to better trade-off accuracy and computation. It is also worth noting
that ActivMetaL does not optimize the exploration/exploitation trade-off. It is
more geared toward exploitation than exploration since the next best algorithm

10 L. Sun-Hosoya, I. Guyon et M. Sebag

(a) Artificial data. (b) AutoML data.

(c) StatLog data. (d) OpenML data.

Fig. 1: Meta-learning curves. We show results of 4 methods on 4 meta-learning
datasets, using the leave-one-dataset-out estimator. The learning curves represent per-
formance of the best model trained/tested do far, as a function of the number of models
tried. The curves have been averaged over all datasets held-out. The method Active
Meta Learning w. CofiRank (red curve) generally dominates other methods. It always
performs at least as well as the median of random model selection (blue curve), a
hard-to-beat benchmark. The more computationally economical Median Landmark w.
1 CofiRank consisting in training/testing only 3 models (Landmarks) to rank methods
using only 1 call to CofiRank (pink curve) generally performs well, except on OpenML
data for which it would be most interesting to use it, since this is the largest meta learn-
ing datasets. Thus active learning cannot easily be replaced by the use of Landmarks,
lest more work is put into Landmark selection. The method SimpleRank w. median that
ranks algorithm with their median performance (green curve) is surprisingly a strong
contender to Active Meta Learning w. CofiRank for the StatLog and OpenML datasets,
which are cases in which algorithms perform similarly on all datasets.

Title Suppressed Due to Excessive Length 11

is chosen at every step. Further work may include incorporating monitoring the
exploration/exploitation trade-off. In particular, as said, so far we have not taken
into account the computational cost of running algorithms. When we have a total
time budget to respect, exploring first using faster algorithms then selecting
slower (but better) algorithms may be a strategy that ActivMetal could adopt
(thus privileging first exploration, then exploitation).

At last, the experiments performed in this paper assumed that, except to the
new dataset being tested, there were no other missing values in the collaborative
matrix. One of the advantages of collaborative filtering techniques is that they
can handle matrices sparsely populated. This deserves further investigation.

Supplemental material, data and code

For full reproducibility of our results, datasets and code are available on Github.
To run it, CofiRank must be installed. We recommend using the Docker [1]
image we built for this purpose. Please refer to the Github repository for all
instructions. Our repository also includes a Jupyter-notebook with additional
graphs referred to in the text.

References

1. Docker. https://www.docker.com/

2. Bennett, J., Lanning, S., Netflix: The Netflix prize. KDD Cup and Workshop in
conjunction with ACM SIGKDD p. 201–206 (2007)

3. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems sur-
vey. Knowledge-Based Systems 46, 109–132 (2013)

4. Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., Leyton-
Brown, K.: Towards an empirical foundation for assessing bayesian optimization
of hyperparameters. In: NIPS workshop on Bayesian Optimization in Theory and
Practice (2013)

5. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: Proceedings of the Neu-
ral Information Processing Systems, pp. 2962–2970 (2015), https://github.com/
automl/auto-sklearn

6. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Methods for improving bayesian optimization for automl. In: Proceedings of the
International Conference on Machine Learning 2015, Workshop on Automatic Ma-
chine Learning (2015)

7. Feurer, M., Springenberg, J., Hutter, F.: Initializing bayesian hyperparameter op-
timization via meta-learning. In: Proceedings of the AAAI Conference on Artificial
Intelligence. pp. 1128–1135 (2015)

8. Gunawardana, A., Meek, C.: Tied boltzmann machines for cold start recommen-
dations. In: Proceedings of the 2008 ACM conference on Recommender systems.
pp. 19–26. ACM (2008)

9. Mısır, M., Sebag, M.: Alors: An algorithm recommender system. Artificial Intelli-
gence 244, 291–314 (2017)

https://github.com/LishengSun/ActiveMetaLearn
https://www.docker.com/
https://github.com/automl/auto-sklearn
https://github.com/automl/auto-sklearn

12 L. Sun-Hosoya, I. Guyon et M. Sebag

10. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on knowledge
and data engineering 22(10), 1345–1359 (2010)

11. Rice, J.: The algorithm selection problem. Advances in computers 15, 65–118
(1976)

12. van Rijn, J., Bischl, B., Torgo, L., Gao, B., Umaashankar, V., Fischer, S., Winter,
P., Wiswedel, B., Berthold, M., Vanschoren, J.: OpenML: A collaborative science
platform. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) Proceed-
ings of the Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD Part III, LNCS, vol. 8190, pp. 645–649. Springer (2013)

13. Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for
cold-start recommendations. In: Proceedings of the 25th annual international ACM
SIGIR conference on Research and development in information retrieval. pp. 253–
260. ACM (2002)

14. Srebro, N., Rennie, J., Jaakkola, T.: Maximum-margin matrix factorization. Ad-
vances in neural information processing systems 17(5), 1329–1336 (2005)

15. Stern, D., Herbrich, R., Graepel, T., Samulowitz, H., Pulina, L., Tacchella, A.:
Collaborative expert portfolio management. In: AAAI. pp. 179–184 (2010)

16. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Ad-
vances in artificial intelligence 2009, 4 (2009)

17. Sun-Hosoya, L., Guyon, I., Sebag, M.: Lessons learned from the automl challenge.
In: Conférence sur l’Apprentissage Automatique 2018. Rouen, France (June 2018)

18. Weimer, M., Karatzoglou, A., Le, Q., Smola, A.: CofiRank-maximum margin ma-
trix factorization for collaborative ranking. In: Proceedings of the 21st Annual
Conference on Neural Information Processing Systems (NIPS). pp. 222–230 (2007)

	ActivMetaL: Algorithm Recommendation with Active Meta Learning

