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Data-driven model order reduction of

linear switched systems in the Loewner framework

I.V. Gosea †, M. Petreczky‡, A.C. Antoulas§ †.

January 26, 2018

Abstract

The Loewner framework for model reduction is extended to the class of linear switched
systems. One advantage of this framework is that it introduces a trade-off between accuracy
and complexity. Moreover, through this procedure, one can derive state-space models directly
from data which is related to the input-output behavior of the original system. Hence,
another advantage of the framework is that it does not require the initial system matrices.
More exactly, the data used in this framework consists in frequency domain samples of input-
output mappings of the original system. The definition of generalized transfer functions for
linear switched systems resembles the one for bilinear systems. A key role is played by the
coupling matrices, which ensure the transition from one active mode to another.

1 Introduction

Model order reduction (MOR) seeks to transform large, complicated models of time dependent
processes into smaller, simpler models that are nonetheless capable of representing accurately the
behavior of the original process under a variety of operating conditions. The goal is an efficient,
methodical strategy that yields a dynamical system evolving in a substantially lower dimension
space (hence requiring far less computational resources for realization), yet retaining response
characteristics close to the original system. Such reduced order models could be used as efficient
surrogates for the original model, replacing it as a component in larger simulations.

Hybrid systems are a class of nonlinear systems which result from the interaction of continuous
time dynamical sub-systems with discrete events. More precisely, a hybrid system is a collection
of continuous time dynamical systems. The internal variable of each dynamical system is governed
by a set of differential equations. Each of the separate continuous time systems are labeled as a
discrete mode. The transitions between the discrete states may result in a jump in the continuous
internal variable. Linear switched systems (in short LSS) constitute a subclass of hybrid systems;
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the main property is that these systems switch among a finite number of linear subsystems. Also,
the discrete events interacting with the sub-systems are governed by a piecewise continuous function
called the switching signal.

Hybrid and switched systems are powerful models for distributed embedded systems design
where discrete controls are routinely applied to continuous processes. However, the complexity of
verifying and assessing general properties of these systems is very high so that the use of these
models is limited in applications where the size of the state-space is not too large. To cope with
complexity, abstraction and reduction are useful techniques. In this paper we mainly analyze the
reduction part.

In the past years, hybrid and switched systems have received increasing attention in the scien-
tific community. For a detailed characterization of this relatively new class of dynamical systems,
we refer the readers to the books [25], [38], [39] and [19]. Such systems are used in modeling,
analysis and design of supervisory control systems, mechanical systems with impact, circuits with
relays or ideal diodes.

The study of the properties of hybrid systems in general and switched systems in particular
is still the subject of intense research, including the problems of stability (see [15, 38]), realiza-
tion including observability/controllability (see [31, 32]), analysis of switched differential-algebraic
equations, or in short DAE’s (see [27, 40]) and of its numerical solutions (see [20]). Recently,
considerable research has been dedicated to the problem of MOR for linear switched systems.
The most prolific method that has been applied is balanced truncation (or a Gramian-based
derivation of it). Techniques that are based on balancing have been considered in the follow-
ing: [18, 13, 10, 37, 28, 34, 30]. Also, another class of methods involve matching of generalized
Markov parameters (known also as time domain Krylov methods) such as the ones in [8, 7]; H∞
type of reduction methods were developed in [42, 11, 43]. Finally, we mention some publications
that are focused on the reduction of discrete LSS, such as [41, 12].

A linear switched system involves switching between a number of linear systems (the modes of
the LSS). Hence, to apply balanced truncation techniques to a switched linear system, one may
seek a basis of the state space such that the corresponding modes are all in balanced form. It may
happen that some state components of the LSS are difficult to reach and observe in some of the
modes yet easy to reach and observe in others. In that case, deciding how to truncate the state
variables and obtain a reduced order model is not trivial. A solution to this problem is proposed
in [28] where it is shown that the average Gramian can be used to obtain a reduced order model.
This method will be used as a comparison tool for our new MOR method.

In this paper, we focus on extending the Loewner framework (see [6]) for reducing linear
switched systems. This method can be viewed as a special subclass of rational Krylov methods,
also referred to as moment matching or interpolatory methods. Roughly speaking, in the linear
case, interpolatory methods seek reduced models whose transfer function (and possibly some of its
derivatives) matches the transfer function (and possibly some of its derivatives) of the original sys-
tem at selected frequencies. For the nonlinear case, these methods require appropriate definitions
of transfer functions.

The paper is organized as follows. In Section 2, the formal definition of continuous-time linear
switched systems is provided. Furthermore, we introduce the generalized transfer functions for
LSS as input-output mappings in frequency domain. Section 3 includes a brief introduction of the
Loewner framework for the class of linear systems with no switching. In Section 4, we present the
extension of the Loewner framework for LSS with 2 modes. This is done in order to familiarize
the reader with basic ideas without having to use heavy notation. Then, in Section 5, we propose
extensions of the results introduced in the previous section to the general case of LSS that switch
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amongst D > 2 modes. Afterwards, in Section 6, we discuss the practical applicability of the new
introduced method by means of three numerical examples (one of which is large scale). In those
examples, we compare our algorithms with the balanced truncation algorithm of [30] for illustration
purposes. Finally, in Section 7, we present a summary of the findings and the conclusions.

2 Linear switched systems

Definition 2.1 A continuous time linear switched system (LSS) is a dynamical system desribed
by the following equations

Σ :

{
Eσ(t)ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), x(0) = x0,

y(t) = Cσ(t)x(t),
(1)

where Q = {1, 2, . . . , D}, D > 1, is a set of discrete modes, σ(t) is the switching signal, u is the
input, x is the state, and y is the output.

The system matrices Eq,Aq ∈ Rnq×nq , Bq ∈ Rnq×m, Cq ∈ Rp×nq , where q ∈ Q, correspond to
the linear system active in mode q ∈ Q, and x0 ∈ Rnqs is the initial state. Here, n1, n2, . . . , nD,m
and p are positive integers and qs ∈ Q is the mode in which the system is initialized. We consider
the Eq matrices to be invertible. Furthermore, the transition from one mode to another is made
via the so called switching or coupling matrices Kq,q̃ ∈ Rnq̃×nq where q, q̃ ∈ Q .

Remark 2.1 The case for which the coupling is made between identical modes is excluded, Hence,
when q = q̃, consider that the coupling matrices are identity matrices, i.e. Kq,q = Inq .

The notation Σ = (n1, n2, . . . , nD, {(Eq,Aq,Bq,Cq)|q ∈ Q}, {Kq,q̃|q, q̃ ∈ Q},x0) is used as a
short-hand representation for LSS’s described by the equations in (1). The vector n ∈ ND, where
n =

[
n1 n2 · · · nD

]
is the dimension (order) of Σ. The linear system which is active in the

qth mode of Σ is denoted with Σq and it is described by (where 1 6 q 6 D)

Σk :

{
Eqẋq(t) = Aqxq(t) + Bqu(t), x(tk) = xk,

y(t) = Cqxq(t).
(2)

The restriction of the switching signal σ(t) to a finite interval of time [0, T ] can be interpreted
as a finite sequence of elements of Q× R+ of the form:

ν(σ) = (q1, t1)(q2, t2) . . . (qk, tk),

where q1, . . . , qk ∈ Q and 0 < t1 < t2 < · · · < tk ∈ R+, t1 + · · ·+ tk = T , such that for all t ∈ [0, T ]
we have:

σ(t) =



q1 if t ∈ [0, t1),
q2 if t ∈ [t1, t1 + t2),
...
qi if t ∈ [t1 + . . .+ ti−1, t1 + . . .+ ti−1 + ti),
...
qk if t ∈ [t1 + . . .+ tk−1, t1 + . . .+ tk−1 + tk).
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In short, by denoting Ti := t1 + . . .+ ti−1 + ti, T0 := 0, Tk := T , write:

σ(t) =

{
q1 if t ∈ [0, T1),

qi if t ∈ [Ti−1, Ti), i > 2.

Denote by PC(R+,Rn), Pc(R+,Rn), the set of all piecewise-continuous, and piecewise-constant
functions, respectively.

Definition 2.2 A tuple (x,u, σ,y), where x : R+ →
⋃D
i=1 Rni, u ∈ PC(R+,Rm), σ ∈ Pc(R+,Q),

y ∈ PC(R+,Rp) is called a solution, if the following conditions simultaneously hold:

1. The restriction of x(t) to [Ti−1, Ti) is differentiable, and satisfies Eqiẋ(t) = Aqix(t) + Bu(t).

2. Furthermore, when switching from mode qi to mode qi+1 at time Ti, the following holds

Eqi+1
x(Ti) = Kqi,qi+1

lim
t↗Ti

x(t).

3. Moreover, for all t ∈ R, y(t) = Cσ(t)x(t) holds.

The switching matrices Kqi,qi+1
allow having different dimensions for the subsystems active in

different modes. For instance, the pencil (Aqi ,Eqi) ∈ Rnqi×nqi , while the pencil (Aqi+1
,Eqi+1

) ∈
Rnqi+1×nqi+1 where the values nqi and nqi+1

need not be the same. If the Kqi,qi+1
matrices are not

explicitly given, it is considered that they are identity matrices.
The input-output behavior of an LSS can be formalized in time domain as a map f(u, σ)(t).

This particular map can be written in generalized kernel representation (as suggested in [33])
using the unique family of analytic functions: gq1,...,qk : Rk

+ → Rp and hq1,...,qk : Rk
+ → Rp×m with

q1, . . . , qk ∈ Q, k > 1 such that for all pairs (u, σ) and for T = t1 + t2 + · · ·+ tk we can write:

f(u, σ)(t) = gq1,q2,...,qk(t1, t2, . . . , tk) +
k∑
i=1

∫ ti

0

hqi,qi+1,...,qk(ti − τ, ti+1, . . . , tk)u(τ + Ti−1)dτ,

where the functions g,h are defined for k > 1, as follows,

gq1,q2,...,qk(t1, t2, . . . , tk) = Cqke
Ãqk

tkK̃qk−1,qke
Ãqk−1

tk−1K̃qk−2,qk−1
· · · K̃q1,q2e

Ãq1 t1x0, (3)

hq1,q2,...,qk(t1, t2, . . . , tk) = Cqke
Ãqk

tkK̃qk−1,qke
Ãqk−1

tk−1K̃qk−2,qk−1
· · · K̃q1,q2e

Ãq1 t1B̃1. (4)

Note that, for the functions defined in (3) and (4) we consider the Eqi matrices to be incorporated
into the Aqi and Bqi matrices (i.e. Ãqi = E−1

qi
Aqi , B̃qi = E−1

qi
Bqi). Moreover, the transformed

coupling matrices are written accordingly K̃qi,qi+1
= E−1

qi+1
Kqi,qi+1

.

In the rest of the paper, the LSS we are studying are assumed to have zero initial conditions,
i.e. x0 = 0. Hence, only the h functions in (4) are relevant for characterizing the input-output
mapping f .

The behavior of the input-output mappings in frequency domain is in turn characterized by a
series of multivariate rational functions obtained by taking the multivariable Laplace transform of
the regular kernels in (4), as for

Hq1(s1) = Cq1Φq1(s1)Bq1 , Hq1,q2(s1, s2) = Cq1Φq1(s1)Kq2,q1Φq2(s2)Bq2 ,

Hq1,q2,q3(s1, s2, s3) = Cq1Φq1(s1)Kq2,q1Φq2(s2)Kq3,q2Φq3(s3)Bq3 , · · ·
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In general, for k > 3, write the level k generalized transfer function associated to the switching
sequence (q1, q2, . . . , qk), and evaluated at the points (s1, s2, . . . sk) as,

Hq1,q2,...,qk(s1, s2, . . . , sk) = Cq1Φq1(s1)Kq2,q1Φq2(s2) · · ·Kqk,qk−1
Φqk(sk)Bqk , (5)

where Φq(s) = (sEq −Aq)
−1, qj ∈ {1, 2, . . . , D}, 1 6 j 6 k. These functions are the generalized

transfer functions of the linear switched system Σ.
By using their samples, we are able to directly construct (reduced) switched models that inter-

polate the original model - generalization of the Loewner framework to LSS.
We construct LSS reduced models by means of matching samples of input-output mappings

corresponding to the original LSS and evaluated at finite sampling points (as opposed to other
approaches - see [7, 8], where the behavior at infinity is studied instead, i.e. by matching Markov
parameters). For the explicit derivation of these types of transfer functions, which is based on the
so-called Volterra series representation, we refer the readers to [35].

Remark 2.2 Conceptually, the initial state of an LSS is part of its definition, since it is impossible
to define the input-output map of an LSS without fixing such a starting state. In this paper we
consider only the case when the initial state is zero. Note that the classical Loewner framework
(as introduced in [26]) uses only the input-output behavior from the zero initial state.

The proposed extension of the Loewner framework aims at finding a reduced system whose
generalized transfer functions match those of the original LSS. That is, the proposed method takes
into account only the input-output behavior from the zero initial state.

For the case of LSS, one could include non-zero initial states by including them as an additional
column into one of the matrices Bi, but the system theoretic interpretation of the thus obtained
generalized transfer functions and their moments remains unclear.

Remark 2.3 Certain issues might arise when the matrices Eq are allowed to be singular such
as the existence of a solution of the LSS (Definition 2.2) or the formal definition of time-domain
kernels in (4). The case of descriptor LSS (with singular Eq matrices) was treated in detail in [40].
In this paper we assume that the matrices Eq are invertible to avoid further complications.

Remark 2.4 The structure of the transfer functions in (5) is similar to the one of the functions
recently introduced in [4], for the class of bilinear systems. This is because one can formulate an
LSS as a bilinear system, by introducing additional input signals. Nevertheless, there are some
restrictions, i.e. this works only for LSSs with no coupling matrices and that have the same state
dimension in each mode. For the case D = 2, introduce the signal û(t) = q − 1, if the system
operates in mode q ∈ {1, 2}. Then, write the dynamics of the LSS by merging the individual
dynamics of the two modes, as

ẋ(t) = A1x(t) + (A2 −A1)x(t)û(t) + B1u(t)(1− û(t)) + B2u(t)û(t),

or equivalently, to emphasize the bilinear multiple input format, as

ẋ(t) = Abilx(t) + Nbil
1 x(t)u(t) + Nbil

2 x(t)û(t) + Nbil
3 x(t)u(t)û(t) + Bbil

1 u(t) + Bbil
2 û(t) + Bbil

3 u(t)û(t),

where Abil = A1, Nbil
2 = A2 −A1, Nbil

1 = Nbil
3 = 0, Bbil

1 = B1, B2 = 0, Bbil
3 = B2 −B1. Hence,

rewrite the above differential equation equivalently as,

ẋ(t) = Abilx(t) +
3∑
i=1

Nbil
i x(t)ui(t) +

3∑
i=1

Bbil
i ui(t),
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where the three control inputs are u1 = u, u2 = û and u3 = uû. That is, solutions of LSSs are
solutions of a bilinear system with a very specific structure and with specially chosen inputs. In
particular, the continuous input u and the switching signal have to be merged into a new artificial
input u3. Note that not all solutions of the bilinear system correspond to solutions of an LSS: for
the correspondence to hold, u2 should take values 0, 1 and u3 should satisfy u3 = u2u1.

3 Interpolatory MOR methods and the Loewner frame-

work

Consider a linear system defined by matrices E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, with
transfer function H(s) = C(sE−A)−1B. Given left interpolation points: {µj|1 6 j 6 q} ⊂ C, with
left tangential directions: {`j|1 6 j 6 q} ⊂ Cp, and right interpolation points: {λi|1 6 i 6 k} ⊂
C, with right tangential directions: {ri|1 6 i 6 k} ⊂ Cm, find a reduced-order system Ê, Â, B̂, Ĉ,
such that the resulting transfer function, Ĥ(s) is a tangential interpolant to H(s):

`Tj Ĥ(µj) = `Tj H(µj), j = 1, . . . , q, and Ĥ(λi)ri = H(λi)ri, i = 1, . . . , k. (6)

Interpolation points and tangent directions are selected to realize appropriate MOR goals. If
instead of state space data, we are given input/output data, the resulting problem is hence modified.
Given a set of input-output response measurements specified by left driving frequencies: {µj|1 6
j 6 q} ⊂ C, using left input directions: {`j|1 6 j 6 q} ⊂ Cp, producing left responses: {vj|1 6
j 6 q} ⊂ Cm, and right driving frequencies: {λi|1 6 i 6 k} ⊂ C, using right input directions:
{ri|1 6 i 6 k} ⊂ Cm, producing right responses: {wi|1 6 i 6 k} ⊂ Cp, find (low order) system
matrices Ê, Â, B̂, Ĉ, such that the resulting transfer function, Ĥ(s), is an (approximate) tangential
interpolant to the data:

`Tj Ĥ(µj) = vTj , j = 1, . . . , q, and Ĥ(λi)ri = wi, i = 1, . . . , k. (7)

For details on interpolatory or moment matching MOR methods, we refer the reader to [17, 3].

3.1 Overview of the Loewner framework for linear systems

The approach we discuss in this section is data driven. After collecting input/output (e.g. fre-
quency response) measurements for some appropriate range of frequencies, we construct models
which fit (or approximately fit) the data and have reduced dimension. The key is that, larger
amounts of data than necessary are collected and the essential underlying system structure is ex-
tracted appropriately. Thus an advantage of this approach is that it can provide the user with a
trade-off between accuracy of fit and complexity of the model.

The Loewner framework was developed in a series of papers; for details we refer the reader to
[1], as well as [26, 24, 23, 5, 21]. For a recent overview see [6].

3.2 The Loewner pencil

We will formulate the results for the more general tangential interpolation problem. We are given
the right data: (λi; ri,wi), i = 1, · · · , k, and the left data: (µj; `

T
j ,v

T
j ), j = 1, · · · , q; it is

assumed for simplicity that all points are distinct. The dimensions are as in (6), (7). The data
can be organized as follows: the right data:

Λ = diag [λ1, . . . , λk] ∈ Ck×k, R = [r1, . . . , rk] ∈ Cm×k, W = [w1, . . . ,wk] ∈ Cp×k,
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and the left data:

M = diag [µ1, . . . , µq] ∈ Cq×q, LT = [`1, . . . , `q] ∈ Cq×p, VT = [v1, . . . ,vq] ∈ Cq×m.

Then, the associated Loewner pencil, consists of the Loewner and shifted Loewner matrices. The
Loewner matrix L ∈ Cq×k, is defined as:

L =


vT
1 r1−`T1 w1

µ1−λ1 · · · vT
1 rk−`T1 wk

µ1−λk
...

. . .
...

vT
q r1−`Tq w1

µq−λ1 · · · vT
q rk−`Tq wk

µq−λk

 .
Note that the matrix L satisfies the Sylvester equation ML − LΛ = VR − LW. Suppose
that the underlying transfer function is H(s) = C(sE − A)−1B, and define the generalized
observability/controllability matrices:

O =

 C(µ1E−A)−1

...
C(µqE−A)−1

 , R =
[

(λ1E−A)−1B · · · (λkE−A)−1B
]
. (8)

It readily follows that the Loewner matrix can be factored as L = −OER. The shifted Loewner
matrix Ls ∈ Cq×k, is defined as:

Ls =


µ1vT

1 r1−`T1 w1λ1
µ1−λ1 · · · µ1vT

1 rk−`T1 wkλk
µ1−λk

...
. . .

...
µqvT

q r1−`Tq w1λ1
µq−λ1 · · · µqvT

q rk−`Tq wkλk
µq−λk

 .
Note that the matrix Ls satisfies the Sylvester equation MLs − LsΛ = MVR − LWΛ, and
can be factored in terms of the generalized controllability/observabilty matrices as Ls = −OAR.
Finally notice that the following relations hold: V = CR, W = OB.

3.3 Construction of reduced order models

We will distinguish two cases namely, the right amount of data and the more realistic redundant
amount of data cases. The following lemma covers the first case.

Lemma 3.1 Assume that k = q, and let (Ls, L), be a regular pencil, such that none of the
interpolation points λi, µj are its eigenvalues. Then E = −L, A = −Ls, B = V, C = W, is
a minimal realization of an interpolant of the data, i.e. the rational function H(s) = W(Ls −
sL)−1V, interpolates the data (the conditions in (7) are hence matched).

If the pencil (Ls, L) is singular we are dealing with the case of redundant data. In this case if
the following assumption is satisfied:

rank (γL− Ls) = rank

[
L
Ls

]
= rank [L Ls] = r 6 k, (9)

for all γ ∈ {λi|1 6 i 6 k} ∪ {µj|1 6 j 6 q}, we consider the following SVD factorizations:
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[
L Ls

]
= Y(1)S(1)(X(1))T ,

[
L
Ls

]
= Y(2)S(2)(X(2))T , (10)

where Y(1), X(2) ∈ Ck×k. The projection matrices Y ∈ Ck×r and X ∈ Ck×r are obtained by
selecting the first r columns of the matrices Y(1) and, respectively X(2) . The following result is
used in practical applications.

Lemma 3.2 A realization (E,A,B,C) of an approximate interpolant is given by the system ma-
trices E = −YTLX, A = −YTLsX, B = YTV, C = WX. Hence, the rational function
H(s) = WX(YTLsX − sYTLX)−1YTV approximately matches the data (the conditions in (7)
are approximately fulfilled, i.e. H(λi)ri = wi + εri and `Tj H(µj) = vTj + (ε`j)

T , where the residual
errors are collected in the vectors εri and ε`j).

Thus, if we have more data than necessary, we can consider (Ls, L, V, W), as a singular
model of the data. An appropriate projection then yields a reduced system of order k (see [26, 2]).

A direct consequence is that the Loewner framework offers a trade-off between accuracy and
complexity of the reduced order system, by means of the singular values of L.

Remark 3.1 For an error bound that links the quality of approximation to the singular values of
the Loewner pencil (which is valid only at the interpolation points µj and λi), we refer the readers
to [6].

Remark 3.2 For the classical Loewner framework applied to linear systems (see [26]), it is not
mandatory that the samples used in the modeling step, come from systems with an invertible E
matrix. We believe that similarly to the LTI case, the Loewner framework can be extended to LSSs
for which the matrices Ek are not invertible. Indeed, since one needs to evaluate the multi-variable
transfer functions on certain frequency grids, the only condition that is mandatory is that the
pencils (Ai,Ei) are regular for all i ∈ Q. This is because the resolvent of such pencils enters the
transfer functions for various interpolation points s, as described in (5).

4 The Loewner framework for LSS - the case D=2

The characterization of linear switched systems by means of rational functions suggests that re-
duction of such systems can be performed by means of interpolatory methods. In the following we
propose a way to generalize the Loewner framework to LSS by interpolating appropriately defined
transfer functions on a chosen grid of frequencies (interpolation points).

As for the linear case, the given set of sampling (interpolation) points is first partitioned into
the two following categories: left interpolation points: {µj|1 6 j 6 `} ⊂ C and right interpolation
points: {λi|1 6 i 6 k} ⊂ C.

In this paper we consider the case of SISO linear switched systems and thus, the left and right
tangential directions can be considered to be scalar (i.e. taking the value 1). The transfer functions
which will be matched are not single variable functions anymore (they depend on multiple variables
as described in (5)). Hence, the structure of the interpolation points used in the new framework
will be modified. Instead of having singleton values as in Section 3, we will use instead n-tuples
that include multiple singleton values.

For simplicity of the exposition, we first consider the simplified case D = 2 (the system switches
between two modes only). This situation is encountered in most of the numerical examples in the
literature that we encountered. Nevertheless, all the results presented in this section can be
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generalized for higher number of modes in a direct way (as presented in Section 5). Depending on
the switching signal σ(t), we either have,

Σ1 :

{
E1ẋ1(t) = A1x1(t) + B1u(t),

y(t) = C1x1(t),
or Σ2 :

{
E2ẋ2(t) = A2x2(t) + B2u(t),

y(t) = C2x2(t),

where dim(Σ1) = n1 (i.e. x1 ∈ Rn1 and E1,A1 ∈ Rn1×n1 ,B1,C
T
1 ∈ Rn1) and also dim(Σ2) = n2

(i.e. x2 ∈ Rn2 and E2,A2 ∈ Rn2×n2 ,B2,C
T
2 ∈ Rn2).

Denote, for simplicity, with K1 the coupling matrix when switching from mode 1 to mode
2 (instead of K1,2) and, with K2, the coupling matrix when switching from mode 2 to mode 1
(instead of K2,1) with K1 ∈ Rn2×n1 and K2 ∈ Rn1×n2 .

Let Φq(s) = (sEq −Aq)
−1, for q ∈ {1, 2}, s ∈ C so that det(sEq −Aq) 6= 0. The generalized

transfer functions corresponding to the first three levels, are written as:

Level 1

H1(s1) = C1Φ1(s1)B1 H2(s2) = C2Φ2(s2)B2,

Level 2

H1,2(s1, s2) = C1Φ1(s1)K2Φ2(s2)B2 H2,1(s2, s1) = C2Φ2(s2)K1Φ1(s1)B1,

Level 3 {
H1,2,1(s1, s2, s3) = C1Φ1(s1)K2Φ2(s2)K1Φ1(s3)B1,

H2,1,2(s1, s2, s3) = C2Φ2(s1)K1Φ1(s2)K2Φ2(s3)B2.

Definition 4.1 Consider two LSS Σ̂ = (n1, n2, {(Êi, Âi, B̂i, Ĉi)|i ∈ Q}, {K̂i,j|i, j ∈ Q},0) and
Σ̄ = (n1, n2, {(Ēi, Āi, B̄i, C̄i)|i ∈ Q}, {K̄i,j|i, j ∈ Q},0) with Q = {1, 2}. These systems are said
to be equivalent if there exist non-singular matrices ZL

j ,Z
R
j ∈ Rnj×nj so that

Ēj = ZL
j ÊjZ

R
j , Āj = ZL

j ÂjZ
R
j , B̄j = ZL

j B̂j, C̄j = ĈjZ
R
j , j ∈ {1, 2},

and also K̄1 = ZL
2 K̂1Z

R
1 , K̄2 = ZL

1 K̂2Z
R
2 . In this configuration, one can easily show that the

transfer functions defined above are the same for each LSS and for all sampling points sk.

4.1 The generalized controllability and observability matrices

Let Σ be an LSS as described in (1) with dim(Σk) = nk for k = 1, 2 and let K1 ∈ Rn2×n1 and
K2 ∈ Rn1×n2 be the coupling matrices. Before stating the general definitions, we first clarify how
the newly introduced matrices are constructed through a simple self-explanatory example.

Example 4.1 Let U be a set with ` = 12 elements, interpreted as left interpolation points, where
U = {µ1, µ2, . . . , µ12}. Partition U as U = U1 ∪ U2, where U1 = {µ(1)

1 , µ
(1)
3 , µ

(2)
1 , µ

(2)
3 , µ

(2)
5 , µ

(3)
1 } and

U2 = {µ(1)
2 , µ

(1)
4 , µ

(2)
2 , µ

(2)
4 , µ

(2)
6 , µ

(3)
2 }. Here, Ui contains points associated to mode i. Introduce the

nested multi-tuples corresponding to each mode of the LSS, as:

Mode 1 : µ
(1)
1 =

{(
µ

(1)
1

)(
µ

(1)
2 , µ

(1)
3

) , µ
(2)
1 =


(
µ

(2)
1

)(
µ

(2)
2 , µ

(2)
3

)(
µ

(2)
1 , µ

(2)
4 , µ

(2)
5

) , µ
(3)
1 =

{(
µ

(3)
1

)
,
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Mode 2 : µ
(1)
2 =

{(
µ

(1)
2

)(
µ

(1)
1 , µ

(1)
4

) , µ
(2)
2 =


(
µ

(2)
2

)(
µ

(2)
1 , µ

(2)
4

)(
µ

(2)
2 , µ

(2)
3 , µ

(2)
6

) , µ
(3)
2 =

{(
µ

(3)
2

)
.

We explicitly write the generalized observability matrices O1 and O2 as follows:

O1 =



C1 Φ1(µ
(1)
1 )

C2 Φ2(µ
(1)
2 ) K1 Φ1(µ

(1)
3 )

C1 Φ1(µ
(2)
1 )

C2 Φ2(µ
(2)
2 ) K1 Φ1(µ

(2)
3 )

C1 Φ1(µ
(2)
1 ) K2 Φ2(µ

(2)
4 ) K1 Φ1(µ

(2)
5 )

C1 Φ1(µ
(3)
1 )


, O2 =



C2 Φ2(µ
(1)
2 )

C1 Φ1(µ
(1)
1 ) K2 Φ2(µ

(1)
4 )

C2 Φ2(µ
(2)
2 )

C1 Φ1(µ
(2)
1 ) K2 Φ2(µ

(2)
4 )

C2 Φ2(µ
(2)
2 ) K1 Φ1(µ

(2)
3 ) K2 Φ2(µ

(2)
6 )

C2 Φ2(µ
(3)
2 )


.

For an interpolation point µ
(i)
j , the subscript j is related to the mode with which the point is associ-

ated to. This mode is given by the residue η(j), where η(j) = 1, if j is odd, and η(j) = 2, if j is even.
The superscript i stands for the block index. In this particular example, we considered three such
blocks for each of the two modes with the following dimensions: p1 = 2, p2 = 3 and p3 = 1 (here
pi represents the dimension of the block index i for i ∈ {1, 2, 3}).

Definition 4.2 Given a non-empty set X, denote with Xi the set of all ith tuples with elements
from X. Introduce the concatenation of two tuples composed of elements (symbols) α1, . . . , αi, and
β1, . . . , βj from X as the mapping } : Xi ×Xj → Xi+j with the following property:(

α1, α2, . . . , αi
)
}
(
β1, β2, . . . , βj

)
=
(
α1, α2, . . . αi, β1, β2, . . . βj

)
.

In the following we denote the `th element of the ordered set µ
(i)
j with µ

(i)
j (`) (where j ∈ Q and i >

1). For instance, µ
(2)
1 (3) :=

(
µ

(2)
1 , µ

(2)
4 , µ

(2)
5

)
. For convenience, use the notation H1,2,1(µ

(2)
1 , µ

(2)
4 , µ

(2)
5 )

instead of H(1,2,1)

(
(µ

(2)
1 , µ

(2)
4 , µ

(2)
5 )
)
, when referring to the function evaluation:

H1,2,1(µ
(2)
1 , µ

(2)
4 , µ

(2)
5 ) = C1Φ1(µ

(2)
1 )K2Φ2(µ

(2)
4 )K1Φ1(µ

(2)
5 )B1.

Definition 4.3 Let V = {λ1, λ2, . . . , λk} ⊂ C be a set composed of k right interpolation points.
Partition V in two sets V1 and V2, as V = V1 ∪ V2, where:

V1 = {λ(i)
2g−1|1 6 g 6 mi, 1 6 i 6 K }, V2 = {λ(i)

2g |1 6 g 6 mi, 1 6 i 6 K }. (11)

Here, V1 and V2 correspond to interpolation points associated to the Ist mode and, respectively,
associated to the IInd mode. Let K > 1 be a positive integer. For each i = 1, . . . ,K , introduce
the blocks of right ith tuples in terms of the points from (11), as:

λ
(i)
1 =



(
λ

(i)
1

)
,(

λ
(i)
3 , λ

(i)
2

)
,(

λ
(i)
5 , λ

(i)
4 , λ

(i)
1

)
,

...(
λ

(i)
2mi−3, . . . , λ

(i)
4 , λ

(i)
1

)
,(

λ
(i)
2mi−1, λ

(i)
2mi−2, . . . , λ

(i)
3 , λ

(i)
2

)
.

, λ
(i)
2 =



(
λ

(i)
2

)
,(

λ
(i)
4 , λ

(i)
1

)
,(

λ
(i)
6 , λ

(i)
3 , λ

(i)
2

)
,

...(
λ

(i)
2mi−2, . . . , λ

(i)
3 , λ

(i)
2

)
,(

λ
(i)
2mi

, λ
(i)
2mi−3, . . . , λ

(i)
4 , λ

(i)
1

)
.

, (12)
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where K is the number of blocks, and mi is the dimension of the index i block so that the equality
m1 + · · · +mK = k holds. Finally define the nested right multi-tuples, as:

λ1 =
{
λ

(1)
1 ,λ

(2)
1 , . . . ,λ

(K )
1

}
, λ2 =

{
λ

(1)
2 ,λ

(2)
2 , . . . ,λ

(K )
2

}
. (13)

Note that the right tuples in (12) are constructed based on the following recurrence relations (

where λ
(i)
1 (1) =

(
λ

(i)
1

)
and λ

(i)
2 (1) =

(
λ

(i)
2

)
)

λ
(i)
1 (g) =

(
λ

(i)
2g−1

)
} λ(i)

2 (g − 1), λ
(i)
2 (g) =

(
λ

(i)
2g

)
} λ(i)

1 (g − 1). (14)

Definition 4.4 Let U = {µ1, µ2, . . . , µk} ⊂ C be a set composed of k left interpolation points.
Partition U in two sets U1 and U2, as U = U1 ∪ U2, where:

U1 = {µ(i)
2h−1|1 6 h 6 pj, 1 6 j 6 L }, U2 = {µ(j)

2h |1 6 h 6 pj, 1 6 j 6 L }. (15)

Here, U1 and U2 correspond to interpolation points associated to the Ist mode and, respectively,
associated to the IInd mode. Let L > 1 be a positive integer. For each j = 1, . . . ,L , introduce
the blocks of left jth tuples in terms of the points from (15), as:

µ
(j)
1 =



(
µ

(j)
1

)
,(

µ
(j)
2 , µ

(j)
3

)
,(

µ
(j)
1 , µ

(j)
4 , µ

(j)
5

)
,

...(
µ

(j)
1 , µ

(j)
4 , . . . , µ

(j)
2pj−3

)
,(

µ
(j)
2 , µ

(j)
3 , . . . , µ

(j)
2pj−2, µ

(j)
2pj−1

)
.

µ
(j)
2 =



(
µ

(j)
2

)
,(

µ
(j)
1 , µ

(j)
4

)
,(

µ
(j)
2 , µ

(j)
3 , µ

(j)
6

)
,

...(
µ

(j)
2 , µ

(j)
3 , . . . , µ

(j)
2pj−2

)
,(

µ
(j)
1 , µ

(j)
4 , . . . , µ

(j)
2pj−3, µ

(j)
2pj

)
.

, (16)

where L > 1 is the number of blocks, and pj is the dimension of the index j block. Additionally,
note that the equality p1 + · · · + pL = `, holds. Finally define the nested left multi-tuples, as:

µ1 =
{
µ

(1)
1 ,µ

(2)
1 , . . . ,µ

(L )
1

}
, µ2 =

{
µ

(1)
2 ,µ

(2)
2 , . . . ,µ

(L )
2

}
. (17)

Note that the left tuples are constructed based on the following recurrence relations (where

µ
(j)
1 (1) =

(
µ

(j)
1

)
and µ

(j)
2 (1) =

(
µ

(j)
2

)
)

µ
(j)
1 (h) = µ

(j)
2 (h− 1) }

(
µ

(j)
2h−1

)
, µ

(j)
2 (h) = µ

(j)
1 (h− 1) }

(
µ

(j)
2h

)
. (18)

Condition 4.1 The right interpolation points λu, u ∈ {1, 2, . . . , k} are chosen in such a way so
that they do not coincide with the poles of any of the subsystems Σ1 or Σ2. More exactly, the
following conditions are imposed for all i = 1, . . . ,K and g = 1, . . . ,mi,

det(λ
(i)
2g−1E1 −A1) 6= 0, det(λ

(i)
2gE2 −A2) 6= 0. (19)

We associate the following matrices to the set of right tuples in (12), as

R(i)
1 =

[
Φ1(λ

(i)
1 ) B1, Φ1(λ

(i)
3 ) K2 Φ2(λ

(i)
2 ) B2, . . . , Φ1(λ

(i)
2mi−1) K2 · · ·K1 Φ1(λ

(i)
3 ) K2 Φ2(λ

(i)
2 ) B2

]
,

R(i)
2 =

[
Φ2(λ

(i)
2 ) B2, Φ2(λ

(i)
4 ) K1 Φ1(λ

(i)
1 ) B1, . . . , Φ2(λ

(i)
2mi

) K1 · · ·K2 Φ2(λ
(i)
2 ) K1 Φ1(λ

(i)
1 ) B1

]
,

where i = 1, . . . ,K and R(i)
q ∈ Cnq×mi is attached to Λ(i)

q for q ∈ {1, 2}.
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Definition 4.5 For the LSS Σ in (1), introduce the generalized controllability matrices R1 and
R2 associated to the right multi-tuples λ1, and, respectively λ2, as follows:

R1 =
[
R(1)

1 , R(2)
1 , . . . , R(K )

1

]
∈ Cn1×k, R2 =

[
R(1)

2 , R(2)
2 , . . . , R(K )

2

]
∈ Cn2×k. (20)

Condition 4.2 The left interpolation points µv, v ∈ {1, 2, . . . , `} are chosen in such a way so that
they do not coincide with the poles of any of the subsystems Σ1 or Σ2. More exactly, the following
conditions are imposed for all j = 1, . . . ,L and h = 1, . . . , pj,

det(µ
(j)
2h−1E1 −A1) 6= 0, det(µ

(j)
2hE2 −A2) 6= 0. (21)

Next, associate the following matrices to the set of right tuples in (16), as

O(j)
1 =


C1 Φ1(µ

(j)
1 )

C2 Φ2(µ
(j)
2 ) K1 Φ1(µ

(j)
3 )

...

C2 Φ2(µ
(j)
2 ) K1 Φ1(µ

(j)
3 ) K2 · · · K1 Φ1(µ

(j)
2pj−1)

 ∈ Cpj×n1 , j = 1, . . . ,L ,

O(j)
2 =


C2 Φ2(µ

(j)
1 )

C1 Φ1(µ
(j)
1 ) K2 Φ2(µ

(j)
4 )

...

C1 Φ1(µ
(j)
1 ) K2 Φ2(µ

(j)
2 ) K1 · · · K2 Φ2(µ

(j)
2pj

)

 ∈ Cpj×n2 , j = 1, . . . ,L .

Definition 4.6 For the LSS Σ in (1), introduce the generalized observability matrices O1 and O2

associated to the right multi-tuples µ1, and, respectively µ2, as follows:

O1 =


O(1)

1
...

O(L )
1

 ∈ C`×n1 , O2 =


O(1)

2
...

O(L )
2

 ∈ C`×n2 . (22)

Definition 4.7 For ν ∈ {1, 2}, let Qν,+ and Q+,ν be the ordered sets containing all tuples that
can be constructed with symbols from the Q = {1, 2} and that start (and respectively end) with
the symbol ν. Also, no two consecutive characters are allowed to be the same. Hence, explicitly
write the new introduced sets as follows:

Q1,+ = {(1), (1, 2), (1, 2, 1), . . .}, Q2,+ = {(2), (2, 1), (2, 1, 2), . . .}, (23)

Q+,1 = {(1), (2, 1), (1, 2, 1), . . .}, Q+,2 = {(2), (1, 2), (2, 1, 2), . . .}. (24)

Remark 4.1 In the following we denote the `th element of the ordered set Qν,+ with Qν,+(`). For
example, one writes Q1,+(4) := (1, 2, 1, 2). Moreover, we have Q+,2(3) } Q1,+(2) = (2, 1, 2, 1, 2).

The compact notation HQ+,1(µ1(2)) is used instead of H2,1(µ2, µ3), where µ1(2) :=
(
µ2, µ3

)
Definition 4.8 Let the ith unit vector of length k be denoted with ei,k = [0 . . . , 1, . . . , 0]T ∈ Rk.
Additionally, let 0k,` ∈ Rk×` be an all zero matrix.
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In the following, use the notation Ĥ to emphasize that we are referring to the generalized
transfer functions corresponding to the LSS Σ̂.

Definition 4.9 We say that an LSS Σ̂ = (n1, n2, {(Êi, Âi, B̂i, Ĉi)|i ∈ Q}, {K̂i,j|i, j ∈ Q},0)

matches the data associated with the right tuples {λ(1)
a , . . . ,λ(K )

a } as well as with the left tuples

{µ(1)
b , . . . ,µ

(L )
b }, a, b ∈ Q and corresponding to the original LSS Σ = (n1, n2, {(Ei,Ai,Bi,Ci)|i ∈

Q}, {Ki,j|i, j ∈ Q},0), if the following 2(k2 + 2k) relations
HQ+,1(h)(µ

(j)
1 (h)) = ĤQ+,1(h)(µ

(j)
1 (h)), HQ+,2(h)(µ

(j)
2 (h)) = ĤQ+,2(h)(µ

(j)
2 (h)),

HQ1,+(g)(λ
(i)
1 (g)) = ĤQ1,+(g)(λ

(i)
1 (g)), HQ2,+(g)(λ

(i)
2 (g)) = ĤQ2,+(g)(λ

(i)
2 (g)),

HQ+,1(h)}Q2,+(g)(µ
(j)
1 (h) } λ(i)

2 (g)) = ĤQ+,1(h)}Q2,+(g)(µ
(j)
1 (h) } λ(i)

2 (g)),

HQ+,2(h)}Q1,+(g)(µ
(j)
2 (h) } λ(i)

1 (g)) = ĤQ+,2(h)}Q1,+(g)(µ
(j)
2 (h) } λ(i)

1 (g)),

(25)

hold for j = 1, . . . ,K , h = 1, . . . , pj and i = 1, . . . ,K , g = 1, . . . ,mi, where

p1 + p2 + . . .+ pK = m1 +m2 + . . .+mK = k.

The following lemma extends the rational interpolation idea for linear systems approximation to
the linear switched system case.

Lemma 4.1 Interpolation of LSS. Let Σ = (n1, n2, {(Ei,Ai,Bi,Ci)|i ∈ Q}, {Ki,j|i, j ∈ Q},0)
be an LSS of order (n1, n2). Consider that the number of left and right interpolation points
is the same for each mode, i.e ` = k. Additionally, assume the matrices in (20) and (22)
have full rank, i.e. rank(Ri) = rank(Oi) = k, i ∈ {1, 2}. An order k reduced LSS Σ̂ =
(n1, n2, {(Êi, Âi, B̂i, Ĉi)|i ∈ Q}, {K̂i,j|i, j ∈ Q},0) is constructed by projection, i.e. by using
right and left projectors chosen as

X1 = R1, X2 = R2 and YT
1 = O1, YT

2 = O2.

The projected matrices corresponding to the Ist subsystem Σ̂1 are computed as,

Ê1 = YT
1 E1X1, Â1 = YT

1 A1X1, B̂1 = YT
1 B1, Ĉ1 = C1X1, K̂1 = YT

2 K1X1, (26)

while the projected matrices corresponding to the IInd subsystem Σ̂2 can also be computed as,

Ê2 = YT
2 E2X2, Â2 = YT

2 A2X2, B̂2 = YT
2 B2, Ĉ2 = C2X2, K̂2 = YT

1 K2X2. (27)

It follows that the reduced-order system Σ̂ matches the data of the system Σ (as it was previously
introduced in Definition 4.9).

Proof of Lemma 4.1 For simplicity, assume that we have one set of right multi-tuples, and
one set of left multi-tuples with k interpolation points for each mode. This corresponds to the case
L = K = 1 and m1 = p1 = k (using the notations introduced in Definitions 4.3 and 4.4). For
the first mode, write down the interpolation points as follows:{

λ1 =
{(
λ1

)
,
(
λ3, λ2

)
, . . . ,

(
λ2k−1, · · · , λ3, λ2

)}
,

µ1 =
{(
µ1

)
,
(
µ2, µ3

)
, . . . ,

(
µ2, µ3, · · · , µ2k−1

)}
.

(28)
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For the second mode, write down the interpolation points as follows:{
λ2 =

{(
λ2

)
,
(
λ4, λ1

)
, . . . ,

(
λ2k, · · · , λ2, λ1

)}
,

µ2 =
{(
µ2

)
,
(
µ1, µ4

)
, . . . ,

(
µ1, µ4, · · · , µ2k

)}
.

(29)

It follows that the interpolation conditions stated in Definition 4.9, can be rewritten by taking into
account the aforementioned simplification as,

2k conditions:

{
HQ+,1(j)(µ1(j)) = ĤQ+,1(j)(µ1(j))

HQ+,2(j)(µ2(j)) = ĤQ+,2(j)(µ2(j))
, j ∈ {1, . . . , k}, (30)

2k conditions:

{
HQ1,+(i)(λ1(i)) = ĤQ1,+(i)(λ1(i))

HQ2,+(i)(λ2(i)) = ĤQ2,+(i)(λ2(i))
, i ∈ {1, . . . , k}, (31)

k2 conditions:
{

HQ+,1(j)}Q2,+(i)(µ1(j) } λ2(i)) = ĤQ+,1(j)}Q2,+(i)(µ1(j) } λ2(i)), (32)

k2 conditions:
{

HQ+,2(j)}Q1,+(i)(µ2(j) } λ1(i)) = ĤQ+,2(j)}Q1,+(i)(µ2(j) } λ1(i)). (33)

With the assumptions in (28) and (29), it follows that the associated generalized controllability
and observability matrices defined previously in (20) and (22), are rewritten as:

R1 = [ Φ1(λ1)B1, Φ1(λ3)K2Φ2(λ2)B2, . . . , Φ1(λ2k−1)K2 · · · K2Φ2(λ2)B2] ∈ Cn×k,

R2 = [ Φ2(λ2)B2, Φ2(λ4)K1Φ1(λ1)B1, . . . , Φ2(λ2k)K1 · · · K1Φ1(λ1)B1] ∈ Cn×k,

O1 =


C1Φ1(µ1)
C2Φ2(µ2)K1Φ1(µ3)

...
C2Φ2(µ2)K1Φ1(µ3) · · ·K1Φ1(µ2k−1)

 , O2 =


C2Φ2(µ2)
C1Φ1(µ1)K2Φ2(µ4)

...
C1Φ1(µ1)K2Φ2(µ4) · · ·K2Φ2(µ2k)

 ,
with O1, O2 ∈ Ck×n. Additionally, introduce the notation Φ̂i(s) = (sÊ− Â)−1.
From (26) and (27), using that Xi = Ri for i = 1, 2, it readily follows that:

(a) Φ̂1(λ1) B̂1 = e1,k and (b) Φ̂1(λ2i−1) K̂2 ei−1,k = ei,k, i = 2, . . . , k,

(c) Φ̂2(λ2) B̂2 = e1 and (d) Φ̂2(λ2i) K̂1 ei−1,k = ei,k, i = 2, . . . , k.

These equalities imply the right-hand conditions in (31). Similarly, from (26) and (27), using that
YT
j = Oj for j = 1, 2, it follows that:

(e) C1 Φ̂1(µ1) = eT1,k and (f) eTj−1,kK2Φ̂2(µ2j) = eTj,k, j = 2, . . . , k,

(g) C2 Φ̂2(µ2) = eT1,k and (h) eTj−1K1Φ̂1(µ2j−1) = eTj,k, j = 2, . . . , k,

which imply left-hand conditions in (30). Finally, with X = R, YT = O, and combining (a)-(h),
all interpolation conditions in (32) and (33) are hence satisfied.

Remark 4.2 For instance, in Example 4.2, the conditions stated in (48) are satisfied.

14



4.1.1 Sylvester equations for O and R

The motivation behind this subsection is closely related to building parametrized reduced order
models. The idea is that, one can use only one sided interpolation conditions, either left as in (30)
or right as in (31), to reduce the original LSS. Then, one can choose the free parameters to impose
additional conditions (not necessarily interpolatory).

Further development of this strategy was studied in [4] (in Section 4.4), for the case of gener-
alized Sylvester equations for bilinear systems.

The generalized controllabilty and observability matrices satisfy Sylvester equations. To state
the corresponding result we need to define particular quantities. First introduce the vectors

R =
[
eT1,m1

· · · eT1,mK

]
∈ R1×k, LT =

[
eT1,p1 · · · eT1,pL

]
∈ R1×`, (34)

where m1 + . . .+mK = k and p1 + . . .+ pL = `. Next, introduce the block-shift matrices

{
SR = blkdiag [Jm1 , . . . , JmK ] ,

SL = blkdiag
[
JTp1 , . . . , J

T
pL

]
.

where Ju =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

 ∈ Ru×u. (35)

Finally we arrange the left interpolation points in the diagonal matrices M1,M2 ∈ R`×` as,

M1 = blkdiag [M
(1)
1 , M

(2)
1 , . . . , M

(L )
1 ], M2 = blkdiag [M

(1)
2 , M

(2)
2 , . . . , M

(L )
2 ], (36)

where M
(j)
1 = diag [µ

(j)
1 , µ

(j)
3 , . . . , µ

(j)
2pj−1] and M

(j)
2 = diag [µ

(j)
2 , µ

(j)
4 , . . . , µ

(j)
2pj

]; we used the
MATLAB notation ’blkdiag’ which outputs a block diagonal matrix with each input entry as a
block. Also arrange the right interpolation points in the diagonal matrices Λ1, Λ1 ∈ Rk×k as,

Λ1 = blkdiag [Λ
(1)
1 , Λ

(2)
1 , . . . , Λ

(K )
1 ], Λ2 = blkdiag [Λ

(1)
2 , Λ

(2)
2 , . . . , Λ

(K )
2 ], (37)

where Λ
(i)
1 = diag [λ

(i)
1 , λ

(i)
3 , . . . , λ

(i)
2mi−1] and Λ

(i)
2 = diag [λ

(i)
2 , λ

(i)
4 , . . . , λ

(i)
2mi

]. The next
results represent extensions of the linear case and hence follow naturally.

Lemma 4.2 Consider that the assumption in Condition 4.1 holds, i.e. (19) is valid. Then, the
generalized controllability matrices R1,R2 defined in (20) are the unique solutions of the following
coupled Sylvester equations:{

A1R1 + K2R2SR + B1R = E1R1Λ1,

A2R2 + K1R1SR + B2R = E2R2Λ2.
(38)

Proof of Lemma 4.2 Assume again, for simplicity of the proof, that the assumptions made
in (28)-(29) are valid. Hence, we have one set of right multi-tuples for each of the two modes with
same number of interpolation points k (with k even). Multiplying the first equation in (38) on the
right with the unit vector e1,k we obtain:

A1R(1)
1 + B1 = λ1E1R(1)

1 ⇔ R
(1)
1 = (λ1E1 −A1)−1B1 = Φ1(λ1)B1. (39)

where R(j)
i is the jth column of Ri (with j 6 k and i ∈ {1, 2}). Thus the first column of the

matrix which is the solution of the first equation in (38) is indeed equal to the first column of

15



the generalized controllability matrix R1. By multiplying the second equation in (38) on the right
with the unit vector e1,k, we obtain:

A2R(1)
2 + B2 = λ2E2R(1)

2 ⇔ R
(1)
2 = (λ2E2 −A2)−1B2 = Φ2(λ2)B2. (40)

Thus the first column of the matrix which is the solution of the second equation in (38) is indeed
equal to the first column of the generalized controllability matrix R2. By multiplying first equation
in (38) on the right with the jth unit vector ej,k, we obtain:

A1R(j)
1 + K2R(j−1)

2 = λ2j−1E1R(j)
1 ⇔ R(j)

1 = (λ2j−1E1 −A1)−1K2R(j−1)
2 . (41)

By multiplying the second equation in (38) on the right with the jth unit vector ej,k, write:

A2R(j)
2 + K1R(j−1)

1 = λ2jE2R(j)
2 ⇔ R(j)

2 = (λ2jE2 −A2)−1K1R(j−1)
1 . (42)

From (41) and (42) derive the following linear recursive system of equations:{
R(j)

1 = Φ1(λ2j−1)K2R(j−1)
2 ,

R(j)
2 = Φ2(λ2j)K1R(j−1)

1 .
(43)

with initial conditions (39) and (40). Hence, by solving the recursive system of equations, we
conclude that any solution of (38) is given by pairs of generalized controllability matrices defined
as in (20). Conversely, it automatically follows that the matrices defined in (20) satisfy the relations
in (38). In this case, the assumption made in Condition 4.1 insures that the equations are solvable.

This proof can be straightforward adapted from the simplified case in (28)-(29) to the more
general case of interpolation tuples considered in (12)-(16).

Lemma 4.3 Consider that the assumption in Condition 4.2 holds, i.e. (21) is valid. Then, the
generalized observability matrices O1 and O2 defined by (22) satisfy the following coupled general-
ized Sylvester equations: {

O1A1 + SLO2K1 + LC1 = M1O1E1,

O2A2 + SLO1K2 + LC2 = M2O2E2.
(44)

Proof of Lemma 4.3 Similar to the proof of Lemma 4.2.

4.2 The generalized Loewner pencil

Definition 4.10 Given a linear switched system Σ as defined in (1), let {R1,R2} and {O1,O2}
be the controllability and observability matrices defined in (20), (22) respectively, and associated
with the multi-tuples in (13), (17) respectively. The Loewner matrices L1 and L2 are defined as

L1 = −O1 E1R1, L2 = −O2 E2R2 . (45)

Additionally, the shifted Loewner matrices Ls1 and Ls2 are defined as

Ls1 = −O1 A1R1, Ls2 = −O2 A2R2. (46)

Also define the quantities{
W1 = C1R1

W2 = C2R2

,

{
V1 = O1 B1

V2 = O2 B2

and

{
Ξ1 = O2 K1R1

Ξ2 = O1 K2R2

. (47)
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Remark 4.3 In general, the Loewner matrices defined above need not have only real entries. For
instance, it may happen that the samples points are purely imaginary values (on the jω axis).
In this case, we refer the readers to Section 4.3.1 in [4]. We propose a similar method to enforce
all system matrices have only real entries. In short, the sampling points have to be chosen as
complex conjugate pairs; after the data is arranged into matrix format, use projection matrices as
in equation (4.26) in [4] to multiply the matrices in (45), (46) and (47) to the left and to the right.
In this way, the LSS does not change as pointed out in Definition 4.1.

Remark 4.4 Note that Lk and Lsk (where k ∈ {1, 2}), as defined above, are indeed Loewner
matrices, that is, they can be expressed as divided differences of appropriate transfer function
values of the underlying LSS (see the following example).

Example 4.2 Given the LSS described by (Cj,Ej,Aj,Bj) (D = 2 and j ∈ {1, 2}), consider the
ordered tuples of left interpolation points:

{
(µ1), (µ2, µ3)

}
,
{

(µ2), (µ1, µ4)
}

and right inter-
polation points

{
(λ1), (λ3, λ2)

}
,
{

(λ2), (λ4, λ1)
}

. The associated generalized observability and
controllability matrices are computed as follows

O1 =

[
C1Φ1(µ1)

C2Φ2(µ2)K1Φ1(µ3)

]
, O2 =

[
C2Φ2(µ2)

C1Φ3(µ1)K2Φ2(µ4)

]
,

R1 =
[

Φ1(λ1)B1 Φ1(λ3)K2Φ2(λ2)B2

]
, R2 =

[
Φ2(λ2)B2 Φ2(λ4)K1Φ1(λ1)B1

]
.

The projected Loewner matrices can be written in terms of the samples in the following way:

L1 =

 H1(µ1)−H1(λ1)
µ1−λ1

H1,2(µ1,λ2)−H1,2(λ3,λ2)

µ1−λ3
H2,1(µ2,µ3)−H2,1(µ2,λ1)

µ3−λ1
H2,1,2(µ2,µ3,λ2)−H2,1,2(µ2,λ3,λ2)

µ3−λ3

 = −O1E1R1,

L2 =

 H2(µ2)−H2(λ2)
µ2−λ2

H2,1(µ2,λ1)−H2,1(λ4,λ1)

µ2−λ4
H1,2(µ1,µ4)−H1,2(µ1,λ2)

µ4−λ2
H1,2,1(µ1,µ4,λ4)−H1,2,1(µ1,λ4,λ1)

µ4−λ4

 = −O2E2R2.

The projected shifted Loewner matrices can also be written in terms of the samples as:

Ls1 =

 µ1H1(µ1)−λ1H1(λ1)
µ1−λ1

µ1H1,2(µ1,λ2)−λ3H1,2(λ3,λ2)

µ1−λ3
µ3H2,1(µ2,µ3)−λ1H2,1(µ2,λ1)

µ3−λ1
µ3H2,1,2(µ2,µ3,λ2)−λ3H2,1,2(µ2,λ3,λ2)

µ3−λ3

 = −O1A1R1,

Ls2 =

 µ2H2(µ2)−λ2H2(λ2)
µ2−λ2

µ2H2,1(µ2,λ1)−λ4H2,1(λ4,λ1)

µ2−λ4
µ4H1,2(µ1,µ4)−λ2H1,2(µ1,λ2)

µ4−λ2
µ4H1,2,1(µ1,µ4,λ4)−λ4H1,2,1(µ1,λ4,λ1)

µ4−λ4

 = −O2A2R2.

The same property applies for the Vi and Wj vectors and Ξj matrices:

V1 =

[
H1(µ1)

H2,1(µ2, µ3)

]
= O1B1, V2 =

[
H2(µ2)

H1,2(µ1, µ4)

]
= O2B2,

W1 =
[

H1(λ1) H1,2(λ3, λ2)
]

= C1R1, W2 =
[

H2(λ2) H2,1(λ4, λ1)
]

= C2R2,

Ξ1 =

[
H2,1(µ2, λ1) H2,1,2(µ2, λ3, λ2)

H1,2,1(µ1, µ4, λ1) H1,2,1,2(µ1, µ4, λ3, λ2)

]
= O2K1R1,

Ξ2 =

[
H1,2(µ1, λ2) H1,2,1(µ1, λ4, λ1)

H2,1,2(µ2, µ3, λ2) H2,1,2,1(µ2, µ3, λ4, λ1)

]
= O1K2R2.
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It readily follows that, given the original system Σ, a reduced LSS of order two can be obtained
without computation (matrix factorizations or solves) as:

Êk = OER, Â = OAR, N̂ = ONR, B̂ = OB, Ĉ = CR.

This reduced system matches sixteen moments of the original system, namely:

four of H1/H2 : H1(µ1), H2(µ2), H1(λ1), H2(λ2),
three of H1,2 : H1,2(µ1, µ4), H1,2(µ1, λ2), H1,2(λ3, λ2),
three of H2,1 : H2,1(µ2, µ3), H2,1(µ2, λ1), H2,1(λ4, λ1),

...
one of H1,2,1,2 : H1,2,1,2(µ1, µ4, λ3, λ2),
one of H2,1,2,1 : H2,1,2,1(µ2, µ3, λ4, λ1).

(48)

i.e. in total 2(2k + k2) = 16 moments are matched using this procedure.

4.2.1 Properties of the Loewner pencil

We will now show that the quantities defined earlier satisfy various equations which generalize the
ones in the linear or bilinear case.

The equations that are be presented in this section are used to automatically find the Loewner
and shifted Loewner matrices by means of solving Sylvester equations (instead of building the
divided difference matrices from the computed samples at the sampling points).

Proposition 4.1 The Loewner matrix L1 and the shifted Loewner matrix Ls1 (corresponding to
mode 1) satisfy the following relations (where L,R,Λk,Mk,SL,SR are given in (34),(35) and(36)):

Ls1 = L1Λ1 + V1R + Ξ2SR, (49)

Ls1 = M1L1 + LW1 + SLΞ1. (50)

The Loewner matrix L2 and the shifted Loewner matrix Ls2 (corresponding to mode 2) satisfy the
following relations:

Ls2 = L2Λ2 + V2R + Ξ1SR, (51)

Ls2 = M2L2 + LW2 + SLΞ2. (52)

Proof of Proposition 4.1 By multiplying the first equation in (38) with O1 to the left we obtain:

O1A1R1 +O1K2R2SR +O1B1R = O1E1R1Λ1 ⇒ −Ls1 + Ξ2SR + V1R = −L1Λ1,

and hence relation (49) is proven. Similarly we prove (51). By multiplying the first equation in
(44) with R1 to the right we obtain:

O1A1R1 + SLO2K1R1 + LC1R1 = M1O1E1R1 ⇒ −Ls1 + SLΞ1 + LW1 = −M1L1,

and hence relation (50) is proven. Similarly we prove (52).

Proposition 4.2 The Loewner matrices L1 and L2 satisfy the following Sylvester equations:

M1L1 − L1Λ1 = (V1R− LW1) + (Ξ2SR − SLΞ1), (53)

M2L2 − L2Λ2 = (V2R− LW2) + (Ξ1SR − SLΞ2). (54)
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Proof of Proposition 4.2 By subtracting equation (49) from (50) we directly obtain (53) and
also, by subtracting equation (51) from (52) we directly obtain (54).

Proposition 4.3 The shifted Loewner matrices Ls1 and Ls2 satisfy the following Sylvester equa-
tions:

M1Ls1 − Ls1Λ1 = (M1V1R− LW1Λ1) + (M1Ξ2SR − SLΞ1Λ1), (55)

M2Ls2 − Ls2Λ2 = (M2V2R− LW2Λ2) + (M2Ξ1SR − SLΞ2Λ2). (56)

Proof of Proposition 4.3 By subtracting equation (49) after being multiplied with M1 to the
left from equation (50) after being multiplied with Λ1 to the right, we directly obtain (55). Similar
procedure is applied to prove (56).

Remark 4.5 The right hand side of the equations (53) - (56) contains constant {0, 1} matrices
(i.e. R,L,SR,SL) as well as matrices (i.e. Vj,Wj,Ξj, j ∈ {1, 2}) which are directly constructed
by putting together the given samples values as pointed out in Example 4.2.

4.3 Construction of reduced order models

As we already noted, the interpolation data for the LSS has different format than the one used for
the linear case without switching, as higher order transfer function values are matched as shown
in the previous sections. However, the procedure itself is similar to the one previously presented
in Section 3, i.e. in Lemma 3.1.

Lemma 4.4 Assume that k = ` and that the interpolation points are chosen to satisfy the condi-
tions in (19) and (21). Moreover, assume that the Loewner matrices L1 and L2 to be invertible.
Then, a realization of a reduced order LSS Σ̂ that matches the data of the original LSS Σ (as
introduced in Definition 4.9) is given by the following matrices,{

Ê1 = −L1, Â1 = −Ls1, B̂1 = V1, Ĉ1 = W1,

Ê2 = −L2, Â2 = −Ls2, B̂2 = V2, Ĉ2 = W2

and K̂1 = Ξ1, K̂2 = Ξ2.

If k = n, then the proposed realization is equivalent to the original one (as in Definition 4.1).

Proof of Lemma 4.4 This result directly follows from Lemma 4.1 by taking into consideration
the notations introduced in (45-47).

In the case of redundant data, at least one of the pencils (Lsj, Lj) is singular (for j ∈ {1, 2}),
and hence construct pairs of projectors (Xj,Yj) (corresponding to mode j) similar to (10). The
MOR procedure for approximate data matching is presented as follows.

Procedure 1 Consider the rank revealing singular value factorization of the following matrices
composed of the Loewner and shifted Loewner matrices corresponding to mode j ∈ {1, 2}, as

[
Lj Lsj

]
=
[

Y
(1)
j Ỹ

(1)
j

] [ S
(1)
j O

O S̃
(1)
j

] [
X

(1)
j X̃

(1)
j

]T
= Y

(1)
j S

(1)
j (X

(1)
j )T + Ỹ

(1)
j S̃

(1)
j (X̃

(1)
j )T .

[
Lj
Lsj

]
=
[

Y
(2)
j Ỹ

(2)
j

] [ S
(2)
j O

O S̃
(2)
j

] [
X

(2)
j X̃

(2)
j

]T
= Y

(2)
j S

(2)
j (X

(2)
j )T + Ỹ

(2)
j S̃

(2)
j (X̃

(2)
j )T ,

(57)
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where Y
(i)
j ,X

(i)
j ∈ Rk×rj and S

(i)
j ∈ Rrj×rj for i ∈ {1, 2} . The projected system matrices corre-

sponding to subsystem Σ̂j are computed as,

Êj = −(Y
(1)
j )TLjX(2)

j , Âj = −(Y
(1)
j )TLsjX

(2)
j , B̂j = (Y

(1)
j )TVj, Ĉj = WjX

(2)
j , for j ∈ {1, 2}

Moreover, the projected coupling matrices are computed in the following way

K̂1 = (Y
(1)
2 )TΞ1X

(2)
1 , K̂2 = (Y

(1)
1 )TΞ2X

(2)
2 .

By choosing rj as the numerical rank of the Loewner matrix Lj (i.e. the largest neglected singular

value corresponding to index rj+1 is less than machine precision ε), ensure that the Êj matrices are

not singular. Hence, construct a reduced order LSS denoted with Σ̂, that approximately matches
the data of the original LSS Σ. If the truncated singular values are all 0 (the ones on the main

diagonal of the matrices S̃
(i)
j ), then the matching is exact.

We provide a qualitative rather than quantitative result for the projected Loewner case. The
quality of approximation is directly linked to the singular values of the Loewner pencils which
represent an indicator of the desired accuracy. For linear systems with no switching, an error
bound is provided in [6] as a quantitative measure.

The dimensions of the subsystems Σ̂1 and Σ̂2, corresponding to the reduced order LSS, need
not be the same (i.e. r1 6= r2). In this case the coupling matrices are not square anymore.

The projectors are computed via singular value factorization of the Loewner matrices. The use
of the Drazin or Moore-Penrose pseudo inverses also holds (as shown in [2]).

5 The Loewner framework for linear switched systems -

the general case

In this section we are mainly concerned with generalizing some of the results presented in Section 4.
Most of the findings can be smoothly extended to the cases with more complex switching patterns
(more modes). By enforcing a prefix/suffix closure structure in the proposed framework, we can
show that all interpolation conditions can be written in matrix equation format.

Definition 5.1 Let Γ and Θ be finite sets of tuples so that Γ,Θ ⊆
∞⋃
k=1

Qk × Ck so that Γ has the

prefix closure property, i.e.

(q1, q2, . . . , qi, λ1, . . . , λi) ∈ Γ⇒ (q2, . . . , qi, λ2, . . . , λi) ∈ Γ ∀i > 2,

and Θ has the suffix closure property, i.e.

(q1, q2, . . . , qj, µ1, . . . , µj) ∈ Θ⇒ (q1, . . . , qj−1, µ1, . . . , µj−1) ∈ Θ ∀j > 2.

Now consider the specific subset Γq (for any q ∈ Q) of the set Γ, defined in the following way:

Γq = {(q1, q2, . . . , qi, λ1, . . . , λi) ∈ Γ | q1 = q, i 6 δΓ}, δΓ = max(|w|)
w∈Γ

/2.

Denote the cardinality of Γq with kq = card(Γq) and explicitly enumerate the elements of this set

as follows: Γq = {w(1)
q , w

(2)
q , . . . , w

(kq)
q }. Consider the following function (mapping) r : Γq → Cnq×1

that maps a word form Γq into a column vector of size nq:

r((q, q2, . . . , qi, λ1, . . . , λi)) = Φq(λ1)Kq2,qΦq2(λ2) · · ·Kqi,qi−1
Φqi(λi)Bqi .
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Next, construct the controllability matrix Rq corresponding to the mode q of the system Σ as
follows:

Rq =
[

r(w
(1)
q ) r(w

(2)
q ) · · · r(w

(kq)
q )

]
∈ Cnq×kq . (58)

Similarly, define the specific subset Θq (for any q ∈ Q) of the set Θ in the following way:

Θq = {(q1, q2, . . . , qj, µ1, . . . , µj) ∈ Γ | qj = q, j 6 δΘ}, δΘ = max(|w|)
w∈Θ

/2.

Consider the cardinality of Θq to be the same as the one of Γq, i.e. kq = card(Θq). Although
this additional constraint is not necessarily needed, we would like to enforce the construction of
reduced systems with square matrices Ak and Ek. Next we explicitly enumerate the elements of

this set as follows: Θq = {v(1)
q , v

(2)
q , . . . , v

(kq)
q }. Consider the following mapping o : Θq → C1×nq

that maps a word form Θq into a row vector of size nq:

o((q1, q2, . . . , qj−1, q, µ1, . . . , µj)) = Cq1Φq1(µ1)Kq2,q1Φq2(µ2) · · ·Kq,qj−1
Φq(µj).

Next, construct the observability matrix Oq ∈ Ckq×nq corresponding to the mode q of the system
Σ as follows

Oq =
[

o(v
(1)
q )

T
o(v

(2)
q )

T
· · · o(v

(kq)
q )

T
]T
∈ Ckq×nq . (59)

Consider the following example to show how the general procedure is extended from the linear
case (no switching) to the case when switching occurs.

Example 5.1 Take D = 3 (3 active modes) and hence Q = {1, 2, 3}. The following interpolation
points are given: {s1, s2, . . . , s18} ⊂ C. The first step is to partition this set into two disjoint
subsets (each having 9 points):

left interpolation points : {µ1, µ2, . . . , µ9}, right interpolation points : {λ1, λ2, . . . , λ9}.

The set Γ is composed of three subsets Γ = Γ1

⋃
Γ2

⋃
Γ3 which are defined by imposing the previ-

ously defined suffix closure property, as
Γ1 = {(1, λ1), (1, 3, λ4, λ3), (1, 3, 2, λ7, λ6, λ2)},
Γ2 = {(2, λ2), (2, 1, λ5, λ1), (2, 1, 3, λ8, λ4, λ3)},
Γ3 = {(3, λ3), (3, 2, λ6, λ2), (3, 2, 1, λ9, λ5, λ1)}.

To the sets Γj, we attach the following controllability matrices Rj

R1 =
[

Φ1(λ1) Φ1(λ4)K3,1Φ3(λ3)B3 Φ1(λ7)K3,1Φ3(λ6)K2,3Φ2(λ2)B2

]
,

R2 =
[

Φ2(λ2) Φ2(λ5)K1,2Φ1(λ1)B1 Φ2(λ8)K1,2Φ1(λ4)K3,1Φ3(λ3)B3

]
,

R3 =
[

Φ3(λ3) Φ3(λ6)K2,3Φ2(λ2)B2 Φ3(λ9)K2,3Φ2(λ5)K1,2Φ1(λ1)B1

]
.

In the same manner, the set Θ is composed of three subsets Θ = Θ1

⋃
Θ2

⋃
Θ3. These are defined

by means of imposing the previously defined prefix closure property, as follows
Θ1 = {(1, µ1), (3, 1, µ3, µ4), (1, 2, 1, µ1, µ5, µ7)},
Θ2 = {(2, µ2), (1, 2, µ1, µ5), (2, 3, 2, µ2, µ6, µ8)},
Θ3 = {(3, µ3), (2, 3, µ2, µ6), (3, 1, 3, µ3, µ4, µ9)}.
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To the sets Θi, we attach the observability matrices Oi defined as follows:

O1 =

 C1Φ1(µ1)
C3Φ3(µ3)K1,3Φ1(µ4)

C1Φ1(µ1)K2,1Φ2(µ5)K1,2Φ1(µ7)

 , O2 =

 C2Φ2(µ2)
C1Φ1(µ1)K2,1Φ2(µ5)

C2Φ2(µ2)K3,2Φ3(µ6)K2,3Φ2(µ8)

 ,

O3 =

 C3Φ3(µ3)
C2Φ2(µ2)K3,2Φ3(µ6)

C3Φ3(µ3)K1,3Φ1(µ4)K3,1Φ3(µ9)

 .
5.1 Sylvester equations for Rq and Oq
In this section we would like to generalize the results presented in Lemma 4.2 and Lemma 4.3, and
hence extend the framework to a general number of operational modes denoted with D.

Definition 5.2 Introduce the special concatenation of tuples composed of mixed elements (symbols)
from the sets Q and C, as the mapping with the following property:(

α1 } β1

)
�
(
α2 } β2

)
=
((
α1 } α2

)
} (β1 } β2

))
,

where αk ∈ Qik and βk ∈ Cjk for ik, jk > 1 and k = 1, 2.

Definition 5.3 For g, i = 1, . . . , D, let S
(g)
i =

[
S

(g)
i (1) . . . S

(g)
i (kg)

]
∈ Rki×kg be constant

matrices that contain only 0/1 entries constructed so that S
(g)
i (1) = 0ki,1 and for u = 2, . . . , kg, we

write:

S
(g)
i (u) =

{
eu−1,ki , if ∃ λ̃ ∈ C, s.t. w

(u)
g = (g, λ̃)�w

(u−1)
i ,

0ki,1, else
. (60)

Also, introduce the matrices R(i) and Λi that are defined similarly as in (34) and (37),

R(i) =
[
eT1,m1

· · · eT1,mK

]
∈ R1×ki , Λi = blkdiag [Λ

(1)
i , Λ

(2)
i , . . . , Λ

(L )
i ] ∈ Rki×ki , (61)

where the diagonal matrices Λ
(a)
i , a = 1, . . . ,K contain the right interpolation points associated

to mode i. For a set Γ with general structure (as in Defintion 5.1), it follows that the controllability
matrices Ri ∈ Rni×ki , 1 6 i 6 D satisfy the following system of generalized Sylvester equations:

A1R1 +
D∑
i=1

Ki,1RiS
(1)
i + B1R

(1) = E1R1Λ1,

A2R2 +
D∑
i=1

Ki,2RiS
(2)
i + B2R

(2) = E2R2Λ2,

...

ADRD +
D∑
i=1

Ki,DRiS
(D)
i + BDR(D) = EDRDΛD.

(62)
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Note that S
(i)
i = 0ki,ki , and if k1 = k2 = · · · = kD = k, the above defined matrices S

(g)
i satisfy the

following equality ∀g ∈ Q :

D∑
i=1

S
(g)
i = blkdiag [Jm1 , . . . ,JmK

] . (63)

where Jl is the Jordan block of size l defined in (35).
To directly find Rg, g = 1, 2, 3 for the case presented in Example 5.1, we have to solve the

following system of coupled generalized Sylvester equations
A1R1 + K3,1R3S

(1)
3 + B1R = E1R1Λ1,

A2R2 + K1,2R1S
(2)
1 + B2R = E2R2Λ2,

A3R3 + K2,3R2S
(3)
2 + B3R = E3R3Λ3.

where:

Λ1 =

 λ1 0 0
0 λ4 0
0 0 λ7

 , Λ2 =

 λ2 0 0
0 λ5 0
0 0 λ8

 , Λ3 =

 λ3 0 0
0 λ6 0
0 0 λ9

 ,
R =

[
1 0 0

]
, S

(1)
3 = S

(2)
1 = S

(3)
2 =

 0 1 0
0 0 1
0 0 0

 .
This corresponds to the case k1 = k2 = k3 = 3, K = 1 and m1 = 3.

Definition 5.4 For h, j = 1, . . . , D, let T
(h)
j =

[ (
T

(h)
j

)T
(1) . . .

(
T

(h)
j

)T
(kh)

]T
∈ R`h×`j be

constant matrices that contain only 0/1 entries constructed so that
(
T

(h)
j

)T
(1) = 0`j ,1 and for

v = 2, . . . , kg, we write:

(
T

(h)
j

)T
(v) =

{
ev−1,kj , if ∃ µ̃ ∈ C, s.t. w

(v)
h = w

(v−1)
j � (h, µ̃),

0`j ,1, else
. (64)

Also, introduce the following matrices(
L(j)

)T
=
[
eT1,p1 · · · eT1,pL

]
∈ R1×`j , Mj = blkdiag [M

(1)
j , M

(2)
j , . . . , M

(L )
j ] ∈ R`j×`j , (65)

where the diagonal matrices M
(v)
j for v = 1, . . . , `j contain the left interpolation points associated

to mode j. For a set Θ with general structure (as in Defintion 5.1), one can conclude that the
observability matrices Oj ∈ R`j×nj , 1 6 j 6 D satisfy the following system of generalized Sylvester
equations: 

O1A1 +
D∑
j=1

T
(1)
j OjK1,j + L(1)C1 = M1O1E1,

O2A2 +
D∑
j=1

T
(2)
j OjK2,j + L(2)C2 = M2O2E2,

...

ODAD +
D∑
j=1

T
(D)
j OjKD,j + L(D)CD = MDODED.

(66)
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Note that T
(j)
j = 0`j ,`j , and if `1 = `2 = · · · = `D = `, the square matrices T

(h)
j ∈ R`×` satisfy the

following equality, ∀h ∈ Q:

D∑
j=1

T
(h)
j = blkdiag [Jp1 , . . . ,JpL

]T . (67)

Again to find the matrices Oh, h = 1, 2, 3 in Example 5.1, it is required to solve the following
system of coupled generalized Sylvester equations

O1A1 + T
(1)
3 O3K1,3 + T

(1)
2 O2K1,2 + LC1 = M1O1E1,

O2A2 + T
(2)
1 O1K2,1 + T

(2)
3 O3K2,3 + LC2 = M2O2E2,

O3A3 + T
(3)
2 O2K3,2 + T

(3)
1 O1K3,1 + LC3 = M3O3E3.

where:

M1 =

 µ1 0 0
0 µ4 0
0 0 µ7

 , M2 =

 µ2 0 0
0 µ5 0
0 0 µ8

 , M3 =

 µ3 0 0
0 µ6 0
0 0 µ9

 ,
T

(1)
3 = T

(2)
1 = T

(3)
2 =

 0 0 0
1 0 0
0 0 0

 , T
(1)
2 = T

(2)
3 = T

(3)
1 =

 0 0 0
0 0 0
0 1 0

 , L = e1,3.

This corresponds to the case `1 = `2 = `3 = 3, L = 1 and p1 = 3. Note that the relation in (67)

hold, i.e. T
(1)
2 + T

(1)
3 = T

(2)
1 + T

(2)
3 = T

(3)
1 + T

(3)
2 = JT3 .

Throughout this section, we chose cycling switching to make the exposition more comprehensi-
ble and to directly relate it to the case D = 2. The cyclic property of the switching scenarios comes
naturally in many applications (for example in the boost power converter model in [9], Section 5.2),
but does not necessarily need to be enforced in our framework (Definition 5.1 is not constrained
to only such type of switching). Consequently, in Example 5.1, the construction of the sets Γk is
indeed cyclic, while the sets Θk do not posses this property.

5.2 The Loewner matrices

For the case of linear switched systems with D active modes, the generalization of the Loewner
framework includes one important feature. Instead of only one pair of Loewner matrices (as in the
linear case without switching which is covered in Section 3), we define a pair of Loewner matrices
for each individual active mode; hence in total D pairs of Loewner matrices.

Definition 5.5 Given a linear switched system Σ, let {Ri|i ∈ Q} and {Oj|j ∈ Q} be the con-
trollability and observability matrices associated with the multi-tuples Γi and Θj. The Loewner
matrices {Li| i ∈ Q} are defined as

L1 = −O1 E1R1, L2 = −O2 E2R2, . . . , LD = −OD EDRD, (68)

Additionally, the shifted Loewner matrices {Lsi| i ∈ Q} are defined as

Ls1 = −O1 A1R1, Ls2 = −O2 A2R2, . . . , LsD = −OD ADRD. (69)

Also introduce the matrices ∀i, j ∈ Q

Wi = CiRi, Vj = Oj Bj, and Ξi,j = Oj Ki,jRi.
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Remark 5.1 The number of Loewner matrices, shifted Loewner matrices, Wi row vectors and Vj
column vectors is the same as the number of active modes (i.e D). On the other hand, the number
of matrices Ξi,j increases quadratically with D (i.e in total D2 matrices).

Remark 5.2 Note that the matrices Li and Lsi as defined in (68) and (69) (for i ∈ {1, 2, . . . , D})
are indeed Loewner matrices, that is, they can be expressed as divided differences of generalized
transfer function values of the underlying LSS.

Proposition 5.1 The Loewner matrices Lh satisfy the following Sylvester equations:

MhLh − LhΛh = (VhR− LWh) +
D∑
j=1

(
Ξj,hS

(h)
j −T

(h)
j Ξh,j

)
, h ∈ Q. (70)

Proposition 5.2 The shifted Loewner matrices Lsh satisfy the following Sylvester equations:

MhLsh − LshΛh = (MhVhR− LWhΛh) +
D∑
j=1

(
MhΞj,hS

(h)
j −T

(h)
j Ξh,jΛh

)
, h ∈ Q. (71)

Remark 5.3 The proof of the results stated in (70)-(71) is performed in a similar manner as for
the results obtained for the special case D = 2 in Section 4 (i.e. for (53)-(56)).

5.3 Construction of reduced order models

The general procedure for the case with D switching modes is more or less similar to the one
covered in Section 4.3 (where D = 2).

Lemma 5.1 Let Lj be invertible matrices for 1 6 j 6 D, such that none of the interpolation
points λi, µk are eigenvalues of any of the Loewner pencils (Lsj, Lj). Then, the matrices

{Êj = −Lj, Â1 = −Lsj, B̂j = Vj, Ĉj = Wj, K̂i,j = Ξi,j}, i, j ∈ {1, . . . , D},

form a realization of a reduced order LSS Σ̂ that matches the data of the original LSS Σ. If kj = nj
for 1 6 j 6 D, the proposed realization is equivalent to the original one.

The concept of an LSS matching the data of another LSS in the case D > 2 is formulated in a
similar manner as to the case D = 2, which is covered in Definition 4.9. Also, the definition of
equivalent LSS for the case D > 2 is formulated similarly as to Definition 4.1.

In the case of redundant data, at least one of the pencils (Lsj, Lj) is singular (for j ∈
{1, . . . , D}). The main procedure is presented as follows.

Procedure 2 Consider the rank revealing singular value factorization of the matrices composed
of the Loewner matrices Lj and of the shifted Loewner matrices Lsj as in (57) , this time for

j ∈ {1, . . . , D}. Again, X
(`)
j ,Y

(`)
j ∈ Rkj×rj , S

(`)
j ∈ Rrj×rj , j = {1, . . . , D} and ` = {1, 2}. Here,

choose rj as the numerical rank of the Loewner matrix Lj (i.e. the largest neglected singular value
corresponding to index rj + 1 is less than machine precision ε). The projected system matrices
computed as

Êj = −(Y
(1)
j )TLjX(2)

j , Âj = −(Y
(1)
j )TLsjX

(2)
j , B̂j = (Y

(1)
j )TVj, Ĉj = WjX

(2)
j , for j ∈ {1, . . . , D},
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and the projected coupling matrices computed in the following way

K̂i,j = (Y
(1)
j )TΞi,jX

(2)
i , ∀i, j ∈ {1, . . . , D},

form a realization of a reduced order LSS denoted with Σ̂ that approximately matches the data of
the original LSS Σ. Each reduced subsystem Σ̂j has dimension rj, j ∈ {1, . . . , D}.

Remark 5.4 If the truncated singular values are all 0 (the ones on the main diagonal of the
matrices S̃j), then the interpolation is exact.

6 Numerical experiments

In this section we illustrate the new method by means of three numerical examples. We use a
certain generalization of the balanced truncation (BT) method for LSS (as presented in [28] to
compare the performance of our new introduced method. The main ingredient of the BT method is
to compute the the controllability and observability Gramians Pi and Qi (where i ∈ {1, 2, . . . , D})
as the solutions of the following Lyapunov equations:

AiPiE
T
i + EiPiA

T
i + BiB

T
i = 0, (72)

AT
i QiEi + ET

i PiAi + CT
i Ci = 0. (73)

6.1 Balanced Truncation

In [28] it was shown that, if certain conditions are satisfied, the technique of simultaneous balanced
truncation can be applied to switched linear systems. In some special cases, the existence of a
global transformation matrix Vbal is guaranteed, provided that (Corollary IV.3 in [28]):

1. The matrices PiQi and PjQj commute for all i, j ∈ {1, 2, . . . , D};

2. The conditions PiQj = PjQi are satisfied for all i, j ∈ {1, 2, . . . , D}.

Hence, it follows that:
VbalPiVT

bal = V−TbalQiV
−1
bal = Ui, (74)

where Ui are diagonal matrices. Although conceptually attractive as a MOR method, in general
the conditions are rather restrictive in practice. This motivates the search for a more general MOR
approach for the case where simultaneous balancing cannot be achieved.

The problem of finding a balancing transformation for a single linear system can be formulated
as finding a nonsingular matrix such that the following cost function is minimized (see [1]):

f(V) = trace[VPVT + V−TQV−1]. (75)

For the class of LSS with distinct operational modes, we hence have to minimize not one but a
number of D cost functions:

fi(V) = trace[VPiVT + V−TQiV−1], i ∈ {1, 2, . . . , D}. (76)

If the conditions of Corollary IV.3 from [28] hold, simultaneous balancing is possible, and there
exists a transformation V which simultaneously minimizes fi for all i = 1, 2, . . . , D. Instead of
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having D functions as in (76), one can introduce a single overall cost function (i.e the average of
the cost functions of the individual modes). Define the function fav as in [28]:

fav(V) =
1

D

D∑
i=1

trace[VPiVT + V−TQiV−1] = trace[VPavVT + V−TQavV−1], (77)

where

Pav =
1

D

D∑
i=1

Pi, Qav =
1

D

D∑
i=1

Qi. (78)

In the case of LSS, the BT method computes a basis where the sum of the eigenvalues of Pi and
Qi over all modes is minimal. Hence, minimizing the proposed overall cost function provides a
natural extension of classical BT to the case of LSS.

It follows that the transformation Ṽ that minimizes the cost function in (77) is precisely the
one which balances the pair (Pav,Qav) of average Gramians.

By applying Ṽ to the individual modes and truncating, a reduced order model is obtained.
After applying the transformation Ṽ, the new state space representations of the individual modes
need not be balanced. Nevertheless, as stated in [28], it is expected to be relatively close to being
balanced. Moreover, a downside of this method is given by the fact that it does not allow different
state-space dimensionality for different modes.

6.2 First example

As first example we consider the simple model of an evaporator vessel from [29]. There is a constant
inflow of liquid into a tank as well as an outflow that depends on the pressure in the tank and
the Bernoulli resistance Rb. To keep the level of fluid in the evaporator vessel at or below a pre-
specified maximum, an overflow mechanism is activated when the level of fluid L in the evaporator
exceeds the threshold value Lth. This causes a flow through a narrow pipe with resistance Rp and
inertia I that builds up flow momentum p. The system is modeled in two distinct operation modes:
mode 1, where there is no overflow (the fluid level is below the overflow level), and mode 2, where
the overflow mechanism is active. The ordinary differential equations describing the system in the
two operation modes are given by[

I 0
0 C

] [
ṗ

L̇

]
=

[
−Rp 0

0 −1/Rb

] [
p
L

]
+

[
0
fin

]
(mode 1),[

I 0
0 C

] [
ṗ

L̇

]
=

[
−Rp 1
−1 −1/Rb

] [
p
L

]
+

[
0
fin

]
(mode 2).

Additionally, note that the observed output y is chosen to be the average of the two system variables
p and L, i.e. y = (p + L)/2 (for both modes). Assuming the system is initially in mode 1, the
inflow then causes the tank to start filling, which causes an outflow through resistance Rb. In this
mode the outflow through the narrow pipe is zero. If L exceeds the level Lth, a switch from mode
1 to mode 2 occurs at the point in time when L = Lth.

In the following, use the parameters Rb = 1, Rp = 0.5, I = 1, C = 1, fin = 1, Lth = 0.08 and
compute the following system matrices:

Mode 1 : E1 =

[
1 0

0 1

]
, A1 =

[ −1
2

0

0 −1

]
, B1 =

[
0
1

]
, C1 =

[
1
2

1
2

]
,

27



Figure 1: Schematic of the evaporator vessel [29].

Mode 2 : E2 =

[
1 0

0 1

]
, A2 =

[ −1
2

1

−1 −1

]
, B2 =

[
0
1

]
, C2 =

[
1
2

1
2

]
.

The coupling matrices are chosen to be identity matrices, i.e. K1 = K2 = I2. Next, consider the
following tuples of left and right interpolation points corresponding to each mode, as{

λ1 = {(−1.5), (−2, 1)},
µ1 = {(2), (0, 0.5)}.

,

{
λ2 = {(1), (1.5,−1.5)},
µ2 = {(0), (2,−0.5)}.

.

Hence, following the procedure described in Section 4, we recover the following system matrices:

Mode 1 : Ê1 =

[ −1
3
− 23

240

−2
3
−1

8

]
, Â1 =

[ 1
3

19
240

2
3

1
8

]
, B̂1 =

[ 1
6
1
3

]
, Ĉ1 =

[
−1 −13

48

]
,

Mode 2 : Ê2 =

[ 3
16
−1

3
7

120
−1

9

]
, Â2 =

[ − 5
16

1
2

− 17
120

7
30

]
, B̂2 =

[ 1
2
1
5

]
, Ĉ2 =

[
5
16
−1

2

]
.

Note that the recovered realization is equivalent to the original one (no reduction has been enforced
since the task was to recover the initial system only). The coupling matrices are also computed:

K̂1 =

[ −1 − 3
16

−2
5
− 23

360

]
, K̂2 =

[ 9
80
− 8

45
1
8
−2

9

]
.

6.3 Second example

For the next experiment, consider the CD player system from the SLICOT benchmark examples
for MOR (see [14]). This linear system of order 120 has two inputs and two outputs. We consider
that, at any given instance of time, only one input and one output are active (the others are not
functional due to mechanical failure). More precisely, consider mode j to be activated whenever
the jth input and the jth output are simultaneously failing (where j ∈ {1, 2}).

In this way, we construct an LSS with two operational modes (hence D = 2). Both subsystems
are stable SISO linear systems of order 120. This initial linear switched system Σ will be reduced
by means of the Loewner framework to obtain Σ̂L and by means of the balanced truncation method
proposed in [28] to obtain Σ̂B. Denote with Σ̂Lj

and Σ̂Bj
the jth linear subsystem corresponding

to Σ̂L, and respectively, to Σ̂B.
The frequency response of each original subsystem is depicted in Fig. 2. Note that, an amplitude

scaling of the original system was performed, in order to enforce a similar gain for each of the two
subsystems.
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Ist subsystem

IInd subsystem

Figure 2: Frequency response of the original subsystems.

For the Loewner method, we choose 120 logarithmically distributed interpolation points in the
interval [101, 105]j. In Fig. 3 (a), we depict the singular value decay of the appended Loewner
matrices, i.e. [Lj Lsj], j ∈ {1, 2}. These matrices are used in Procedure 1, i.e. in (57). Note
that the Loewner matrices Lj and the shifted Loewner matrices Lsj are defined as in Section 4.2.
Additionally, Fig. 3 (a) depicts the decay of the Hankel singular values of the averaged Gramians
corresponding to Σ, as defined in (78). We observe that the 80th value attains machine precision
(ε ≈ 10−16) in the case of the Loewner matrices, while in the case of the balancing procedure, the
same truncation order provides a 10−9 decay. The decay presented in Fig. 3 is a good indicator for
choosing the desired truncation order.
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(a) Appended Loewner matrices + averaged Gramians.
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Figure 3: Decay of the singular values for different matrices.

For both reduced order systems, Σ̂L and Σ̂B, we decide to truncate at order k1 = k2 = 27 for the
two subsystems. This choice was made so that the neglected singular values corresponding to all
three curves in Fig. 3 (a) are less than the chosen tolerance value, i.e. ε1 = 10−6. More specifically,

this corresponds to the following values for the 27th singular value: σ
(1)
27 = 1.5498 · 10−7 for the

first Loewner subsystem and σ
(2)
27 = 8.5741 · 10−8 for the second Loewner subsystem. The last kept

singular value corresponding to the averaged balanced model is higher, i.e. σ
(3)
27 = 1.5516 · 10−6.

Hence, we would like to emphasize that the singular value decay is faster for Loewner compared
to BT and thus certain errors can be achieved with lower order models.

Additionally, in Fig. 3 (b) we present the singular value decay of appended Loewner matrices
[Lj Lsj], j ∈ {1, 2}, defined as in Section 4.2 (the LSS case for which samples of higher order
transfer functions are used in the process). The first and second curves correspond to these
quantities. In the same figure, we present the singular value decay of appended Loewner matrices
defined as in Section 3.2 (the classical linear case with no switching and in which only samples of
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first order linear transfer functions are used in the process). The third and forth curves correspond
to these quantities. Note that, the singular value decay of the latter matrices is slightly slower
than that of the first matrices.
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Figure 4: Frequency domain approximation error.

We assess the performance the two MOR methods mentioned above in the following ways:
depicting the frequency domain simulation error, computing the H2 and H∞ norms of the error
subsystems and by depicting the time domain simulation error.

First, start by comparing the quality of approximation of the frequency response. In Fig. 4 the
frequency domain error is depicted for both MOR methods (Loewner and BT).

Observe that the error curve corresponding to the Loewner method is lower than that of the BT
method for most of the frequency points considered in this experiment. This behavior is especially
noticeable in the low frequency range. If one compares the maximum of the error, i.e. the H∞
norm, then one can notice that for mode 1 the Loewner method produces a higher peak error,
while for mode 2, the Loewner method produces a lower peak error.

Next, we explicitly compute the relative approximation errors for each mode individually, for
both reduction methods, with respect to the H2 norm. More specifically, ‖Σ̂Lj

−Σj‖H2/‖Σj‖H2 for
the Loewner method, and ‖ΣBj

−Σj‖H2/‖Σj‖H2 where j ∈ {1, 2} for the BT method. Additionally,

we compute the H∞ norm relative errors, i.e. ‖Σ̂Lj
− Σj‖H∞/‖Σj‖H∞ for the Loewner method,

and ‖ΣBj
− Σj‖H∞/‖Σj‖H∞ where j ∈ {1, 2} for the BT method. The results are presented in

Tab. 1. Note that, for mode 1, the balanced truncation method produces slightly lower errors,
while for mode 2, the errors corresponding to the Loewner method are lower.

H2 Loewner Bal Trunc

Mode 1 3.9210 · 10−5 2.0303 · 10−5

Mode 2 9.9040 · 10−6 2.2922 · 10−5

H∞ Loewner Bal Trunc

Mode 1 3.3888 · 10−5 5.5266 · 10−6

Mode 2 2.6036 · 10−7 6.3798 · 10−7

Table 1: Relative approximation error for the two modes in the H2 and H∞ norms

Finally, we compare the time domain response of the original linear switched system against
the ones corresponding to the two reduced models. We first use a simple sinusoidal signal, i.e.
u(t) = cos(t)/10 as the control input. The piecewise-constant signal in the upper part of Fig. 5 (a)
represents the switching signal. The switching times are chosen within the interval [0,10] seconds
so that fast switching is also exhibited. More precisely, note that in the range [5.5,7]s, this signal
switches between modes 1 and 2 much more frequently then in the rest of the time axis.

As it can be seen in the lower part of Fig. 5 (a), the output of the LSS is well approximated
for both MOR methods (all three curves are indistinguishable from one another). The blue circles

30



located on the observed output curve in the lower part of Fig. 5 (a) are used to mark the switching
times.

Finally, by inspecting the time domain error between the original response and the responses
coming from the two reduced models (depicted in Fig. 5 (b)), we notice that the error curve corre-
sponding to the Loewner method is two orders of magnitude below the error curve corresponding
to the BT method for most of the points on the time axis.
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Figure 5: Time domain simulation - first choice of input.

Additionally, we repeat the time domain simulation experiment depicted in Fig. 5, by consid-
ering another control input signal. Let u(t) = (

∑10
k=1 sin(ωkt))/10 be a richer frequency spectrum

signal, where the frequency points ωk are logarithmically spaced in the interval [1, 50]. We also
choose another switching signal σ(t), with random switching times (and with no particular imposed
conditions to the frequency of switching). In Fig. 6 we depict the switching signal, the observed
output and the approximation error. Similar conclusions to the ones mentioned above for the
results in Fig. 5 can be drawn by inspecting Fig. 6.
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Figure 6: Time domain simulation - second choice of input.

6.4 Third example

For the last experiment, consider a large scale LSS constructed as in [22] from the original machine
stand example given in [16]. In this example, the system variability is induced by a moving tool
slide on the guide rails of the stand (see Fig. 7). The aim is to determine the thermally driven
displacement of the machine stand structure. Following the model setting in [16], consider the heat
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Figure 7: Schematic of the tool slide on the guide rails of the stand [22].

equation with Robin boundary conditions. Using a finite element (FE) discretization and denoting
the external influences as the system input z, we obtain the dynamical heat model

Ethẋ(t) = Ath(t)x(t) + Bth(t)z(t), (79)

describing the deformation independent evolution of the temperature field x with the system
matrices Eth,Ath(t) and Bth(t). The variability of the model is described by time dependent
matrices Ath(t) and Bth(t). This leads directly to the linear time varying system described by
(79). Since model reduction for LTV systems is a highly storage consuming procedure, the authors
in [22] exploit properties of the spatially semi-discretized model to set up an LSS consisting of
LTI subsystems only. As described in [16], the guide rails of the machine stand are modeled as 15
equally distributed horizontal segments (see Fig. 7). Any of these segments is said to be completely
covered by the tool slide if its midpoint lies within the height of the slide. On the other hand, each
segment whose midpoint is not covered is treated as not in contact and therefore the slide always
covers exactly 5 segments at each time. This in fact allows the stand to reach 11 distinct, discrete
positions given by the model restrictions. In this way, one can define the subsystems of the LSS
as follows:

Σ` :

{
Ethẋ = A`

thx + B`
thz

`,

y = Cx,
(80)

where ` ∈ {1, ..., 11}. Note that the change of the input operator Bth(t) is hidden in the input
itself, since it is sufficient to activate the correct boundary parts by choosing the corresponding
columns in Bth via the input z`. Therefore, the input operator Bth(t) := Bth becomes constant
and the input variability is represented by the input z`

z`i :=

{
zi, segment i is in contact,

0, otherwise,
, for i ∈ {1, . . . , 15}. (81)

Here, zi ∈ R is the thermal input as described in [22]. The only varying part influencing the model
reduction process left in the dynamical system is the system matrix Ath(t) := A`

th.
Since the application of this example is to study the thermally driven deformation at particular

points, the output equation y = Cz is used to explicitly select these points (such as the ones
located around the tool center point or around the connections to neighboring assembly groups).
The rows of the matrix C are unit vectors with only 0 and 1 values and hence, the output y
contains selected entries of the internal variable x.
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After the finite element discretization was performed, obtain an LSS with 11 active modes
(denote it with Σ). Each subsystem has dimension n = 16626. The E and C matrices are the
same for all modes of the LSS. The B matrices have 6 columns (corresponding to different inputs)
and the C matrix has 9 rows (corresponding to different outputs). All the aforementioned matrices
are saved in sparse format.

The proposed extension of the Loewner method to LSSs (described in Section 4 and 5) can be
generalized in a straightforward manner to the MIMO case similarly to the linear case (see [6]),
by introducing left and right tangential direction vectors.

In the following experiments, we take into consideration three active modes (the first, the
third and the fifth). This corresponds to the particular case of D = 3 (treated in Section 5).
Furthermore, consider only the pairs of the first and third inputs as well as the first and third
outputs to be activated at any time, for each of the three modes. Hence, the measurements used
in the Loewner framework are 2× 2 matrices.

We analyze a simplified model composed of three modes and certain input/output pairs in
order to ensure that the numerical results can be depicted in a clear and distinguishable manner
(without overcrowding the figures).

All subsystems are stable linear systems of order 16626 in sparse format. The large scale LSS
Σ will be again reduced, as in the second example, by means of the Loewner method and of the
balanced truncation method proposed in [28].

We perform a time domain simulation to investigate the approximation quality of the observed
output, which in this case has two components. More exactly, the choice of outputs is as follows:
the first output represents the 9163th entry of the deformation vector x, while the second output
is the 9814th entry of x.

The singular values of the frequency response of each original subsystem are depicted in Fig. 8,
More exactly, for all three modes and for each frequency point jω, compute the two singular values
corresponding to Hk(jω) ∈ C2×2.
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Frequency(ω)
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10-2

Frequency response of the original LSS

Ist subsystem

IInd subsystem

IIIrd subsystem

Figure 8: Frequency response of the original subsystems.

For the Loewner method, we choose 200 logarithmically spaced interpolation points in the
interval [10−6, 5·100]j. The decay of the singular values of the appended Loewner matrices [Lj Lsj]
corresponding to mode j, for j ∈ {1, 2, 3}, is presented in Fig. 9. We notice that all three curves are
close to each other and already the 100th singular values attain machine precision. Additionally,
in the same figure one can observe the decay of the approximate averaged Hankel singular values
corresponding to Σ. Of course, one can not compute exact Gramians for the large order system,
but only approximate low rank factors by using, for instance, such software tools as in [36].

For the Loewner reduced order LSS (i.e Σ1), we decide to truncate at order k = 66 for all
three subsystems. This corresponds to eliminating the singular values that are smaller than 10−13
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Figure 9: Decay of the singular values of the different matrices.

(for each of the three appended Loewner matrices). The same truncation order is chosen for the
reduced order model computed via BT for which the last kept singular value (before the balancing
truncation procedure is applied) is σavg

66 = 8.0693 · 10−11.
In the upper part of figure Fig. 10, the control input signals u1 and u2 are depicted.

u1(t) =
1

2
sin(t/20)e−t/500 +

1

20
e−t/500, u2(t) =

1

10
. (82)

As it can be observed in the x axis of this figure, the running time of the performed experiment
is 1 hour (the control is active form time ts = 0s to te = 3600s). In the lower part of Fig. 10, the
switching signal σ : R → {1, 2, 3} is presented. Note that the time axis is restricted from 380 to
440 seconds. The switching signal follows a simple periodical rule, by repeating the sequence of
modes (1, 2, 3, 2, 1).

0 500 1000 1500 2000 2500 3000 3500
-0.4
-0.2

0
0.2
0.4
0.6

The control input signals
Input 1
Input 2

380 390 400 410 420 430 440
Time(t)

1

2

3
Switching signal σ(t)

Figure 10: The control and switched input signals.

Next, compare the time domain response of the original LSS against the ones corresponding
to the two reduced models. Notice that the two outputs of the LSS are well approximated for
both MOR methods, as it can be seen in Fig. 11 (the upper part depicts the first observed output,
while in the lower part, the second output is shown). As for Fig. 5 in Section 6.3, the blue circles
included on the output curves are used to mark the exact time instances when switching occurs.
Again, the time axis is restricted from 380 to 440 seconds.

Finally, we inspect the time domain error between the original response and the responses
of the two reduced models (depicted in Fig. 12). Note that the time axis is again restricted to
one minute, in between [380, 440] seconds. We observe that, the error curve corresponding to
our proposed method is always below the error curve corresponding to the BT method, in the
considered time range.
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Figure 11: Time domain simulation.
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7 Summary and conclusions

In this paper we address the problem of model reduction of linear switched systems from data
consisting of values of high order transfer functions. More specifically, we have extended the
Loewner framework to the reduction of LSS. The Loewner approach to model reduction, first
developed for linear time-invariant systems (see [6] for a survey), was later extended to linear
parametrized systems [5, 21] and to bilinear systems [4].

The underlying philosophy of the Loewner framework is to collect data and then extract the
desired information. For the case of linear switched systems, the data must be computed a priori,
rather than measured (as for linear systems with no switching where one can use Vector Network
Analyzers for instance). Having the required data, the next step would be to arrange it into
matrix format. We have shown that the Loewner matrices (which represent the recovered E
and A matrices of the underlying LSS) can be automatically calculated as solutions of Sylvester
equations. In the proposed framework, the transition/coupling matrices can be recovered from the
given computed data as well. Since these matrices need not be square, they allow having different
dimensions of the reduced state space in different modes.

Three numerical examples demonstrate the effectiveness of the proposed approach. The quality
of approximation for the reduced models was determined by performing both frequency and time
domain tests. We have chosen a generalization of the classical balanced truncation method to LSS
for comparison purposes. As opposed to most of the balancing methods we encountered in the
literature ([13], [10], [37] and [34]), the method we choose (i.e [28]) does not require solving systems
of LMI (linear matrix inequalities) which might be difficult for very large systems such as the one
in Section 6.4. The results of the new proposed method turned out to be overall better than the
ones obtained when using the BT method. More precisely, we would like to emphasize that, the
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Loewner method seems to be able to achieve similar approximation accuracy to the BT method,
but with lower dimension of the ROMs constructed. This observation is confirmed by the faster
decay of the singular values computed for our method as compared to the decay of the (averaged)
Hankel singular values corresponding to the BT method (presented in Fig. 3 and Fig. 9).

In Section 6.3, we also investigated switching signals σ(t) that exhibit a fast switching behavior
(hence smaller dwell times) in a particular time interval (Fig. 5 (b)). We conclude that there are
no reasons to suspect that our method will fail for such cases.

In general, stability preservation of the reduced order model is still an open issue for moment
matching MOR methods, even for linear systems. In fact, even for linear systems, the Loewner
framework does not guarantee preservation of stability. Since the model reduction method pre-
sented in this paper is a direct extension of the Loewner framework for linear systems, in general,
it will not preserve stability. However, although it is likely that under suitable assumptions the
proposed method could be modified to preserve stability, this remains a topic of future research.

The Loewner framework is conceptually a data driven MOR method that builds reduced order
models that interpolate the frequency response of the large scale original system. In principle,
this method requires only data and not solving any type of equations. In the linear case, the data
can be measured using VNAs (vector network analyzers). In the nonlinear case (as for bilinear,
quadratic-bilinear or linear switched), the data is obtained by direct numerical simulation (DNS).
In the LSS case, no equation needs to be solved (the data is gathered and put together in the
fashion described in the paper). The computational complexity of our proposed method is related
to the DNS process. Hence, one needs to compute samples of the generalized transfer functions
(in the case for which these values are not provided via real time measurements). This can be
performed in a fast way by avoiding the explicit inversion of the matrices ωjEk −Ak and using,
for example, Gaussian elimination instead.
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