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Relationship between Granger non-causality and network
graph of state-space representations

Mónika Józsa, Mihály Petreczky and M. Kanat Camlibel

Abstract—The goal of this paper is to explore the relationship
between the network graph of a state-space representation of an
observed process and the causal relations among the components
of that process. We will show that the existence of a linear
time-invariant state-space representation, with its network graph
being the star graph, is equivalent to (conditional) Granger non-
causal relations among the components of the output process.
Granger non-causality is a statistical concept, which applies to
arbitrary processes and does not depend on the representation
of the process. That is, we relate intrinsic properties of a process
with the network graph of its state-space representations.

I. INTRODUCTION

Complex dynamical systems, arising as networks of several
subsystems, appear in fields ranging from cyber physical
systems to systems biology and neuroscience. However, the
relationship between the network topology and the observed
behavior of the system is not straightforward. By the network
topology, or network graph, we mean the graph whose nodes
correspond to the subsystems of the network, and whose
edges correspond to interactions among subsystems. More
specifically, there is an edge from one node to another, if
the state and noise process of the subsystem corresponding
to the source node serve as an input to the subsystem which
corresponds to the target node. While the existence of a certain
interconnection in the network is expected to show up in
the observed behavior, in principle, different systems with
completely different network topology can exhibit the same
observed behavior. The results of this paper show that for a
specific class of dynamical systems, the network structure and
certain observed behaviors are equivalent. The results include
algorithms for the construction of these dynamical systems
based on the observed output process.

Contribution: We consider linear time-invariant state-
space (LTI-SS) representations. Within LTI-SS representations
we focus on stochastic representations where the observed
process is stochastic. For this reason, unless stated otherwise,
the term LTI-SS representation means stochastic LTI-SS rep-
resentation. Our focus is on LTI-SS representations with the
star graph as their network graph. A star graph is a tree graph
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Fig. 1: LTI-SS representation of y = [yT1 ,y
T
2 ,y

T
3 ]T in

coordinated form. Subsystem S3 represents the coordinator
while S1 and S2 represent the agents.

which has precisely one root, and all its other nodes are leaves.
We then associate the existence of an LTI-SS representation
having the star graph as its network graph to non-causal
relations among the components of its output process. For this,
we use the well established notion of Granger (non-)causality.

More precisely, given a partition y =
[
yT1 , . . . ,y

T
n

]T
of

a stochastic process y and an LTI-SS representation S of
y, we consider the network of subsystems Si, i = 1, . . . , n
of the representation S, where Si generates the component
yi. The network graph has nodes {S1, . . . ,Sn} and there is
edge from Si to Sj , if the state and noise process of Si
serve as an input of Sj . In fact, if the system matrices of
S are A,B,C and D (see Definition 2 in Section II), then an
edge (Si,Sj) in the network graph corresponds to non-zero
ji blocks, whereas the lack of this edge corresponds to zero
ji blocks in the matrices A,B,C,D with appropriate block
dimensions. As we mentioned before, we restrict ourselves to
network graphs having star graph structure. Intuitively, one
can think of the subsystem which corresponds to the root
node as representing a coordinator, while the other nodes
represent agents. Information can flow from the coordinator
to the agents, but there is no information exchange among
the agents themselves. For this reason, we call such LTI-SS
representations LTI-SS representations in coordinated form.
Fig. 1 illustrates the case when n = 3. In the case of n = 2,
this is just a cascade interconnection of two subsystems.

Conditional Granger non-causality is a general form of
the classical notion, Granger non-causality [1], originating in
econometrics: informally a stochastic process y1 conditionally
does not Granger cause y2 with respect to y3 if the knowl-
edge of the past values of y1, y2 and y3 does not yield a
more accurate prediction of the future values of y2 than the
knowledge of the past values of only y2 and y3.
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The main result of the paper shows that a process y =[
yT1 , . . . ,y

T
n

]T
admits a specific LTI-SS representation in

coordinated form with the coordinator being the subsystem
representing yn, if and only if yi does not Granger cause yn
and yi conditionally does not Granger cause yj with respect
to yn for all i, j = 1, . . . , n−1, i 6= j. For n= 2, this result
gives a characterization of Granger non-causality in terms
of the existence of an LTI-SS representation. Besides this
formal equivalence, if the appropriate (conditional) Granger
causalities hold in a process y, we provide algorithms to
compute the LTI-SS representation of y in coordinated form.

Motivation: These contributions are useful for reverse
engineering of the network graph of dynamical systems. In ad-
dition, they can be relevant for distributed estimation/control,
and for structure preserving model reduction.

Reverse engineering of the network topology: By reverse
engineering of the network topology we mean finding out how
various subsystems of a dynamical system interact with each
other based on observed data. This problem arises in several
domains such as systems biology, neuroscience, smart grids,
etc. [2]–[10]. To solve this problem, we need to understand
when the observed behavior can be realized by a system with
a specific network topology.

This is important for applications in neuroscience [7],
[8], [11], [12], where the goal is to reverse engineer the
interactions between brain regions using fMRI, EEG, MEG,
etc... data. For this purpose, both Granger causality based
methods [12] and state-space based methods [11] were used.
In the former case, the presence of an interaction was iden-
tified with the presence of Granger causality between the
outputs associated with various brain regions. In the latter
case, the presence of an interaction was interpreted as the
presence of an edge in the network graph of a state-space
representation, whose parameters were identified from data.
However, the formal relationship between these methods was
not always clear. This has lead to a lively debate regarding the
advantages/disadvantages of both methods [8], [13], [14]. The
results of this paper imply that the network graph of a specific
LTI-SS representation defines causal relations in the output
process and the causal properties of the output process restricts
the network graph of a potential LTI-SS representation. In
fact, considering conditional Granger non-causality and LTI-
SS representations in coordinated form, the two approaches
are formally equivalent and produce the same outcome. This
opens up the possibility of reconciling both approaches.

The cited applications [2]–[8], [11] often use nonlinear
state-space representations with inputs. For those state-space
representations, there exist no easy methods for checking
Granger non-causality. Hence, our general goal is to translate
Granger non-causality to properties of nonlinear state-space
representations with inputs. For this, first autonomous linear
state-space representations has to be completely understood.
This paper accomplishes this first step.

Distributed estimation/control: For the design of intercon-
nected systems, choosing alternative network graphs realizing
the same functionality can be beneficial. For example, for
deterministic coordinated LTI-SS systems with inputs [15],
[16], several control problems, such as stabilization can be

solved in a distributed manner: in order to stabilize the coor-
dinator, no knowledge of the state of the agents is required,
and in order to stabilize each agent, only the state of this agent
and of the coordinator is needed. In the case of autonomous
LTI-SS systems in coordinated form, their network graph
allows for distributed estimation of their states. Moreover, the
proposed algorithms of this paper open up the possibility of
distributed parameter estimation; for calculating the subsystem
that generates the coordinator only the observed process of the
coordinator is needed and for calculating the subsystem that
generates an agent, only the observed coordinator and that
agent is used. That is, the results of this paper provide LTI-SS
representations that are suitable for distributed estimation and,
if the results are extended to non-autonomous systems (which
remains a topic of future work), then for distributed control.

Structure preserving model reduction: The results of the
paper could also be of interest for structure preserving model
reduction, where the goal is to replace an interconnected model
of the system by another, smaller dimensional (in terms of the
dimension of states) interconnected model which has the same
or similar network graph as the original model, see [17], [18]
and [19]. By the methods of this paper, for stochastic LTI-SS
representations in coordinated form, one can reduce the order
of a subsystem generating the coordinator or generating an
agent, preserving the coordinated structure.

Related work: The need to understand the relationship
between the observed behavior and the network topology of
linear systems is an active research area, see for example [2]–
[4], [20]. In [2], [3], [21] the network topology of a deter-
ministic system was defined on components of the observed
output, by using the notion of the so-called dynamic structure
function. The dynamic structure function is determined by the
properties of a class of deterministic LTI-SS representations of
that system. That is, contrary to the current paper, the cited pa-
pers did not aim at relating network topology defined directly
on the output with network topology defined based on state-
space representations; rather, they tried to combine these two
approaches. Moreover, they dealt with deterministic systems.
In [20] the relationship between dynamic structure function
from [2], [3] and Granger non-causality was investigated. In
contrast to the current paper, [20] does not aim at establishing a
relationship between the state-space defined network topology
and Granger non-causality.

The study of causal relations between stochastic processes
is an established research topic in econometrics, neuroscience
and control theory. This relationship can be characterized in
terms of the network graph of transfer function representations
(see [22]–[26] and the references therein). If there is one
agent, then our results can be viewed as a counterpart of
the cited papers for LTI-SS representations. Granger causality
for LTI-SS representations was studied by using a transfer
function approach in [27]. In contrast to [27] we give a
characterization for Granger non-causality by constructing an
LTI-SS representation in a certain form.

The papers [28]–[30] are the closest ones to the present
paper. They provide necessary and sufficient conditions for
the existence of LTI-SS representations in the so-called con-
ditional orthogonal form. Conditionally orthogonal LTI-SS
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representations form a specific subclass of LTI-SS representa-
tions in coordinated form where the noise process is assumed
to have block diagonal covariance matrix. The conditions of
[28]–[30] for the existence of such systems are much stronger
than the conditions proposed in this paper. Note that [28]–[30]
did not provide algorithms to calculate the representations and
did not deal with the so-called non-coercive processes.

Deterministic LTI-SS representations in coordinated form
were studied in [16], [31], [32]. In [16] and [31], a general
method was presented to transform a system into coordinated
form. In [16] and [33], Gaussian coordinated systems were
studied and their LQG control. However, the cited papers did
not relate the coordinated system structure to properties of the
observed process whereas we formally relate linear stochastic
(not necessarily Gaussian) systems in coordinated form to
causal properties of the output process.

Certain results of the current paper were presented in
[34]. More precisely, in [34] the equivalence (iii) ⇔ (iv)
of Theorem 2 in the present paper is stated, without proof.
That equivalence essentially states that LTI-SS representations
in coordinated form can be characterized by (conditional)
Granger non-causal conditions on the output process. All the
other results of the present paper are new to the best of our
knowledge and were not published before. Furthermore, here
we include detailed proofs, explicit algorithms and a numerical
example. In [35], the problem of relating transfer functions and
Granger causality was studied. Accordingly, [35] does not deal
with state-space representations. Moreover, [35] restricts atten-
tion to coercive processes. Finally, the conference paper [36]
deals with LTI-SS representations having transitive acyclic
network graphs. It shows that non-causal properties imply the
existence of an LTI-SS representation with transitive acyclic
network graph, thus only shows one-directional implication
and not the reverse. Also, it does not cope with the minimality
of the representations and does not include detailed proofs.
The results of [36] rely on the present paper.

The structure of the paper is as follows: In Section II,
we introduce the notation and terminology and discuss some
background material on linear stochastic realization theory. In
Section III, we present the results for the simple case when
besides the coordinator there is one agent. The more general
coordinated systems, when besides the coordinator there are
multiple agents, is discussed in Section IV. In Section V, the
results are illustrated by an example. Finally, after concluding
our paper we provide the proofs of the results in Appendix.

II. PRELIMINARIES

In this paper we consider discrete-time processes, whose
values are vectors with real entries. The discrete-time axis is
the set of integers Z. The random variable of a process z at
time t is denoted by z(t). If z(t) is k-dimensional (for all
t ∈ Z), then we write z ∈ Rk and we call k = dim(z) the
dimension of z. The n × n identity matrix is denoted by In
or by I when its dimension is clear from the context.

A. Hilbert spaces of stochastic processes
We denote by H the Hilbert space of zero-mean square-

integrable random variables, where the inner product between

two random variables y, z is the covariance matrix E[yzT ].
The Hilbert space generated by a set U ⊂ H is the smallest
(w.r.t. set inclusion) closed subspace of H which contains U .
Consider a zero-mean square-integrable process z ∈ Rk. Then
Hz
t−, Hz

t+, Hz
t , t ∈ Z are the Hilbert spaces generated by the

sets {`T z(s) | s ∈ Z, s < t, ` ∈ Rk}, {`T z(s) | s ∈ Z, s ≥
t, ` ∈ Rk}, and {`T z(t)|` ∈ Rk}, respectively. If z1,. . ., zn
are vector valued processes, then z =

[
zT1 ,. . ., z

T
n

]T
denotes

the process defined by z(t) =
[
zT1 (t), . . . , zTn (t)

]T
, t ∈ Z.

If z(t) ∈ H is a random variable and U is a closed
subspace in H, then we denote by El[z(t) |U ] the orthogonal
projection of z(t) onto U . The orthogonal projection onto U
of a random variable z(t) = [z1(t), . . . , zk(t)]T taking values
in Rk is denoted by El[z(t)|U ] and defined element-wise as
El[z(t)|U ] := [ẑ1(t), . . . , ẑk(t)]T , where ẑi(t) = El[zi(t)|U ],
i = 1, . . . , k. That is, El[z(t)|U ] is the random variable with
values in Rk obtained by projecting the coordinates of z(t)
onto U . Accordingly, the orthogonality of a multidimensional
random variable to a closed subspace in H is meant element-
wise. The orthogonal projection of a closed subspace U ⊆ H
onto a closed subspace V ⊆ H is written by El[U |V ] :=
{El[u|V ], u ∈ U}. For jointly Gaussian processes y and z
the orthogonal projection El[y(t)|Hz

t ] is equivalent to the
conditional expectation of y(t) given z(t).

Below we define the class of processes we will work with.

Definition 1 (ZMSIR). A stochastic process is called zero-
mean square-integrable with rational spectrum (abbreviated
by ZMSIR) if it is weakly-stationary, square-integrable, zero-
mean, full rank, purely non-deterministic, and its spectral
density is a proper rational function.

B. Review of stochastic realization theory

The results of this paper are based on linear stochastic
realization theory, therefore, we present a brief overview of
basic results in the field (see [37]). To begin with, we define the
term LTI-SS representation for the class of ZMSIR processes.

Definition 2 (LTI-SS representation). A stochastic LTI-SS
representation is a stochastic dynamical system of the form

x(t+ 1) = Ax(t) +Bv(t)

y(t) = Cx(t) +Dv(t)
(1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m for
n ≥ 0, m, p > 0 and x ∈ Rn, y ∈ Rp, v ∈ Rm are ZMSIR
processes. The processes x, y and v are called state, output
and noise process, respectively. Furthermore, we require that
A is stable (all its eigenvalues are inside the open unit circle)
and that for any t, k ∈ Z, k ≥ 0, E[v(t)vT (t−k−1)] = 0,
E[v(t)xT (t−k)] = 0, i.e., v(t) is white noise and uncorrelated
with x(t− k). An LTI-SS representation of a given process y
is an LTI-SS representation with output process y.

In (1) the state process x is uniquely determined by
the noise process v and the system matrices A and B so
that x(t) =

∑∞
k=0A

kBv(t− k), where the convergence of
the infinite sum is understood in the mean square sense.
On this basis (1) is referred to as LTI-SS representation
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(A,B,C,D,v,y) or LTI-SS representation (A,B,C,D,v) of
y. Following the classical terminology, we call the dimension
of the state process the dimension of (1). Also, an LTI-SS
representation (A,B,C,D,v) of y is called minimal if it
has minimal dimension among all the LTI-SS representations
of y. Notice that in Definition 2 we allow (1) to have zero
dimension which corresponds to representations of white noise
processes (y = Dv). Whenever we say that (A,B,C,D,v)
is a minimal LTI-SS representation of a white noise process it
means that A,B,C are absent (or they are zero by zero empty
matrices). Zero-dimensional representations are considered to
be minimal, observable and controllable.

Stochastic LTI-SS representations of a given process y are
strongly related to deterministic LTI-SS realizations of the
covariance sequence {Λy

k := E[y(t+ k)yT (t)]}∞k=0, see [37,
Section 6]. Below we briefly sketch this relationship, as it
plays an important role in deriving the results of the paper.
Consider an LTI-SS representation (A,B,C,D,v) of y and
denote the (time-independent1) noise variance matrix by Λv

0 =
E[v(t)vT (t)]. Then, the variance matrix Λx

0 =E[x(t)xT (t)] of
the state process x of (A,B,C,D,v) is the unique symmetric
solution of the Lyapunov equation Σ=AΣAT +BΛv

0B
T and

the covariance G :=E[y(t)xT (t+ 1)] satisfies

G = CΛx
0A

T +DΛv
0B

T . (2)

In light of this, the Markov parameters of the deterministic
LTI-SS system (A,GT , C,Λv

0 ) are equal to the covariances
{Λy

k}∞k=0. More precisely,

Λy
k = CAk−1GT k > 0. (3)

Therefore, LTI-SS representations of y yield deterministic
LTI-SS systems whose Markov parameters are the covariances
{Λy

k}∞k=0 of y. Conversely, deterministic LTI-SS systems
whose Markov parameters are the covariances {Λy

k}∞k=0 yield
LTI-SS representations of y. To this end, we use the follow-
ing terminology: Recall that Hy

t− denotes the Hilbert space
generated by y(t− k), k > 0. We call the process

e(t) := y(t)− El[y(t)|Hy
t−], ∀t ∈ Z

the (forward) innovation process of y. Assume now that
(A,GT , C,Λy

0 ) is a stable minimal deterministic LTI-SS sys-
tem whose Markov parameters are the covariances of y, i.e.,
(3) holds. Let Σx be the minimal symmetric solution2 of the
algebraic Riccati equation

Σ=AΣAT + (GT−AΣCT )(∆(Σ))−1(GT−AΣCT )T , (4)

where ∆(Σ) = (Λy
0 − CΣCT ) and set K as

K := (GT −AΣxC
T )(∆(Σx)−1). (5)

Proposition 1. [38, Section 7.7] Let K be as in (5) and
e be the innovation process of y. Then the following LTI-SS
representation of y is minimal:

(A,K,C, I, e). (6)

Note that if x is the state of (A,K,C, I, e), then Σx =

1stationarity implies that the (co)variance matrices are time-independent
2for any other symmetric solution Σ̃, the matrix Σ̃−Σ is positive definite

E[x(t)xT (t)], ∆(Σx) = E[e(t)eT (t)] and K = E[x(t + 1)
eT (t)]E[e(t)eT (t)]−1 is the gain of the steady-state Kalman
filter [37, Section 6.9]. This motivates the following definition:

Definition 3. Let e,y ∈ Rp be ZMSIR processes and A ∈
Rn×n,K ∈Rn×p, C ∈Rp×n, D∈Rp×p. An LTI-SS represen-
tation (A,K,C,D, e,y) is called Kalman representation if e
is the innovation process of y and D = Ip.

A Kalman representation with output process y is called
Kalman representation of y. A Kalman representation is min-
imal, called minimal Kalman representation, if it is a minimal
LTI-SS representation. The representation in Proposition 1 is
a minimal Kalman representation, thus we conclude that

Proposition 2. Every ZMSIR process y has a minimal Kalman
representation.

In view of the foregoing, we have the following algorithms:

Algorithm 1 Minimal Kalman representation based on output
covariances

Input {Λy
k}2Nk=0: Markov parameters of y

Output {A,K,C,Λe
0}: system matrices of (6) and variance

of the innovation process of y
Step 1 Define the Hankel and the shifted Hankel matrices

H0 =


Λy
1 Λy

2 · · · Λy
N

Λy
2 Λy

3 · · · Λy
N+1

...
...

...
Λy
N Λy

N+1 · · · Λy
2N−1

 H1 =


Λy
2 Λy

3 · · · Λy
N+1

Λy
3 Λy

4 · · · Λy
N+2

...
...

...
Λy
N+1 Λy

N+2 · · · Λy
2N

 .

Step 2 Calculate the SVD of H0 = USV T .
Step 3 Let m be such that Λy

0 ∈ Rm×m and denote the first
m rows of a matrix by (.)1:m. Define

A := S−1/2UTH1V S
−1/2

C := (US1/2)1:m G := (V S1/2)1:m

Step 4 Find the minimal symmetric solution Σx of the
Riccati equation (4) (see e.g., [38, Section 7.4.2]).
Step 5 Set K as in (5) and define Λe

0 := Λy
0 − CΣxC

T .

Algorithm 2 Minimal Kalman representation based on LTI-SS
representation

Input {Ā, B̄, C̄, D̄,Λv
0}: (Ā, B̄, C̄, D̄,v) is an LTI-SS rep-

resentation of y and Λv
0 =E[v(t)vT (t)]

Output {A,K,C,Λe
0}: system matrices of (6) and variance

of the innovation process of y
Step 1 Find the solution Σx of the Lyapunov equation Σ =
ĀΣĀT + B̄Λv

0 B̄
T .

Step 2 Define G := C̄ΣxĀ
T+D̄Λv

0 B̄
T and calculate the out-

put covariance matrices Λy
k := C̄Āk−1GT for k=0, . . . , 2n,

where n is such that Ā ∈ Rn×n.
Step 3 Apply Algorithm 1 with input {Λy

k}2nk=0 and denote
the output by {A,K,C,Λe

0}.

Note that Steps 1–3 of Algorithm 1 calculate a minimal
deterministic LTI-SS system(A,GT, C,Λ0)such that (3) holds
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using the classical Kalman-Ho realization algorithm.

Remark 1 (Correctness of Algorithms 1–2). Consider a ZM-
SIR process y with covariance sequence {Λy

k}∞k=0 and an LTI-
SS representation (Ā, B̄, C̄, D̄,v) of y. Let e be the innovation
process of y and N be larger than or equal to the dimension
of a minimal LTI-SS representation of y. Then it follows from
[38, Lemma 7.9, Section 7.7] that if {A,K,C,Λe

0} is the out-
put of Algorithm 1 with input {Λy

k}2Nk=0, then (A,K,C, I, e) is
a minimal Kalman representation of y and Λe

0 =E[e(t)eT (t)].
Likewise, if {A,K,C,Λe

0} is the output of Algorithm 2 with
input {Ā, B̄, C̄, D̄, E[v(t)vT (t)]}, then (A,K,C, I, e) is a
minimal Kalman representation of y and Λe

0 = E[e(t)eT (t)].

Remark 2. Algorithms 1 and 2 involve matrix multiplication,
inversion, SVD, solving Ricatti and Lyapunov equations. The
computational complexity of all involved matrix operations
is polynomial in the sizes of the matrices [39]. Also, solving
Ricatti and Lyapunov equations is polynomial in the size of the
solution matrix [40]. For Algorithm 1, the sizes of the matrices
involved are polynomial in the number 2N + 1 and the size p
of the output covariances, hence its complexity is polynomial
in N and p. By similar reasoning, Algorithm 2 has polynomial
complexity in the dimensions of the state, output, and noise
processes of the input LTI-SS representation (Ā, B̄, C̄, D̄,v).

All algorithms in this paper are based on Algorithms 1–2
and, under certain conditions, calculate minimal Kalman rep-
resentations which have the following useful properties:

Proposition 3. A Kalman representation (A,K,C, I, e,y) is
minimal if and only if (A,K) is controllable and (A,C) is
observable.

Proposition 3 shows that minimality of a Kalman represen-
tation (A,K,C, I, e,y) can be characterized by minimality
of the deterministic system (A,K,C, I). In general, the char-
acterization of minimality in LTI-SS representations is more
involved, and it is related to the minimality of the deterministic
LTI-SS system (A,GT , C,Λy

0 ) associated with the stochastic
LTI-SS representation (see [37, Corollary 6.5.5]). The next
Proposition shows that minimal Kalman representations are
isomorphic. Isomorphism is defined as follows: two Kalman
representations (A,K,C, I, e) and (Ã, K̃, C̃, I, e) of a process
y are isomorphic if there exists a non-singular matrix T such
that A=TÃT−1,K=TK̃ and C̃=CT−1. Again, in general,
the result does not apply for LTI-SS representations. The
statement and its proof can be found in [37, Theorem 6.6.1,
Section 6.6] with the modification that here the noise process
is not normalized.

Proposition 4. [37, Theorem 6.6.1] If (A,K,C, I, e) and
(Ã, K̃, C̃, I, e) are minimal Kalman representations of a pro-
cess y, then they are isomorphic.

Lastly, in this paper we use the property of coercivity:
Recall from [37, Definition 9.4.1] that y is coercive if its
spectrum is strictly positive definite on the unit disk. Coercivity
of a process y is further equivalent to the invertibility of
any Kalman representation (A,K,C, I, e) of y, i.e., with the
existence of (A−KC)−1, see [37, Theorem 9.4.2]. It also
implies that e(t)=y(t)−

∑∞
k=0 C(A−KC)kKy(t−k−1).

III. CHARACTERIZATION OF GRANGER NON-CAUSALITY

In this section we show that Granger non-causality from y1

to y2 is equivalent to the existence of a Kalman representation
of the joint process [yT1 ,y

T
2 ]T in the so-called block triangular

form. Besides, we provide an algorithm which calculates
this Kalman representation with block triangular matrices in
the presence of the above-mentioned Granger non-causality.
Throughout this section, we assume that y is a ZMSIR process
and it admits a partitioning y = [yT1 ,y

T
2 ]T , such that yi ∈ Rri

for ri > 0, i = 1, 2.

A. Kalman representation in block triangular form
Definition 4. A Kalman representation (A,K,C, I, e =
[eT1 , e

T
2 ]T ,y), where ei ∈ Rri , i = 1, 2, is called a Kalman

representation in block triangular form, if

A=

[
A11 A12

0 A22

]
K=

[
K11 K12

0 K22

]
C=

[
C11 C12

0 C22

]
, (7)

where Aij ∈Rpi×pj ,Kij ∈Rpi×rj , Cij ∈Rri×pj and pi≥0 for
i, j=1, 2. If, in addition, (A22,K22, C22, Ir2 , e2) is a minimal
Kalman representation of y2, then (A,K,C, I, e,y) is called
a Kalman representation in causal block triangular form.

Remark 3. If p2 = 0 in Definition 4, then the block matrices
A12, A22,K22, C12 and C22 are absent, whereas if p1 = 0,
then A11, A12,K11,K12 and C11 are absent. Furthermore, if
p2 = 0, then y2 = e2 is a white noise process and if p1 =
p2 = 0, then y = e is a white noise process. In both cases,
block triangular form implies causal block triangular form.
A minimal Kalman representation (A,K,C, I, e) of a white
noise process y has zero dimension (A,K,C are absent) and
it is the trivial equation y=e.

If (A,K,C, I, e,y) is a Kalman representation in causal
block triangular form satisfying (7), then e2 is the innovation
process of y2. Moreover, the dimensions of the block matrices
Aij ,Kij , Cij , i, j = 1, 2 are uniquely determined by y =
[yT1 ,y

T
2 ]T . Indeed the matrices A22 ∈ Rp2×p2 , K22 ∈ Rp2×r2 ,

C22 ∈ Rr2×p2 , where p2 is the dimension of a minimal LTI-SS
representation of y2, hence p2 is determined by y2. That is,
the dimension of a minimal LTI-SS representation of y2 and
y and the dimensions of y1 and y2 determine the dimensions
of Aij ,Kij , Cij , i, j=1, 2.

Kalman representations in block triangular form can be
viewed as a cascade interconnection of two subsystems, see
Fig. 2. More precisely, let (A,K,C, I, e) be a Kalman repre-
sentation of y in block triangular form satisfying (7) and let
x = [xT1 ,x

T
2 ]T be its state process where xi ∈ Rpi , i = 1, 2.

Then we can define the dynamical systems Sc and Sa below.

Sc
{
x2(t+ 1) = A22x2(t) +K22e2(t)

y2(t) = C22x2(t) + e2(t)
(8)

Sa
{
x1(t+ 1) =

∑2
i=1(A1ixi(t) +K1iei(t))

y1(t) =
∑2
i=1 C1ixi(t)) + e2(t)

(9)

The subsystem Sc, which generates y2, will be called coor-
dinator, and the subsystem Sa, which generates y1, will be
called agent. The coordinator sends its state x2 and noise e2 to
the agent while the agent does not send information to the co-
ordinator. Accordingly, the network graph of (A,K,C, I, e,y)
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Sc Sa
x2, e2

Fig. 2: Network graph of a Kalman representation in block
triangular form: Sc is the coordinator (8), Sa is the agent (9).

is the two-node star graph with Sc being the root node and
Sa being the leave.

Motivation for Kalman representations in block triangular
form: If we considered an LTI-SS representation of y =
[yT1 ,y

T
2 ]T without requiring it to be a Kalman representation,

then in general the subsystem S1 with output y1 and S2
with output y2 could change information in both direction
via the noise process. The fact that we require the LTI-
SS representation to be a Kalman representation in block
triangular form implies that this cannot be the case: If y1

does not Granger cause y2, then the second noise component
e2 is the innovation process of y2 and thus e2 and x2 depend
only on the past and present values of y2. In contrast, the first
noise and state components e1 and x1 depend on the past and
present values of both y1 and y2. This ensures that indeed, if
y1 does not Granger cause y2, then a Kalman representation
in block triangular form means that there is no communication
from the agent to the coordinator.

Kalman representations in causal block triangular form
guarantee the subsystem which corresponds to the coordinator
to be minimal and thus unique up to isomorphism (see
Proposition 4). An advantage of minimality is that it implies
observability, and hence the state x2 can be estimated from y2.
This opens up the perspective of distributed estimation, and
possibly, with the future inclusions of inputs, of distributed
control. An example for not requiring the subsystem of the
coordinator to be minimal: Let us consider A =

[
0.5 0 0
0 0.6 0
0 0 0.7

]
,

K =
[
1 1
0 1
0 1

]
, C = [ 1 1 1

0 0 1 ] and choose the coordinator to be the
subsystem with system matrices A22 = [ 0.6 0

0 0.7 ], K22 = [ 0 1
0 1 ],

C22 = [ 0 1 ]. In this case we obtain a Kalman representation
in block triangular form, but not causal block triangular form.
What happens is that the coordinator contains dynamics which
could also be made part of the agent. For this example, it is
not enough to know y2 to estimate the state of the coordinator,
for that we have to use the output y1 of the agent. Imposing
minimality on the coordinator avoids such degenerate cases.

B. Characterization of Granger non-causality by Kalman rep-
resentations in block triangular form

In this section we show that the existence of a Kalman
representation in causal block triangular form characterizes
Granger non-causality. The next definition is a particular
case of the concept of causality between stochastic processes
defined in [1], if the latter is applied to ZMSIR processes, and
if, using the terminology of [1], there is no external process.

Definition 5 (Granger non-causality). Consider a ZMSIR
process y = [yT1 ,y

T
2 ]T . We say that y1 does not Granger

cause y2 if for all t, k ∈ Z, k ≥ 0

El[y2(t+ k) | Hy2

t−] = El[y2(t+ k) | Hy
t−].

Otherwise, we say that y1 Granger causes y2.

Informally, y1 does not Granger cause y2, if for all k ≥ 0,
the best k-step linear prediction of y2 based on the past values
of y2 is the same as that of based on the past values of y.

Remark 4 (Related work). If y is coercive, Granger non-
causality from y1 to y2 is further equivalent to, (see [27])

∀k ≥ 0 : (C(A−KC)kK)21 = 0, (10)

where (.)21 denotes the r2 × r1 left lower block of a matrix
and (A,K,C, I, e) is a minimal Kalman representation of
y. The system matrices of a minimal Kalman representation
(A,K,C, I, e,y) in block triangular form naturally satisfy
(10). Moreover, they imply block triangular Wold decom-
position, i.e., block triangular transfer matrix between the
innovation process e and y [24], [25], [27]. In contrast to
the cited papers, Theorem 1 below covers the case when y
is non-coercive and in its proof the LTI-SS representation
(A,K,C, I, e,y) that characterizes Granger non-causality in
y is constructed.

Theorem 1. Consider the following statements for a ZMSIR
process y = [yT1 ,y

T
2 ]T :

(i) y1 does not Granger cause y2;
(ii) there exists a minimal Kalman representation of y in

causal block triangular form;
(iii) there exists a minimal Kalman representation of y in

block triangular form;
(iv) there exists a Kalman representation of y in block trian-

gular form;
Then (i) ⇐⇒ (ii). If y is coercive, then (i) ⇐⇒ (ii) ⇐⇒
(iii) ⇐⇒ (iv).

The proof can be found in Appendix. Intuitively, Granger
non-causality in Theorem 1 means that for predicting y2,
there is nothing to be gained from the knowledge of the
past of y1. In parallel, considering a Kalman representation
(7) of y in causal block triangular form the subsystem
(A22,K22, C22, Ir2 , e2) of y2 depends only on e2 and thus
only on the past values of y2. On the other hand, the
subsystem which generates y1 depends on the entire history
of y. Theorem 1 can also be interpreted as follows: Granger
non-causality from y1 to y2 is equivalent to the process
y = [yT1 ,y

T
2 ]T admitting a minimal Kalman representation

with network graph depicted on Fig. 2.
Theorem 1 relates Granger non-causality with existence

of minimal Kalman representations in block triangular form.
Since all minimal Kalman representations of y are isomorphic,
Theorem 1 not only guarantees that Granger non-causality
translates into existence of a Kalman representation with a
suitable network graph, but that any minimal Kalman repre-
sentation of y is isomorphic to this particular one. Hence,
most of the interesting dynamical properties of this Kalman
representation are also valid for any other minimal Kalman
representation. Furthermore, any minimal Kalman representa-
tion can be brought to this specific one via a linear state-space
transformation. Since black-box identification algorithms, for
example subspace methods, yield minimal Kalman repre-
sentations, Theorem 1 is also interesting for deriving and
interpreting network graphs based on data.
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C. Computing Kalman representation in block triangular form

Next, we present a procedure for constructing a mini-
mal Kalman representation in causal block triangular form.
Let (Ā, B̄, C̄, D̄,v) be an LTI-SS representation of y =
[yT1 ,y

T
2 ]T . Then it can be transformed into a minimal Kalman

representation (Â, K̂, Ĉ, I, e) of y using Algorithm 2. Now
take the partition Ĉ =

[
ĈT1 ĈT2

]T
such that the number of

rows of Ĉi equals ri = dim(yi) for i = 1, 2. Furthermore,
define a non-singular matrix T such that (TÂT−1, Ĉ2T

−1) is
in the form (see, e.g., [41])

TÂT−1 =

[
A11 A12

0 A22

]
, Ĉ2T

−1 =
[
0 C22

]
, (11)

where (A22, C22) is observable and A11 ∈ Rp1×p1 , A22 ∈
Rp2×p2 such that p2 is the rank of the observability matrix
of the pair (Ĉ2, Â). Note that if (Â, Ĉ2) is observable, then
p1 = 0 and A11, A12 are absent in (11). In addition, if the
observability matrix of (Â, Ĉ2) has zero rank, then p2 = 0, in
which case A12, A22 and C22 are absent in (11). Define

A := TÂT−1, K := TK̂, C := ĈT−1 (12)

and consider the partition

C =
[
C11 C12

]
, K =

[
K11 K12

K21 K22

]
, (13)

where C1i ∈ R(r1+r2)×pi ,Kij ∈ Rpi×rj , i, j = 1, 2. Based
on Theorem 1 we can state the following result:

Corollary 1. The following statements hold:
• If y1 does not Granger cause y2, then either K21 is

absent or K21 = 0. Furthermore, (A,K,C, I, e) is
a minimal Kalman representation of y = [yT1 ,y

T
2 ]T

in causal block triangular form with Aij , Kij , Cij ,
i, j = 1, 2 defined by (11), (12) and (13).

• If y is coercive, then the absence of K21 or K21 = 0
implies that y1 does not Granger cause y2.

The proof can be found in Appendix. Corollary 1 yields a
method to calculate a minimal Kalman representation in causal
block triangular form in the absence of Granger causality.
This idea is elaborated in Algorithms 3–4 that rely on Algo-
rithms 1–2. Algorithm 3 takes an LTI-SS representation as its
input and transforms it into a minimal Kalman representation
in causal block triangular form. Algorithm 4 calculates the
same representation from output covariances. Hence, by using
empirical covariances, it can be applied to data.

Remark 5 (Correctness of Algorithms 3–4). Consider a
ZMSIR process y = [yT1 ,y

T
2 ]T with covariance sequence

{Λy
k}∞k=0 and an LTI-SS representation (Ā, B̄, C̄, D̄,v) of y.

Let e be the innovation process of y and N be any number
larger than or equal to the dimension of a minimal LTI-SS
representation of y. Assume that y satisfies condition (i) of
Theorem 1 and note that Algorithms 1–2 calculate a minimal
Kalman representation (Remark 1). Then from Corollary 1 it
follows that if {A,K,C} is the output of Algorithm 3 with
input {Ā, B̄, C̄, D̄,Λv

0 = E[v(t)vT (t)]}, then (A,K,C, I, e)

3the dimensions ri =dim(yi), i=1, 2 are fixed in the whole section

Algorithm 3 Minimal Kalman representation in causal block
triangular form based on LTI-SS representation

Input {Ā, B̄, C̄, D̄,Λv
0}: (Ā, B̄, C̄, D̄,v) is an LTI-SS rep-

resentation of y and Λv
0 =E[v(t)vT (t)]

Output {A,K,C}: system matrices of (7)

Step 1 Apply Algorithm 2 with input {Ā, B̄, C̄, D̄,Λv
0} and

denote its output by {Â, K̂, Ĉ}.
Step 2 Let Ĉ =

[
ĈT1 Ĉ

T
2

]T
be such that Ĉi ∈ Rri×n.

Calculate a non-singular matrix T such that (11) holds and
(A22, C22) is observable.3

Step 3 Set A := TÂT−1, K := TK̂, C := ĈT−1.

Algorithm 4 Minimal Kalman representation in causal block
triangular form based on output covariances

Input {Λy
k}2Nk=0: Markov parameters of y=

[
yT1,y

T
2

]T
Output {A,K,C}: system matrices of (7)

Step 1 Apply Algorithm 1 with input {Λy
k}2Nk=0 and denote

its output by {Â, K̂, Ĉ}.
Step 2 Step 2–3 of Algorithm 3.

is a minimal Kalman representation in causal block trian-
gular form. Similarly, from Corollary 1 it follows that if
{A,K,C} is the output of Algorithm 4 with input {Λ}2Nk=0,
then (A,K,C, I, e) is a minimal Kalman representation in
causal block triangular form.

Remark 6. In a similar fashion as in Remark 2, Algorithms 4
and 3 have polynomial complexity. Algorithm 3 is polynomial
in the dimension of the state, output and noise processes
of the LTI-SS representation (Ā, B̄, C̄, D̄,v). Algorithm 4 is
polynomial in the number and size of the output covariances.

Remark 7 (Checking Granger non-causality). Algorithm 3 and
4 can be used to check Granger non-causality by looking
weather the left lower block of matrix K is zero (K21 = 0)
in the partition (13), where {A,K,C} are the matrices re-
turned by Algorithm 3 or 4. If K21 6= 0, then y1 Granger
causes y2. If y2 is coercive and K21 is absent or K21 = 0,
then y1 does not Granger cause y2 in the view of Corol-
lary 1. If y is non-coercive, then it should be checked if
(A22,K22, C22, Ir2 , e2) is a minimal Kalman representation
of y2. This can be done by computing a minimal Kalman
representation (Ã22, K̃22, C̃22, I, ẽ2) of y2 using Algorithm 1
or 2. If the noise variance E[e2(t)eT2 (t)] is equal to the new
noise variance E[ẽ2(t)ẽT2 (t)], then from [23, Proposition 2.3]
we know that y1 does not Granger cause y2 and e2 = ẽ2.

IV. COORDINATED REPRESENTATION

In this section we introduce a class of LTI-SS represen-
tations having the star graph as their network graph, called
Kalman representations in coordinated form. We show that
a process has a Kalman representation in coordinated form if
and only if the components of this process satisfy certain (con-
ditional) Granger causality conditions. We also present algo-
rithms for constructing a Kalman representation in coordinated
form. Throughout this section we assume that y is a ZMSIR
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processes and it admits a partitioning y = [yT1 , . . . ,y
T
n ]T for

some n ≥ 2, such that yi ∈ Rri , ri > 0 for i = 1, . . . , n.

A. Kalman representation in coordinated form

Definition 6. A Kalman representation (A,K,C, I, e =
[eT1 , . . . , e

T
n ]T ,y), where ei ∈ Rri , i = 1, . . . , n, is called a

Kalman representation in coordinated form, if

A=


A11 0 . . . 0 A1n

0 A22 . . . 0 A2n

...
...

. . .
...

...
0 0 . . . A(n−1)(n−1) A(n−1)n
0 0 . . . 0 Ann



K=


K11 0 . . . 0 K1n

0 K22 . . . 0 K2n

...
...

. . .
...

...
0 0 . . . K(n−1)(n−1) K(n−1)n
0 0 . . . 0 Knn



C=


C11 0 . . . 0 C1n

0 C22 . . . 0 C2n

...
...

. . .
...

...
0 0 . . . C(n−1)(n−1) C(n−1)n
0 0 . . . 0 Cnn



(14)

where Aij ∈ Rpi×pj ,Kij ∈ Rpi×rj , Cij ∈ Rri×pj and pi ≥ 0
for i, j=1, . . . , n. If, in addition, for each i=1, . . . , n− 1([

Aii Ain
0 Ann

]
,

[
Kii Kin

0 Knn

]
,

[
Cii Cin
0 Cnn

]
, Iri+rn ,

[
ei
en

])
(15)

is a minimal Kalman representation of [yTi ,y
T
n ]T in causal

block triangular form, then (A,K,C, I, e,y) is called a
Kalman representation in causal coordinated form.

If n = 2, then Definition 6 coincides with Definition 4.
Furthermore, if (A,K,C, I, e) is a Kalman representation in
causal coordinated form, then the dimensions of Aij ,Kij , Cij ,
i, j = 1, . . . , n are uniquely determined by y. Indeed, since
(15) is a minimal Kalman representation of [yTi ,y

T
n ]T , i =

1, . . . , n−1 in causal block triangular form, it follows from
the previous section that the dimensions of Aii,Kii, Cii and
Ain,Kin, Cin are uniquely determined by [yTi ,y

T
n ]T . There-

fore, considering (14), all dimensions of the blocks of A,K
and C are determined by y. Definition 6 is based on the
deterministic terminology ( [16], [32] ) and on the definition
of Gaussian coordinated systems ( [16], [33] ).

The term coordinated is used because the LTI-SS rep-
resentation at hand can be viewed as consisting of several
subsystems; one of which plays the role of a coordinator,
and the others play the role of agents. More precisely, let
(A,K,C, I, e,y) be a Kalman representation in coordinated
form as in (14) and let x = [xT1 , . . . ,x

T
n ]T be its state such

that xi ∈ Rpi , i = 1, . . . , n. Then, for i = 1, . . . , n− 1

Σc

{
xn(t+ 1) = Annxn(t) +Knnen(t)

yn(t) = Cnnxi(t) + en(t)
(16)

Σai

{
xi(t+ 1) =

∑
j={i,n}Aijxj(t) +Kijej(t)

yi(t) =
∑
j={i,n} Cijxj(t) + ei(t) .

(17)

Sc

Sa1 Sa2 · · · San-1

xn, en xn, en xn, en

Fig. 3: Network graph of a Kalman representation in coordi-
nated form: Sc is the coordinator (16) and Sai , i = 1, . . . , n−1
are the agents (17).

Notice that subsystem Sai generates yi as output, has xi, ei as
its state and noise process and takes xn, en as its inputs, thus
takes inputs from subsystem Sc. In contrast, Sc is autonomous,
generating yn as output and having xn, en as its state and
noise process but not taking input from subsystems Sai , i=
1, . . . , n − 1 (see Fig. 3). We call Sc the coordinator, and
Sai , i = 1, . . . , n − 1 the agents. Intuitively, the agents do
not communicate with each other, only the coordinator sends
information (xn and en) to all agents and does not receive
information from them.

Motivation for Kalman representations in causal coordi-
nated form: If we considered a general LTI-SS representation
with a network graph like on Fig. 3, then the noise process
e could be any process. If e were not the innovation process
of y, then it could happen that the agents communicate with
each other in an implicit way through e. However, if we
assume that (A,K,C, I, e,y) is a Kalman representation in
causal coordinated form satisfying (14), then [eTi , e

T
n ]T is the

innovation process of [yTi ,y
T
n ]T for i = 1, . . . , n− 1 and

en is the innovation process of yn. Hence, the values of
ei, en depend only on the past and present values of yi,yn.
Moreover, xn depends only on the past values of yn and
therefore xi depends only on the past values of yi,yn. That is,
Kalman representations in coordinated form have the property
that there is no communication among the agents or from the
agents to the coordinator hidden in the noise process. Note that
the lack of communication from the agents to the coordinator
is ensured by that (15) is a Kalman representation in causal
block triangular form.

Kalman representations in causal coordinated form have a
number of desirable properties, e.g., they have the smallest
possible coordinator. By definition, the subsystem (15) of a
Kalman representation in causal coordinated form (14) is a
minimal Kalman representation of [yTi ,y

T
n ]T in causal block

triangular form. This implies that (16) is a minimal Kalman
representation of yn and thus the coordinator is minimal. It
assures observability of the coordinator and enables to estimate
the states of Kalman representations in causal coordinated
form using distributed filters. That is, in order to estimate the
state xn of the coordinator using a Kalman filter, only the
output yn of the coordinator is necessary. Since (17) is also
minimal and thus observable, in order to estimate the state xi
of the ith agent using a Kalman filter, only the output yi of
this agent and the output yn of the coordinator are necessary.
Furthermore, from Lemma 1 below, Kalman representations in
causal coordinated form are isomorphic. Hence, if they repre-
sent the same output process, their properties are essentially
the same. The proof of Lemma 1 can be found in Appendix.
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Lemma 1. Any two Kalman representations of y in causal
coordinated form are isomorphic.

B. Conditional Granger causality and coordinated systems

Below we show that the existence of a Kalman representa-
tion of y in causal coordinated form can be characterized by
conditional Granger non-causalities among the components of
y. To this end, we define conditional Granger non-causality:
the generalization of Granger non-causality between two com-
ponents of a process in the presence of a third component. The
next definition is a particular case of the concept of causality
defined in [1], if the latter is applied to ZMSIR processes, and
if, using the terminology of [1], there is one external process.

Definition 7. Consider a ZMSIR process y =[yT1 ,y
T
2 ,y

T
3 ]T .

We say that y1 conditionally does not Granger cause y2 with
respect to y3, if for all t, k ∈ Z, k ≥ 0

El[y2(t+ k) | Hy2,y3

t− ]=El[y2(t+ k) | Hy1,y2,y3

t− ].

Otherwise, we say that y1 conditionally Granger causes y2

with respect to y3.

If y = [yT1,y
T
2 ]T, then considering y3 = y2 Definition 7

coincides with Definition 5. We will be interested in a
particular combination of causal dependencies in a process
y = [yT1 , . . . ,y

T
n ]T . Namely, when yi does not Granger cause

yn and yi does not Granger cause yj with respect to yn
for all i, j = 1, . . . , n−1, i 6= j. We will show that these
causal relations in y = [yT1 , . . . ,y

T
n ]T hold if and only if

y has a Kalman representation in causal coordinated form
whose network graph is as in Fig. 3. For this, we first define
conditionally trivial intersection of two subspaces U, V with
respect to a closed subspace W , denoted by U ∩V |W = {0}.

Definition 8. Consider the subspaces U, V,W ⊆ H such
that W is closed. Then U, V have a conditionally trivial
intersection with respect to W denoted by U ∩ V |W ={0} if

{u− El[u|W ] | u ∈ U} ∩ {v − El[v|W ] | v ∈ V } = {0},

i.e., the intersection of the projections of U and V onto the
orthogonal complement of W in H is the zero subspace.

Theorem 2. Consider the following statements for a ZMSIR
process y = [yT1 , . . . ,y

T
n ]T :

(i) yi does not Granger cause yn, i=1, . . ., n−1;
(ii) yi conditionally does not Granger cause yj with respect

to yn, i, j=1, . . . , n− 1, i 6= j;
(iii) (i) and (ii) hold and for i, j ∈ {1, . . . , n− 1}, i 6= j

El[H
yi

t+|H
yi,yn

t− ] ∩ El[H
yj

t+|H
yj,yn

t− ] |El[H
yn

t+ |H
yn

t− ]={0} (18)

(iv) there exists a minimal Kalman representation of y in
causal coordinated form;

(v) there exists a Kalman representation of y in causal
coordinated form;

(vi) there exists a Kalman representation of y in coordinated
form;

Then (iii) ⇐⇒ (iv), in addition, ((i) and (ii)) ⇐⇒ (v). If y
is coercive, then also ((i) and (ii)) ⇐⇒ (v) ⇐⇒ (vi).

Remark 8 (Alternative formulations of (ii)). If (i) holds, then
condition (ii) is equivalent to saying that yi does not Granger
cause [yTj ,y

T
n ]T , i, j ∈ {1, . . . , n− 1}, i 6= j.

The proof of Theorem 2 can be found in Appendix. The
intuition behind this result is the following. For a coordinator
to exist, the outputs of the agents should not influence the
output of the coordinator, i.e., (i) should hold. Moreover,
for i 6= j the output of agent i should not influence the
output of agent j, except that information which comes
from the output of the coordinator (ii). The condition for
minimality (iii) can be explained as follows. It can be shown
that a Kalman representation in causal coordinated form is
observable, so for minimality, we only have to ensure its
reachability. This is equivalent to the components of the
state x = [xT1 , . . . ,x

T
n ]T being linearly independent at each

time. The space generated by the components of xn(t) is
El[Hyn

t+ |H
yn

t− ] and the space generated by the components
of [xTi ,x

T
n ]T (t) is El[Hyi

t+|H
yi,yn

t− ], where xi and xn are as
in (16) and (17). As a result, condition (iii) is an equivalent
condition for reachability of a Kalman representation in causal
coordinated form.

Using minimal Kalman representations in causal coordi-
nated form is desirable since they are isomorphic to any other
minimal Kalman representation of the same process. Hence,
any property derived for the minimal Kalman representation in
causal coordinated form, if it is invariant under isomorphism,
remains valid for any other minimal Kalman representation.
Theorem 2 gives a necessary and sufficient condition for ex-
istence of Kalman representations in causal coordinated form.
From Lemma 1, we know that these Kalman representations
behave as minimal ones among all Kalman representations in
coordinated form. In particular, they are isomorphic. Existence
of a minimal Kalman representation in coordinated form (not
causal coordinated form) remains a topic of future research.

C. Computing Kalman representations in coordinated form
Next, we describe a procedure to calculate a Kalman repre-

sentation of y in causal coordinated form. Assume that condi-
tion (i) in Theorem 2 holds. Consider an LTI-SS representation
(Ā, B̄, C̄, D̄,v) of y and the partitions of C̄ and D̄

C̄ =
[
C̄T1 , . . . , C̄

T
n

]T
, D̄ =

[
D̄T

1 , . . . , D̄
T
n

]T
(19)

such that C̄i and D̄i have ri = dim(yi) rows for all
i = 1, . . . , n. Then, (Ā, B̄,

[
C̄Ti C̄Tn

]T
,
[
D̄T
i D̄

T
n

]T
,v) is an

LTI-SS representation of [yTi ,y
T
n ]T , i = 1, . . . , n− 1. Hence,

by Corollary 1 the latter can be transformed into a minimal
Kalman representation (Âi, K̂i, Ĉi, Iri+rn , ei,n = [eTi , e

T
n ]T )

of [yTi ,y
T
n ]T in causal block triangular form, i.e.,

Âi=

[
Âii Âin
0 Âi,nn

]
, K̂i=

[
K̂ii K̂in

0 K̂i,nn

]
, Ĉi=

[
Ĉii Ĉin
0 Ĉi,nn

]
, (20)

and the process en(t)=yn(t)−El[yn(t)|Hyn

t− ] is the innovation
process of yn and ei(t)=yi(t)−El[yi(t)|Hyi,yn

t− ]. In addition,
(Âi,nn, K̂i,nn, Ĉi,nn, Irn , en) is a minimal Kalman represen-
tation of yn. Since all minimal Kalman representations of
yn are isomorphic (Proposition 4), there exist non-singular
matrices Ti for i=2, . . . , n−1 such that
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Â1,nn=TiÂi,nnT
−1
i K̂1,nn=TiK̂i,nn

Ĉ1,nn= Ĉi,nnT
−1
i .

(21)

Let e = [eT1 , e
T
2 , . . . , e

T
n ]T and define the matrices A,K and

C as in (14) such that for i = 1, . . . , n− 1

Aii = Âii, Kii = K̂ii, Cii = Ĉii,

Ain = ÂinT
−1
i , Kin = K̂in, Cin = ĈinT

−1
i ,

Ann = Â1,nn, Knn = K̂1,nn, Cnn = Ĉ1,nn.

(22)

Now, we can state the following result:

Corollary 2. The following statements hold:
• If y satisfies conditions (i) and (ii) in Theorem 2, then

(A,K,C, I, e) defined by (20), (21), and (22) is a
Kalman representation of y in causal coordinated form.

• If y satisfies (iii), then (A,K,C, I, e,y) is also minimal.

The proof can be found in Appendix. Note that if condition
(ii) in Theorem 2 does not hold, then {A,K,C, I, e} can
be calculated as above, but the process e is not necessarily
white noise. Hence, if condition (ii) does not hold, then the
tuple {A,K,C, I, e} does not necessarily define an LTI-SS
representation.

The procedure above is elaborated on in Algorithm 5 and
Algorithm 6. Algorithm 5 takes an LTI-SS representation as
its input and transforms it into a Kalman representation in
causal coordinated form. Algorithm 6 calculates the same
representation from covariances of the output. Hence, by using
empirical covariances it can be applied to data.

Algorithm 5 Kalman representation in causal coordinated
form based on LTI-SS representation

Input {Ā, B̄, C̄, D̄,Λv
0}: (Ā, B̄, C̄, D̄,v) is an LTI-SS rep-

resentation of y and Λv
0 = E[v(t)vT (t)]

Output {A,K,C}: system matrices of (14)
for i = 1 : n− 1

Step 1 Consider the partition (19) and apply Algo-
rithm 3 with input {Ā, B̄, C̄i, D̄i,Λ

v
0}. Denote its output

by {Âi, K̂i, Ĉi}, where (Âi, K̂i, Ĉi, I, ei,n, [y
T
i ,y

T
n ]T ) is a

minimal Kalman representation in block triangular form.
Step 2 If i>1, consider the partition (20) of Âi, K̂i, Ĉi

and define the non-singular matrix Ti as in (21).
end for
Step 3 Define A,K and C as in (14), such that the subma-
trices {Aii, AinCii, CinKii,Kin}i=1,...,n−1 satisfy (22).

Remark 9 (Correctness of Algorithms 5–6). Consider a ZM-
SIR process y = [yT1 , . . . ,y

T
n ]T with covariance sequence

{Λy
k}∞k=0 and an LTI-SS representation (Ā, B̄, C̄, D̄,v) of y.

Let e be the innovation process of y and N be any number
larger than or equal to the dimension of a minimal LTI-
SS representation of y. Assume that y satisfies conditions
(i) and (ii) in Theorem 2 and note that Algorithms 3–4
calculate a minimal Kalman representation in causal block
triangular form (Remark 5). Then it follows form Corollary 2
that if {A,K,C} is the output of Algorithm 5 with input
{Ā, B̄, C̄, D̄,Λv

0 = E[v(t)vT (t)]}, then (A,K,C, I, e) is

Algorithm 6 Kalman representation in causal coordinated
form based on output covariances

Input {Λy
k}2Nk=0: Markov parameters of y=

[
yT1,..,y

T
n

]T
Output {A,K,C}: system matrices of (14)

for i = 1 : n− 1
Step 1 Denote the kth Markov parameters for yi,n =

[yTi ,y
T
n ]T by Λ

yi,n

k = E[yi,ny
T
i,n].

Step 2 Calculate the rank of the Hankel matrix formed
by {Λyi,n

k }2N−1k=0 and denote it by Ni. Call Algorithm 4 for
{Λyi,n

k }2Ni

k=1 and denote its output by {Âi, K̂i, Ĉi}.
Step 3 Step 2 of Algorithm 5.

end for
Step 4 Step 3 of Algorithm 5.

a Kalman representation of y in causal coordinated form.
In addition, (A,K,C, I, e) is minimal if and only if (18)
holds. Similarly, it follows from Corollary 2 that if {A,K,C}
is the output of Algorithm 6 with input {Λy

k}2Nk=0, then
(A,K,C, I, e) is a Kalman representation of y in causal
coordinated form and is minimal if and only if (18) holds.
Remark 10. Using Remark 2 and Remark 6, the computational
complexity of Algorithm 6 and 5 is polynomial. Algorithm 5
is polynomial in the dimension of the state, output and
noise processes of the LTI-SS representation (Ā, B̄, C̄, D̄,v).
Algorithm 6 is polynomial in the number and size of the output
covariances.
Remark 11 (Checking (i)–(ii)). In contrast to Remark 7 in
Section III, the algorithms of this section cannot be directly
used to check conditions (i) and (ii) in Theorem 2. However,
(i) is just a Granger non-causality condition, and by Remark 8,
(ii) can also be reformulated as (non-conditional) Granger non-
causality. Therefore, by Remark 7, Algorithms 3 and 4 can be
used to check these conditions.

Note that Algorithm 6 operates in a distributed manner; it
combines subsystems belonging to an agent and the coordi-
nator for which it does not need the observation of any other
agent. Furthermore, it only uses the covariances of the ob-
served process, thus using empirical covariances, it is suitable
to estimate Kalman representations in causal coordinated form
based on data. Due to the distributed conception, Algorithm 6
is possibly advantageous in terms of estimation error compared
to non-distributed procedures. In the next section we illustrate
Algorithm 6 with an example.

V. EXAMPLE FOR COORDINATED REPRESENTATION

In this section we adopt a case study from [16, Section
8.1] to illustrate the results of the paper. The focus of this
study is the dynamics of three underwater vehicles that track
a reference path in a fixed formation. Among the vehicles there
is one acting as a coordinator that tracks a reference path and
two others acting as agents that track the coordinator.

In comparison with [16, Section 8.1] we made the following
changes: (1) to ensure stationarity, the coordinator follows the
zero position; (2) for convenience, we consider the movements
of the vehicles along the first coordinate; (3) besides the
position disturbance we include measurement noise.
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We will show that the relative positions (concerning the
formation) of the vehicles are ZMSIR processes that can
be modeled by a minimal Kalman representation in causal
coordinated form. In fact, we reverse engineer the coordinated
network topology from the observed process in the following
way: We verify that conditions (i) and (ii) in Theorem 2
hold by calculating Granger non-causal relations based on Re-
mark 7. Then, we calculate a minimal Kalman representation
in causal coordinated form using Algorithm 6.

Model description: Assume that we have three underwa-
ter vehicles V1, V2 and Vc where V1,V2 act as agents and Vc as
the coordinator. For j ∈ {1, 2, c} denote the first coordinate at
time t ∈ Z of the position, velocity, acceleration, position
disturbance and measurement noise of Vj by pj(t), sj(t),
aj(t), wj(t) and w̃j(t), respectively. Also, denote the first
coordinate of the reference position and velocity of Vj by
pRj (t) and sRj (t), respectively. Let pRc (t) = −(pc(t) + w̃c(t))
and pRj (t) = (pc(t) + w̃c(t)) + ∆j for j = 1, 2. That is, Vc
follows the zero position based on its own measured position
and for j=1, 2, Vj follows Vc in a distance ∆j based on the
same information. To shorten the expressions, for a process
l(t) we write l and we use σ to denote the forward time shift
operator defined as follows: σl(t) = l(t+ 1).

The dynamics of [pj , sj ]
T , j ∈ {1, 2, c} is given by

σ

[
pj
sj

]
=

[
1 1
0 τ−1

τ

] [
pj
sj

]
+

[
0
1
τ

]
aj +

[
1
0

]
wj (23)

where aj is the control input and τ is a time constant. The
reference signals [pRj , s

R
j ]T are estimated by the observer

σ

[
p̂Rj
ŝRj

]
=

[
1−Gpj 1

−Gsj τ−1
τ

] [
p̂Rj
ŝRj

]
+

[
Gpj
Gsj

]
pRj (24)

where Gpj , G
s
j are constant gains. The linear feedback control

is aj =
[
F pj F

s
j

] [pj−p̂Rj
sj−ŝRj

]
. Combining (23) and (24) and

assuming that xj := [pj − ∆j , sj , p̂
R
j − ∆j , ŝ

R
j ]T , j = 1, 2,

and v := [w1, w2, wc, w̃1, w̃2, w̃c]
T is a white noise process

we can define the following LTI-SS representation of the
process y = [y1,y2,yc]

T := [p1 − ∆1, p2 − ∆2, pc]
T :

σ

x1

x2

xc

 =

A1 0 B1 0
0 A2 B2 0
0 0 Ac-BcF


︸ ︷︷ ︸

A

x1

x2

xc

+

E 0 0 0 0 B1

0 E 0 0 0 B2

0 0 E 0 0 -Bc


︸ ︷︷ ︸

B

v,

y1

y2

yc

 =

ET 0 0
0 ET 0
0 0 ET


︸ ︷︷ ︸

C

x1

x2

xc

+

 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

D

v. where

for j = 1, 2, Aj =


1 1 0 0

1
τ F

p
j
τ−1
τ + 1

τ F
s
j −1

τ F
p
j −1

τ F
s
j

0 0 1−Gpj 1

0 0 −Gsj τ−1
τ

, and

BTj =
[
0 0 Gpj G

s
j

]T
.

Parameter settings: Following the approach of [16], we
take F p1 = F p2 = F pc and F s1 = F s2 = F sc as the solution
of the linear quadratic problem minac{||z21||2 +α||a2c ||2} with

respect to the dynamics σ
[
z1
z2

]
=

[
1 1
0 τ−1

τ

] [
z1
z2

]
+

[
0
1
τ

]
ac.

Accordingly, for τ = 2 and α = 10 the optimal solution is
F p1 = F p2 = F pc =−0.3 and F s1 = F s2 = F sc =−0.5. The gain
constants were chosen to be Gp1 = 1.5, Gs1 = 0.3, Gp2 = 1.2,
Gs2 = 0.1, GpRc

= 0.9, and GsRc
= 0.5 for which the matrix A

is stable. Finally, the joint noise process v is chosen to be a
normalized Gaussian white noise process.

Reverse engineering of the coordinated network graph:
Assume that the output process y of S := (A,B,C,D,v,y) is
observed. By the result of this paper, we will calculate a min-
imal Kalman representation of y in causal coordinated form.
Note that we do not use prior knowledge of the coordinated
structure of the network graph. In fact, this representation
reconstructs the coordinated network graph of S.

First, we check the Granger non-causal relations among the
components of y using the covariance sequence {Λy

k}2Nk=0 of
y where N is larger than or equal to the dimension of a
minimal LTI-SS representation of y. For this, we calculate
a Kalman representation (A,K,C, I, e) of y and verify that
y is coercive by checking that A−KC is invertible (see
the last paragraph of Section II-B). In view of Corollary 1,
a Granger non-causal relation can be verified by observing
the output matrix K of Algorithm 4. More specifically, if the
left lower block of the matrix K is zero, then an appropriate
Granger non-causal relation holds (see Remark 7). Following
this method, we apply Algorithm 4 choosing the coordinator to
be y1,y2,yc, [yT1 ,y

T
2 ]T , [yT1 ,y

T
c ]T and [yT2 ,y

T
c ]T , thus trying

all the possibilities. We obtain that [y1,y2]T does not Granger
cause yc and yj does not Granger cause [yi,yc], i, j = 1, 2,
i 6= j thus conditions (i) and (ii) in Theorem 2 hold for the
partition y=[y1,y2,yc]

T .
Second, in order to calculate a Kalman representation of y

in coordinated form, we apply Algorithm 6 with the covariance
sequence {Λy

k}2Nk=0 as its input. Accordingly, first the minimal
Kalman representations (Ak,1,K1, Ck,1, I, e1,c, [y1,yc]

T ) and
(Ak,2,K2, Ck,2, I, e2,c, [y2,yc]

T ) are calculated in causal
block triangular form using Algorithm 3 with the covariances
of [y1,yc]

T and [y2,yc]
T as its input. With our parameter

settings, these matrices are in the form

Ak,1 =



0.4 −0.3 −0.1 0.1 0.0 0.1 0.2 −0.1
0.2 0.4 0.6 0.2 0.1 0.0 0.2 0.1
0.0 −0.3 0.4 −0.1 0.0 0.0 0.0 −0.4
−0.2 0 −0.2 0.7 0.0 −0.1 0.0 0.0

0 0 0 0 0.2 −0.9 0.1 0.0
0 0 0 0 0.6 0.3 0.3 0.1
0 0 0 0 −0.1 0.2 −0.4 0.4
0 0 0 0 0.1 0.0 −0.5 0.3



K1 =



0.1 0.2
−0.1 −0.1
0.0 0.0
−0.3 −0.1

0 0.1
0 0.2
0 0.2
0 −0.1


, CTk,1 =



−0.4 0
−0.3 0
0.4 0
−1.8 0
0.2 0.5
−0.2 0.0
0.0 −0.2
0.2 0.0
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Ak,2 =



0.5 0.2 0 −0.1 0 −0.1 −0.2 0.2
−0.2 0.4 0.7 0.0 0.1 0.0 0.1 0.1
0.0 −0.1 0.4 0.0 0.0 0.0 0.0 −0.3
0.1 0.0 0.0 0.8 0.0 −0.1 0.0 0.0
0 0 0 0 0.2 −0.8 0.1 0.0
0 0 0 0 0.7 0.4 0.3 0.1
0 0 0 0 −0.1 0.2 −0.4 0.4
0 0 0 0 0.1 0.1 −0.3 0.2



K2 =



−0.1 −0.2
0.0 0.0
0.0 0.0
−0.3 −0.1

0 0.1
0 0.2
0 0.2
0 −0.1


, CTk,2 =



0.5 0
−0.1 0
−0.1 0
−1.9 0
0.2 0.5
−0.1 −0.1
0.0 −0.2
0.1 0.0


.

Following this, we define a transformation matrix T :=([
CTk,23 Ak,23C

T
k,23

]T)−1[
CTk,13 Ak,13C

T
k,13

]T
with which,

the output matrices {Ak,K,Ck} of Algorithm 6 are cal-

culated as below. Ak =

Ak,11 0 Ak,1c
0 Ak,22 TÂk,2cT

−1

0 0 Ak,cc

 K =K11 0 A1c

0 K22 TÂ2c

0 0 Kcc

, Ck=

Ck,11 0 Ck,1c
0 Ck,22 Ĉk,2cT

−1

0 0 Ck,cc

 . In view

of Remark 9, the representation Sk := (Ak,K,Ck, I, e,y) is
a Kalman representation in causal coordinated form. Further-
more, it is easy to check that Sk is minimal, which implies
that condition (iii) in Theorem 2 holds. The calculation of Sk
only requires the second order statistics of the output process
and does not use prior knowledge of the network topology.
Therefore, the coordinated network graph of S is reverse
engineered as Sk. Moreover, by Theorem 2, the reconstructed
representation Sk not only shows the coordinated structure but
also characterizes the causal relations that describe the coordi-
nated relationship in the observed process. The procedure can
be repeated based on data, using empirical covariances which
provide an estimation of Sk. Note that Sk is calculated in a
distributed way which possibly reduces estimation error.

CONCLUSIONS

In this paper we studied the relationship between coordi-
nated state-space representations and (conditional) Granger
non-causality. Our results show that certain (conditional)
Granger non-causalities among the components of a process
are equivalent to the existence of an LTI-SS representation
with the star graph as its network graph, called Kalman
representation in coordinated form. We provided algorithms
for calculating this structured representation, in particular,
calculating it from the covariance sequence of the observed
output process. The covariances can be estimated from data.
Hence, our results open up the possibility of calculating this
representation from output data.

In systems biology and neuroscience the interactions be-
tween subsystems of a dynamical system are often hard to
detect. By contrast, causality of the observed process is easy

to estimate. If a star-like causality structure is detected among
the components of a process ((i) and (ii) in Theorem 2 hold),
then, by the results of this paper, we can calculate a Kalman
representation of this process in causal coordinated form. This
representation has the star graph as its network graph, which
characterizes the detected causalities. By this, we can reverse
engineer the network graph of dynamical systems without
prior knowledge of the internal interconnection structure.

Kalman representation in coordinated form allows dis-
tributed estimation. In particular, the algorithms of this paper
estimate the coordinator and each agent separately and thus
are also suitable for distributed parameter estimation.

The results can be of interest to structure preserving model
reduction. Assume that a process has a Kalman representation
in coordinated form. Then, one can reduce the model order
of a subsystem belonging to an agent without modifying the
subsystems belonging to other agents or the coordinator and
preserving the coordinated interconnection structure.

There are three main restrictions of our work in real life
applications: 1) the coordinated interconnection structure, i.e.,
the restriction of the network graph to a star graph 2) the
autonomy of the system and 3) the linearity of the system.
The extension of the results concerning these aspects remains
a topic of future research.

APPENDIX - TECHNICAL PROOFS

We will use the following notation: the sum of two sub-
spaces U, V ⊆ H is written by U+V := {u+v|u ∈ U, v ∈ V }
and the orthogonal complement of U in V (with respect
to H) by V 	 U ; if U ∩ V = {0} then the direct sum
of them is denoted by U+̇V ; if U and V are orthogonal
then we write the orthogonal direct sum as U ⊕ V . Also,
we denote the orthogonality of a process y to a closed
subspace U ⊆ H by y ⊥ U . Furthermore, an LTI-SS
representation (A,B,C,D,v) of a white noise process y has
zero dimension, thus A,B,C are absent, and it is the trivial
equation y =Dv. A zero dimensional LTI-SS representation
is minimal, observable and controllable by convention.

Proof of Theorem 1. First, we discuss the trivial implications:
since any minimal Kalman representation in causal block
triangular form is a Kalman representation in a causal block
triangular form and any Kalman representation in a causal
block triangular form is a Kalman representation in block tri-
angular form (ii) =⇒ (iii) and (iii) =⇒ (iv) follow. In addition,
the implication (ii) =⇒ (i) is easy to see; if (A,K,C, I, e) is a
minimal Kalman representation of y in causal block triangular
form (7), then (A22,K22, C22, Ir2 , e2) is a minimal Kalman
representation of y2, and hence e2(t)=y2(t)−El[y2(t) | Hy

t−]
equals the innovation process of y2. By [23, Proposition 2.3],
the latter implies that y1 does not Granger cause y2.

Proof of (iv) =⇒ (i). If y is coercive, then Granger non-
causality is equivalent to the transfer matrix of a Kalman
representation of y having a block triangular structure, see [25,
Theorem 2.2.]. Since the transfer function of a Kalman rep-
resentation in block triangular form has a triangular structure
described in [24], [25], the implication (iv) =⇒ (i) follows.
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Proof of (i) =⇒ (ii). To begin with, from Proposition 2 we
know that the ZMSIR process y = [yT1 ,y

T
2 ]T has a minimal

Kalman representation (Â, K̂, Ĉ, I, e). Assuming that (i) in
Theorem 1 holds, we transform this representation into causal
block triangular form. Consider the partition Ĉ = [ĈT1 , Ĉ

T
2 ]T

such that Ci ∈ Rri×p where ri = dim(yi) is the dimension
of yi, i = 1, 2 and p is the dimension of (Â, K̂, Ĉ, I, e,y).
We assume that p > 0; if p = 0, then y = e defines
a minimal Kalman representation in causal block triangular
form. Take the non-singular matrix T which brings (Â, Ĉ2)
into observability staircase form, i.e., T is such that

TÂT−1 =

[
A11 A12

0 A22

]
, Ĉ2T

−1 =
[
0 C22

]
, (25)

where (A22, C22) is observable and A11 ∈ Rp1×p1 , A22 ∈
Rp2×p2 such that p2 is the rank of the observability matrix
of the pair (Â, Ĉ2). Define A := TÂT−1,K := TK̂, C :=
ĈT−1 and notice that (A,K,C, I, e,y) is a minimal Kalman
representation since it is isomorphic to (Â, K̂, Ĉ, I, e,y). Note
that if (Â, Ĉ2) is observable, then p1 = 0 and A11, A12

are absent in (25). If the observability matrix of (Â, Ĉ2)
has zero rank, then p2 = 0 and A12, A22, C22 are absent.
Moreover, if p2 = 0, then (A,K,C, I, e,y) is already in
causal block triangular form (see Remark 3). Hence, we can
assume that p2> 0. Next, we show that K21 = 0 where K =[
K11 K12

K21 K22

]
and Kij ∈ Rpi×rj for i = 1, 2. Denote the state

of (A,K,C, I, e,y) by x. Take the partition e = [eT1 , e
T
2 ]T

and x = [xT1 ,x
T
2 ]T where ei ∈ Rri and xi ∈ Rpi , i = 1, 2.

Notice that C =

[
C11 C12

0 C22

]
and Ak =

[
Ak

11 (Ak)12
0 Ak

22

]
, where

C1i ∈ Rr1×pi , i = 1, 2 and (Ak)12 ∈ Rp1×p2 denotes the
right upper block of Ak. It then follows that C2A

kx(t) =
C22A

k
22x2(t) and for k > 0

y2(t+ k) = C22A
k
22x2(t) +

k−1∑
l=0

Mle(t+ k − l) (26)

for some matrices M0, . . . ,Mk−1. Since e is the innovation
process of y, it implies that e(t + k − l) ⊥ Hy

t− and
He
t− = Hy

t−, for k − l ≥ 0, t ∈ Z. Furthermore, from
x(t) =

∑∞
k=1 CA

k−1Ke(t − k), the components of x(t)
belong to He

t− = Hy
t−. Using (26), it then follows that

El[y2(t + k)|Hy
t−] = C22A

k
22x2(t). As y1 does not Granger

cause y2 we know that El[y2(t + k)|Hy2

t−] = El[y2(t +
k)|Hy

t−] for all k ≥ 0, and thus El[y2(t + k)|Hy2

t−] =
C22A

k
22x2(t) ∈ Hy2

t−. Let O2 be the observability matrix
of (A22, C22) and denote its left inverse by O+

2 . Then

x2(t) = O+
2 El[

 y2(t)
...

y2(t+ n−1)

 |Hy2

t−] and thus the elements

of x2(t) belong to Hy2

t−. Note that since y1 does not Granger
cause y2, by [23, Proposition 2.3] e2 is the innovation pro-
cess of y2, and hence Hy2

(t+1)− = Hy2

t− ⊕ H
e2
t . Therefore,

x2(t + 1) = El[x2(t + 1)|Hy2

(t+1)−] = El[x2(t + 1)|Hy2

t−] +

El[x2(t + 1)|He2
t ]. From e(t) ⊥ Hy

t− ⊇ El[x2(t + 1)|Hy2

t−]
and El[x2(t+1)|He2

t ] ⊆ He
t we have that El[x2(t+1)|He

t ] =
El[x2(t + 1)|He2

t ] = R̂e2(t) for a suitable R̂ matrix. Then

x2(t + 1) = A22x2(t) +
[
K21 K22

]
e(t) and e(t) ⊥ Hx2

t

implies that El[x2(t + 1)|He
t ] =

[
K21 K22

]
e(t) = R̂e2(t).

Using that y is full rank, e1 and e2 are linearly independent,
and hence K21 = 0, K22 = R̂. That is, (A,K,C, I, e) is
a Kalman representation of y in block triangular form. In
order to see that (A,K,C, I, e) is in causal block triangular
form, we need to show that (A22,K22, C22, Ir2 , e2) is a
minimal Kalman representation of y2. From Granger non-
causality, e2 is the innovation process of y2, hence we
only need to prove minimality. Note that if p1 = 0, then
A = A22,K = K22, C = C22 thus (A22,K22, C22, Ir2 , e2) is
minimal. In view of Proposition 3, it is sufficient to show
that (A22, C22) is observable and (A22,K22) is controllable.
The former follows from the construction. Assume now indi-
rectly that (A22,K22) is uncontrollable, i.e., that for some
vector η 6= 0, ηTAk22K22 = 0 for all k ≥ 0. However,

AkK =

[
Ak11K11 (AkK)12

0 Ak22K22

]
, where (AkK)12 denotes the

right upper block of AkK with suitable dimensions. It follows
that

[
0 ηT

]
AkK = 0 for all k ≥ 0, which implies that (A,K)

is not controllable. Since (A,K,C, I, e) is a minimal Kalman
representation of y, by Proposition 3 (A,K) is controllable,
which is a contradiction.

Proof of Corollary 1. The construction of the Kalman repre-
sentation (A,K,C, I, e,y) coincides with the one described in
the proof of the implication (i) =⇒ (ii) in Theorem 1. Hence,
if y1 does not Granger cause y2, then the above-mentioned
proof implies that either K21 is absent or K21 = 0 and that
(A,K,C, I, e) is a minimal Kalman representation of y in
causal block triangular form. Conversely, if K21 is absent or
K21 = 0, and y is coercive, then (A,K,C, I, e) is a minimal
Kalman representation of y in block triangular form. Hence,
by the implication (iii) =⇒ (i) of Theorem 1, y1 does not
Granger cause y2.

Proof of Lemma 1. Consider a process y = [yT1 , . . . ,y
T
n ]T

where yi ∈ Rri , for ri > 0, i = 1, . . . , n. Let
(A,K,C, I, e) and (Â, K̂, Ĉ, I, e) be two Kalman represen-
tations of y in causal coordinated form (14) with blocks
Aij ∈ Rpi×pj ,Kij ∈ Rpi×rj , Cij ∈ Rri×pj and Âij ∈
Rpi×pj , K̂ij ∈ Rpi×rj , Ĉij ∈ Rri×pj for i, j = 1, . . . , n.
Let Si be the Kalman representation (15), and let Ŝi be the
counterpart of (15), obtained by replacing Aij ,Kij , Cij by
the matrices Âij , K̂ij , Ĉij for j = i, n, i = 1, . . . , n. From
Definition 6 it follows that Si and Ŝi are minimal Kalman
representations of [yTi ,y

T
n ]T in block triangular form, thus

there exists an isomorphism Ti from Ŝi to Si, i = 1, . . . , n−1.

We will show that Ti is of the form Ti =

[
Tii Tin

0 Tnn

]
, where

Tij ∈ Rpi×pj , j = i, n. This then implies that (Â, K̂, Ĉ, I, e)
and (A,K,C, I, e) are isomorphic such as A = TÂT−1,
K = TK̂ and C = ĈT−1 with the matrix T defined by

T =


T11 0 . . . 0 T1n
0 T22 . . . 0 T2n
...

...
. . .

...
...

0 0 . . . T(n−1)(n−1) T(n−1)n
0 0 . . . 0 Tnn

 . Consider the
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partition Ti=

[
Tii Tin

Tin Tnn

]
, where Tkl ∈ Rpk×pl for k, l = i, n.

By reordering the rows of the observability matrices Oi and Ôi

of Si and Ŝi we obtain that Oi=

[
Oi Oin
0 On

]
and Ôi=

[
Ôi Ôin
0 Ôn

]
,

where On and Ôn are the observability matrices of (Ann, Cnn)
and (Ânn, Ĉnn), respectively. Since OiTi = Ôi, it follows that
OnTin = 0. Since Si is a Kalman representation in causal
block triangular form, (Ann, Cnn) is observable and therefore,
On is full row rank. Then OnTin = 0 implies Tin = 0.

To prove Theorem 2, we need an auxiliary result. For
the sake of simplicity, a ZMSIR process [yTj1 , . . . ,y

T
jk

]T is
shortened by yJ where J = {j1, . . . , jk} and the Hilbert
spaces generated by the present, past, and future values of
yJ are written by HyJ

t , HyJ

t− and HyJ

t+ , respectively.

Lemma 2. Consider a ZMSIR process y =
[yT1 ,y

T
2 ,y

T
3 ,y

T
4 ]T . Then y1 and y2 conditionally do

not Granger cause y3 with respect to y4 if and only if
[yT1 ,y

T
2 ]T conditionally does not Granger cause y3 with

respect to y4.

Proof. if: By definition, the joint process [yT1 ,y
T
2 ]T condition-

ally does not Granger cause y3 with respect to y4 if for all
t, k ∈ Z, k ≥ 0 El[y3(t+ k)|Hy3,4

t− ] = El[y3(t+ k)|Hy
t−]. By

projecting both sides onto Hy1,3,4

t− and to Hy2,3,4

t− we have that

El[y3(t+ k)|Hy3,4

t− ] = El[y3(t+ k)|Hy1,3,4

t− ]

El[y3(t+ k)|Hy3,4

t− ] = El[y3(t+ k)|Hy2,3,4

t− ],
(27)

which implies that y1 and y2 conditionally does not Granger
cause y3 with respect to y4.

only if: For t, k ∈ Z, k ≥ 0 define the process αt+k :=
y3(t + k) − El[y3(t + k)|Hy3,4

t− ]. Then, αt+k ⊥ H
y3,4

t− and
from the Granger non-causality conditions we obtain that also
αt+k ⊥ H

y1,3,4

t− and αt+k ⊥ H
y2,3,4

t− hold. Therefore, αt+k is
orthogonal to Hy1,3,4

t− +Hy2,3,4

t− , thus also to Hy
t−, the Hilbert

space generated by y. By projecting αt+k onto Hy
t− we obtain

that El[αt+k|Hy
t−] = 0 thus El[y3(t + k)|Hy

t−] = El[y3(t +
k)|Hy3,4

t− ], which by definition is that [yT1 ,y
T
2 ]T conditionally

does not Granger cause y3 with respect to y4.

Proof of Theorem 2. To start with, any Kalman representation
in causal coordinated form is a Kalman representation in
coordinated form, hence (v) =⇒ (vi) follows. We assume now
that y = [yT1 , . . . ,y

T
n ]T is a ZMSIR process where yi ∈ Rri ,

ri > 0, i = 1, . . . , n and we continue with the proof of the
remaining implications.

Proof of ((i) and (ii)) =⇒ (v). Condition (i) and Theo-
rem 1 imply the existence of minimal Kalman representations
(Âi, K̂i, Ĉi, I, ei,n) of yi,n = [yTi ,y

T
n ]T , i = 1, . . . n − 1

in causal block triangular form. Note that ei,n = [eTi , e
T
n ]T

is the innovation process of yi,n and en is the innovation
process of yn. By using (i), (ii) and Lemma 2, we get
ei(t) = yi(t) − El[yi(t)|H

yi,n

t− ] = yi(t) − El[yi(t)|Hy
t−],

en(t) = yn(t)− El[yn(t)|Hyn

t− ] = yn(t)− El[yn(t)|Hy
t−],

thus e = [eT1 , . . . , e
T
n ]T is the innovation process of y.

Consider the partition Âi=

[
Âii Âin
0 Âi,nn

]
, K̂i=

[
K̂ii K̂in

0 K̂i,nn

]
,

Ĉi =

[
Ĉii Ĉin
0 Ĉi,nn

]
as in (20). Let Ti be the matrix as

in (21) that transforms (Âi,nn, K̂i,nn, Ĉi,nn, I, en,yn) into
(Â1,nn, K̂1,nn, Ĉ1,nn, I, en,yn). Then define Ain, Cin,Kin

as in (22) and A,K,C as in (14). Note that the stability
of Âi, i = 1, . . . , n − 1 implies the stability of A. Then,
(A,K,C, I, e) is a Kalman representation of y in coordinated
form. Finally, since (Âi, K̂i, Ĉi, I, ei,n) is isomorphic with([

Aii Ain
0 Ann

]
,

[
Kii Kin

0 Knn

]
,

[
Cii Cin
0 Cnn

]
, I, ei,n

)
(28)

by the isomorphism defined by the transformation matrix[
I 0
0 Ti

]
, it follows that the LTI-SS representation (28) is also a

Kalman representation of yi,n in causal block triangular form
for all i=1, . . . , n−1. As a result, (A,K,C, I, e) is a Kalman
representation of y in causal coordinated form.

Proof of (iii) =⇒ (iv). Consider the Kalman representation
(A,K,C, I, e) of y in causal coordinated form which was
constructed in the proof of ((i) and (ii)) =⇒ (v). First, we

show that (A,C) is an observable pair thus
[

C
(A− λI)

]
is full

column rank for all λ ∈ C. Minimality of (28) implies that
(Aii, Cii) are observable pairs for i = 1, . . . , n so that the

matrices
[

Cii

(Aii − λI)

]
are full column rank for all λ ∈ C.

Notice that
[

C
(A− λI)

]
can be transformed into an upper block

triangular form such that the diagonal blocks are
[

Cii

(Aii − λI)

]
for i = 1, . . . , n. Hence,

[
C

(A− λI)

]
is full column rank for

all λ ∈ C, which implies that (A,C) is observable.
Next, we prove that if condition (iii) holds, then the com-

ponents of x = [xT1 , . . . ,x
T
n ]T which are consistent with (16)

and (17) are linearly independent. To this end, we first show
that dim(Hx

t ) =
∑n
i=1 dim(Hxi

t ), where dim(Hz
t ) denotes

the number of scalar components of a basis inHz
t for a process

z. Notice that the representations (28) are minimal Kalman
representations. Hence, the components of xi,n = [xTi ,x

T
n ]T

are linearly independent and Hxi
t ∩ H

xn
t = {0}, t ∈ Z for

i = 1, . . . , n−1. Recall that the orthogonal complement of
B ⊆ Hx

t−+Hx
t+ in A ⊆ Hx

t−+Hx
t+ is denoted by A	B. It

then follows that Hxi,n

t = (Hxi
t 	H

xn
t ) ⊕Hxn

t and because
of Hxi

t ∩ H
xn
t = {0}, also dim(Hxi

t 	 H
xn
t ) = dim(Hxi

t ).
Below, we will show that using (18) in Theorem 2, Hx

t can
be decomposed as

Hx
t =Hxn

t ⊕
(
(Hx1

t 	H
xn
t )+̇ . . . +̇(Hxn−1

t 	Hxn
t )
)
, (29)

from which it follows that dim(Hx
t ) =

∑n
i=1 dim(Hxi

t ), i.e.,
the components of x(t) are linearly independent. Take the ob-
servability matrix ONi :=

[
CTii (CiiAii)

T . . . (CiiA
N−1
ii )T

]T
of (Aii, Cii), i = 1, . . . , n where N ≥ dim(x). By defining
Yi(t) := [yTi (t), . . . ,yTi (t+N−1)]T , we have that Yi(t) spans
Hyn

t+ for i = 1, . . . , n. Then the following equations hold
with an appropriate M matrix: El[Yn(t)|Hyn

t− ] = ONn xn(t),
El[Yj(t)|H

yj ,yn

t− ] = ONj xj(t) + Mxn(t). It implies that
El[Hyn

t+ |H
yn

t− ] ⊆ Hxn
t and El[Hyi

t+|H
yi,n

t− ] ⊆ Hxi,n

t . Since
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(Aii, Cii) is an observable pair, ONi has left inverse and we
also have that El[Hyn

t+ |H
yn

t− ] ⊇ Hxn
t and El[Hyi

t+|H
yi,n

t− ] +
Hxn
t ⊇ H

xi
t , i=1, . . . , n. Hence,

El[Hyn

t+ |H
yn

t− ] = Hxn
t

El[Hyi

t+|H
yi,n

t− ] + El[Hyn

t+ |H
yn

t− ] = Hxi,n

t .
(30)

Notice that El[Hyi

t+|H
yi,n

t− ] ∩ El[H
yj

t+|H
yj,n

t− ]|El[Hyn

t+ |H
yn

t− ] =
{0} if and only if

(
El[Hyi

t+|H
yi,n

t− ]+El[Hyn

t+ |H
yn

t− ]
)
∩(

El[H
yj

t+|H
yj,n

t− ]+El[Hyn

t+ |H
yn

t− ]
)
|El[Hyn

t+ |H
yn

t− ] = {0}. and
similarly, that Hxi

t ∩H
xj

t |H
xn
t ={0} ⇐⇒ Hxi,n

t ∩Hxj,n

t |Hxn
t =

{0}. By using the equations (30), we obtain that the condition
(18) in Theorem 2 is equivalent to Hxi

t ∩ H
xj

t |H
xn
t = {0}

which implies that Hx
t can be decomposed as in (29). Hence,

the components of x are linearly independent and thus (A,K)
is controllable. By Proposition 3, the observability of (A,C)
and the controllability of (A,K) implies the minimality of the
Kalman representation (A,K,C, I, e,y).

Proof of (v) =⇒ ((i) and (ii)). Assume that (A,K,C, I, e)
is a Kalman representation of y in causal coordinated
form where the matrices A,K,C are as in (14). No-
tice that (A,K,C, I, e) is a Kalman representation of
[yT1,...,n−1,y

T
n ]T in block triangular form and hence by Theo-

rem 1, y1,...,n−1 does not Granger cause yn. Apply Lemma 2
for [yTi ,y

T
1,...,i−1,i+1,...,n−1,y

T
n ]T , i = 1, . . . , n − 1. 4 Then

Lemma 2 implies condition (i). By Remark 8, (ii) is equiv-
alent to saying that yj does not Granger cause yi,n for all
i, j = 1, . . . , n−1, i 6= j. By Lemma 2, this is equivalent to
saying that y1,2,...,i−1,i+1,...,n−1 does not Granger cause yi,n,
which is further equivalent to ei,n being the innovation process
of yi,n. Since (15) is a minimal Kalman representation of yi,n,
by Definition 6, ei,n is indeed the innovation process of yi,n.

Proof of (iv) =⇒ (iii). Let (A,K,C, I, e) be a minimal
Kalman representation of y in causal coordinated form, and
assume that A,K,C satisfy (14). It is easy to see that

El[yn(t+ k)|Hyn

t− ] = CnnA
k
nnxn(t)

El[yi(t+ k)|Hyi,n

t− ] = CiiA
k
iixi(t) + CinA

k
nnxn(t)

(31)

for k ≥ 0, from which El[Hyn

t+ |H
yn

t− ] ⊆ Hxn
t and

El[Hyi

t+|H
yi,n

t− ] ⊆ Hxi,n

t . Since (Ann,Knn, Cnn, I, en) is a
minimal Kalman representation of yn, the pair (Ann, Cnn)
is observable. Define the observability matrix of (Ann, Cnn)

as ONn :=
[
CTnn (CnnAnn)T . . . (CnnA

N−1
nn )T

]T
where

N ≥ dim(xn). Then from (31) we obtain that

El[


yn(t)

yn(t+1)
...

yn(t+N−1)

 |Hyn

t− ] = ONn xn(t). From the observabil-

ity of (Ann, Cnn) we know that ONn has left inverse and thus
El[Hyn

t+ |H
yn

t− ] = Hxn
t . Since (A,K,C, I, e,y) is minimal,

the components of x(t) are linearly independent for each
t ∈ Z. In particular, this means that Hxi,j

t ∩ Hxn
t = {0}

and Hxi
t ∩ H

xj

t = {0} for i, j= 1, . . . , n − 1, i 6= j. In turn,
this implies that Hxi,n

t ∩ Hxj,n

t |Hxn
t = {0}. By combining it

with El[Hyi

t+|H
yi,n

t− ] ⊆ Hxi,n

t and El[Hyn

t+ |H
yn

t− ] = Hxn
t we

can conclude that condition (18) in Theorem 2 holds.

4It is a special case of Lemma 2 when the component y4 of y is absent.

Proof of ((i) and (ii)) ⇐⇒ (vi) if y is coercive.
We have shown that ((i) and (ii)) =⇒ (v) and that the
implication (v) =⇒ (vi) is trivial. It is thus left to show that
(vi) =⇒ ((i) and (ii)). Assume that (A,K,C, I, e) is a Kalman
representation of y in coordinated form satisfying (14). Since
y is coercive, e(t) =y(t)+

∑∞
k=1 C(A−KC)k−1Ky(t−k).

From (14) it is easy to see that for any k ≥ 1,

C(A−KC)k−1K =


Mk,11 0 0 · · · 0 Mk,1n

0 Mk,22 0 · · · 0 Mk,2n

...
...

...
...

...
0 0 0 · · · 0 Mk,nn

 ,
where Mk,ii = Cii(Aii − KiiCii)

k−1Kii, i = 1, . . . , n and
Mk,in are suitable matrices for i = 1, . . . , n − 1. Hence,
en(t) = yn(t) +

∑∞
k=1Mk,nnyn(t − k), ei(t) = yi(t) +∑∞

k=1Mk,iiyi(t − k) + Mk,inyn(t − k), where ei(t) =
yi(t) − El[yi(t) | Hy

t−] for i = 1, . . . , n. This implies that
El[yn(t) | Hy

t−] ⊆ Hyn

t− and El[yi(t) | Hy
t−] ⊆ Hyi,n

t− .
Therefore, El[yn(t) | Hy

t−] = El[yn(t) | Hyn

t− ] and El[yi(t) |
Hy
t−] = El[yi(t) | H

yi,n

t− ]. It follows from [23, Proposition
2.3] that yi does not Granger cause yn, and yj does not
Granger cause yi,n for all i, j ∈ {1, . . . , n − 1}, i 6= j. In
view of Remark 8 this is equivalent to (i) and (ii).

Proof of Corollary 2. Consider the LTI-SS representation
(A,K,C, I, e) defined by (20), (21), and (22) before Corol-
lary 2. Then (A,K,C, I, e) coincides with the Kalman repre-
sentation defined in the proof of Theorem 2. Hence, the first
statement of Corollary 2 is a consequence of the implication
((i) and (ii)) =⇒ (v) of Theorem 2. Similarly, the second
statement of Corollary 2 is a direct consequence of the
implication (iii) =⇒ (iv) of Theorem 2.
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