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Abstract

A considerable amount of materials in nanophotonics are dispersive, enabling the propagation of so
called surface plasmons at their interfaces with dielectrics. Hence, a reliable fit of frequency-dependent
permittivity functions with an appropriate model is a first-order necessity for the accurate design of
nano-optics devices with time-domain numerical methods, such as finite-difference time-domain (FDTD)
or discontinuous Galerkin time-domain (DGTD). In this paper, we present the necessary ingredients to
fit experimental permittivity functions using the simulated annealing (SA) method with a generalized
second-order dispersion model implemented in the Diogenes software suite (see https://diogenes.
inria.fr/). By scanning through different classes of materials, we come up with effective rules of
thumb to make the fitting process fast and accurate.

1 Introduction

Over the course of its development, the nanophotonics field has seen a tremendous amount of devices
designed for applications ranging from biosensors [CLS+11] to nanostructured photovoltaic cells [AP10]. A
vast majority of these take advantage of the combination of a specific geometry with selected materials to
obtain a desired functionality. Through the years, the design process of these devices has started relying
more and more on numerical methods, either in frequency or in time-domain [GBM15]. Although it is
relatively easy to take dispersive materials into account with frequency-domain methods, with time-domain
methods it is necessary to fit experimental data with an adapted frequency-dependent function that can be
transformed back in the temporal domain by inverse Fourier transform [Viq15], and discretized with the
chosen numerical method.
In section 2, we shortly review existing dispersion models and dispersive materials, and motivate our choice
of fitting algorithm. Then, in section 3, the SA technique is outlined. Section 4 represents the core
contribution of this paper. We first detail the modifications introduced to improve our fitting results as well
as the settings used for the algorithm, before conducting a large panel of fitting experiments on a variety
of dispersive materials. Rules of thumb for accurate and efficient material fittings with the SA method are
deduced. Eventually, we test the obtained fits in the context of the Diogenes DGTD solver.

2 Dispersive materials and dispersion models

The development of dispersion models for metals originates in the work of Drude [Dru00], who devised the
so-called Drude model based on the kinetic theory of gases:

εr,Drude(ω) = ε∞ −
ω2
d

ω2 + iωγd
.

Although this model presents a good adequation with experimental data of noble metals for low visible
frequencies, it does not account for interband transitions that arise for certains metals in the high visible

1

https://diogenes.inria.fr/
https://diogenes.inria.fr/


frequency range. For this reason, it is common to add one or more Lorentz poles to the Drude model, thus
yielding the following form:

εr,Drude-Lorentz(ω) = ε∞ −
ω2
d

ω2 + iωγd
− ∆εω2

l

ω2 − ω2
l + iωγl

.

This method shows a good agreement with experimental data for noble metals, and has been widely imple-
mented, often with four or more Lorentz poles [HN07]. However, this model fails to properly fit materials
such as transition or post-transition metals, because of the electronic correlation existing in such materi-
als, introducing a retardation effect [WROB13]. During the last decade, advanced dispersion models were
designed to tackle dispersive materials more efficiently. Among them, the Critical Points (CP) model
[VLDC11] and the Complex-Conjugate Pole-Residue Pairs (CCPRP) model [HDF06] have shown great
improvements over the standard Drude-Lorentz model in fitting metals and compounds on broad frequency
ranges with a limited amount of poles. As briefly sketched in [VLDC11], these two models are mathem-
atically equivalent at the continuous level. While both of these models use coupled first-order poles with
complex coefficients, in [Viq15] we introduced a generalized model exploiting real coefficients only:

εr(ω) = ε∞ −
np∑
l=1

cl − iωdl
ω2 − el + iωfl

, (1)

where np is the number of second-order poles. It is easy to show that this model is also equivalent, in the
continuous domain, to CP and CCPRP models. In [LSV17], we showed that model (1) is causal if el ≥ 0
and fl ≥ 0. Additionally, it is easy to obtain a permittivity function with an imaginary part identically
equal to zero by imposing dl ≡ and fl ≡ 0.
In figure 1, we regroup a representative sample of dispersive materials regularly used in nano-optics devices,
including noble, transition and post-transition metals, but also semiconductors, pure or compounded with
metals or other semiconductors. All the experimental data comes from [Pol]. Although these different
materials show very different behaviors, we will show that a permittivity function such as (1) allows to fit
all of them with sufficient accuracy.
In order to fit the free parameters of (1) to experimental data, various techniques can be used. Apart from
the well-known least square method, vector fitting techniques (see [GS99]) are also well developed for the
CCPRP formulation. In [SLM17], the authors present a mixed method for fitting CP parameters, using an
analytic minimization along with a gradient descent method. For an increasing number of poles, one can be
left with a large optimization problem presenting many local minima, likely to trap optimization algorithms
away from the desired global minimum. Simulated Annealing (SA) methods have proved to be particularly
efficient in finding global minima in these situations, even when the initial guess is far from the optimal
solution ([KGV83]). In the following section, we shortly present the SA technique and its possibilities.

3 The simulated annealing algorithm

The simulated annealing (SA) algorithm was initially proposed by Kirkpatrick et al [KGV83], and is recog-
nized to be a suitable optimization method in the context of a cost function with multiple local minima.
Although it was initially designed to solve combinatorial problems (such as the well-known traveling sales-
man problem), it can also be exploited to find global minima of continuous functions [Loc02]. Given a cost
function f defined on a continuous domain X, the goal of an optimization algorithm will be to find x∗ ∈ X
such as:

f∗ ≡ f(x∗) = min
x∈X

f(x).

The name of the SA algorithm comes from a metallurgic process, in which the controlled cooling of a molten
metal allows a final state of lower energy than that obtained if the cooling process is left unconstrained.
As a consequence, one of the main variable of the algorithm is the temperature T , which will control the
probability to move from one state to another. In essence, the SA algorithm works as follows:
Additionally, we define the following quantities:
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Figure 1 | Incomplete classification of dispersive materials based on their εi = f(εr) behavior. All data comes
from [Pol] and is selected in the angular frequency range [1, 10] PHz when available.
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Algorithm 1 Simulated annealing
1: Set an initial temperature T ← T0 and choose a final temperature Tf < T0

2: Generate a random initial solution x← x0

3: Compute its cost f(x0)

4: while T > Tf do
5: for v ← 1, nv do . Loop on a given number of neighbor states
6: Compute a neighbor solution xn = n(x)
7: Compute its cost f(xn)

8: if f(xn) < f(x) then
9: x← xn and f(x)← f(xn) . Accept better solution

10: else
11: Compute normal random number r
12: Compute acceptance a(f(x), f(xn), T )

13: if a(f(x), f(xn), T ) > r then . Possibly accept poorer solution
14: x← xn and f(x)← f(xn)
15: end if
16: end if
17: end for

18: T ← c(T ) . Decrease temperature
19: end while

� NM the total number of moves at each temperature step;
� NA the total number of accepted moves at each temperature step;
� NAU the total number of accepted uphill moves at each temperature step;
� ND the total number of denied moves at each temperature step;
� NCM the total number of cumulated moves.

As can be seen, various parameters can be tuned in the SA algorithm, namely:

� The initial and final temperature, respectively T0 and Tf ;
� The number of visited neighbors at each temperature nv;
� The initial guess x0;
� The acceptance function a;
� The neighbor function n;
� The cooling function c.

Since the SA algorithm is a well-established method, there is a vast literature on the topic of making wise
choices for these parameters and functions. For this reason, we will not expand too long on all the existing
possibilities (the reader is referred to the references that follow, and the references therein).

� The choice of the initial and final temperatures depend on the considered problem. A typical choice
for T0 is usually 1.0, but we shall see later that in some cases it is interesting to start from higher
values. The choice of the final temperature may seem a little arbitrary, and it is possible to replace
it with a stopping criterion based on the amount of recently-accepted better solutions at current
temperature;

� Similarly, the number of visited neighbors at each temperature is an arbitrary value. However, it is
reasonable to say that the algorithm will perform better if it is allowed to sample a larger amount of
states at each temperature, at expense of the computational cost;
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� The acceptance function, although usually simple, represents the core part of the algorithm: its role is
to determine if an uphill solution (i.e. a neighbor solution which cost is higher than current solution)
must be accepted or not. The most spread choice of acceptance function is the Metropolis formula
[HJJ03] :

a(f(x), f(xn), T ) = min

{
1, exp

(
f(x)− f(xn)

T

)}
. (2)

If the neighbor solution is better, then obviously a = 1. On the other hand, if f(xn) > f(x), then
0 < a < 1, and this solution will be randomly accepted. Given that T is a decreasing function of
the number of iterations of the algorithm, the probability of an uphill solution being accepted will
decrease as the algorithm converges toward a minimum (either global if it has succeeded, or local if
it failed to escape from it);

� The goal of the neighbor function is to build a neighbor state xn from current state x. In discrete
problems, this is often simply done by randomly swapping two elements of the solution (in the traveling
salesman’s problem, two cities are randomly picked and swapped in the ordered list). In continuous
problems, however, building neighbors introduce an additional source of freedom for the user, since the
neighborhood of a state must be defined. In practice, the loop on the neighbor states can be embedded
in a loop over the total number of parameters to optimize. Then, a neighbor state is obtained by
randomly moving the current free parameter in a defined range. The size of the neighborhood need not
to be fixed throughout the optimization process, several refinements being available in the literature
[Xin11]. In the following, we denote by ∆n the normalized size of the neighborhood of a state. ∆n = 1
indicates that the whole parameter space can be reached from any state in it, while ∆n = 0.5 indicates
that the neighborhood of a given state is limited to half the size of the parameter space around it;

� The choice of the cooling function is the topic of an abundant literature. One of the most common
choice might be the exponential schedule [NA98]:

Tn+1 = αTn,

where 0 < α < 1 is a constant factor. Typical values range from 0.8 to 0.99, directly impacting the
performance and the computational cost of the algorithm.

The variety of choices for each algorithm parameter must be adapted to the considered problem. In the next
section, we will focus on the problem of fitting experimental permittivity data to existing models containing
up to a few tens of free parameters.
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Figure 2 | Fit of Al2O3 with 1 second-order pole using non-weighted and weighted cost functions.

4 Fitting dispersive materials

4.1 Cost function
For the following fitting experiments, we define the cost function:

f(x) =

Ns∑
j=1

[∣∣εrexp(ωj)− εrfit(ωj , x)
∣∣

∆εrexp
+

∣∣εiexp(ωj)− εifit(ωj , x)
∣∣

∆εiexp

]
, (3)

where Ns is the total number of samples in the experimental data (assumed to be much larger than the
total number of free parameters of the model), the ·r and ·i exponents respectively represent the real and
imaginary parts, while ∆εrexp and ∆εiexp respectively correspond to the range of values of the real and
imaginary parts of the experimental permittivity.

By weighting the distance between the fit and the experimental data by
1

∆εrexp
and

1

∆εiexp
, we ensure that

the algorithm grants a similar importance to the real and the imaginary parts of the permittivity function.

Indeed, in the case where the figure of merit
εi

εr
is globally low or high over the frequency range, the absolute

distance
∣∣εrexp(ωj)− εrfit(ωj)

∣∣ +
∣∣εiexp(ωj)− εifit(ωj)

∣∣ may not be representative of the overall quality of the
fit. To illustrate this, we compare in figure 2 the fits obtained with 1 second-order pole for Al2O3, with and
without such a weighting. Obviously, the weighting significantly improves the quality of the fit, providing
an acceptable solution with a single pole.

4.2 Parameters range
A typical range of angular frequencies in plasmonics is ω ∈ [1, 10] PHz. Hence, to reduce the parameter
space to be scanned by the algorithm, we work with a normalized angular frequency ω̃ = ω× 10−15. Given
the form of (1), one would expect cl and el to be roughly in [0, 100] PHz2, while dl and fl would be in [0, 10]
PHz. Hence, we rewrite (1) as:

εr(ω) = ε∞ −
np∑
l=1

c̃l
2 − iω̃d̃l

ω̃2 − ẽl2 + iω̃f̃l
, (4)

with the following relations:
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ω̃ = 10−15 × ω,
c̃l = 10−15 ×

√
cl,

d̃l = 10−15 × dl,
ẽl = 10−15 ×

√
el,

f̃l = 10−15 × fl.

By doing so, we scale all parameters to the same range of values, thus restricting the parameter space for
the SA algorithm to the form [1, εmax]× [0, pmax]

4np . In the remaining of this paper, we set εmax = 10 and
pmax = 10.

4.3 Incorporating constraints to the cost function
In the context of this study, we wish to incorporate parameter constraints to the cost function. In order to
respect the parameter range determined above, we use a simple penalization of the form:

fρ(x) = f(x) + ρmax (0,−x+ u, x− v) . (5)

where

u = t (1, 0, ..., 0) , v = t (εmax, pmax, ..., pmax) ,

and ρ is a well-chosen penalization parameter. For the current problem, we observed that ρ = 1000 or
higher provided satisfying results. In practice, this penalization prevents ε∞ to be lower than 1, and the
parameters of (4) to be negative [GMW81].

4.4 Sign of εifit
As an additional refinement, we modify the cost function in order to discriminate negative imaginary parts.
To do so, at each evaluation of f(x), we evaluate if εifit(ω) < 0 for all ω in the range of interest. If so,
the cost function is increased in the fashion of previous section so as to rule out current state x. This is
particularly important in cases where εifit is close to zero on a wide frequency range. As an example, we
compare in figure 3 fits of TiO2 with and without this restriction. Although the unrestricted fit provides a
better approximation of the experimental data, the negative imaginary part of the permittivity would yield
an unstable behavior in any time-domain numerical method. As can be seen, the restricted fit respects this
condition by decreasing more slowly to zero.

4.5 Non-absorbing materials
In some cases, experimental data can be found where the imaginary part is identically zero. As we shall
see, it is enough to set a lower and an upper bound equal to zero for all dl and fl parameters, thus reducing
the model to:

εr(ω) = ε∞ −
np∑
l=1

c̃l
2

ω̃2 − ẽl2
.

Here, one easily recognizes the Sellmeier’s law [Goo11]. Although it does not perform as well as model (4),
it can be very useful in cases where even a very low imaginary part is not acceptable. As an example, figure
4 shows fits obtained with and without this feature for Si3N4 data where the imaginary part is identically
zero.
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Figure 3 | Fit of TiO2 with 3 second-order poles with and without restriction on the sign of εifit.
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4.6 Initial guess and stopping criterion
After performing a vast amount of fittings on various kinds of materials, we observed that in most cases
the initial guess x0 only had a minor influence on the final result. For this reason, in the remaining of this
paper, we set x0 ≡ 0. Regarding the influence of the final temperature Tf , we replace it with a stopping
criterion: the algorithm exits when no move has been accepted during the last temperature step. Unless
stated otherwise, we set the size of the neighborhood to be the full parameter space, and the acceptance
function equal to (2). Finally, the number of visited neighbors at each temperature step is chosen equal to
1000× (4np + 1), i.e. the free parameters are moved one by one, 1000 trials being made for each of them.

4.7 Noble metals
In this section, we assess the influence of the initial temperature T0 and the decreasing temperature factor
α on the obtained f∗ for noble metals (gold, silver and copper). Results are presented in figure 5. For slow
cooling (typically, α = 0.99), one observes that the best cost is remarkably stable with respect to T0, with
a slight minimum between T0 = 0.1 and T0 = 1. As α is decreased, the behavior becomes more erratic, and
no clear trend can be deduced. This effect is called quenching, and is known to cause suboptimal results
with the SA technique [KGV83]. In figure 6, we illustrate the difference in behavior for the algorithm
between a slow cooling schedule (α = 0.99), and a quenching situation (α = 0.8) by plotting f∗ both as a
function of T and NCM processed by the algorithm, with T0 = 1000. As can be seen, with a low value of α
the optimization process gets stuck in a local minimum and fails to escape from it, although the stopping
criterion is met at a much lower temperature than for a high value of α. This is however less visible for
gold and copper than for silver. From these first experiments, we select the couple (α = 0.99, T0 = 0.1) as
a good starting candidate for future fits.
Some additional comments on the algorithm insights can be made, especially on the acceptance function
and the choice of the neighborhood size. On figure 8(a), we plot NA, NAU and ND as functions of T for
gold experimental data. As can be seen, roughly half of the accepted moves are uphill ones, underlining the
local-minima-escaping feature of the SA algorithm. Broadly speaking, it is usually recommended to have
between 50 and 60% of uphill accepted moves to obtain satisfying results. The best fits obtained with four
poles for noble metals are shown in figure 7.

4.8 Acceptance function
Regarding the acceptance function, the Metropolis formula (2) is not the only available choice. Another
usual option is the Barker function [Sch97]:

a(f(x), f(xn), T ) =
1

1 + exp
(
− f(x)−f(xn)

T

) . (6)

With this criterion, some downhill steps might be rejected if they do not substantially improve the solution.
As T gets lower, downhill moves are more likely accepted, while uphill moves get more and more rejected.
This is illustrated in figure 8(b), where we can also see that the 50% rule of thumb is respected. To test this
acceptance function further, we reproduce the graph of figure 5 for α = 0.99 (computed with Metropolis
function) with the Barker function (results are displayed on figure 9). Although we observe some slightly
better results for T0 = 0.01, using the Barker formula as acceptance function brings no major improvement
in the final result of the algorithm, and we shall use the Metropolis function in the remaining of this paper.

4.9 Neighborhood size
Regarding the size of the neighborhood, no clear strategy seems to emerge from the literature [HJJ03].
In figure 10, we assess the impact of the normalized neighborhood size ∆n on f∗ for noble metals, with
α = 0.99 and T0 = 0.1. Again, it is hard to draw a clear trend from these results, although we observe no
significant variations in the final fit quality over the ∆n range. For that reason, we will use ∆n = 1 in the
remaining of the paper.
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Figure 5 | Influence of T0 on f∗ for noble metals with np = 4, x0 = 0 and variable values of α. For values α close to 1,
we observe a remarkable stability of f∗ with respect to T0. When α decreases, the behavior is wilder, and no clear trend can
be deduced.
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Figure 6 | f∗ as a function of the temperature for gold, with α = 0.99 and α = 0.8. On the left figure, we observe the
effect of quenching, leading to a poor local minimum despite a very low final temperature. On the right, we see that, because
of the fast cooling, very few states are investigated for α = 0.8, leading to the poor solution.
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Figure 8 | NA, NAU and ND as functions of T for gold, with α = 0.99 and T0 = 1000. For both acceptance functions,
the rule of thumb NAU ' 0.5×NA is respected.
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Figure 9 | Influence of T0 on f∗ for noble metals using the Metropolis and Barker criteria as acceptance functions.
Although we can note some differences, the Barker acceptance function yields no clear improvement over the Metropolis one.
Please notice that the scale on the y axis is different from that of figure 5.
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a clear trend from these results, although we observe no significant variations.

4.10 Transition and post-transition metals
In this section, we perform the same test as before with varying T0 for transition and post-transition metals
(see figure 11). For α = 0.99, the results for transition metals offer more contrast than that of noble metals,
with good fits obtained for T0 = 0.1. However, we see that using a slower cooling schedule with α = 0.999
provides more robust results with regard to the variations of T0. It also improves the best fit obtained in
the T0 ∈ [0.1, 1] region. For post-transition metals, results are stable for any value of T0 above 10−2, and
significant improvement is observed for higher value of α.
The best fits obtained with four poles for transition and post-transition metals are shown in figure 12.

4.11 Semiconductors
As previously, we assess the influence of T0 and α on the fits of semiconductors. As could be expected from
figure 1, the permittivity functions of such materials are difficult to fit. Hence, they benefit from slower
cooling schedules, as can be seen in figure 13. As for other materials, T0 = 0.1 is a robust value across all
materials. Below, the algorithm provides poor solutions, especially for TiO2.
The best fits obtained with four poles for semiconductors are shown in figure 14.

4.12 Computational performances
The SA algorithm requires a large amount of evaluation of the cost function. Each evaluation of the latter
implies to loop over all experimental data, and for each data point, evaluate the permittivity provided by
the current state x. As a result, the performance of the fitting procedure strongly depends on:

� The amount of experimental data points Ns provided by the user;
� The number of poles np required by the user;
� The number of neighbor states nv.

For reasonable values of Ns, the algorithm can be performed on any desktop machine, with running times
under a few minutes for standard values of np. As an example, we show in figure 15 the time required to fit
gold (Ns = 49), zinc (Ns = 148) with different values of np on a standard desktop machine with a 3 GHz
Intel Core i7 processor.

5 Numerical results

As a test of usability and stability of the obtained fits in time-domain computations, we consider the case
of a doubly-periodic 100 nm-thick slab composed of a given material embedded in air. We successively test
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Figure 11 | Influence of T0 on f∗ for transition and post-transition metals with np = 4, x0 = 0 and several values
of α. Results for transition metals (left) offer more contrast than for noble ones, with good overall results for T0 = 0.1 and
α = 0.999. For post-transition metals (right), results are remarkably stable for T0 values above 10−2. Notice the different
scales of the y axis.
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Figure 12 | Best fits obtained with four poles for nickel, iron, cobalt, aluminium, zinc and lead.
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Figure 13 | Influence of T0 and α on f∗ for semiconductors with np = 4, x0 = 0. Good fits are obtained for α = 0.999
and T0 ≥ 0.1, while below this value the algorithm provides poor local minima as final solutions.
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Figure 14 | Best fits obtained with four poles for AlGaAs, GaAs, Si and TiO2.
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Figure 15 | Time required to fit experimental data with variable number of poles for gold and zinc.
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the highest stable time-step ∆tmat found with the Diogenes DGTD solver, and compare it with ∆tvac,
i.e. the maximal stable time-step for the same configuration without material. In table 1, we report the
ratio ∆tmat

∆tvac
for the best four-pole fits obtained with all materials presented in this paper in the ω ∈ [1, 10]

PHz range. This ratio represents the constraint imposed by the CFL condition inherent to any time-domain
numerical method. An unreasonably low ratio would indicate that the set of parameters produced by the
fitting procedure is unsuitable for time-domain computations. The restriction to four poles represents a
trade-off between the fit accuracy and the memory and CPU overhead induced by each pole in time-domain
computations [Viq15]. As can be seen, most fits provide reasonable time-steps. The case of TiO2, for
which the obtained time-step is the lowest, can be explained by the large portion of curve for which εi ≡ 0
(roughly for ω < 4 PHz), which represents a severe constraint on the fitting algorithm.
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Table 1 | Best ∆tmat
∆tvac

ratios obtained with our DGTD solver with four poles for the materials presented in
this paper.

Material ∆tmat
∆tvac

Vacuum 1

Dielectric (εr = 4) 0.5

Ag 0.306

Au 0.248

Cu 0.467

Al 0.421

Zn 0.791

Pb 0.307

Ni 0.467

Co 0.245

Fe 0.713

AlGaAs 0.312

GaAs 0.276

Si 0.317

TiO2 0.0865
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6 Conclusions

Our implementation of the simulated annealing technique for the fitting of dispersive material properties
has proven to be efficient, providing reliable sets of parameters while never requiring more than a couple
of minutes. Among the numerous intrinsic variables of the algorithm, the cooling factor α and the initial
temperature T0 are the prime parameters to tune for materials involved in most nano-optics problems.
The parameter set (α = 0.99, T0 = 0.1) provided good results for noble and post-transition metals. For
transition metals and semi-conductors, we observed that the set (α = 0.999, T0 = 0.1), although more
computationally-intensive, represents a robust choice.
Eventually, we provided an evidence for the usability of the fits produced by our fitting method in any time-
domain numerical solver by computing the largest stable time-step obtained with our best four-pole fit for
a wide range of materials. Even better fits can be obtained by increasing the number of poles, although
at the expense of the performance of the fitting algorithm and the time-domain solver. A possible next
step in the improvement of the fitting method would be to incorporate the optimization of the time-step
value directly in the cost function of the SA method. As of now, our SA fitting algorithm is available in
the Diogenes software package (see https://diogenes.inria.fr/).
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