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Homophase signals separation for Volterra series identification

Damien Bouvier1, Thomas Hélie1 and David Roze1

Abstract— This article addresses the identification of non-
linear systems represented by Volterra series. To improve the
robustness of state-of-the-art estimation methods, we introduce
the notion of "homophase signals", for which a separation
method is given. Those homophase signals are then used to
derive a robust identification process. This prior step is similar
to nonlinear homogeneous order separation, in which amplitude
relations are used to separate the orders of a Volterra series, but
offers a better conditioning by using phase deviations rather
than amplitudes.
First an academic phase-based method using complex-valued
test signals is introduced for separating nonlinear orders.
Second this notion of phase deviation is extended to real-valued
signals, which leads to the design of the proposed homophase
signals separation method. Finally, a new identification process
is derived using the homophase signals.
Simulations are used to highlight the benefits of the proposed
identification process in comparison to the standard approach.

I. INTRODUCTION

This paper introduces a new nonlinear homophase
separation method using phase as a discriminant factor
for improving Volterra series identification. Contrary to
linear systems and filters, the topic of nonlinear system
identification still causes serious difficulties. One approach,
based on series expansion (like Volterra series), has begun
in the 40’s with the seminal work of Wiener [1]. Since then,
many methods have been developed.
Cross-correlation methods [2] take advantage of the
orthogonality property of Wiener series (a probabilistic
version of the Volterra series); they were further improved
in [3], and developed in frequency domain in [4]. Time-
domain probing methods rely on the use of impulse-dirac for
estimating Volterra kernels [5], [6]. Their frequency domain
counterparts were also developed [7]–[9]. Volterra kernels
identification problem can also be expressed as a linear
system, resulting in the use of Least-Squares estimation
methods. Solving can then be made in several ways, e.g.
using an orthogonalization on the measured data [10] or a
stochastic approximation algorithm [11]. A thorough and
up-to-date overview of works about Volterra series and
Volterra kernel identification can be found in [12].
Depending on the kind of method used, Volterra series
identification can be improved in several ways. Tensor
decomposition [13] or projections on orthogonal basis
(Laguerre [14], Kautz [15] or Generalized Orthogonal
basis [16]) greatly reduces the number of parameters to
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estimate, and so, the overall complexity. Besides, a system
can be approximated using a block structure approach
(Hammerstein, Wiener, Wiener-Hammerstein, etc), for
which there exist specific estimation methods [17]–[19].

In this work, we choose to improve identification by
using a prior separation step. This is generally processed
by separating nonlinear homogeneous contributions using a
collection of amplitude gains applied to a common input sig-
nal [7]. But this method has limitations (poor-conditioning,
weak robustness to noise measurement). To improve ro-
bustness, we introduce the concept of homophase signal
contribution, and propose a new method to separate ho-
mogeneous phase contributions using only phase deviations
between signals. Finally, a new identification process based
on those homophase signals is derived, and presented in a
Least-Squares framework. Part of the results were already
presented in a previous conference paper [20]; novelties
of this paper includes thorough robustness analysis of the
presented separation methods and the new identification
process for truncated Volterra series. All presented methods
and algorithms are implemented in an open-source Python
toolbox1.
This paper is organized as follows: in Section II, we
give some mathematical foundations for the Volterra series
paradigm and announce the problem statement. Section III
proposes a new method of separation for complex-valued
input-output signals, solely based on phase. In Section IV,
the concept of homophase signal is introduced, and the main
result of the paper is presented. This is used in Section V to
derive a new Volterra series identification method. Finally,
evaluation and comparison are made in Section VI, before
giving some conclusions and perspectives.

II. VOLTERRA SERIES AND PROBLEM STATEMENT

A. Volterra series

This section presents an overview of the Volterra formal-
ism; more details can be found in e.g. [21], [22].

Definition 1 (Volterra series): A nonlinear causal time-
invariant system is described by a Volterra series {hn}n∈N∗

if, for all input signals u such that ‖u‖∞ < ρ, the output
signal y is given by the following Volterra operator V

y = V [u] =

∞∑
n=1

Vn [u, . . . , u] , (1)

1Available at https://github.com/d-bouvier/pyvi.



where Vn are the Volterra operators of order n, given for all
time t by

Vn [u1, . . . , un] (t) =

∫
Rn

+

hn (τ1, . . . , τn)

n∏
i=1

ui (t− τi) dτi ,

(2)
and with ρ the convergence radius of the power series∑+∞
n=1 ‖hn‖1xn. Functions hn are called Volterra kernels of

the system. Signals yn = Vn [u, . . . , u] are called nonlinear
homogeneous order contributions (or nonlinear orders for
short).
The Volterra formalism can be seen as an extension of the
linear convolution (used for representation of time-domain
filters) on a Taylor-like series expansion. It can only represent
dynamical systems whose nonlinearities are analytic, and
cannot describe phenomena like hysteresis, sub-harmonics
or chaotic behavior. Nonetheless it has been shown in [23]
that a Volterra series operator can be used to approximate any
fading-memory time-invariant continuous nonlinear operator.

Remark 1 (Non-unicity of kernels): It can easily be seen
from (2) that, for a given system, kernels are not uniquely de-
fined (any permutation of the τi’s let yn invariant). Uniquely-
defined kernels can be specified, such as the symmetric ker-
nel (which is invariant to any permutation of its arguments)
or triangular kernel [21].

Property 1 (Properties of the operator Vn): Operator Vn
is multilinear, i.e. for any signals u1, . . . , un and v, and any
scalars λ, µ,

Vn [u1, . . . , λuk + µv, uk+1, . . . , un] =

λVn [u1, . . . , un] + µVn [u1, . . . , v, uk+1, . . . , un] (3)

This implies that Vn is a homogeneous operator of degree
n, i.e. for any signals u1, . . . , un and scalar α,

Vn [αu1, . . . , αun] = αnVn
[
u1, . . . , un

]
. (4)

In the sequel, truncated Volterra series are used, where N
denotes the truncation order of the system. Furthermore,
convergence conditions are always assumed to be met, and
symmetry of kernels hn (and therefore of operators Vn) is
supposed.

B. Problem statement

Most of Volterra identification methods exploit directly
the raw output signal y in order to identify a set of kernels
{hn} , n = 1, . . . , N (as shown in Figure 1a). One important
difficulty of this simultaneous estimation lies in the relative
differences between amplitudes of the homogeneous orders
yn; indeed, for a system that allows a Volterra series rep-
resentation, amplitudes generally decrease as the order n
increases, thus making estimation of the higher-order kernels
less reliable.
In order to circumvent this difficulty, it is possible to divide
the identification into 2 steps (as shown in Figure 1b):

1) Separate the nonlinear homogeneous orders yn, n =
1, . . . , N from a set of output signals;

2) Identify separately the kernels hn from each signal yn.

Systemu
Identification

y
{h1, h2, · · · , hN}

(a) Direct identification

System
{u} Order

separation
{y}

IdentificationyN
hN

Identification
y1

h1...
...

(b) Identification on separated order

Fig. 1. Identification process without (a) and with (b) prior order separation.

This two-step approach increases the efficiency and ro-
bustness of the overall kernels estimation by splitting the
identification process into N smaller problems. Furthermore,
this procedure is modular, meaning that any existing identi-
fication methods can be used in step 2.
However, the only available order separation method is
limited to the first few orders in practice [7], [24]. This
method is shortly recalled below.
Let u be a signal, and αk ∈ R, k = 1, . . . ,K a set of
amplitude gains. Denote uk(t) = αku(t) a collection of
K tests signals, and zk(t) = V [uk] (t) the corresponding
outputs through the system. From homogeneity property (4),
we can write the following linear system, ∀t,

z1

z2
...
zK

 (t) =


α1 α2

1 . . . αN1
α2 α2

2 . . . αN2
...

...
. . .

...
αK α2

K . . . αNK

 ·

y1

y2
...
yN

 (t)

Z(t) = A · Y (t) ,

(5)

where yn are the homogeneous orders of the system in
response to the input signal u. Since A is a Vandermonde
matrix, it is (pseudo-)invertible if and only if αk are all
different from zero and each other, and the number of test
signals K is greater or equal to the truncation order N . In this
case, it is possible to recover orders yn. In the following, this
method will be referred as the Amplitude Separation (AS)
method. It has been used for identification purposes in e.g.
[7], [25], [26].
The use of amplitudes αk yields several limitations:
• for high amplitudes, the system can saturate, or be

excited outside the validity domain (of the series or of
its truncated version);

• for small amplitudes, high orders can be hidden in
measurement noise.

Another drawback is that the real-valued Vandermonde
matrix to invert is known to be rapidly ill-conditioned as
its size grows. Even if it is possible to circumvent this by
using Newton Recursive or Lagrange Recursive method [27,
Algorithm 4.6.1 and 4.6.2], or by using more than N test
signals, the use of the AS method is limited to the first few
orders in practice. The main idea of this paper consists of
exploiting phase deviations rather than amplitude differences
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Fig. 2. Identification process with prior homophase signal separation.

as separating factors. This leads to a new expression of the
output signal of a Volterra series as the sum of homophase
contributions, for which a separation method is designed.
From those homophase signals a new identification process
is proposed, where odd and even kernels are separately
estimated from odd and even homophase signals (see Fig. 2).

III. PHASE-BASED ORDER SEPARATION METHOD FOR
COMPLEX-VALUED SIGNALS

This section handles the theoretical case of complex-
valued input and output signals. It allows the examination
of phase exploitation in the design of a robust separation
method.

A. Method presentation

Let u be a complex-valued signal and w = ej2π/N be the
first N th unit-root. Denote uk(t) = wk−1u(t), k = 1, . . . , N
a collection of N test signals, and zk(t) = V [uk] (t) the cor-
responding outputs through the system. From homogeneity
property (4), it comes

V
[
wk−1u

]
(t) =

N∑
n=1

wn(k−1)yn(t) , (6)

where yn are the homogeneous orders of the system in
response to the input signal u. It follows that, ∀t,

z1

z2
...
zN

 (t) =


1 1 . . . 1

w w2 . . . 1
...

...
...

wN−1 w2N−2 . . . 1

 ·

y1

y2
...
yN

 (t)

Z(t) = WN · Y (t) ,

(7)

where WN is, within column permutation, the Discrete
Fourier Transform (DFT) matrix2 of order N . It is important
to note that the DFT does not apply on time, but on the
homogeneous nonlinear orders. A new separation method
is obtained by inverting (7), which is more robust than
inverting (5) since WN is unitary. This method will be
referred as the Complex Phase Separation (CPS) method.

Remark 2: In the linear algebra formalism, AS and CPS
methods look very similar. But they differ in their function-
ing; AS relies on the amplitude difference between signals
whereas CPS uses phase deconstruction and reconstruction
to recover the nonlinear orders. This difference can also be
viewed graphically on the complex plane (see Fig. 3); in
CPS, all the factors wk and their power will be on the unit

2It suffices to consider vectors Ŷ = [yN , y1, . . . , yN−1]
T to recover

the usual DFT matrix.
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Fig. 3. Graphical comparison of the evolution of the separating factors
for the classic AS method (α ∈ R, red circle) and proposed CPS method
(w = ej2π/N , blue square) through a Volterra series truncated to order
N = 3.

circle, and can only be on one of the N unit-roots; in AS,
factors αk and their powers lie on the real axis, and converge
towards 0 (if |αk| < 1) or diverge (if |αk| > 1) as the
truncation order increases.

Obviously, because the test signals wk−1u(t) are complex-
valued, CPS method is not applicable in practice. This is why
the idea of using phase deviations is extended to real-valued
signals in Section IV.

B. Properties of the CPS method

The CPS method comes with interesting properties con-
cerning robustness to noise and truncation error:

1) Noise reduction: Suppose that each measured output
zk is perturbed by an independent and identically distributed
(i.i.d.) Gaussian noise following a circular symmetric com-
plex normal distribution of variance σ2 (see [28] for theory
on complex-valued normal distributions). Then relation (7)
becomes, ∀t,

Z̃(t) =WNY (t) + ε(t) (8)

where ε is a multivariate i.i.d. circular symmetric complex
Gaussian noise of covariance matrix Σ = σ2I , with I the
identity matrix. The best estimator Ỹ of Y in a least mean-
square sense is computed by

Ỹ (t) =W−1
N Z̃(t)

= Y (t) + ε̃(t) . (9)

The new noise vector ε̃ is also a multivariate i.i.d. circular
symmetric complex Gaussian noise of covariance matrix Σ̃
given by

Σ̃ =W−1
N Σ(W−1

N )∗

=
σ2

N
I . (10)

Equation (10) shows that using CPS method, Signal-to-Noise
Ratio (SNR) between terms yn and error ε̃ due to noise
measurement is improved by a factor of

√
N . In comparison,

noise sensitivity of AS method greatly depends on the chosen
factors αk, and is different for each order n.



2) Nonlinear order aliasing and rejection factor: Given
the N -periodicity of any N th root of unity w, the output of
a Volterra series in response to an input wu(t) is

V [wu] (t) =

N∑
n=1

wn
∞∑
r=0

yn+rN (t) , (11)

where yn are the homogeneous orders of the system in
response to the input signal u. Thus, by applying CPS
method of order N to an infinite Volterra series, estimation
of nonlinear orders ỹn, n = 1, . . . , N yields:

ỹn = yn +

∞∑
r=1

yn+rN . (12)

Equation (12) reveals that estimation ỹn is perturbed by
a residual term

∑∞
r=1 yn+rN , which is structured as a

nonlinear order aliasing.
This aliasing artifact permits to create higher-order rejection
by using amplitude as a contrast factor between the wanted
terms yn and the perturbation signals yn+rN . Taking inputs
uk = ρwku, where 0 < ρ < 1, and using CPS yields

ỹn = ρn

(
yn +

∑
r=1

ρrNyn+rN

)
. (13)

This creates a ratio 1/ρN between the desired signal yn
and the first perturbation yn+N . Hence parameters N and
ρ enables to reach a wanted ratio between signal and
higher-order perturbations.
It is important to note that using a contrast factor will
impede the SNR amelioration presented in III-B.1.
Derivations similar to (8-10), show that the SNR increment
for each order n will now be ρn

√
N , which is inferior to√

N for 0 < ρ < 1.

Taking into account both order aliasing and noise reduc-
tion properties, parameters N and ρ allows to control error
estimation due to noise measurement and higher-orders. The
overall method is described in Algorithm 1. Increasing the
truncation order (and therefore the number of needed test
signals) leads to a more robust order separation method (in
terms of sensitivity to noise and truncation order). The main
drawback is that, in practice, it is not possible to use complex
input and output signals on a physical system.

Algorithm 1 CPS algorithm
Require: u, N , ρ

for k = 1, . . . , N do
Measure zk(t) for input ρ ej(k−1)2π/Nu(t)

end for
Construct Z(t) (see Equation (7))
Y (t)← diag

(
1/ρ, . . . , 1/ρN

)
W−1

N Z(t)

IV. HOMOPHASE SIGNALS SEPARATION METHOD FOR
REAL-VALUED SIGNALS

We now extend the idea of a preprocessing separation step
through phase deviations to real-valued signals. This leads to

the novel concept of homophase signal contribution, and the
design of a robust method to separate them.

A. Method presentation

We begin by introducing a new notation that will be useful
for the derivation of our method.

Definition 2 (Interconjugate term): Let u be a complex-
valued signal and Vn be a symmetric Volterra operator of
order n. Then we note Vn,q the complex-valued interconju-
gate term defined by

Vn,q(t) = Vn

[
u, . . . , u︸ ︷︷ ︸
n−q times

, u, . . . , u︸ ︷︷ ︸
q times

]
(t) . (14)

Example 1: Let u(t) = ej2πft be a complex sinusoidal
signal. Then it can be shown that interconjugate terms Vn,q
are also sinusoids, of frequency (n − 2q)f , with phase and
amplitude depending on the system.

Remark 3: Terms Vn,0 (respectively Vn,n) are the output
of order n of the system excited by the signal u (resp. u).

Property 2: By symmetry of Vn, it is straightforward to
show that Vn,q = Vn,n−q , and that for even n, term Vn,n/2
is real.

Theorem 1: Let u be a complex-valued signal and θ a
complex scalar on the unit circle. Let yn be the order n output
of the system in response to the input signal Re [θ u(t)]. Then

yn(t) =
1

2n

n∑
q=0

(
n

q

)
θn−2qVn,q(t) . (15)

Proof: Using the multilinearity property (3) and the
symmetry of Vn, it follows that

yn(t) = Vn

[
Re [θ u(t)] , . . . ,Re [θ u(t)]

]
(t)

=
1

2n
Vn
[
θ u+ θ u, . . . , θ u+ θ u

]
(t)

=
1

2n

n∑
q=0

(
n

q

)
θn−qθ

q
Vn

[
u, . . . , u︸ ︷︷ ︸
n−q times

, u, . . . , u︸ ︷︷ ︸
q times

]
(t)

=
1

2n

n∑
q=0

(
n

q

)
θn−2qVn,q(t) ,

which concludes the proof.
This notion of interconjugate terms allows to rewrite the

output of a truncated Volterra series, as the following result
shows.

Theorem 2: Let u be a complex-valued signal and θ a
complex scalar on the unit circle. Let y be the output of the
system excited by Re [θ u(t)]. Then

y(t) =

N∑
p=−N

θpψp(t) , (16)



where ψp are the homophase signals defined by

ψp(t) =



N∑
n=|p|

n≡p (mod 2)

1

2n

(
n
n−p
2

)
Vn,n−p

2
(t) , p 6= 0

N∑
n=2

n≡0 (mod 2)

1

2n

(
n

n/2

)
Vn,n/2(t) , p = 0

.

(17)
Proof: Using (1) and (15) it follows that

y(t) =

N∑
n=1

1

2n

n∑
q=0

(
n

q

)
θn−2qVn,q(t)

=

N∑
n=1

1

2n

n∑
p=−n

p≡n (mod 2)

(
n
n−p
2

)
θpVn,n−p

2
(t)

=

N∑
p=−N
p 6=0

N∑
n=|p|

n≡p (mod 2)

1

2n

(
n
n−p
2

)
θpVn,n−p

2
(t)

+

N∑
n=2

n≡0 (mod 2)

1

2n

(
n

n/2

)
Vn,n/2(t)

=

N∑
p=−N

θpψp(t) ,

which concludes the proof.
Example 2: Let u(t) = ej2πft be a complex sinusoidal

signal. Then each homophase signal ψp is a complex sinusoid
of frequency pf built from contributions of orders n ≥ p.

Property 3: It results from Property 2 that ψp = ψ−p.
Using (16), it is straightforward to prove the following result.

Theorem 3: Let u be a complex-valued signal and w =
ej2π/K with K = 2N + 1. Denote uk(t) = Re

[
wk−1u(t)

]
a collection of K test signals, and zk(t) = V [uk](t) the
corresponding outputs through the system. Then

z1
z2
...
zK

 (t) = WK


ψ0
ψ1...
ψN
ψ−N...
ψ−1

 (t) , (18)

where WK is the DFT matrix of order K.
Equation (18) shows that it is possible to separate homophase
signal contribution in a similar fashion as with CPS method,
using a carefully constructed set of signals and an inverse
DFT. This will be referred as the Homophase Separation
(HPS) method.
The main difference with CPS method is that HPS method
does not require to excite the system with complex-valued
signals. However, HPS method requires more test signals
(2N + 1 instead of N ), and does not completely separate
homogeneous orders yn, but only homophase contributions.
As will be shown in Section V, homophase signals can be
used to greatly improve kernel identification.

Remark 4: The CPS method also processes homophase
separation. Indeed, for complex-valued signals, the notion
of homophase signals and nonlinear homogeneous order
contributions are merged; this similarity is lost as soon as
signals are real-valued.

B. Properties of the HPS method
1) Number of phases and noise reduction: As in the CPS

method, the use of an inverse DFT reduces the error due
to measurement noise by a factor

√
K (see section III-B.1).

Therefore, for a given truncation order N , it is interesting
to choose a value of K larger than 2N + 1. Taking more
points on the unit circle builds an interpolation on the phase
domain. Therefore, by property of the DFT, this leads to
zero-padding in the transform domain, i.e. the estimated
vector Ψ̃ of homophase signals becomes

Ψ̃ =
[
ψ0 ψ1 . . . ψN 0 . . . 0 ψ−N . . . ψ−1

]T
,

(19)
with K − (2N + 1) zeros added.

2) Order aliasing: It can easily be seen from the
definition of homophase signals (17) that HPS method
will not have the same order aliasing property as CPS.
Furthermore, even if it is possible to predict in which
homophase signal ψp higher-order interconjugate terms will
appear, the use of a rejection factor to diminish them is not
viable.

The overall HPS method, that takes into account the phase
domain interpolation, is described in Algorithm 2.

Algorithm 2 HPS algorithm
Require: u, N , K

for k = 1, . . . ,K do
Measure zk(t) for input Re

[
ej2π(k−1)/Ku(t)

]
end for
Construct Z(t) (see Equation (18))
Ψ̃(t)←W−1

K Z(t)

Extract {ψp(t)}p=−N,...,N from Ψ̃(t) using (19)

V. NEW IDENTIFICATION PROCESS BASED ON
HOMOPHASE SIGNALS

This section presents an estimation method for discrete-
time Volterra kernel. It introduces the identification process
for homophase signals in this formalism. The proposed
process can be integrated with any identification methods.
For sake of simplicity, the estimation part (of Volterra kernels
from homophase signals) is chosen as a standard Least-
Square (LS) method.

A. Least-square kernel identification
The discrete-time version of input-output relation (2) is,

at time index l,

Vn [u1, . . . , un] [l] =

M−1∑
k1,...,kn=0

hn [k1, . . . , kn]

n∏
i=1

ui [l − ki] ,

(20)



where M is the kernel memory length (in samples).
Suppose an input signal of length L, and denote yn the
vector representing discrete signal yn[l] = Vn [u, . . . , u] [l],
l = 0, . . . , L − 1. Then, using (20), we write the following
matrix relation

yn = Φnfn , (21)

where Φn is the input combinatorial matrix and fn a
column vector regrouping all coefficients of hn (see [11] for
more details about construction of the combinatorial matrix).
Only non-redundant terms of the symmetric form of hn are
considered3 in fn.

Example 3: For an order 2 kernel of memory length M =
3, Φ2 and f2 are given4 by

Φ2 =


u[0]2 u[1]2 u[2]2 . . .
0 u[1]u[0] u[2]u[1] . . .
0 0 u[2]u[0] . . .
0 u[0]2 u[1]2 . . .
0 0 u[1]u[0] . . .
0 0 u[0]2 . . .



T

and f2 =


h2 [0, 0]
h2 [0, 1]
h2 [0, 2]
h2 [1, 1]
h2 [1, 2]
h2 [2, 2]

 .
Identifying kernels hn comes down to solving equation (21)
for each order n. This is possible if L is larger than the
number of Volterra coefficients to estimate

(
M+n−1

n

)
[13].

This identification process will be referred as order-LS.
If the homogeneous orders yn are not available, but only the
direct output y, identification is still possible by solving the
following relation

y = Φf , (22)

with Φ =
[
Φ1 . . . ΦN

]
and f =

[
fT1 . . . fTN

]T
.

This identification process will then be referred as direct-LS.
In order to improve kernel coefficient estimation, it was pro-
posed in [10] and further developed in [29], [30] to solve (21)
or (22) using a QR decomposition of the combinatorial
matrix. This is equivalent to applying an orthogonalization
procedure onto the basis constructed from of all the nonlinear
combinations of the input data (i.e. the columns of Φ or Φn)
and project the output data on this new basis.

B. Kernel identification from homophase signals

Denote Vn,q the vector representing discrete signal Vn,q[l],
l = 0, . . . , L − 1. Then, using (20) and the definition of
interconjugate term Vn,q , we write

Vn,q = Φn,qfn , (23)

where Φn,q is the input combinatorial matrix corresponding
to term Vn,q . Matrix Φn,q is constructed in a similar fashion
as Φq , but conjugated terms have to be taken into account
when doing symmetrization5.

3Or equivalently the nonzero terms of the triangular form.
4The lexicographical order is used here; this choice has no impact on the

estimation process.
5For example, combinatorial term u[l]u[l − 1] and u[l− 1]u[l] are both

linked to the same kernel coefficient h2[0, 1], and should thus contribute
equally to corresponding term in φ2,1[l]

Example 4: For an order 2 kernel of memory length M =
3, combinatorial matrix Φ2,1 is given by

Φ2,1 =



|u[0]|2 |u[1]|2 |u[2]|2 . . .

0 u[1]u[0]+u[1]u[0]
2

u[2]u[1]+u[2]u[1]
2 . . .

0 0 u[2]u[0]+u[0]u[2]
2 . . .

0 |u[0]|2 |u[1]|2 . . .

0 0 u[1]u[0]+u[1]u[0]
2 . . .

0 0 |u[0]|2 . . .



T

Let ψp denote the vector representing the discrete ho-
mophase signals ψp, ∀p = −N, . . . , N . Combining the
homophase signals definition (17) with (23), we obtain the
following systems (for odd and even orders respectively):
ψ1

ψ3

ψ5

...

 =


1
2Φ1,0

3
8Φ3,1

5
16Φ5,2 . . .

0 1
8Φ3,0

5
32Φ5,1 . . .

0 0 1
32Φ5,0 . . .

...
...

...
. . .

 ·

f1
f3
f5
...

 , (24)


ψ0

ψ2

ψ4

...

 =


1
2Φ2,1

3
8Φ4,2

5
16Φ6,3 . . .

1
2Φ2,0

1
4Φ4,1

15
64Φ6,2 . . .

0 1
16Φ4,0

3
32Φ6,1 . . .

...
...

...
. . .

 ·

f2
f4
f6
...

 , (25)

where 0 represents null matrices of the appropriate sizes.
Kernels can hence be estimated from homophase signals by
solving (24) and (25). This identification process will be
referred as phase-LS.
Due to the triangular nature of the matrix to invert, it is
possible to do the inversion using a technique similar to a
back substitution; this method will be referred as iter-LS,
and is described in Algorithm 3. But, because this approach
iterates from higher orders to lower orders, the estimation
error is accumulated from order N to 1. This can be very
harmful if the higher homophase signals are hidden in noise,
or if the truncation order is underestimated.

Algorithm 3 iter-LS identification algorithm
Require: u, {ψp}p=0,...,N , N , M

Create all Φn,q using u, n and M
for n = N, . . . , 1 do

ψn ← ψn −
∑N
k=n+1 Φ

k,k−p
2
fk

Solve ψn = Φn,0fn
end for

VI. KERNEL IDENTIFICATION EVALUATION ON A
SIMULATED SYSTEM

In this section, numerical experiments are proposed to
evaluate the contribution of the separation processes to
kernel identification. As order separation do not depend on
hypothesis about kernel length or form, a simple academic
model with short memory M is used. Usually, true systems
exhibit longer response time, and larger M should be used in
practice. This leads to difficulties in the identification step,
due to the rising number of parameters to estimate. This issue
is not addressed here.
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Fig. 4. Comparison of identification error εn (in dB) w.r.t. order n for
the case K = K1 = 19; given results are the median values over all
experiments; the dashed line represents the results obtained using direct-LS
with a signal of length L, given as a reference.

A. Experiment description

The simulated system is a Volterra series truncated to order
9, with a finite memory length of M = 5 samples. All kernels
are given by the following formula:

hn [k1, . . . , kn] = 101−n (−1)
∑

i ki e−0.1max k . (26)

Input signals are white Gaussian process of zero-mean and
unit variance, with a length of L = 5000 samples. A
perturbation noise (also white and Gaussian) is added to the
measured output, so that the overall SNR is 40dB. Two error
measures are used:
• the identification error between true and estimated ker-

nel, given by εn = RMS
(
h̃n − hn

)
/RMS (hn);

• the simulation error between true and reconstructed
output signal, given by ζn = RMS (ỹ − y) /RMS (y);
it is computed for a distinct validation signal (also white
and Gaussian with zero-mean and unit variance).

The four presented identification methods are tested and
compared: direct-LS, order-LS using prior AS method, iter-
LS and phase-LS using prior HPS method. As the efficiency
of separation methods is impacted by the number of test
signals K, two experiments are done using (a) K = K1 = 19
(minimum number of test signals required by HPS method)
and (b) K = K2 = 190 for both AS and HPS. Furthermore,
to make the comparison meaningful, direct-LS method uses
the same amount of data points, that is it relies on a test
signal of length KL. For each test, 10 realizations of the
input signal are done.
Gains for AS method are set as αk = (−1)kαbk/2c, where
value α was optimized to minimize condition number. The
used values are 0.8469 for case (a) and 0.9554 for case (b).

B. Results

Fig. 4 shows the identification error of all methods for
case (a). The dashed line represents the results obtained using
direct-LS with a signal of length L. This quick experiment
(only one short measurement is needed) gives poor estima-
tion of kernels for order higher than 3. This is due to the fact
that higher order contributions are hidden in noise. The order-
LS method gives good results for lower orders: the error

on the linear term is sensibly equivalent to the SNR of the
measured output. But quality quickly decreases w.r.t. n, due
to the bad conditioning of the AS method: errors over 0 dB
are obtained for orders higher than 4. Both methods using
the proposed homophase signal separation method (phase-LS
and iter-LS) give better results than the one based on AS.
The overall better results of phase-LS method over iter-LS
is explained by two phenomenas: for higher-orders, phase-
LS uses more data to do the estimation than iter-LS (all
interconjugate terms Vn,q instead of only Vn,0); for lower-
orders, the iterative process of iter-LS makes the estimation
error propagates from order N to order 1. Method direct-LS
and phase-LS have similar results over all orders.
Fig. 5 shows the simulation error of all methods w.r.t. their
computation time6 for both cases (a) and (b). Simulation
error follow the trend observed for the kernels identifica-
tion error: method orders-LS performs poorly and phase-
LS outperforms iter-LS of around 20 dB. An improvement
of 10 dB is observed for orders-LS, iter-LS and phase-LS
between cases (a) and (b). For iter-LS and phase-LS, this is
coherent with the noise reduction property of HPS method
(see Section IV-B.1). Furthermore, direct-LS is slightly better
than phase-LS in case (a), but the improvement increases
up to 15 dB in case (b). The improvement go along with a
much higher computation cost, going from almost 2min to
more than 20min. This is due to the augmentation of the
number of rows in matrix Φ for direct-LS, which does not
affect methods using prior separation7. For those methods,
the computation time of the identification step is unchanged,
and the duration of the separation step is negligible8.
In summary, the proposed phase-LS method gives results
close to the direct approach for an equivalent number of
data (see Fig. 4). In the direct approach, increasing the
measurement length improves identification but also dras-
tically increases computation time. Using prior separation,
the number of test signals K can be increased to improve
kernel estimation with a negligible impact on computation
time (see Fig. 5).

VII. CONCLUSIONS AND PERSPECTIVE

In this paper, the exploitation of phase deviation in Volterra
series output for identification issues has been studied.
The concept of homophase signal contribution has been
introduced, for which a new homophase separation method
has been proposed. Furthermore, a new kernel identification
process using those homophase signals has been designed.
The robustness property of the homophase separation have
been highlighted and explained by optimal condition number
of the Discrete Fourier Matrix. The identification built on
homophase signals provides results very close to the optimal
Least-Squares solution and significantly improves memory

6Experiments were done on a server with two Intel R© Xeon R© X5650
processors at 2.66GHz and 49.4GiB of RAM

7As an indicator, direct-LS needs 849MiB of RAM to store Φ in case (a)
and 8.49GiB in case (b), whereas iter-LS or phase-LS need only 335MiB
in both cases to store all Φn,q .

80.03 s in case (a) and 0.1 s in case (b).
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Fig. 5. Comparison of simulation error εn (in dB) w.r.t. the total computing time (in seconds) for the two number of tests signals K; each point represent
the result of one experiment.

usage and computation time. Furthermore, this improvement
has been compared with the one brought by a nonlinear order
separation method relying on amplitude.
Future work will focus on the application of this prior
separation stage to other type of identification methods, such
as Cross-Correlation, or to specific structured systems, such
as block-structured or Polynomial Nonlinear State-Space
systems.
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