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Design of the control set in the framework of variational
data assimilation

I. Yu. GEJADZE 1, P.-O. MALATERRE
UMR G-EAU, IRSTEA-Montpellier, 361 Rue J.F. Breton, BP 5095, 34196, Montpellier, France.

Abstract. Solving data assimilation problems under uncertainty in basic model parameters and

in source terms may require a careful design of the control set. The task is to avoid such combinations

of the control variables which may either lead to ill-posedness of the control problem formulation

or compromise the robustness of the solution procedure. We suggest a method for quantifying the

performance of a control set which is formed as a subset of the full set of uncertainty-bearing model

inputs. Based on this quantity one can decide if the chosen ’safe’ control set is sufficient in terms of

the prediction accuracy. Technically, the method presents a certain generalization of the ’variational’

uncertainty quantification method for observed systems. It is implemented as a matrix-free method,

thus allowing high-dimensional applications. Moreover, if the Automatic Differentiation is utilized

for computing the tangent linear and adjoint mappings, then it could be applied to any multi-input

’black-box’ system. As application example we consider the full Saint-Venant hydraulic network model

SIC2, which describes the flow dynamics in river and canal networks. The developed methodology

seem useful in the context of the future SWOT satellite mission, which will provide observations of

river systems the properties of which are known with quite a limited precision.

Keywords: control set design, uncertainty quantification, variational data assimilation, 1D
hydraulic network model, automatic differentiation

1 Introduction

Methods of data assimilation (DA) have become an important tool for analysis of complex phys-
ical phenomena in various fields of science and technology. These methods allow us to combine
mathematical models, data resulting from instrumental observations and prior information.
In particular, variational approaches have proven to be particularly useful for solving high-
dimensional DA problems arising in geophysical and engineering applications involving models
governed by partial differential equations. The problems of variational DA (or ’deterministic
inverse problems’) can be formulated as optimal control problems (see, for example, [17, 19]) to
find unknown model variables such as initial and boundary conditions, source terms (forcing),
distributed and lumped coefficients. Equivalently, variational DA can be considered as a special
case of the maximum a posteriori probability (MAP) estimator in a Bayesian framework [7].
Variational DA, implemented in the form of incremental 4D-Var [6], is currently a preferred
method for operational forecasting in meteorology and oceanography (more recently also in
the form of ensemble 4D-Var ; see, for example, [20]). In other areas of geophysics it is used
in glaciology [25, 14], river hydraulics [21, 11], reservoir modelling [29] and seismic inversion
[5]. Variational DA is also useful in many engineering disciplines, such as heat transfer [3], for
example.

1Corresponding author. Email address: igor.gejadze@irstea.fr
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In many applications the choice of the control set seems rather obvious. For example, in
short-range forecasting using global atmospheric or ocean models the initial state is controlled,
whereas for longer forecasting periods one must also control the forcing term to remove the
model bias. When the limited-area models are considered, the boundary conditions at open
boundaries are usually controlled. However, there are applications when the control set com-
position is not so evident, for example, in hydraulic and hydrological modeling. These are
important for understanding and monitoring the fresh water cycle, local and trans-boundary
management in flood and drought context and evaluation of water balance in global scale [8].
A key role in this modelling plays information about river discharges. A distinctive feature of
this problem is the likely presence of significant uncertainty in distributed source terms (lateral
inflows and outflows) and in model parameters, such as bathymetry, friction, infiltration rate or
in those defining behavior of hydraulic structures. Indeed, properties of many rivers are known
with quite a limited precision, and even for once well-studied rivers they may evolve in time
due to erosion, sedimentation or structures being erected or damaged. This uncertainty, if not
taken into account, could degrade the estimated discharge accuracy very noticeably.

The usual way to tackle the (systematic) uncertainties is to include all uncertainty-bearing
model inputs into the control set [27, 2]. An ultimate implementation of this idea results
into the model error control concept or the weak DA formulation [15]. Unless the available
computational resources are exceeded, working with such control set is not too difficult in the
variational DA framework. However, there are clear reasons for limiting the number of control
variables included into the control set. First we note that when a certain input is added into
the control set, the corresponding constraints should be added to keep well-posedness of the
problem formulation. In the framework of unconstrained minimization those are in the form
of penalty terms added to the cost function. For some variables constructing such terms is
possible, whereas for other variables the inequality constraints must be explicitly introduced,
in which case the very nature of the minimization problem would be changed. Solving such
problem requires notably more iterations which could be a serious drawback if the time when
the results remain usable is limited.

There are even more delicate reasons. For example, if for a certain dynamical model solv-
ability of the initial state control problem has been established, solvability of the joint state-
parameter control problem is not warranted. Such problems are nonlinear even for a linear
dynamical model, whereas for a nonlinear dynamical model the overall nonlinearity level would
grow. This means losing convexity, decreasing the convergence radius around the global mini-
mum, multiplying the local minima, etc. That is, the control problem becomes far more difficult
to solve in practice. There is one more reason. In order to use the gradient-based unconstrained
minimization we assume that the control-to-observation mapping exists and is continuous ev-
erywhere in a vicinity of the reference (true) value, i.e. the operator domain is dense around the
truth and the initial guess belongs to this vicinity. In practice, some combinations of the model
inputs may arise in the course of minimization such that the control-to-observation mapping
does not exist. For example, in hydraulic modelling some combinations of bathymetry, friction
and source terms may lead to local super-critical flow conditions. These conditions, however,
are not supported by models which utilize the Preissmann discretization scheme [28]. In this
case the model execution stops and the minimization process has to be restarted from a dif-
ferent point. This is an additional complication to the minimization procedure which is better
to avoid if possible. Moreover, due to the problem nonlinearity, the unwanted combinations of
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controls cannot be easily blocked using inequality constraints.
Taking into account all the above-mentioned reasons one may conclude that for certain DA

problems the control set has to be chosen carefully. In one hand, it should provide the model
predictions of a reasonable quality, on the other hand - guarantee the robustness and feasibility
of the solution procedure. This is the meaning of the the notion ’control set design’ used in this
paper.

In the Gaussian framework, the uncertainty quantification (UQ) method for observed sys-
tems (i.e. systems for which the posterior control estimates are available) includes two basic
steps: a) computing the posterior covariance matrix of the control vector; b) computing the
variance in chosen quantities of interest (QoI) using the posterior covariance and the control-
to-QoI mapping. Under the assumption that the uncertainty propagation is well described by
the tangent linear (TL) model (i.e. the nonlinearity of the mappings is mild or perturbations
are small), the latter is actually used to represent the control-to-QoI mapping, whereas the
posterior covariance is approximated by the inverse Hessian of the cost function (linearized or
complete). Since such a UQ method relies on the same principles as variational DA, it seems
reasonable calling it the variational UQ method. Combining the variational DA and variational
UQ methods results into variational filtering [4]. Recent examples of the variational UQ method
being applied to different problems can be found in [16, 14, 1].

The method suggested in this paper presents a generalization of the variational UQ method
in the following respect. We divide the full set of the uncertainty-bearing model inputs in two
parts. One part is considered as active controls (the active set), whereas the remaining inputs
are fixed at their priors (the passive set). Next, we define a spatially distributed goal-function
and its standard deviation (SD) as the uncertainty measure. Clearly, the passive set contributes
to this measure both directly and via the posterior covariance of the active set. Our method
allows both contributions (to the uncertainty measure) to be properly evaluated. We define a
sufficient control set as a set for which this measure takes a value useful from the practical point
of view. All possible active sets have to be examined, then ranked by the associated uncertainty
measure level to reveal all sufficient control sets. The choice among these sets should be done
in favour of those which will not corrupt the performance of the minimization algorithm.

The implementation of the method is matrix-free, hence it could be suitable for high-
dimensional problems. Furthermore, if the Automatic Differentiation is used for producing
the tangent linear and adjoint mappings, then our method could be applied to any multi-input
black-box system. The suggested method is new and no references describing a similar devel-
opment has been found. There might be an implicit relation to the IFP method suggested in
[18], but the results of the latter are difficult to interpret in terms of the control set design.

The method has been implemented with the full Saint-Venant hydraulic network model
SIC2 (Simulation and Integration of Control for Canals) developed at IRSTEA-Montpellier
[22]. More detailed description of SIC2 software is provided in Appendix I. In certain practical
configurations currently installed the model includes up to 104 computational sections, i.e. it
can be considered as a high-dimensional model. Note that the flow behavior in rivers or canals
is largely defined by the boundary conditions and source terms, i.e. the problem of estimating
the time-dependent controls is of a major interest here. For this type of problems variational
DA approach is superior to sequential estimation methods in terms of the estimation accuracy.
We report on implementation of variational DA with SIC2 in [11]. The latter work has been
partly motivated by the future SWOT satellite mission, which is going to provide water level,
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width and slope observations of some river networks, the properties of which are known with
a great deal of uncertainty. This is where the control set design procedure may become par-
ticularly useful. In the presented paper the numerical experiments have been conducted using
a relatively simple ’academic’ benchmark. However, some interesting fundamental conclusions
on the sufficient control set has been drawn. Let us underline that this is the first time when
variational UQ has been applied to the full Saint-Venant hydraulic network model.

The paper is organized as follows. In §2 and §3 we introduce the basics of the variational
UQ method for observed systems. A generalization of this method, which implies that the
full set of the uncertainty bearing model inputs is divided into the active and passive sets, is
described in §4. The matrix-free implementation of the generalized variational UQ method is
given in §5 and §6. Next, in §7 and §8 we describe the hydraulic model used for validation
and details of the model implementation. Results of numerical analysis for two test problems
are presented in §9. The main results of the paper are summarized in the Conclusions. There
are also two appendixes: Appendix I describes the SIC2 software and Appendix II - conceptual
steps of applying Automatic Differentiation for computing the gradient, the Hessian and the
goal-function uncertainty.

2 Goal-function error in an observed system

Let us consider the numerical model which describes behavior of a system in terms of its state
variables X ∈ X . The full set of the model inputs U ∈ U shall be called the ’full control’.
Thus, the model can be considered as a control-to-state mapping M : U → X

X = M(U), (2.1)

where U and X are the control and state spaces, correspondingly.
For modeling the system behavior the true full control vector Ū must be specified. Under

the ’perfect model’ assumption the following can be postulated: X̄ = M(Ū). In reality, some
components of Ū contain uncertainties η ∈ U . Thus, instead of Ū we use its best available
approximation or background

U∗ = Ū + η, (2.2)

where η is also called the background error. Because of the presence of η, the predicted state
X|U∗, that is, X evaluated (or conditioned) on U∗, also contains an error δX = X|U∗ −X|Ū .

In many practical situations some functionals of the state are of major interest. They are
usually called the Quantities of Interest (QoI). Thus, we introduce a vector of QoI, or the
goal-function G = {Gi, i = 1, . . . , KG} ∈ G, such that

G = D(X), (2.3)

where G is a ’goal’ space and D : X → G is a linear or nonlinear mapping. Because of the
prediction error δX there exists the goal-function error

δG = D(X)−D(X̄) = D(M(U))−D(M(Ū)). (2.4)

This error represents uncertainty in X in a practically valuable way.
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The state observing tools are represented by an observation operator C : X → Y in the
form

Y = C(X) = C(M(U)) := R(U), (2.5)

where R : U → Y is a generalized control-to-observations mapping and Y is the ’observation’
space. The true observations would be Ȳ = R(Ū), however the actual observations usually
contain noise ξ (observation uncertainty), i.e.

Y ∗ = Ȳ + ξ. (2.6)

In many circumstances the level of the goal-function error δG which corresponds to the
prior guess U = U∗ is not acceptable. The aim of data assimilation is to obtain Û = U |Y ∗, i.e.
an estimate of U conditioned on observations Y ∗, which should be better than the prior U∗ in
the sense ‖Û − Ū‖ < ‖U∗ − Ū‖. We shall consider the system as fully/partially identifiable if
the goal-function error

δG = D(M(Û))−D(M(Ū)) (2.7)

falls (fully/partially) into the margins defined by certain practical requirements.
Remark 1. In the above considerations the perfect model is assumed. This allows us to

write X̄ = M(Ū) and, subsequently, Ȳ = R(Ū). What if the model is not perfect? Let us
consider, for example, a dynamic system

∂ϕ

∂t
= F(ϕ), t ∈ (0, T ), ϕ|t=0 = u, (2.8)

where F is a true spatial operator. This system is described by a model

∂ϕ

∂t
= F (ϕ), t ∈ (0, T ), ϕ|t=0 = u, (2.9)

where F is an approximation (both in terms of physics and discretization) to F . It is easy to
see that the exact behavior of the system (2.8) can be modelled by equation

∂ϕ

∂t
= F (ϕ) + µ, t ∈ (0, T ), ϕ|t=0 = u,

where µ = F(ϕ)−F (ϕ) is the model error. Most certainly µ is not available for direct modelling,
however, if considered as a part of the extended control vector U = {u, µ}, it allows the mapping
F to be considered ’perfect’. In this case the approach presented below is also applicable.

3 Goal-function error variance for full control

In the Bayesian framework the posterior probability density of U conditioned on observations
Y ∗ is given by the Bayes formula

p(U |Y ∗) =
p(Y ∗|U)p(U)

p(Y ∗)
. (3.10)

Looking for the mode of the posterior density p(U |Y ∗), i.e. maximizing p(U |Y ∗), is the essence
of variational data assimilation. Under the Gaussian assumption on the prior and observation
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uncertainties, i.e. η ∼ N(0, B), ξ ∼ N(0, O), where B is the background error covariance
and O - the observation error covariance, maximizing p(U |Y ∗) is equivalent to minimizing the
cost-function

J(U) =
1

2
‖O−1/2(R(U)− Y ∗)‖2Y +

1

2
‖B−1/2(U − U∗)‖2U . (3.11)

Thus, the estimate Û is obtained from the optimality condition

J ′
U(Û) = 0. (3.12)

For the operator R(U) we define the tangent linear operator R′(U) (Gateaux derivative) and
its adjoint (R′(U))∗ [24] as follows:

R′
U(U)w = lim

t→0

R(U + tw)−R(U)

t
, (3.13)

(w, (R′
U(U))∗w∗)

U
= (R′

U(U)w,w∗)
Y
. (3.14)

Given the above operator definitions, the full gradient of J(u) in (3.12) can be expressed in the
form:

J ′
U(U) = (R′

U(U))∗O−1(R(U)− Y ∗) + B−1(U − U∗). (3.15)

Thus, the estimate Û is the solution to the operator equation

(R′
U(Û))∗O−1(R(Û)− Y ∗) + B−1(Û − U∗) = 0. (3.16)

Let us consider an estimation error δU = Û − Ū . We notice that

R(Û)− Y ∗ = R(Û)− (R(Ū) + ξ) = R′
U (Ũ)δU − ξ,

where Ũ = Ū + τδU, τ ∈ [0, 1], and

Û − U∗ = (Û − Ū)− (U∗ − Ū) = δU − η.

Then, equation (3.16) yields the error equation

(R′
U(Û))∗O−1(R′

U(Ũ)δU − ξ) + B−1(δU − η) = 0. (3.17)

Using the first order approximations Û = Ũ ≈ Ū we express δU as follows:

δU ≃ H−1(Ū)((R′
U(Ū))∗O−1ξ +B−1η), (3.18)

where
H(Ū) = (R′

U (Ū))∗O−1R′
U(Ū) + B−1 (3.19)

is the Hessian of an auxiliary control problem (not to be confused with the Hessian of the
cost function (3.11)). We assume that H is positive definite and, hence, invertible. If the
errors ξ and η truly satisfy the conditions η ∼ N(0, B), ξ ∼ N(0, O), then the estimation error
covariance is

P = E[δUδUT ] ≃ H−1(Ū).
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The above relationship is exact for linear R. For nonlinear R it is valid for small errors ξ and
η.

Let us consider the goal-function error. For small errors equation (2.7) can be linearized as
follows:

δG = D′
X(X̄)M′

U(Ū)δU. (3.20)

The error δU is not known by itself, but we may know its statistical properties, for example,
let us assume δU ∼ N(0, VδU). Then

VδG := E[δGδGT ] = D′
X(X̄)M′

U(Ū)VδU(M
′
U(Ū))∗(D′

X(X̄))∗. (3.21)

The square roots of the diagonal elements of VδG describe the confidence interval for δG. For an
unobserved system VδU is equal to the background (prior) covariance B. For an observed system
(after data assimilation), the uncertainty in U is given by the estimation error covariance, i.e.
VδU = P .

Remark 2. The procedure of computing the inverse of the Hessian H−1(·) in (3.19) is as
follows. First, we define the projected Hessian

H̃(Ū) = (B1/2)∗H(Ū)B1/2 = I + (B1/2)∗(R′
U(Ū))∗O−1R′

U (Ū)B1/2. (3.22)

It can be seen that all eigenvalues of H̃(Ū) are greater than or equal to one. Furthermore, it
has been observed that, for many practical DA problems, only a relatively small percentage of
the eigenvalues are distinct enough from unity to contribute significantly to the Hessian. This
suggests using limited-memory representations of the discrete Hessian, where this structure in
the spectrum is exploited. Specifically, a few leading eigenvalue/eigenvector pairs λi,Wi are
computed (typically using the Lanczos method as H̃ is available in operator-vector product
form) and, for any power γ, H̃γ is replaced by the approximation

H̃γ(Ū) ≃ I +

LH
∑

i=1

(λγ
i − 1)WiW

∗
i . (3.23)

Given H̃, the inverse Hessian can be easily recovered using

H−1(Ū) = B1/2H̃−1(Ū)(B1/2)∗.

4 Goal-function error variance for partial control

The theory considered so far is known and can be found in the literature (possibly, in a frag-
mented form). In what follows we present a new theory and a new implementation approach.
That is, we have previously considered DA when the control vector U includes the full set of
uncertainty-bearing model inputs. In practice, only a few selected inputs could be included
(the active set), with the remaining inputs being fixed at their priors (the passive set).

Let us define the active set Ua ∈ A of the full control vector, then Up = U \ Ua, and the
active set prior U∗

a ∈ A, then U∗
p = U∗\U∗

a . Let us assume that the background error covariance
B is block-diagonal, i.e. errors in different control variables are not correlated. This is often the
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case naturally, otherwise the DA problem can be easily re-formulated in uncorrelated variables.
Thus, the covariance B has the following structure:

B =

(

Ba 0
0 Bp

)

,

where Ba and Bp are the sub-matrices which correspond to the active and passive sets, corre-
spondingly. The DA problem involving the active control set consists of minimizing the cost
function

J(Ua) =
1

2
‖O−1/2(R(Ua, U

∗
p )− Y ∗)‖2Y +

1

2
‖B−1/2

a (Ua − U∗
a )‖

2
A. (4.24)

Thus, the estimate Ûa is obtained from the optimality condition

J ′
Ua
(Ûa) = 0. (4.25)

Given the above operator definitions in (3.13) and (3.14), the gradient of J(Ua) can be expressed
in the form:

J ′
Ua
(Ua) = (R′

Ua
(Ua, U

∗
p ))

∗O−1(R(Ua, U
∗
p )− Y ∗) + B−1

a (Ua − U∗
a ), (4.26)

thus the estimate Ûa must satisfy the operator equation

(R′
Ua
(Ûa, U

∗
p ))

∗O−1(R(Ûa, U
∗
p )− Y ∗) + B−1(Ûa − U∗

a ) = 0. (4.27)

Let us consider an estimation error δUa = Ûa − Ūa. We notice that δUp = U∗
p − Ūp = ηp.

Then

R(Ûa, U
∗
p )− Y ∗ = R(Ûa, U

∗
p )− (R(Ūa, Ūp) + ξ) = R′

Ua
(Ũa, U

∗
p )δUa +R′

Up
(Ūa, Ũ

∗
p )ηp − ξ,

where Ũa = Ūa + τ1δUa, Ũ
∗
p = Ūp + τ2ηp, τ1/2 ∈ [0, 1] and

Ûa − U∗
a = (Ûa − Ūa)− (U∗

a − Ūa) = δUa − ηa.

Then equation (4.27) yields the error equation

(R′
Ua
(Ûa, U

∗
p ))

∗O−1(R′
Ua
(Ũa, U

∗
p )δUa +R′

Up
(Ūa, Ũ

∗
p )ηp − ξ) + B−1

a (δUa − ηa) = 0. (4.28)

Using the first order approximations Ûa = Ũa ≈ Ūa and Ũ∗
p = U∗

p ≈ Ūp we express δUa as
follows:

δUa ≃ H−1
a (Ū)((R′

Ua
(Ū))∗O−1ξ +B−1

a ηa − R′
Ua
(Ū)O−1R′

Up
(Ū)ηp), (4.29)

where
Ha(Ū) = (R′

Ua
(Ū))∗O−1R′

Ua
(Ū) + B−1

a (4.30)

is the Hessian of an auxiliary control problem formulated for the active control set.
Since the full input vector error after DA is

δU = (δUa, ηp)
T , (4.31)
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its covariance takes the form

VδU = E[δUδUT ] =

(

VδUa
VδUap

VδUpa
Bp

)

, (4.32)

where
VδUa

= E[δUaδU
T
a ] = H−1

a +H−1
a (R′

Ua
)∗O−1R′

Up
Bp(R

′
Up
)∗O−1R′

Ua
H−1

a , (4.33)

VδUap
= E[δUaη

T
p ] = −H−1

a (R′
Ua
)∗O−1R′

Up
Bp, (4.34)

VδUpa
= E[ηpδU

T
a ] = −Bp(R

′
Up
)∗O−1R′

Ua
H−1

a . (4.35)

All operators in (4.33)-(4.35) are taken at the point Ū . The error covariance (4.32) must be used
in (3.21) for computing the goal-function error covariance in case of partial control. Numerical
tests show that using cross-terms VδUap

and VδUpa
is absolutely vital for the method.

5 Implementation with high-dimensional models

Let us first consider the formula for computing VδG (3.21). The operator-vector products
D′

X(X̄)M′
U(Ū) · v and (M′

U(Ū))∗(D′
X(X̄))∗ · v are computed by calling the tangent linear

and adjoint models of the corresponding mappings D and M. Having the covariance-vector
product VδU · v defined in (4.32), the covariance-vector product VδG · v can be used for the
eigenvalue analysis of matrix VδG. That is, its LG largest eigenvalues λG,i and the corresponding
eigenvectors WG,i can be computed by the Lanczos method and used for constructing the
limited-memory representation of VδG in the form

VδG =

LG
∑

i=1

λG,iWG,iW
T
G,i. (5.36)

If the elements of vector δG are strongly correlated, the number of eigenpairs required for
meaningful representation of VδG (and its diagonal elements, in particular) could by surprisingly
small as compared to NG (the dimension of vector G). The same is true for the number of
Lanczos iterations needed for evaluating those eigenpairs.

Now we try to define VδU · v without explicitly assembling the matrix VδU , the components
of which are presented in (4.33)-(4.35). Note that, if necessary, the operator-vector products
R′

Ua
· v, (R′

Ua
)∗ · v, R′

Ub
· v and (R′

Ub
)∗ · v can be computed by calling the tangent linear and

adjoint models of mapping R. However, we will use a different approach.
Let us consider the complete Hessian in (3.19). If the full control vector U is partitioned into

the active and passive sets, i.e. U = (Ua, Up)
T , then the Hessian matrix can also be partitioned

as follows:

H =

(

Ha Hap

Hpa Hp

)

=

(

B−1
a + (R′

Ua
)∗O−1R′

Ua
(R′

Ua
)∗O−1R′

Up

(R′
Up
)∗O−1R′

Ua
B−1

p + (R′
Up
)∗O−1R′

Up

)

. (5.37)

Taking into account this partition, the expressions (4.33)-(4.35) can be rewritten in the form

VδUa
= H−1

a +H−1
a HapBpHpaH

−1
a , (5.38)
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VδUap
= −H−1

a HapBp, (5.39)

VδUpa
= −BpHpaH

−1
a . (5.40)

As mentioned in Sec.3, usually we compute and save in memory the eigenpairs of the
projected Hessian H̃ , which has the following partition

H̃ = (B1/2)∗HB1/2 =

(

H̃a H̃ap

H̃pa H̃p

)

=

(

(B
1/2
a )∗HaB

1/2
a (B

1/2
a )∗HapB

1/2
p

(B
1/2
p )∗HpaB

1/2
a (B

1/2
p )∗HpB

1/2
p

)

. (5.41)

From (5.41) we derive:
H−1

a = B1/2
a H̃−1

a (B1/2
a )∗ (5.42)

Hap = (B−1/2
a )∗H̃apB

−1/2
p , H−1

a Hap = B1/2
a H̃−1

a H̃apB
−1/2
p (5.43)

Hpa = (B−1/2
p )∗H̃paB

−1/2
a , HpaH

−1
a = (B−1/2

p )∗H̃paH̃
−1
a (B1/2

a )∗. (5.44)

By substituting expressions for H−1
a , H−1

a Hap and HpaH
−1
a into (5.38)-(5.40) we obtain

VδUa
= B1/2

a H̃−1/2
a (Ia + H̃−1/2

a H̃apH̃paH̃
−1/2
a )H̃−1/2

a (B1/2
a )∗, (5.45)

VδUap
= −B1/2

a H̃−1
a H̃ap(B

1/2
p )∗, (5.46)

VδUpa
= −B1/2

p H̃paH̃
−1
a (B1/2

a )∗. (5.47)

Assuming v = (va, vp)
T ,

VδU · v =

(

VδUa
· va + VδUap

· vp
VδUpa

· va +Bp · vp

)

, (5.48)

where the operators VδUa
, VδUap

and VδUpa
are defined in (5.45)-(5.47). Implementation of the

above formulas requires, in turn, the operator-vector products H̃pa · va, H̃ap · vp and H̃γ
a · va for

γ = −1,−1/2.
Let us assume that the eigenpairs λi,Wi of H̃ are available and, therefore, H̃pa · va, H̃ap · vp

and H̃a · va are somehow defined (see §6). The latter allows the leading eigenvalue/eigenvector
pairs λa,i, Wa,i of H̃a to be evaluated by the Lanczos method. Then, according to (3.23)

H̃γ
a (ū) ≃ Ia +

La
∑

i=1

(λγ
a,i − 1)Wa,iW

∗
a,i. (5.49)

The above formula provides H̃γ
a · v for γ = −1,−1/2 required in (5.45)-(5.47). Below we sum-

marize the steps of computing VδG, for all K possible active sets:

Algorithm 1

1. compute by the Lanczos method and store in memory:

{λi,Wi}, i = 1, . . . , LH of H̃(Ū) in (3.22)

2. for k = 1, . . . , K
a. compute by the Lanczos method and store in memory:

{λa,i, Ua,i}, i = 1, . . . , La of H̃a(Ū) defined via {λi,Wi}
b. compute by the Lanczos method and store in memory:

{λg,i, Ug,i}, i = 1, . . . , Lg of VδG defined in (3.21), using VδU · v defined in (5.48)

end k
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Remark 3. Step 1 enables H̃a · va, H̃pa · va and H̃ap · vp to be evaluated when necessary,
see §6 for details. After step 2a, for any chosen active control set we are able to compute
Hγ

a · va using (5.49) and, correspondingly, VδU · v using (5.48). At steps 1 and 2b we solve
the sequence of the tangent linear and adjoint models, which is, in case of using models based
on partial differential equations, the most expensive part in terms of the CPU time. Step 2a
requires algebraic computations only. The diagonal elements of VδG can be retrieved on the
basis of representation (5.36). Square roots of these elements (standard deviation) are the
sought outcome of the algorithm above.

6 Active set algebra

Let us assume that the ’active control’ status has been assigned to some elements of the full
control vector U . In practical implementation there is no need ordering U into the partition
U = (Ua, Up)

T . Instead, the active and passive elements have to be correspondingly labeled,
then a special algebra can be applied.

Let us introduce mappings between the full, active and passive set vectors. First, we create
integer arrays Ka of size Na and Kp of size Np, containing ordinal numbers of the active set
elements of U and the passive set elements of U , correspondingly. The full-to-active set mapping
La is defined as

va = Lav : va,i = vKa(i), i = 1, . . . , Na.

The active-to-full set control mapping L∗
a (adjoint to L) injects values of the active set vector

va into the corresponding locations in the full set vector v, i.e.

v = L∗
ava : vk =

{

va,i, k = Ka(i)
0, k 6= Ka(i)

, k = 1, . . . , Na +Np.

Similarly, using Kp, we define the full-to-passive set mapping Lp and the passive-to-full set
mapping L∗

p. Now we can finally define

VδU · v = L∗
aVδUa

Lav + L∗
pVδUpa

Lav + L∗
aVδUap

Lpv + L∗
pBpLpv (6.50)

where the blocks VδUa
, VδUap

and VδUpa
are given by (5.45)-(5.47).

Since we refuse ordering elements of U , the original structure of H (or H̃) is no longer in the
form (5.37), but the latter could be achieved using some row and column permutations. The
purpose is to enable evaluating H̃a · va, H̃pa · va and H̃ap · vp using H̃ in its given (non-ordered)
form.

Let us define the following operator-vector products:

H◦
aa · v =

{ ∑

j∈Ka
Hi,jvj, i ∈ Ka

0, i /∈ Ka
, (6.51)

H◦
ap · v =

{ ∑

j /∈Ka
Hi,jvj, i ∈ Ka

0, i /∈ Ka
, (6.52)

H◦
pa · v =

{

0, i ∈ Ka
∑

j∈Ka
Hi,jvj, i /∈ Ka

, (6.53)
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H◦
pp · v =

{

0, i ∈ Ka
∑

j /∈Ka
Hi,jvj, i /∈ Ka

. (6.54)

If H is given in the limited-memory form (3.23), then

Hi,j = eTi Hej = Ii,j +
L
∑

k=1

(λk − 1)Wk,iWk,j. (6.55)

By substituting Hi,j into (6.51)-(6.54) one obtains:

H◦
aa · v =

{

vi +
∑L

k=1(λk − 1)
∑

j∈Ka
Wk,iWk,jvj , i ∈ Ka

0, i /∈ Ka
, (6.56)

H◦
ap · v =

{

vi +
∑L

k=1(λk − 1)
∑

j /∈Ka
Wk,iWk,jvj , i ∈ Ka

0, i /∈ Ka
, (6.57)

H◦
pa · v =

{

0, i ∈ Ka

vi +
∑L

k=1(λk − 1)
∑

j∈Ka
Wk,iWk,jvj , i /∈ Ka

, (6.58)

H◦
pp · v =

{

0, i ∈ Ka

vi +
∑L

k=1(λk − 1)
∑

j /∈Ka
Wk,iWk,jvj , i /∈ Ka

. (6.59)

Let us note that in the above operator definitions the full set vector v is used (as input and
output), whereas we need H̃a · va for computing H̃−1

a , and H̃pa · va and H̃ap · vp in formulas
(5.45)-(5.47). Therefore, we use operators H̃◦ together with mappings La, L

∗
a, Lp, L

∗
p in the

following way:
H̃a · va = LaH̃

◦
aaL

∗
a · va, (6.60)

H̃ap · vp = LaH̃
◦
apL

∗
p · vp, (6.61)

H̃pa · va = LpH̃
◦
paL

∗
a · va. (6.62)

7 Validation

Estimating river discharges from in-situ and/or remote sensing data is a key component for
evaluation of water balance at local and global scales and for water management. A distinctive
feature of the river discharge estimation problem is the likely presence of significant uncertainty
in parameters defining basic properties of a hydraulic model, such as bathymetry (surface topog-
raphy), friction, infiltration level, etc. There are also unaccounted lateral tributaries/offtakes
and storage areas.

Since the discharge estimation problem is considered, the active set must undoubtedly in-
clude the inflow discharge at a chosen upstream location (the inlet). Would it be a sufficient
control set? If not, what other model inputs should be included into the active set to reduce
the impact of uncertainties? Do we have enough data? Indeed, in-situ measurements of water
elevation and discharge are relatively rare on most rivers because of limited accessibility and
associated costs, whereas the satellite data can be sparse in time and far less accurate. There-
fore, designing the control set is a key issue for solving the river discharge estimation problem.
That explains our choice of the application.
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7.1 Model statement

The hydraulic network is represented by a set of closed-line segments or ’reaches’ connected
at nodes Nk, see Fig.1. The spatial discretization along reach number i produces a set of co-
ordinates xi,j, also called longitudinal abscissas, each having the associated global index k and
its own position vector ~rk = (x′

k, y
′
k, z

′
k) in the global co-ordinate system (bathymetry). Given

~nk is a pre-dominant flow direction at xi,j, a hydraulic cross-section Si,j is defined by a set of
points on a plane ~nk · (~r−~rk) = 0 describing the bed profile, which are evaluated from a design
sketch or from a topographical survey. For each section this data allows us to compute for
any given water level line Z: the wetted area function A(Z, pg), the wetted perimeter function
P (Z, pg), the hydraulic radius function R(Z, pg) and the top width function L(Z, pg), where pg
are geometric parameters of the corresponding cross-section. For a given reach, pg is a function
of the longitudinal abscissa x.

For a ’regular’ section, the shallow water flow in the longitudinal direction x is described
by the Saint-Venant equations:

∂A

∂t
+

∂Q

∂x
= QL, (7.63)

∂Q

∂t
+

∂Q2/A

∂x
+ gA

∂Z

∂x
= −gASf + CkQLv, (7.64)

t ∈ (0, T ],

where Q(x, t) is the discharge, Z(x, t) is the water level, v(x, t) = Q/A is the mean velocity,
QL(x, t) is the lateral discharge, Ck(x) is the lateral discharge coefficient and Sf is the friction
term dependent on the Strickler coefficient Cs(x) and on the hydraulic radius R(Z, pg):

Sf =
Q|Q|

C2
sA

2R4/3
.

The initial condition for equations (7.63)-(7.64) is

Z(x, 0) = Z0(x), Q(x, 0) = Q0(x). (7.65)

For an internal node we consider the mass balance equation alongside the condition of local
elevations or ’heads’ (H = v2/2g + Z) equality, for all connected reaches. On the network
example presented in Fig.1 these equations are

q1 = −Q|S1,k1
−Q|S2,k2

+Q|S3,1
, (7.66)

Z|S1,k1
= Z|S3,1

, Z|S2,k2
= Z|S3,1

, (7.67)

or
H|S1,k1

= HS3,1
, H|S2,k2

= HS3,1
, (7.68)

where q1 is the offtake or tributary at node N3.
Boundary conditions are defined at boundary nodes. For the upstream nodes we usually

use the inflow discharge Q(t) or elevation Z(t), for example 2:

Q(t)|S1,1
= Q1(t) ∨ Z(t)|S1,1

= Z1(t), (7.69)

2In the text below ∨ stands for logical ’or’ and ∧ for logical ’and’
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Figure 1: River or canal network conceptual scheme

whereas for the downstream nodes it is the elevation Z(t) or the rating curve Q = f(Z, prc),
where prc are the rating curve parameters, for example:

Z(t)|S3,k3
= Z3(t), ∨ Q|S3,k3

= f(Z|S3,k3
, prc). (7.70)

We also consider a singular section, which consists of the collocated upstream and downstream
sections. It is mainly used to represent artificial structures (cross-devices), such as gates, weirs,
bridges etc., where the Saint-Venant are replaced by ad-hoc alternative equations. For the
singular section we consider the mass balance equation alongside the equation relating the
elevations (or ’heads’), for example:

Q|S3,i
−Q|S3,i+1

= 0 (7.71)

Q|S3,i
= F(Z|S3,i

, Z|S3,i+1
, Cd|S3,i

), (7.72)

where Cd is the cross-device discharge coefficient.
Let U be a space of all possible input variables for the model (7.63)-(7.72), including some

parameters pnm of the implemented numerical scheme, such as the Preissmann implicitation
coefficient, for example. Let us also assume that the specified network configuration includes
Kbn boundary nodes, Kin internal nodes, Kss singular sections, Kr reaches and Ks(i) sections,
i = 1, . . .Kr. Then, the full control vector U ∈ U looks as follows:

U = (Z0, Q0, Z, Q, q, QL, Cs, Ck, Cd, prc, pg, pnm)
T , (7.73)

where by (Z0, Q0) we mean a set of initial conditions for all reaches, i.e.

(Z0, Q0) = {(Z0(xi,j), Q0(xi,j)), i = 1, · · ·Kr, j = 1, · · ·Ks(i)},

by (Z,Q) - a set of inflow discharges or elevations at all boundary nodes, i.e.

(Z,Q) = {(Zk(t) ∨Qk(t)), k = 1, · · ·Kbn}
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by q - a set of all offtakes/tributaries, i.e. q = {qk(t), k = 1, · · ·Kin}, by pg - a set of geometric
parameters for all sections, i.e. pg = {pg(xi,j), i = 1, · · ·Kr, j = 1, · · ·Ks(i)}, and, similarly,
for the remaining variables in (7.73), each having its own dimension. For given U , by solving
the model equations (7.63)-(7.72) simultaneously for all network reaches, we obtain the state
X ∈ X such that

X = (Z,Q)T = {(Z(xi,j , t), Q(xi,j, t))
T , i = 1, · · ·Kr, j = 1, · · ·Ks(i), t ∈ [0, T ]}. (7.74)

Let us assume that the state is observed in the form (2.5). In particular, the water surface
elevation measured by the gauge stations, located at the specified sections of the specified
reaches, may be available. We shall denote by Io the array defining the indices of these sections
and reaches. Usually, such measurements are recorded with sufficiently small time step, so we
can treat them as nearly continuous in time. Then, the observation operator is as follows:

Y = C(Z,Q) = {Z(xi,j , t), (i, j) ∈ Io}. (7.75)

Thus, the particular form of vectors U , X and Y is now defined.
The above hydraulic equations are implemented in SIC2, which is the full nonlinear Saint-

Venant hydraulic network model. The basic features of this model are presented in Appendix
I. The routine which maps U into Y represents operator R. The tangent linear model (TLM)
and the adjoint model, which represent operators R′ and (R′)∗, respectively, are produced by
means of the AD engine TAPENADE [12] applied to the main computational routine of the
SIC2 package (the forward model). An outline of conceptual steps, needed for producing the
routines which calculate the Hessian-vector product and the VδG-vector product, is presented
in Appendix II.

Remark 4. Let us note that at different steps of Algorithm 1 the tangent linear and ad-
joint models are involved. However, these models may not be available in certain circumstances.
Thus, the ’derivative-free’ implementation of the presented method should be developed in the
future. In particular, the Hessian-vector product could possibly be defined using the simul-
taneous perturbation gradient approximation (SPGA) approach [13], whereas the covariance
VδG can be constructed by using the eigenpairs of Vδu (defined in (5.48)) as ’sigma-points’, in
a manner considered in [26]. An additional benefit of such approach would be the nonlinear
posterior uncertainty propagation.

7.2 Particular choice of goal-functions (QoI)

The goal-functions (QoI) are usually some functionals of the state trajectory. In hydraulics,
certain quantities useful in the flood risk assessment may be of interest, such as the maximum
water surface elevation above a given (safe) threshold at some locations, for example. Thus,
we consider the goal-function in the form

G = D(Q(x, t), Z(x, t)) = (GQ(x), GZ(x))
T ,

where

GQ(x) =

∫ t2

t1

|Q(x, t)−Q∗(x)|dt, (7.76)
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GZ(x) =

∫ t2

t1

|Z(x, t)− Z∗(x)|dt, (7.77)

where Q∗ and Z∗ are some reference discharge and elevation levels, and t1, t2 define the time
window of interest. One may consider multiple time windows or the values GQ(x) and GZ(x)
at chosen time instants, including t ≥ T . In the latter case the goal-function represents the
forecast.

8 Model implementation details

8.1 Initial condition treatment

The initial condition (Z0, Q0) is a model state at t = 0. As such it must be a model solution
consistent with the parameters which define the fundamental properties of the model, such as
bathymetry, friction, rating curve parameters and cross-device coefficients, and also with the
previous values of time-dependent controls. Changing arbitrarily some of those parameters
while keeping the initial condition intact leads to severe shocks in the flow fields at the initial
time period. Furthermore, the difference between the observations and the model predictions
during the initial time period dominates the gradient. The corresponding updates being intro-
duced into the nonlinear system may lead to unsupported flow conditions. Even if the initial
condition is consistent with the other parameters at the start of the iterative process, indepen-
dent updates of time-dependent controls and parameters may lead to inconsistency again.

The way to deal with this issue is as follows. We notice that the influence of the initial state
on the flow is very limited in time, then it is dominated by actuators (boundary conditions and
source terms). Therefore, we postulate that (Z0, Q0) is a steady state flow solution consistent
with the initial value of the time-dependent controls and time-independent controls. This state
is approached by performing a relaxation model run. By doing so we stop considering (Z0, Q0)
as an independent control, but it becomes a unique function of other controls.

8.2 Spline approximation of time-dependent controls

The time-dependent controls, such as the inflow discharge Q(t), water elevation Z(t) at bound-
aries, offtakes/tributaries qi(t) and the lateral discharge QL(x, t) are approximated in time
by cubic splines. Thus, the control points for the chosen control variable can be arbitrarily
distributed in time. Given the values of control at these points the spline coefficients are con-
structed. The control values at time instants required for the model numerical integration
(usually at t = i × dt, where dt is the time step and i is the time index) are evaluated as the
corresponding spline values. This allows the number of control nodes to be significantly smaller
than the number of integration time steps, which is useful given that the simulation period
can be fairly long. Besides, the control nodes can be distributed more densely in the areas of
fast dynamics and more sparsely in the areas of slow dynamics. This approach can also be
considered as a preliminary regularization.
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8.3 Defining the background covariance

The controls in U can be divided into three groups: time dependent controls, e.g. the inflow
discharge Q(t), spatially distributed controls, e.g. the Strickler coefficient Cs(x) or bed elevation
z(x) ∈ pg, and lumped parameters, e.g. the cross-device discharge coefficients Cd or rating
curve parameters prc. For the lumped parameters we can only prescribe the variance, for the
distributed controls the covariance matrix must be specified.

Here we present a slightly modified version of the approach described in [10]. In solving ill-
posed inverse problems the solution is often considered to be a smooth function which belongs
to a Sobolev space of certain order, e.g. W 2

2 . Let f(x), x ∈ [a, b] be a one-dimensional function
of x and let us introduce two positive weight functions β(x), γ(x). We define the norm of f(x)
in W 2

2 as follows:

‖f(x)‖2W 2
2
[a,b] =

∫ b

a

[

β(x)f 2(x) + β(x)

(

∂

∂x

(

γ(x)
∂f(x)

∂x

))2
]

dx.

To evaluate this integral numerically we discretize f(x) using a set of uniformly distributed
nodes {xi = (i− 1)∆x, i = 1, . . . , m} and substitute the integral by the sum

‖f(x)‖2W 2
2
[m] = ∆x

m
∑

i=1

β(xi)f
2(xi) + ∆x

m
∑

i=1

β(xi)

(

∂

∂x

(

γ(x)
∂f(x)

∂x

))2 ∣
∣

∣

∣

x=xi

. (8.78)

Numerical implementation of the second term depends on the boundary conditions imposed on
f(x); in this paper we use the ’natural’ boundary conditions, i.e. f ′′(a) = f ′′(b) = 0.

In practice, we consider a discrete function f̄(x̄i), where x̄i, i = 1, . . . , m̄ are arbitrarily
distributed nodes. Therefore, an operator G which maps f̄ into f must be constructed. Because
we need the second derivative of f(x), the cubic spline approximation of f(xi) is sufficient. The
inverse of the covariance matrix B must satisfy the following condition

‖B−1/2f̄‖L2[m̄] = ‖G(f̄)‖W 2
2
[m]. (8.79)

Assuming that f̄ is reasonably close to the prior f̄b, the elements B−1
i,j can be obtained by the

following formula:

B−1
i,j ≈

∂2(‖G(f̄)‖2
W 2

2
[m]

)

∂f̄i∂f̄j

∣

∣

∣

∣

f̄=f̄b

.

The code for computing the elements B−1
i,j is obtained by applying the Automatic Differentiation

(direct mode) twice to the subroutine evaluating ‖G(f̄)‖W 2
2
[m]. The matrix B−1 is symmetric

and narrow-banded. It can be easily factorized using Choleski decomposition:

B−1 = B−1/2(B−1/2)T .

Given the factor B−1/2, the product v = B1/2w is defined via solving the equation B−1/2v = w.
Since B−1/2 is a triangular banded matrix, the solution procedure is simply a backward sweep.
In the covariance matrix obtained by this method the functions β(x) and γ(x) define the
local variance and the correlation radius, respectively. For any time-dependent control, the
covariance is generated for the full time domain. It is slightly more complicated for the spatially
distributed controls due to the presence of nodes and singular sections. While the method allows
the variable variance and correlation level along the abscissa x, in the numerical examples
considered below these are uniform everywhere except near the boundaries.
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8.4 Miscellaneous

a) Bathymetry. In Sect.2 the bathymetry is formally defined by geometric parameters pg,
entering the functions A(Z, pg) and P (Z, pg). Here we present a more detailed description. For
each section n, the elevation zb(n) of the lowest point of the cross-section shape with respect
to a chosen reference horizontal level is given. The function zb(n) is referred to as the bed
elevation. Other parameters describe the cross-section shape itself. The dilation coefficient b(n)
is introduced to allow the cross-section width to be modified. This is achieved by multiplying
on (1 + b(n)) all horizontal dimensions of the corresponding cross-section. For example, in
the case of trapezoidal cross-section shape, the trapezoid bases are scaled. Subsequently, this
affects the functions A(Z, pg) and P (Z, pg). The functions zb(n) and b(n) are considered as the
generalized bathymetry controls.
b) Identical twin experiment. In this paper the identical twin experiment approach is
adopted: given a reference (’true’) value of the control vector Ū , for a chosen observation
scheme the model predictions at the specified points (in space and time) are considered as
’exact’ observations; after being corrupted by noise these observations are considered as ’noisy’.
The task is to estimate the control vector using either ’exact’ or ’noisy’ data and to evaluate
the estimation error dU = Û − Ū .

Figure 2: Testing configurations.

9 Numerical results

For numerical tests we use an idealized benchmark presented in Fig.2. The canal is composed
of four consecutive 5km-long reaches bounded by nodes (shown in ’circles’). The canal inlet
is at node 1, its outlet - at node 5. A reach is discretized into 25 equidistantly positioned
computational sections having the same cross-sectional shape. The internal nodes contain
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Figure 3: - Inflow discharges Qi (upper/left), discharge field evolution: case A (upper/right) and case
B (lower/right), elevation field evolution: case A (lower/left).

co-located boundary sections of the connected reaches. The bed elevation zb value for each
node (and for the boundary sections involved) is presented in the figure; between nodes zb
changes linearly. The Strickler coefficient Cs and the dilation coefficient b are constant along
the reach. The values of both are also presented in the figure. The boundary conditions are
as follows: the inflow discharge Q(t) = Q1(t) at node 1 and the rating curve Q(Z, prc) at
node 5. The tributaries are represented by the discharges Q2(t) and Q3(t) at node 2 and node

3, respectively. We consider four surface elevation sensors, each located in the middle of the
corresponding reach (shown in ’stars’).

The covariance matrix VδU includes the diagonal blocks VδUi
, each being associated with

the corresponding control variable Ui of the control vector U . Thus, we define the standard

deviation (SD) vector σ[δUi], such that its elements are the square-roots of the diagonal entries
of VδUi

. Similarly, the covariance matrix VδG includes two diagonal blocks VδGQ
and VδGZ

,
associated with different goal-functions (QoI) in (7.76) and (7.77); the corresponding SD vectors
are denoted σ[δGQ] and σ[δGZ ]. All results below are presented in terms of σ[·].
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Figure 4: Standard deviation of control estimates.

9.1 Case A

In this case we consider the inflow discharge Q(t) = Q1(t) as a driving condition (actuator),
whereas Q2(t) = Q3(t) = 0. The uncertainty-bearing approximations of the geometry-defining
parameters zb(k) and b(k) and the Strickler coefficient Cs(k) are available for k = 1, . . . , Ks,
where Ks is the total number of sections. Then, the full control vector is

U = (Q1(t), zb(k), b(k), Cs(k), U∗)
T , k = 1, . . . , Ks,

where U∗ stands for all remaining model inputs which contain no uncertainty. The ’true’ value
of the inflow discharge Q1(t) is presented in Fig.3, upper/left subplot. The ’true’ discharge
field Q(t, k) and of the water surface elevation field Z(t, k) are presented in upper/right and
lower/left subplots, correspondingly.

Data from all four sensors is used. Here we consider the following active control sets:
cc1 - full control case: i.e. Ua = U \ U∗;
cc2 - partial control case: inflow discharge only, i.e. Ua = Q(t);
cc3 - partial control case: inflow discharge and bed elevation, i.e. Ua = (Q(t), zb(k))

T ;
cc4 - partial control case: inflow discharge and Strickler coefficient, i.e. Ua = (Q(t), Cs(k))

T .
Numerical results for case A are summarized in Fig.4 and Fig.5. In Fig.4 we show the back-

ground (prior) SD and the SD of the estimates (posterior) for all components of the control vec-
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Figure 5: Standard deviation of the goal-vector (QoI).

tor, i.e.: σ[δQ1] (upper/left), σ[δzb] (upper/right), σ[δb] (lower/left) and σ[δCs] (lower/right).
In Fig.5 we show the SD of the goal-vectors: σ[δGQ] (lower/left) and σ[δGZ ] (lower/right) for
different control cases cc1− cc4.

These figures reveal the following interesting features:
1. In the full control case cc1, the posterior SD are strictly smaller than the background SD,
for all control variables (compare the curves marked cc1 to those marked cc0). This difference
is usually referred as the ’uncertainty reduction’. The curves marked cc1 show the minimum
SD level that can be achieved with the given observations. Since estimating the discharge
is the major task, let us pay attention to Fig.4(upper/left) and Fig.5(left) subplots. For the
partial control case cc2 (the inflow discharge only), σ[δQ1] and σ[δGQ] are presented in dashed
lines. One can see that the uncertainty reduction achieved in this case makes only a fraction
(30-40%) of the one achieved in the full control case. Thus, controlling the discharge only is
hardly sufficient.
2. The control set can be extended, however this must be done with caution. It seems reasonable
to add such control variable that the resulting uncertainty in the goal-function (QoI) would
be most essential. At the same time this extension should not affect the reliability of the
minimization process. By comparing results for different active control sets one can see that
such component does exist: it is the bed elevation zb, see the results in dash-dotted line, case
cc3. For comparison we also present the partial control case cc4, where instead of zb we use
Cs. One can notice that, in terms of σ[δGQ], the effect of inclusion Cs into the active set is
negligible. Some improvement can be seen in terms of σ[δGZ ] in the vicinity of sensors. It
has been repeatedly observed that including both zb and Cs into the active control set leads
to unsupported combinations of controls, see [11]. Thus, the sufficient control set is given by
vector Ua = (Q(t), zb(k))

T .
3. It is difficult to judge whether or not the control set is sufficient looking at the posterior
uncertainty in controls VδUa

. For small errors the goal-functions (QoI) are certain combinations
of responses associated to different control variables, therefore an important role belongs to
correlations. For example, in case cc3 σ[δzb] does not look much reduced, but both σ[δGQ]
and σ[δGZ ] are sufficiently good. This is because the error associated with Cs and b are partly
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absorbed by the bed elevation control. However, the estimate of zb as such has a little practical
use. For example, it can hardly be considered as an improved background in the subsequent
DA cycles.

9.2 Case B

In this case the inflow discharges Q(t) = Q1(t), Q2(t) and Q3(t) are considered as driving
conditions. As opposed to case A we assume that zb(k), b(k) and Cs(k) are known precisely.
Then, the full control vector is

U = (Q1(t), Q2(t), Q3(t), U∗)
T ,

where U∗ stands for all model inputs which contain no uncertainty. The ’true’ values of Q1(t),
Q2(t) and Q3(t) are presented in Fig.3, upper/left subplot. The corresponding ’true’ discharge
field Q(t, k) is presented at lower/right subplot.

Only observations made by sensors 1 and 3 (see Fig.2) are used in DA. Sensors 2 and 4 are
removed on purpose. In the original sensor configuration we have at least one sensor located
between two nodes where the inflow discharge is imposed. Since flow perturbations assuredly
propagate from upstream to downstream, all Qi can be resolved in this case. However, without
data from sensor 2 Q2(t) and Q3(t) can be resolved only if the flow perturbations from node 2

could reach sensor 1, which is located upstream. This is a more interesting case to investigate
with our method.

Here we consider the following active control sets:
cc1 - full control case: i.e. Ua = U \ U∗ = (Q1(t), Q2(t), Q3(t))

T ;
cc2 - partial control case: Ua = (Q1(t), Q2(t))

T ;
cc3 - partial control case: Ua = (Q1(t), Q3(t))

T ;
cc3∗ - partial control case: Ua = (Q1(t), Q3(t))

T .

Numerical results for case B are summarized in Fig.6. Here, the upper/left subplot shows
the background (prior) SD and the SD of the estimates (case cc1), for all Qi(t). As in case A, the
posterior SD are strictly smaller than the background SD. One can notice that the uncertainty
reduction in the estimates of Q2(t) and, especially, in Q3(t) is significantly smaller than in
Q1(t), which is due to the absence of observations between node2 and node3 . However, the
uncertainty reduction in the goal-vector (see lower subplots, case cc1) looks far more significant
than one could expect looking at σ[δQi]. This proves that even though Q2(t) and Q3(t) are
not well resolved, the sums Q1(t) + Q2(t) and Q1(t) + Q2(t) + Q3(t) which dominate the flow
behavior between nodes 2 and 3 and downstream node3 , correspondingly, are well estimated.

The upper/right subplot shows results for different active control sets. Since no observations
between nodes 2 and 3 are used, we try to substitute two tributaries by one ’effective’ discharge.
These are the partial control cases cc2 and cc3. It is interesting to note that in case cc2 σ[δQ2] is
even larger than the background value, i.e. the uncertainty has increased. However, it terms of
σ[δGQ] and σ[δGZ ] the uncertainty is reduced everywhere, however the control set cc3 provides
better reduction for reach 2. A simple practical conclusion from this behavior is as follows: all
discharges (tributaries/offtakes, lateral inflows) located between two sensors can be combined
into one lumped discharge imposed at a node nearest to the downstream sensor.
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Figure 6: Eigenvalues of operators.

The lower subplots also demonstrate case cc3∗. This case is different from case cc3 in a way
that the cross-correlation terms in (4.32) are neglected when VδG is computed by (3.21). This
example shows that taking into account cross-correlations is absolutely vital.

In this paper the control set performance is quantified by σ[δGQ] and σ[δGZ ]. However,
we have more information since the truncated eigenvalue decompositions of matrices VδGQ

and VδGZ
are available. This allows more delicate analysis to be performed. For example, the

eigenvectors which correspond to the largest eigenvalues of VδGQ
may reveal the most dangerous

combinations of control uncertainties. The task then would be to block such combinations by
introducing the appropriate penalty term. The spectrum of VδGQ

is presented in Fig.7, where
we notice indeed a few largest eigenvalues, well separated from the rest of the spectrum.

We can also see in Fig.8 the structure of correlations in VδGQ
and VδGZ

. Such information
could be useful for a general identifiability analysis, though this issue is not investigated further
in this paper. Finally, in Fig.9 we present the comparison of some results obtained for different
number of eigenpairs involved in the limited-memory representation of H and VδG. Note that
the full H has size m = 384. One can see that even with a relatively small number of eigenpairs
both the magnitude and the shape of VδGQ

and VδGZ
are well captured.
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Conclusions

In this paper we introduce the control set design concept. The need for such procedure arises
in solving DA problems for models with multiple heterogeneous inputs containing significant
uncertainties. In one hand, it looks appealing to include all the uncertainty-bearing inputs
into the (active) control set. On the other hand, there are different reasons against such a
straightforward approach. Some of them are discussed in Introduction. In order to design the
control set one must be able to quantify its performance in terms of the uncertainty level in
specially chosen goal-functions (QoI). Those sets for which this level is acceptable from the
practical point of view are called ’sufficient’.

Technically, our method is a generalization of the standard variational UQ method. That is,
the full set of the uncertainty-bearing model inputs is divided into the active and passive sets,
each affecting the goal-function uncertainty covariance in different ways. The implementation
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is ’matrix free’ in the sense that the limited-memory representations of the operators are used.
These are constructed by means of the Lanczos procedure. Because of this, the method may be
suitable for high-dimensional problems, though it still depends on the eigenvalue distribution
of the operators involved. Let us note that the variational UQ method is only valid for mildly
nonlinear models. For strongly nonlinear high-dimensional models the reduced-order modelling
option has to be considered.

The method has been applied in the area of river hydraulics, using SIC2 model. To the best
of our knowledge, this is the first time when: a) the variational UQ method has been applied
to an observed hydraulic system; b) the hydraulic system has been investigated in the context
of the control set design. Two tests have been considered. In the first one the inflow discharge
estimation problem under uncertainty in bathymetry (bed elevation and dilation coefficient)
and the bed roughness (Strickler coefficient) is considered. The numerical experiments show
that, for the chosen goal-functions, the sufficient control set must include the inflow discharge
and bed elevation, whereas the Strickler coefficient and the dilation coefficient should not be
controlled. It is known from the hydraulic theory that, in a steady-state regime, the bed slope
and friction are related via the Manning equation. Therefore, they cannot be resolved in the
steady-state (equifinality). In the transient regime, controlling both may still cause difficulties
during the minimization procedure. These have been repeatedly encountered as reported in
[11]. Using our method the accuracy loss due to not considering the Strickler and dilation
coefficients as control variables has been accessed.

In the second test we consider the problem with several unknown inflow discharges. It is
assumed that all other model inputs contain no uncertainty. In practice, knowing all tribu-
taries seems impossible, particularly during the ’rain’ season. Thus, they can be considered
as spatially distributed time-dependent source terms in the continuity equation. The exper-
iments have shown that all inflows in the area between two surface elevation sensors can be
simulated by one lumped time-dependent inflow discharge imposed at a node which is nearest
to the downstream sensor. Again, the accuracy loss due to this simplification has been properly
accessed.

The suggested method offers an additional dimension in design of DA systems. Indeed, it is
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more usual to talk about design of observations. More generally, one could talk about optimal
experimental design, which also includes the possibility to influence the system response. In
hydraulics this can be done using devices (gates, weirs, etc.) The future work may include a
few directions. One of them is the design of integrated controls, i.e. controls which may include
certain combinations of the existing model inputs or invariants (e.g. characteristic variables).
Another direction is ’globalization’ of the method and its use in the framework of stochastic
UQ methods (e.g. MCMC) to accelerate the latter.
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Appendix I. Short description of the SIC2 model

SIC2 is a hydrodynamic model that has been developed at IRSTEA (CEMAGREF) for more
than 30 years. It is an industrial software distributed to different type of users, including
consultant companies, irrigation canal managers, engineering schools and universities all over
the world (France, Spain, Italy, Portugal, Netherlands, England, Germany, Morocco, Tunisia,
Egypt, Senegal, USA, Mexico, Pakistan, Iraq, Sri Lanka, Vietnam, China, etc). It has many
innovative features, that make it the leader among this type of software, for some specific
applications including irrigation canal design, irrigation canal manual or automatic control,
and data assimilation.

The basic features of the SIC2 model are as follows:
a) the model is based on the full Saint-Venant 1D non-linear partial derivative equations;
b) the model is discretized using the semi-implicit Preissmann scheme [28], for its brief descrip-
tion see Appendix III;
c) two-step solution approach is used: the boundary conditions for the reaches are computed
first, then the water profiles in the reaches are recovered. The second step can be potentially
implemented in a parallel setting;
d) in the version of SIC2 used, only subcritical flows are allowed in the unsteady mode, but
local critical and supercritical flows can be managed within the cross-devices 3;
e) the canal can be composed of a minor, medium (with a different Strickler coefficient) and
major bed (can be used as a storage area during the canal overflow events) and ponds at nodes.
The minor - medium bed interactions are modelled using the Debord formula, validated on
large laboratory experiments, giving better results than the more classical Divided Channel
Method [9];
f) the model allows the pressurized flow conditions using the Preissmann slot approach;
g) the model has two separate modules: one calculating real steady flow solutions, even in

3In the recent versions of SIC2 the supercritical flow regime is supported in both steady and unsteady flow
calculation, implementing ideas developed in [30]
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branched and looped networks, without a priori knowledge of flow repartition, and one calcu-
lating unsteady flow solutions on the same type of networks. The steady flow module is able to
manage any well posed boundary conditions, such as water levels, discharges and rating curves,
at either upstream, downstream or intermediate boundary conditions.

One original and unique feature of SIC2 is to be able to describe any operational rule or
algorithm either of feedforward or feedback type, moving any dynamical cross or lateral device
(gate, weir, pump, etc) using any measurement over the hydraulic system. This allows to
design, test and optimize management rules on irrigation canal, or on rivers having dynamical
devices (dams, hydroelectric power plants, moving weirs, etc). Some predefined algorithms are
already available into a library (ex: PID), even some of them with auto-tuning procedures (ex:
ATV). More advanced algorithms can be implemented using several programming languages
(ex: MatLab, Scilab, Fortran, WDLangage) taking advantage of an embedded interface of
these languages into SIC2. Using this feature some very advanced MIMO (Multi Input, Multi
Output) automatic controllers have been tested such as LQG, ℓ1, H∞ [23].

Another original and unique feature of SIC2 is its capability to model complex hydraulic
structures that are encountered on irrigation canals, such as hydrodynamic gates (AMIL, AVIS,
AVIO, Mixte gates). Also, the modelling of more classical devices such as gates and weirs are
modelled in such a way that it allows all possible flow conditions and all continuous transitions
between these conditions.

For a detailed description of the model see [22] and the User’s Manual at the website:
http://sic.g-eau.net.

Appendix II. Details of using the AD

A1. Computing the Hessian-vector product

The task is to produce a code for computing the Hessian-vector product H̃ · v by (3.22). We
start from subroutine forward(U, U∗, Y ∗, J(U)), which calls subroutines model(U, Y ∗, J(U))
and costB(U, U∗, J(U)). The latter evaluates the background term in the cost function (3.11).
Subroutine costO(C(X|t), Y

∗, J(U)), which evaluates the residual term in (3.11), is called from
inside the time loop in model().

First, we create subroutine forwardH(U, Y ∗, J(U)) by removing call costB(U, U∗, J(U))
from forward(). By differentiating forwardH(·) (output J(U) with respect to input U , the
’tangent’ mode) we get the following TL subroutines:
forwardH d (U, U d, Y ∗, J(U), J(U) d),
model d(U, U d, Y ∗, J(U), J(U) d),
costO d(C(X|t), C(X|t) d, Y ∗, J(U), J(U) d).
In forwardH d(), the input variable U d is the vector of perturbations in U , the output
variable J(U) d is the associated perturbation in the cost-function J(U). In model d() the se-
quence of operators involved with computing the state X totally replicates the one in model(),
whereas the state perturbation X d is computed alongside the state X . Similarly, by differen-
tiating forwardH() under the ’reverse’ mode we get the adjoint subroutines:
forwardH b (U, U b, Y ∗, J(U), J(U) b),
model b(U, U b, Y ∗, J(U), J(U) b),
costR b (C(X|t), C(X|t) b, Y ∗, J(U), J(U) b).
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In forwardH b, the input variable J(U) b gives the scale of adjoint perturbation, the output
variable U b contains the adjoint sensitivities J ′

U(U).
The structure of forwardH b () is as follows. First, it calls model(), then model b().

In turn, model b() consists of two blocks. The first block simply replicates the sequence of
operators in model() with the difference that the system’s trajectory is ’pushed’ into mem-
ory, when necessary. This trajectory is ’popped’ out from memory and used in the second
block of model b(), which actually implements the adjoint model. The first call to model() in
forwardH b () is, therefore, redundant and must be removed.

The Hessian-vector product H̃ ·v in (3.22) is defined by the successive solution of the tangent
linear and adjoint models. The information exchange between the two models takes place in
the observation space Y . The code for computing H̃ · v could be constructed on a basis of
model b(). One approach would be to insert manually the code lines from model d involved
with computing X d at appropriate locations in the first block of model b, which must be
identified from model d. Another approach would be to substitute the first block in model b()
by the operator sequence frommodel d(), in which case one must introduce the ’push’ operators
at appropriate locations as in the original version of model b(). Then, the information transfer
from the TL to adjoint model has to be arranged. Unfortunately, both approaches require a
very substantial manual post-processing of model b().

Since the manual interventions have to be minimized, a better way would be to generate an
approximation to the desired modification of model b by the AD tool. One possible approach is
presented below. First, we create modelH d(), that is different from model d() in a way that is
calls costO() instead of costO d(). Next, we modify forwardH d(), so that it callsmodelH d()
instead of model d() . The adjoint code is obtained by differentiating forwardH d() (output
J(U) with respect to input U , the ’reverse’ mode). As a result we get the adjoint subroutines:
forwardH d b (U, U b, U d, Y ∗, J(U), J(U) b, J(U) d),
modelH d b(U, U b, U d, Y ∗, J(U), J(U) b, J(U) d),
costO b(C(X|t), C(X|t) b, Y ∗, J(U), J(U) b).

The following modifications in modelH d b() must be introduced to provide the informa-
tion exchange from the TLM to the adjoint:
1. add push(C(X|t) d) right after the existing push(C(X|t)) in the first block;
2. add pop(C(X|t) d) just before the existing pop(C(X|t)) in the second block;
3. in the existing call costO b(C(X|t), C(X|t) b, Y ∗, J(U), J(U) b) substitute C(X|t) by C(X|t) d,
and use Y ∗ ≡ 0.

Then, calling forwardH d b () with U d = v we obtain (R′
U (Ū))∗O−1R′

U(Ū) · v = U b,
which is a key part of (3.22).

A2. Computing the covariance-vector product

We start from the forward subroutine forwardG(U,G(U)), which calls modelG(U,G(U)). The
latter includes call to costG(D(X|t), G(U)), which computes the QI-vector G(U). Otherwise,
it is exactly the same as the previously considered model(U, Y ∗, J(U)). Here we follow the
approach presented in Sec. 9.2. Thus, the first step is to generate the TL model. By differen-
tiating forwardG using the ’tangent’ mode (output G(U) (vector!) with respect to input U)
we get the TL subroutines:
forwardG d (U, U d,G(U), G(U) d),
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modelG d(U, U d, Y ∗ ≡ 0, G(U), G(U) d),
costG d(D(X|t), D(X|t) d,G(U), G(U) d).
We modify modelG d() by substituting call costG d(D(X|t), D(X|t) d,G(U), G(U) d) by
call costG(D(X|t), G(U)). The adjoint code is obtained by differentiating forwardG d() using
the ’reverse’ mode (output G(U) with respect to input U). As a result we get the adjoint
subroutines:
forwardG d b (U, U b, U d,D(U), D(U) b,D(U) d),
modelG d b(U, U b, U d, Y ∗, D(U), D(U) b,D(U) d).

Let us note that for computing VδG · v by the formula (3.21) the adjoint operator is applied
to the input vector first. Thus, the information transfer from the adjoint to the TLM takes
places in the control space U , which makes the transfer issue trivial. That is, v ∈ G must be
supplied in D(U) b in forwardG d b, the output u ∈ U is presented in U b. Then u = VδU · u
must be supplied in U d, the final result VδG · v ∈ G can be read from D(U) d.

The only modification needed is related to the fact that in modelG d b the forward and the
TL models are running first (first block), the adjoint model is running second (second block),
whereas it must be vice versa. This can be achieved as follows. Let us introduce a logical
variable mode as follows:
subroutine forwardG d b (mode, . . .)
. . .
call modelG d b(mode, . . .)
. . .
end forwardG d b

subroutine modelG d b(mode, . . .)
. . .
SAV E
if(mode = 1)then block1 (forward/TLM)
if(mode = 2)then block2 (adjoint)
end modelG d b

Then, the Lanczos driver must include the call to forwardG d b (mode = 1, · · · ) before
starting iterations. This will provide the system trajectory, needed for running the adjoint
model for the very first time. However, inside the main loop, the sequence of calls must be:
call forwardG d b (mode = 2, · · · )
compute v = VδG · v
call forwardG d b (mode = 1, · · · ).

Appendix III. Preissmann discretization scheme

Let us consider a function f(x, t) discretized using the stensil presented in Fig.10. We denote
the time increment ∆fi = f j+1

i −f j
i , and define f(x, t) and its derivatives at point M as follows:

f |M = (1− θ)
f j
i + f j

i+1

2
+ θ

f j+1
i + f j+1

i+1

2
=

f j
i + f j

i+1

2
+ θ

∆fi+1 +∆fi
2

,
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Figure 10: Preissmann discretization stencil
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where θ is the Preissmann implicitation coefficient. Applying the above formulas to equations
(7.63)-(7.64) one gets a system of linear algebraic equations for ∆fi , i = 1, . . . n, with the two-
block-diagonal matrix, each block having dimension 2×2. This system is solved by performing
the forward and backward sweeps. A few iterations at each time step are necessary to resolve
the nonlinearity. This is the essence of the Preissmann method.
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