
HAL Id: hal-01930623
https://hal.science/hal-01930623

Submitted on 22 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consensus Strings with Small Maximum Distance and
Small Distance Sum

Laurent Bulteau, Markus L. Schmid

To cite this version:
Laurent Bulteau, Markus L. Schmid. Consensus Strings with Small Maximum Distance and Small
Distance Sum. 43rd International Symposium on Mathematical Foundations of Computer Science
(MFCS 2018)., Aug 2018, Liverpool, United Kingdom. �10.4230/LIPIcs.MFCS.2018.1�. �hal-01930623�

https://hal.science/hal-01930623
https://hal.archives-ouvertes.fr

Consensus Strings with Small Maximum Distance1

and Small Distance Sum2

Laurent Bulteau3

Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM, F-77454,4

Marne-la-Vallée, France5

laurent.bulteau@u-pem.fr6

Markus L. Schmid7

Fachbereich 4 – Abteilung Informatikwissenschaften, Universität Trier, 54286 Trier, Germany8

mlschmid@mlschmid.de9

Abstract10

The parameterised complexity of consensus string problems (Closest String, Closest Sub-11

string, Closest String with Outliers) is investigated in a more general setting, i. e., with12

a bound on the maximum Hamming distance and a bound on the sum of Hamming distances13

between solution and input strings. We completely settle the parameterised complexity of these14

generalised variants of Closest String and Closest Substring, and partly for Closest15

String with Outliers; in addition, we answer some open questions from the literature re-16

garding the classical problem variants with only one distance bound. Finally, we investigate the17

question of polynomial kernels and respective lower bounds.18

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-19

pleteness, Theory of computation → Fixed parameter tractability, Theory of computation → W20

hierarchy21

Keywords and phrases Consensus String Problems, Closest String, Closest Substring, Parame-22

terised Complexity, Kernelisation23

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.124

1 Introduction25

Consensus string problems have the following general form: given input strings S =26

{s1, . . . , sk} and a distance bound d, find a string s with distance at most d from the27

input strings. With the Hamming distance as the central distance measure for strings,28

there are two obvious types of distance between a single string and a set S of strings: the29

maximum distance between s and any string from S (called radius) and the sum of all30

distances between s and strings from S (called distance sum). The most basic consensus31

string problem is Closest String, where we get a set S of k length-` strings and a bound32

d, and ask whether there exists a length-` solution string s with radius at most d. This33

problem is NP-complete (see [?]), but fixed-parameter tractable for many variants (see [?]),34

including the parameterisation by d, which in biological applications can often be assumed35

to be small (see [?,?]). A classical extension is Closest Substring, where the strings of S36

have length at most `, the solution string must have a given length m and the radius bound d37

is w. r. t. some length-m substrings of the input strings. A parameterised complexity analysis38

(see [?,?,?]) has shown Closest Substring to be harder than Closest String. If we39

bound the distance sum instead of the radius, then Closest String collapses to a trivial40

problem, while Closest Substring, which is then called Consensus Patterns, remains41

© Laurent Bulteau and Markus L. Schmid;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 1; pp. 1:1–1:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:laurent.bulteau@u-pem.fr
mailto:mlschmid@mlschmid.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Consensus Strings with Small Maximum Distance and Small Distance Sum

NP-complete. Closest String with Outliers is a recent extension, which is defined like42

Closest String, but with the possibility to ignore a given number of t input strings.43

The main motivation for consensus string problems comes from the important task of44

finding similar regions in DNA or other protein sequences, which arises in many different45

contexts of computational biology, e. g., universal PCR primer design [?, ?, ?, ?], genetic46

probe design [?], antisense drug design [?,?], finding transcription factor binding sites in47

genomic data [?], determining an unbiased consensus of a protein family [?], and motif-48

recognition [?,?,?]. The consensus string problems are a formalisation of this computational49

task and most variants of them are NP-hard. However, due to their high practical relevance,50

it is necessary to solve them despite their intractability, which has motivated the study of51

their approximability, on the one hand, but also their fixed-parameter tractability, on the52

other (see the survey [?] for an overview of the parameterised complexity of consensus string53

problems). This work is a contribution to the latter branch of research.54

Problem Definition. Let Σ be a finite alphabet, Σ∗ be the set of all strings over Σ,55

including the empty string ε and Σ+ = Σ∗ \ {ε}. For w ∈ Σ∗, |w| is the length of w and,56

for every i, 1 ≤ i ≤ |w|, by w[i], we refer to the symbol at position i of w. For every57

n ∈ N ∪ {0}, let Σn = {w ∈ Σ∗ | |w| = n} and Σ≤n =
⋃n

i=0 Σi. By �, we denote the58

substring relation over the set of strings, i. e., for u, v ∈ Σ∗, u� v if v = xuy, for some59

x, y ∈ Σ∗. We use the concatenation of sets of strings as usually defined, i. e., for A, B ⊆ Σ∗,60

A ·B = {uv | u ∈ A, v ∈ B}.61

For strings u, v ∈ Σ∗ with |u| = |v|, dH(u, v) is the Hamming distance between u and v.62

For a multi-set S = {ui | 1 ≤ i ≤ n} ⊆ Σ` and a string v ∈ Σ`, for some ` ∈ N, the radius of S63

(w. r. t. v) is defined by rH(v, S) = max{dH(v, u) | u ∈ S} and the distance sum of S (w. r. t. v)64

is defined by sH(v, S) =
∑

u∈S dH(v, u).1 Next, we state the problem (r, s)-Closest String65

in full detail, from which we then derive the other considered problems:66

(r, s)-Closest String67

Instance: Multi-set S = {si | 1 ≤ i ≤ k} ⊆ Σ`, ` ∈ N, and integers dr, ds ∈ N.68

Question: Is there an s ∈ Σ` with rH(s, S) ≤ dr and sH(s, S) ≤ ds?69

For (r, s)-Closest Substring, we have S ⊆ Σ≤` and an additional input integer m ∈ N, and70

we ask whether there is a multi-set S′ = {s′i | s′i� si, 1 ≤ i ≤ k} ⊆ Σm with rH(s, S′) ≤ dr and71

sH(s, S′) ≤ ds. For (r, s)-Closest String with Outliers (or (r, s)-Closest String-wo72

for short) we have an additional input integer t ∈ N, and we ask whether there is a multi-73

set S′ ⊆ S with |S′| = k − t such that rH(s, S′) ≤ dr and sH(s, S′) ≤ ds. We also call74

(r, s)-Closest String the general variant of Closest String, while (r)-Closest String75

and (s)-Closest String denote the variants, where the only distance bound is dr or ds,76

respectively; we shall also call them the (r)- and (s)-variant of Closest String. Analogous77

notation apply to the other consensus string problems. The problem names that are also com-78

monly used in the literature translate into our terminology as follows: Closest String = (r)-79

Closest String, Closest Substring = (r)-Closest Substring, Consensus Patterns80

= (s)-Closest Substring and Closest String-wo = (r)-Closest String-wo.81

The motivation for our more general setting with respect to the bounds dr and ds is the82

following. While the distance measures of radius and distance sum are well-motivated, they83

have, if considered individually, also obvious deficiencies. In the distance sum variant, we84

1 Note that we slightly abuse notation with respect to the subset relation: for a multi-set A and a set B,
A ⊆ B means that A′ ⊆ B, where A′ is the set obtained from A by deleting duplicates; for multi-sets
A, B, A ⊆ B is defined as usual. Moreover, whenever it is clear from the context that we talk about
multi-sets, we also simply use the term set.

L. Bulteau and M. L. Schmid 1:3

may consider strings as close enough that are very close to some, but totally different to the85

other input strings. In the radius variant, on the other hand, we may consider strings as too86

different, even though they are very similar to all input strings except one, for which the87

bound is exceeded by only a small amount. Using an upper bound on the distance per each88

input string and an upper bound on the total sum of distances caters for these cases.289

For any problem K, by K(p1, p2, . . .), we denote the variant of K parameterised by the90

parameters p1, p2, For unexplained concepts of parameterised complexity, we refer to the91

textbooks [?,?,?].92

Known Results. In contrast to graph problems, where interesting parameters are often93

hidden in the graph structure, string problems typically contain a variety of obvious, but94

nevertheless interesting parameters that could be exploited in terms of fixed-parameter95

tractability. For the consensus string problems these are the number of input strings k,96

their length `, the radius bound dr, the distance sum bound ds, the alphabet size |Σ|, the97

substring length m (in case of (r, s)-Closest Substring), the number of outliers t and98

inliers k− t (in case of (r, s)-Closest String-wo). This leads to a large number of different99

parameterisations, which justifies the hope for fixed-parameter tractable variants.100

The parameterised complexity (w. r. t. the above mentioned parameters) of the radius101

as well as the distance sum variant of Closest String and Closest Substring has102

been settled by a sequence of papers (see [?, ?, ?, ?, ?] and, for a survey, [?]), except103

(s)-Closest Substring with respect to parameter `, which has been neglected in these104

papers and mentioned as an open problem in [?], in which it is shown that the fixed-parameter105

tractability results from (r)-Closest String carry over to (r)-Closest Substring, if we106

additionally parameterise by (`−m). The parameterised complexity analysis of the radius107

variant of Closest String with Outliers has been started more recently in [?] and, to108

the knowledge of the authors, the distance sum variant has not yet been considered.109

The parameterised complexity of the general variants, where we have a bound on both the110

radius and the distance sum, has not yet been considered in the literature. While there are111

obvious reductions from the (r)- and (s)-variants to the general variant, these three variants112

describe, especially in the parameterised setting, rather different problems.113

Our Contribution. In this work, we answer some open questions from the literature114

regarding the (r)- and (s)-variants of the consensus string problems, and we initiate the115

parameterised complexity analysis of the general variants.116

We extend all the FPT-results from (r)-Closest String to the general variant; thus, we117

completely settle the fixed-parameter tractability of (r, s)-Closest String. While for some118

parameterisations, this is straightforward, the case of parameter dr follows from a non-trivial119

extension of the known branching algorithm for (r)-Closest String(dr) (see [?]).120

For (r, s)-Closest Substring, we classify all parameterised variants as being in FPT or121

W[1]-hard, which is done by answering the open question whether (s)-Closest Substring(`)122

is in FPT (see [?]) in the negative (which also settles the parameterised complexity of123

(s)-Closest Substring) and by slightly adapting the existing FPT-algorithms.124

Regarding (r, s)-Closest String-wo, we solve an open question from [?] w. r. t. the125

radius variant, we show W[1]-hardness for a strong parameterisation of the (s)-variant, we126

show fixed-parameter tractability for some parameter combinations of the general variant and,127

as our main result, we present an FPT-algorithm (for the general variant) for parameters dr128

2 To the knowledge of the authors, optimising both the radius and the distance sum has been considered
first in [?], where algorithms for the special case k = 3 are considered.

MFCS 2018

1:4 Consensus Strings with Small Maximum Distance and Small Distance Sum

and t (which is the same algorithm that shows (r, s)-Closest String(dr) ∈ FPT mentioned129

above). Many other cases are left open for further research.130

Finally, we investigate the question whether the fixed-parameter tractable variants of the131

considered consensus string problems allow polynomial kernels; thus, continuing a line of work132

initiated by Basavaraju et al. [?], in which kernelisation lower bounds for (r)-Closest String133

and (r)-Closest Substring are proved. Our respective main result is a cross-composition134

from (r)-Closest String into (r)-Closest String-wo.135

Due to space constraints, proofs for results marked with (∗) are omitted.136

2 Closest String and Closest String-wo137

In this section, we investigate (r, s)-Closest String and (r, s)-Closest String-wo (and138

their (r)- and (s)-variants) and we shall first give some useful definitions.139

It will be convenient to treat a set S = {si | 1 ≤ i ≤ k} ⊆ Σ` as a k × ` matrix with140

entries from Σ. By the term column of S, we refer to the transpose of a column of the matrix141

S, which is an element from Σk; thus, the introduced string notations apply, e. g., if c is the142

ith column of S, then c[j] corresponds to sj [i]. A string s ∈ Σ` is a majority string (for a143

set S ⊆ Σ`) if, for every i, 1 ≤ i ≤ `, s[i] is a symbol with majority in the ith column of S.144

Obviously, sH(s, S) = min{sH(s′, S) | s′ ∈ Σ`} if and only if s is a majority string for S. We145

call a string s ∈ Σ` radius optimal or distance sum optimal (with respect to a set S ⊆ Σ`) if146

rH(s, S) = min{rH(s′, S) | s′ ∈ Σ`} or sH(s, S) = min{sH(s′, S) | s′ ∈ Σ`}, respectively.147

It is a well-known fact that (r)-Closest String allows FPT-algorithms for any of the148

single parameters k, dr or `, and it is still NP-hard for |Σ| = 2 (see [?]). While the latter149

hardness result trivially carries over to (r, s)-Closest String (by setting ds = k dr), we150

have to modify the FPT-algorithms for extending the fixed-parameter tractability results151

to (r, s)-Closest String. We start with parameter k, for which we can extend the ILP-152

approach that is used in [?] to show (r)-Closest String(k) ∈ FPT.153

I Theorem 1 (*). (r, s)-Closest String(k) ∈ FPT.154

Next, we consider the parameter dr. For the (r)-variant of (r, s)-Closest String,155

the fixed-parameter tractability with respect to dr is shown in [?] by a branching algo-156

rithm, which proved itself as rather versatile: it has successfully been extended in [?] to157

(r)-Closest String-wo(dr, t) and in [?] to (r)-Closest Substring(dr, (`−m)).158

We propose an extension of the same branching algorithm, that allows for a bound ds on the159

distance sum; thus, it works for (r, s)-Closest String(dr). In fact, we prove in Theorem 7160

an even stronger result, where we also extend the algorithm to exclude up to t outlier strings161

from the input set S, i. e., we extend it to the problem (r, s)-Closest String-wo(dr, t).162

Since Theorem 3 can therefore be seen as a corollary of this result by taking t = 0, we only163

give an informal description of a direct approach that solves (r, s)-Closest String(dr) (and164

refer to Theorem 7 for a formal proof).165

The core idea is to apply the branching algorithm starting with the majority string for166

the input set S, instead of any random string from S. Then, as in [?], the algorithm would167

replace some characters of the current string with characters of the solution string. This way,168

it can be shown that the distance sum of the current string is always a lower bound of the169

distance sum of the optimal string, which allows to cut any branch where the distance sum170

goes beyond the threshold ds. We prove the following lemma, which allows to bound the171

depth of the search tree (and shall also be used in the proof of Theorem 7 later on):172

L. Bulteau and M. L. Schmid 1:5

k dr ds |Σ| ` Result Note/Ref.

p – – – – FPT Thm. 1
– p – – – FPT Thm. 3
– – p – – FPT Cor. 4
– – – 2 – NP-hard from (r)-variant [?]
– – – – p FPT Cor. 4

Table 1 Results for (r, s)-Closest String.

I Lemma 2 (*). Let S ⊆ Σ`, s ∈ Σ` such that rH(s, S) ≤ dr, and let sm be a majority string173

for S. Then dH(sm, s) ≤ 2dr.174

I Theorem 3. (r, s)-Closest String(dr) ∈ FPT.175

Obviously, we can assume dr ≤ ` and we can further assume that every column of S176

contains at least two different symbols (all columns without this property could be removed),177

which implies sH(si, S) ≥ ` for every s ∈ Σ`; thus, we can assume ` ≤ ds. Consequently, we178

obtain the following corollary:179

I Corollary 4. (r, s)-Closest String(`) ∈ FPT, (r, s)-Closest String(ds) ∈ FPT.180

This completely settles the parameterised complexity of (r, s)-Closest String with181

respect to parameters k, dr, ds, |Σ| and `; recall that the (r)-variant is already settled, while182

the (s)-variant is trivial.183

2.1 (r, s)-Closest String-wo184

We now turn to the problem (r, s)-Closest String-wo and we first prove several fixed-185

parameter tractability results for the general variant; in Sec. 2.2, we consider the (r)- and186

(s)-variants separately.187

First, we note that solving an instance of (r, s)-Closest String-wo(k) can be reduced188

to solving f(k) many (r, s)-Closest String(k)-instances, which, due to the fixed-parameter189

tractability of the latter problem, yields the fixed-parameter tractability of the former.190

I Theorem 5 (*). (r, s)-Closest String-wo(k) ∈ FPT.191

If the number k − t of inliers exceeds ds, then an (r, s)-Closest String-wo-instance192

becomes easily solvable; thus, k − t can be bounded by ds, which yields the following result:193

I Theorem 6 (*). (r, s)-Closest String-wo(ds, t) ∈ FPT.194

The algorithm introduced in [?] to prove (r)-Closest String(dr) ∈ FPT has been195

extended in [?] with an additional branching that guesses whether a string sj should be consid-196

ered an outlier or not; thus, yielding fixed-parameter tractability of (r)-Closest String-wo(dr, t).197

We present a non-trivial extension of this algorithm, with a carefully selected starting string,198

to obtain the fixed-parameter tractability of (r, s)-Closest String-wo(dr, t) (and, as ex-199

plained in Section 2, also of (r, s)-Closest String(dr)):200

I Theorem 7. (r, s)-Closest String-wo(dr, t) ∈ FPT.201

Proof. Let (S, ds, dr, t) be a positive instance of (r, s)-Closest String-wo(dr, t) with k ≥202

5t (otherwise k can be considered as a parameter). A character x is frequent in column i if it203

MFCS 2018

1:6 Consensus Strings with Small Maximum Distance and Small Distance Sum

Input: s1 = d b a d d c b c d b b d b b
dr = 5 s2 = d a a a a c b c d c c d b d
ds = 14 s3 = d a a d d a b c a c c d b d
t = 2 s4 = a a c d a c c d c c c a b d

s5 = a a c d a a b d a c c a d d
D = 10 s6 = a c a a a a b c d d b a d d

Step S′ t s′ d rH(s′, S′) action
1 {s1, s2, . . . , s6} 2 � a � � � � b � � c � � � d 20 13 s[3]← s1[3]
2 {s1, s2, . . . , s6} 2 � a a � � � b � � c � � � d 19 12 s[12]← s1[12]
3 {s1, s2, . . . , s6} 2 � a a � � � b � � c � d � d 18 11 remove s6
4 {s1, s2, . . . , s5} 1 � a a � � � b � � c � d � d 18 11 s[6]← s1[6]
5 {s1, s2, . . . , s5} 1 � a a � � c b � � c � d � d 17 10 remove s5
6 {s1, . . . , s4} 0 � a a � � c b � � c � d � d 17 10

s′′ = d a a d a c b c d c c d b d s[7]← s4[7]
7 {s1, . . . , s4} 0 � a a � � c c � � c � d � d 16 10

s′′ = d a a d a c c c d c c d b d return S′, s′′

Figure 1 Example for Algorithm 1 on an instance of (r, s)-Closest String-wo. The shown
steps correspond to one branch that yields a correct solution. The algorithm starts with the majority
string where disputed characters are replaced by �. At each step, the algorithm either inserts a
character from an input string at maximal distance from s′ (note that even non-disputed characters
may be replaced), or removes one such string. When t = 0, it is checked whether the completion s′′

of s′ is a correct solution. At step 7, we return a solution with rH(s′′, S′) = 5 and sH(s′′, S′) = 14.

has at least as many occurrences as the majority character minus t (thus, for any S′ ⊆ S,204

|S′| ≥ |S| − t, all majority characters for S′ are frequent characters). A column i is disputed205

if it contains at least two frequent characters. Let D be the number of disputed columns.206

Let (S∗, s∗) be a solution for this instance. In a disputed column i, no character207

occurs more than k+t
2 times, hence, among the k − t strings of S∗, there are at least208

(k− t)− k+t
2 = k−3t

2 mismatches at position i. The disputed columns thus introduce at least209

D k−3t
2 mismatches. Since the overall number of mismatches is upper-bounded by dr(k − t),210

we have D ≤ 2dr(k−t)
k−3t = 2dr

(
1 + 2t

k−3t

)
, and, with k ≥ 5t, the upper-bound D ≤ 4dr follows.211

We introduce a new character � /∈ Σ. A string s′ ∈ (Σ ∪ {�})` is a lower bound for a212

solution s∗, if, for every i such that s′[i] 6= s∗[i], either i is a disputed column and s′[i] = �, or213

i is not disputed and s′[i] is the majority character for column i of S∗ (which is equal to the214

majority character for column i of S). Intuitively speaking, whenever a character s′[i] differs215

from s∗[i], it is the majority character of its column (except for disputed columns in which216

we use an “undecided” character �). Finally, the completion for S′ of a string s′ ∈ (Σ∪ {�})∗217

is the string obtained by replacing each occurrence of � by a majority character of the218

corresponding column in S′.219

We now prove that Algorithm 1 solves (r, s)-Closest String-wo in time at most220

O∗((dr + 1)6dr 26dr+t), using the following three claims (see Figure 1 for an example).221

Claim 1: Any call to Solve Closest String-wo(S′, t, s′, d) always returns after a time222

O∗((dr + 1)d2d+t)223

Proof of Claim 1: We prove this running time by induction: if d = t = 0, then the function224

returns in Line 3 or 4; thus, it returns after polynomial time. Otherwise, it performs at most225

L. Bulteau and M. L. Schmid 1:7

ALGORITHM 1: Solve Closest String-wo
Input : S′ ⊆ S, t ∈ N, s′ ∈ (Σ ∪ {�})`, d ∈ N
Output : a pair (S∗, s∗) or the symbol O

1 if t = 0 then
2 s′′ = completion of s′ in S′;
3 if sH(s′′, S′) ≤ ds, and rH(s′′, S′) ≤ dr then return (S′, s′′);
4 if d = 0 then return O;
5 Let sj ∈ S′ be such that dH(s′, sj) is maximal;
6 if t > 0 then
7 sol = Solve Closest String-wo(S′ \ {sj}, t− 1, s′, d);
8 if sol 6= O then return sol;
9 if d > 0 then

10 Let I ⊆ {1, . . . , `} contain dr + 1 indices i s. t. s′[i] 6= sj [i] (or all indices if dH(sj , s′) ≤ dr);
11 for i ∈ I do
12 s′′ = s′, s′′[i] = sj [i];
13 sol = Solve Closest String-wo(S′, t, s′′, d− 1);
14 if sol 6= O then return sol;
15 return O;

dr +1 recursive calls with parameters (d−1, t), and one recursive call with parameters (d, t−1).226

By induction, the complexity of this step is O∗((dr +1)(dr +1)d−12d+t−1 +(dr +1)d2d+t−1) =227

O∗((dr + 1)d2d+t). J (Claim 1)228

A tuple (S′, t′, s′, d) is valid if |S′| − t′ = |S| − t, there exists an optimal solution (S∗, s∗) for229

which S∗ ⊆ S′, |S∗| = |S′| − t′, dH(s′, s∗) ≤ d, and s′ is a lower bound for s∗. A call of the230

algorithm is valid if its parameters form a valid tuple, its witness is the pair (S∗, s∗).231

Claim 2: Any valid call to Solve Closest String-wo either directly returns a solution or232

performs at least one recursive valid call.233

Proof of Claim 2: Let S′ ⊆ Σ`, t′ ≥ 0, s′ ∈ (Σ ∪ {�})`, and d ≥ 0. Consider the call to234

Solve Closest String-wo(S′, t′, s′, d). Assume it is valid, with witness (S∗, s∗).235

Case 1: If d = t′ = 0, then s∗ = s′ and S∗ = S′. The completion s′′ of s′ is exactly s′, and236

since (S′, s′) is a solution, it satisfies the conditions of Line 3 and is returned on Line 3.237

Case 2: If t′ = 0 and ∀s ∈ S′ : dH(s, s′) ≤ dr. Then S∗ = S′ and s′ is a lower bound for s∗.238

Let s′′ be the completion of s′. We show that sH(s′′, S′) ≤ sH(s∗, S′) ≤ ds. Indeed, consider239

any column i with s′′[i] 6= s∗[i]. Either s′[i] = �, in which case s′′[i] is the majority character240

for column i of S′, or s′[i] 6= �, in which case by the definition of lower bound, i is not a241

disputed column and s′[i] = s′′[i] contains the only frequent character of this column, which242

is the majority character for S′. In both cases, s′′[i] is a majority character for S′ in any243

column where it differs from s∗; thus, it satisfies the upper-bound on the distance sum. Since244

it also satisfies the distance radius (by the case hypothesis: dH(s, s′′) ≤ dH(s, s′) ≤ dr for all245

s ∈ S′), it satisfies the conditions of Line 3; thus, solution (S′, s′′) is returned on Line 3.246

In the following cases, we can thus assume that the algorithm reaches Line 5. Indeed,247

if it returns on Line 3 then it returns a solution, and if it returns on Line 4 then we have248

d = t′ = 0, which is dealt in Case 1 above (the algorithm may not return on this line when it249

has a valid input). We can thus define sj to be the string selected in Line 5.250

Case 3: sj ∈ S′ \ S∗. Then in particular t′ > 0; and since S∗ ⊆ S′ \ {sj}, the recursive call251

in Line 7 is valid, with the same witness (S∗, s∗).252

MFCS 2018

1:8 Consensus Strings with Small Maximum Distance and Small Distance Sum

Case 4: sj ∈ S∗, d = 0 and t′ > 0. Then s′ = s∗, let s′j be any string of S′ \ S∗, and253

S+ = S∗ \ {s′j} ∪ {sj}. Then the pair (S+, s∗) is a solution, since dH(s∗, s′j) ≤ dH(s∗, sj) by254

definition of sj . Thus the recursive call on Line 7 is valid, with witness (S+, s∗).255

Case 5: sj ∈ S∗, d > 0 and dH(sj , s′) > dr. Consider the set I defined in Line 10. I has256

size dr + 1, hence there exists i0 ∈ I such that sj [i0] = s∗[i0]. Then the recursive call with257

parameters (S′, t, s′′, d − 1) in Line 13 with i = i0 is valid with the same witness (S∗, s∗).258

Indeed, s′′ is obtained from s′ by setting s′′[i0] = s∗[i0] 6= s′[i0], hence, all mismatches259

between s′′ and s∗ already exist between s′ and s∗, which implies that s′′ is still a lower260

bound for s∗. Moreover, dH(s′′, s∗) = dH(s′, s∗)− 1 ≤ d− 1.261

From now on, we can assume that d > 0 and t′ > 0. Indeed, d = 0 is dealt with in cases262

1, 3 and 4, and t′ = 0, d > 0 is dealt with in cases 2 and 5. Moreover, with cases 3 and 5, we263

can assume that sj ∈ S∗ and dH(sj , s′) ≤ dr (i.e. dH(s, s′) ≤ dr for all s ∈ S∗).264

Case 6: There exists i0 such that sj [i0] = s∗[i0] 6= s′[i0]. Then again consider the set I265

defined in Line 10. Since dH(sj , s′) ≤ dr, we have i0 ∈ I, and, with the same argument as in266

Case 5, there is a valid recursive call in Line 13 when i = i0.267

Case 7: For all i, sj [i] 6= s′[i] ⇒ sj [i] 6= s∗[i]. In this case no character from sj can be268

used to improve our current solution, so the character switching procedure Line 13 will not269

improve the solution, but still sj is part of our witness set S∗, so it is not clear a priori that270

we can remove sj from our current solution, i.e. that the recursive call on Line 7 is valid.271

We handle this situation as follows. Let s+ be obtained from s′ by filling the �-positions272

of s′ with the corresponding symbols of s∗. We now show that (S∗, s+) is a solution. To this273

end, let s ∈ S∗. For every i, 1 ≤ i ≤ `, if s[i] 6= s+[i], then either s′[i] = � or s′[i] ∈ Σ with274

s′[i] = s+[i]. In both cases, we have s[i] 6= s′[i], which implies dH(s, s+) ≤ dH(s, s′) ≤ dr, i. e.,275

the radius is satisfied. Regarding the distance sum, we note that if s+[i] 6= s∗[i], then, since276

occurrences of � of s′ have been replaced by the corresponding symbol from s∗, s′[i] 6= �,277

which, by the definition of lower bound, implies that s+[i] = s′[i] is the majority character278

for column i of S∗. Consequently,
∑

s∈S∗ dH(s+[i], s[i]) ≤
∑

s∈S∗ dH(s∗[i], s[i]), which implies279

sH(s+, S∗) ≤ sH(s∗, S∗) ≤ ds.280

Having defined a new solution string s+ (with respect to S∗), we now prove that s+ is also a281

solution string with respect to S+ = (S∗\{sj})∪{s′j}, where s′j is any string of S′\S∗. To this282

end, we prove that dH(s′j , s+) ≤ dH(sj , s+); together with the fact that dH(s′j , s′) ≤ dr, this283

implies that (S+, s+) is a solution. For two strings s1, s2 ∈ Σ`, let d�(s1, s2) be the number of284

mismatches between s1 and s2 at positions i such that s′[i] = �, and dΣ(s1, s2) be the number285

of mismatches at other positions. Clearly dH(s1, s2) = d�(s1, s2) + dΣ(s1, s2). Comparing286

strings sj and s′j to s′, we have d�(sj , s′) = d�(s′j , s′) (both distances are equal to the number287

of occurrences of � in s′). Since dH(sj , s′) is maximal, we have dΣ(s′j , s′) ≤ dΣ(sj , s′). Consider288

now s+. Since s+ is equal to s′ in every non-� characters, we have dΣ(s′j , s+) ≤ dΣ(sj , s+).289

Finally, for any i such that s′[i] = �, by hypothesis of this case we have sj [i] 6= s∗[i] = s+[i],290

hence d�(sj , s+) is equal to the number of occurrences of � in s′, which is an upper bound291

for d�(s′j , s+). Overall, d(s′j , s+) ≤ d(sj , s+), and (S+, s+) is a solution.292

Thus, (S+, s+) is a solution such that S+ ⊆ S′ \ {sj}, s′ is a lower bound for s+, and293

dH(s′, s+) ≤ d, hence the recursive call in Line 7 is valid. J (Claim 2)294

It follows from the claim above that any valid call to Solve Closest String-wo returns295

a solution. Indeed, if it does not directly return a solution, then it receives a solution of a296

more constrained instance from a valid recursive call, which is returned on Line 8 or 14.297

Claim 3: Let s′ be the majority string for S where for every disputed column i, s′[i] = �.298

Then Solve Closest String-wo(S, t, s′, 2dr + D) is a valid call.299

L. Bulteau and M. L. Schmid 1:9

Proof of Claim 3: Consider a solution (S∗, s∗). We need to check whether dH(s∗, s′) ≤ 2dr +D,300

and whether s′ is a lower bound of s∗. The fact that s′ is a lower bound follows from the301

definition, since � is selected in every disputed column, and the majority character is selected302

in the other columns. String s∗ can be seen as a solution of (r, s)-Closest String over303

S∗, dr, ds, thus, we can use Lemma 2: the distance between s∗ and the majority string of S∗304

is at most 2dr. Hence there are at most 2dr mismatches between s′ and s∗ in non-disputed305

columns (since in those columns, the majority characters are identical in S and S∗). Adding306

the D mismatches from disputed columns, we get the 2dr + D upper bound. J (Claim307

3) J308

2.2 The (r)- and (s)-Variants of Closest String-wo309

In [?], the fixed-parameter tractability of (r)-Closest String-wo w. r. t. parameter k and310

w. r. t. parameters (|Σ|, dr, k− t) are reported as open problems. Since Theorem 5 also applies311

to (r)-Closest String-wo, the only open cases left for the (r)-variant are the following:312

I Open Problem 8. What is the fixed-parameter tractability of (r)-Closest String-wo313

with respect to (|Σ|, k − t), (|Σ|, dr) and (|Σ|, dr, k − t)?314

Next, we consider the (s)-variant of Closest String-wo. We recall that replacing315

the radius bound by a bound on the distance sum turns (r)-Closest String into a triv-316

ial problem, while (s)-Closest Substring remains hard. The next result shows that317

Closest String-wo behaves like Closest Substring in this regard. For the proof, we318

use Multi-Coloured Clique (which is W[1]-hard, see [?]), which is identical to the319

standard parameterisation of Clique, but the input graph G = (V, E) has a partition320

V = V1 ∪ . . . ∪ Vkc , such that every Vi, 1 ≤ i ≤ kc, is an independent set (we denote the321

parameter by kc to avoid confusion with the number of input strings k).322

I Theorem 9. (s)-Closest String-wo(ds, `, k − t) is W[1]-hard.323

Proof. Let G = (V1 ∪ . . . ∪ Vkc , E) be a Multi-Coloured Clique-instance. We assume324

that, for some q ∈ N, Vi = {vi,1, vi,2, . . . vi,q}, 1 ≤ i ≤ kc, i. e., each vertex has an index325

depending on its colour-class and its rank within its colour-class. Let Σ = V ∪ Γ, where326

Γ is some alphabet with |Γ| = |E|(kc−2). For every e = (vi,j , vi′,j′) ∈ E, let se ∈ Σkc327

with se[i] = vi,j , se[i′] = vi′,j′ and all other non-defined positions are filled with symbols328

from Γ such that each x ∈ Γ has exactly one occurrence in the strings se, e ∈ E. We set329

S = {se | e ∈ E}, t = |E| −
(kc

2
)
(i. e., the number of inliers is

(kc
2
)
) and ds =

(kc
2
)
(kc−2).330

Let K be a clique of G of size kc, let s ∈ Σkc be defined by {s[i]} = K∩Vi, 1 ≤ i ≤ kc, and331

let S′ = {se | e ⊆ K}. Since dH(s, s′) = kc−2, for every s′ ∈ S′, sH(s, S′) = ds. Consequently,332

S′ and s is a solution for the (s)-Closest String-wo-instance S, t, ds.333

Now let s ∈ Σkc and S′ ⊆ S with |S′| =
(kc

2
)
be a solution for the (s)-Closest String-wo-334

instance S, t, ds. If, for some s′1 ∈ S′, dH(s′1, s) ≥ kc−1, then there is an s′2 ∈ S′ with335

dH(s′2, s) ≤ kc−3. Thus, for some i, 1 ≤ i ≤ kc, s[i] = s′2[i] and s′2[i] ∈ Γ, which implies that336

replacing s[i] by s′1[i] does not increase sH(s, S′). Moreover, after this modification, dH(s′1, s)337

has decreased by 1, while dH(s′2, s) ≤ kc−2. By repeating such operations, we can transform338

s such that dH(s′, s) ≤ kc−2, s′ ∈ S′. Next, assume that, for some i, 1 ≤ i ≤ kc, there is an339

S′′ ⊆ S′ with |S′′| = kc and, for every s′ ∈ S′′, s[i] = s′[i]. Since dH(s′, s) ≤ kc−2 for every340

s′ ∈ S′′, pigeon-hole principle implies that there are s′1, s′2 ∈ S′′ with s′1[i′] = s′2[i′] = s[i′], for341

some i′, 1 ≤ i′ ≤ kc, and i′ 6= i, which, by the structure of the strings of S, is a contradiction.342

Consequently, for every i, 1 ≤ i ≤ kc, s matches with at most kc−1 strings from S′ at343

position i. Since there are at least 2
(kc

2
)

= kc(kc−1) matches, we conclude that, for every344

MFCS 2018

1:10 Consensus Strings with Small Maximum Distance and Small Distance Sum

k t |Σ| ` dr ds k − t Result Note/Ref.

p – – – – – – FPT Thm. 5, Open Prob. in [?]
– 0 2 – – – – NP-hard even for dr-var., but P for ds-var.
– p – p – – – FPT dr ≤ `

– p – – p – – FPT Thm. 7, and [?] for dr-var.
– p – – – p – FPT Thm. 6
– p – – – – p FPT k = t + (k − t)
– – p p – – – FPT trivial
– – p – ? ? ? Open param. |Σ| and some of dr, ds, k − t

– – – p p p p W[1]-hard even for dr-var. [?] and ds-var. (Thm. 9)

Table 2 Results for (r, s)-Closest String-wo, including (r)- and (s)-variants.

i, 1 ≤ i ≤ kc, s[i] matches exactly kc − 1 times with the ith position of a string from345

S′. Hence, s[i] ∈ Vi, 1 ≤ i ≤ kc, i. e., s = v1,r1v2,r2 . . . vkc,rkc
, for some rj ∈ {1, 2, . . . , q},346

1 ≤ j ≤ kc. Let K = {v1,r1 , v2,r2 , . . . , vkc,rkc
}. For every s′ ∈ S′, by definition of the strings347

se, we have dH(s, s′) ≥ kc−2, combining with the lower-bound proved ealier, we conclude348

dH(s, s′) = kc−2, for every s′ ∈ S. Now let e = (vi,j , vi′,j′) ∈ E be such that se ∈ S′. From349

dH(s, se) = kc−2 its follows that s[i] = vi,j and s[i′] = vi′,j′ , which implies e ⊆ K. Since350

|S| =
(kc

2
)
, there are

(kc
2
)
edges connecting vertices from K; thus, K is a clique. J351

Setting dr = kc−2 instead of ds =
(kc

2
)
(kc−2) in the reduction of Theorem 9 leads to a352

simpler proof for the W[1]-hardness of (r)-Closest String-wo(dr, `, k− t) shown in [?] (on353

the other hand, the reduction of [?] does not work for (s)-Closest String-wo(ds, `, k− t)).354

The results obtained in this section are summarized in Table 2.355

3 Closest Substring356

In this section, we consider the problem (r, s)-Closest Substring and, as done in Section 2357

for (r, s)-Closest String, we classify all parameterisations of (r, s)-Closest Substring358

(and its (r)- and (s)-variants) with respect to the parameters `, k, m, dr, ds and |Σ| into359

either fixed-parameter tractable or W[1]-hard. Of course, many of those questions are already360

solved in the literature, but, unlike for (r, s)-Closest String, not all cases of the (r)- and361

(s)-variants are settled, i. e., the status of (s)-Closest Substring(`) is unknown, which is362

mentioned as open problem in [?]. We shall first close this gap by defining a reduction from363

Multi-Coloured Clique to (s)-Closest Substring.364

Let G = (V1∪. . .∪Vkc , E) be a Multi-Coloured Clique-instance. We assume that, for365

some q ∈ N, Vi = {vi,1, vi,2, . . . vi,q}, 1 ≤ i ≤ kc, i. e., each vertex has an index depending on366

its colour-class and its rank within its colour-class. Let Σ = V ∪{$, �}. For every j, 1 ≤ j ≤ q,367

we list all jth elements of the colour-classes as a string Vj = $v1,jv2,j . . . vkc,j . For every edge368

e = (vi,j , vi′,j′) with i < i′, we define a string Ee = $�ivi,j�i′−i−1vi′,j′�kc−i′−1. Note that369

Ee = $�E ′e, where |E ′e| = kc, the positions i and i′ of E ′e are vi,j and vi′,j′ , respectively, and all370

remaining positions are �. The (s)-Closest Substring-instance is now defined as follows.371

Let S contain N = |E|(kc +2) + 1 occurrences of each Vj , 1 ≤ j ≤ q, and one occurrence of372

each Ee, e ∈ E, and let m = kc +1. We note that ` = kc +2. See Figure 2 for an example.373

In the following, we extend the notation of radius optimal and distance sum optimal374

to sets S ⊆ Σ≤` and strings s ∈ Σm in the natural way by taking all sets S′ of length-m375

substrings of the string in S into account. The next lemma shows that distance sum optimal376

strings (with respect to S and m) are basically lists of vertices from each colour-class.377

L. Bulteau and M. L. Schmid 1:11

a

b

c

d

e

f

V1 : $ a c e

V2 : $ b d f

E1 : $ � a c �
E2 : $ � a d �
E3 : $ � a � e

E4 : $ � b c �
E5 : $ � b � e

E6 : $ � � c f

E7 : $ � � d e

s : $ a d e

Repeat

N = 36

times

Figure 2 Illustration of the parameterized reduction from a Multi-Coloured Clique-instance
to (s)-Closest Substring. The colour-classes of the graph are V1 = {a, b} (red), V2 = {c, d} (blue)
and V1 = {e, f} (yellow), the occurrences of symbols from V in the strings Vj and Ei are coloured
according to their colour-classes. The string s = $ade is an optimal solution with respect to the
substrings emphasised with grey background (positions producing a match are in bold). Note that
vertices {a, d, e} form a clique in G.

I Lemma 10 (*). If s ∈ Σk+1 is distance sum optimal w. r. t. S, then s ∈ {$} ·V1 ·V2 · . . . ·Vk.378

Now let s be distance sum optimal with respect to S and m. From Lemma 10, we can379

conclude that s = $v1,r1v2,r2 . . . vkc,rkc
, for some rj ∈ {1, 2, . . . , q}, 1 ≤ j ≤ kc. Let K be the380

corresponding set of vertices, i. e., K = {v1,r1 , v2,r2 , . . . , vkc,rkc
}.381

I Lemma 11 (*). Let e ∈ E. The optimal distance between s and a length-(kc +1) substring382

of Ee is kc−1 if e ⊆ K, and kc otherwise.383

Using the lemmas from above, we can now show the correctness of the reduction.384

I Theorem 12. (s)-Closest Substring(`, m) is W[1]-hard.385

Proof. Let s ∈ Σkc +1 be distance sum optimal with respect to S and m, and let K386

be the corresponding set of vertices. We first note that the total distance from s to387

the N copies of the strings Vj , 1 ≤ j ≤ q, is exactly Nq kc. According to Lemma 11,388

for every e ∈ E, the optimal distance sum between s and the respective substring of389

Ee is kc−1 if e ⊆ K, and kc otherwise. Hence, the total distance sum from s to the390

respective substrings of Ee, e ∈ E, is |E| kc−r, where r = {e ∈ E | e ⊆ K}, and the391

total distance sum between s and S is therefore Nq kc +|E| kc−r. This implies that the392

distance sum between s and S is Nq kc +|E| kc−kc(kc−1)
2 if and only if r = kc(kc−1)

2 if and393

only if K is a clique of size kc. Consequently, the above reduction, with the addition of394

ds = Nq kc +|E| kc−kc(kc−1)
2 , is a parameterised reduction from Multi-Coloured Clique395

to (s)-Closest Substring(`, m). J396

As illustrated by Table 3, Theorem 12 together with known results from the literature397

completely settle the parameterised complexity of (s)-Closest Substring.398

Moving on to the problem (r, s)-Closest Substring, we first observe that reducing399

(s)-Closest Substring to (r, s)-Closest Substring by setting dr = m is a parameterised400

MFCS 2018

1:12 Consensus Strings with Small Maximum Distance and Small Distance Sum

` k m ds |Σ| Result Reference

– – p – p FPT trivial
p – – – p FPT [?]
p p – – – FPT [?]
p – – p – FPT [?]
– – – p p FPT [?]
– p – – 2 W[1]-hard [?]
– p p p – W[1]-hard [?]
p – p – – W[1]-hard Thm. 12

Table 3 Results for (s)-Closest Substring.

` k m dr ds |Σ| Result Reference

– – p – – p FPT Thm. 14
p p – – – – FPT Thm. 14
p – – – p – FPT Thm. 14
p – – – – p FPT Thm. 14
p – p p – – W[1]-hard Cor. 13, Open Prob. in [?]
– p – p p p W[1]-hard [?]
– p p p p – W[1]-hard [?]

Table 4 Results for (r, s)-Closest Substring.

reduction from (s)-Closest Substring(`, m) to (r, s)-Closest Substring(`, m, dr), which401

implies the following corollary:402

I Corollary 13. (r, s)-Closest Substring(`, m, dr) is W[1]-hard.403

Next, we consider several fixed-parameter tractable variants of (r, s)-Closest Substring.404

I Theorem 14 (*). (r, s)-Closest Substring(x) ∈ FPT, for every x ∈ {(m, |Σ|), (`, k),405

(`, |Σ|), (`, ds)}.406

It remains to observe that all remaining parameterisations of (r, s)-Closest Substring407

are W[1]-hard. More precisely, it is known that (r)-Closest Substring is W[1]-hard for408

parameterisations (k, dr, |Σ|) (see [?]) and (k, m, dr) (see [?]). Hence, the obvious reduc-409

tion from (r)-Closest Substring to (r, s)-Closest Substring, i. e., setting ds = k dr,410

shows that (r, s)-Closest Substring is W[1]-hard for parameterisations (k, dr, ds, |Σ|) and411

(k, m, dr, ds). As can be checked with the help of Table 4, this now classifies all parameterised412

variants of (r, s)-Closest Substring.413

4 Kernelisation414

Neither (r)-Closest String(dr, `, |Σ|) nor (r)-Closest Substring(k, m, dr) admit poly-415

nomial kernels unless coNP ⊆ NP/Poly (see [?]), and (r)-Closest String(k, dr) has a kernel416

of size O(k2dr log k) (see [?]). From these results, we can conclude the following:417

I Proposition 15 (*).418

L. Bulteau and M. L. Schmid 1:13

(r, s)-Closest String(dr, `, |Σ|) has no polynomial kernel unless coNP ⊆ NP/Poly.419

(r, s)-Closest String(k, dr) has a kernel of size O(k2dr log k).420

(r, s)-Closest String(ds) has a kernel of size O((ds)3 log ds).421

This only leaves the case open, where only k (or k and |Σ|, which, due to the dependency422

|Σ| ≤ k (see [?]), is the same question) is a parameter (regarding this case, note that for423

(r)-Closest String(k) no combinatorial kernel or combinatorial FPT-algorithm is known).424

I Proposition 16 (*).425

(r, s)-Closest Substring(k, m, dr, ds, |Σ|) has no polynomial kernel unless coNP ⊆426

NP/Poly.427

(r, s)-Closest Substring(`, k) and (r, s)-Closest Substring(`, ds) have kernels of428

size O(`k) and O(`ds), respectively.429

This almost settles the (r, s)-variant, for which only the parameterisation (`, |Σ|) is open.430

For the (r)-variant, the parameterisations `, (`, dr) and (`, |Σ|), and for the (s)-variant, the431

parameterisations (m, |Σ|) and (ds, |Σ|) are open.432

For (r)-Closest String-wo no kernelisation lower bounds are known so far. However,433

the following can be concluded from [?]:434

I Proposition 17 (*). (r)-Closest String-wo(dr, `, t, |Σ|) has no polynomial kernel unless435

coNP ⊆ NP/Poly.436

By a cross-composition3 from (r)-Closest String into (r)-Closest String-wo, we437

can rule out a polynomial kernel for the parameterisation (dr, ds, `, (k − t), |Σ|).438

To this end, we define a polynomial equivalence relation ∼ over the (r)-Closest String-439

instances as follows. For j ∈ {1, 2}, let Sj = {sj,i | 1 ≤ i ≤ kj} ⊆ Σ`j and dr,j ∈ N. Then440

(S1, dr,1) ∼ (S2, dr,2) if k1 = k2, `1 = `2 and dr,1 = dr,2. Now let (S1, dr), (S2, dr), . . . , (Sq, dr)441

be ∼-equivalent (r)-Closest String-instances, where, for the sake of convenience, Si =442

{si,1, si,2, . . . , si,k} ⊆ Σ`, 1 ≤ i ≤ q. For every i, 1 ≤ i ≤ q, let Bi denote the binary443

representation of i with exactly dlog(q)e bits, and let Ci = (Bi)2dr+1. Moreover, for every i,444

1 ≤ i ≤ q, let S′i = {s′i,1, s′i,2, . . . , s′i,k}, where, for every j, 1 ≤ j ≤ k, s′i,j = si,jCi. Finally,445

let the (r, s)-Closest String-wo-instance be (S′, d′r, d′s, t) with S′ =
⋃q

i=1 S′i, d′r = dr,446

d′s = kdr and t = (q − 1)k.447

I Theorem 18 (*). (r, s)-Closest String-wo(dr, ds, `, (k − t), |Σ|) does not admit a poly-448

nomial kernel unless coNP ⊆ NP/Poly.449

5 Conclusions450

The parameterised complexity of the (r)-, (s)- and general variant of Closest String451

and Closest Substring with respect to `, k, m, dr, ds, |Σ| is now completely settled. For452

(r, s)-Closest Substring, where positive results are less abundant, it might be worthwhile to453

identify other parameters that yield fixed-parameter tractability. For (r, s)-Closest String,454

it should be pointed out that the FPT-algorithms with respect to k are based on ILP and are455

most likely practically not relevant; direct combinatorial FPT-algorithms are still unknown.456

For the outlier variant of (r, s)-Closest String, many cases are left open, most prominently,457

the ones with |Σ| as parameter, and we expect those to be challenging. Moreover, for several458

FPT-variants, the existence of polynomial kernels is not yet answered.459

3 For the technique of cross-composition, see Bodlaender et al. [?].

MFCS 2018

	Introduction
	Closest String and Closest String-wo
	`39`42`"613A``45`47`"603A(r, s)-Closest String-wo
	The (r)- and (s)-Variants of `39`42`"613A``45`47`"603AClosest String-wo

	Closest Substring
	Kernelisation
	Conclusions

