
HAL Id: hal-01930522
https://hal.science/hal-01930522v1

Submitted on 5 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A transition-based verbal multiword expression analyzer
Hazem Al Saied, Marie Candito, Mathieu Constant

To cite this version:
Hazem Al Saied, Marie Candito, Mathieu Constant. A transition-based verbal multiword expres-
sion analyzer. Stella Markantonatou, Carlos Ramisch, Agata Savary, Veronika Vincze. Multiword
expressions at length and in depth, Language Science Press, 2018, 978-3-96110-123-8. �10.5281/zen-
odo.1469561�. �hal-01930522�

https://hal.science/hal-01930522v1
https://hal.archives-ouvertes.fr

Chapter 7

A transition-based verbal multiword
expression analyzer
Hazem Al Saied
ATILF UMR 7118, Université de Lorraine/CNRS

Marie Candito
LLF UMR 7110, Université Paris Diderot/CNRS

Matthieu Constant
ATILF UMR 7118, Université de Lorraine/CNRS

We describe a robust transition-based analyzer for identifying and categorizing
Verbal Multiword Expressions (VMWEs).The systemwas developed and evaluated
using the datasets of the PARSEME shared task on VMWE identification (Savary
et al. 2017).
We accommodate the variety of linguistic resources provided for each language, in
terms of accompanying morphological and syntactic information. Our system pro-
duces very competitive scores, for both VMWE identification and categorization,
with respect to the shared task results.

1 Introduction

We present a generic system for the identification and categorization of verbal
multiword expressions (hereafter VMWEs). With respect to grammatical or nom-
inal multiword expressions, VMWEs tend to exhibit more morphological and
syntactic variation than other MWEs, if only because in general the verb is in-
flected and can receive adverbial modifiers. Furthermore, some VMWE types, in
particular light-verb constructions, allow for the full range of syntactic variation

Hazem Al Saied, Marie Candito & Matthieu Constant. 2018. A transition-based ver-
bal multiword expression analyzer. In Stella Markantonatou, Carlos Ramisch, Agata
Savary & Veronika Vincze (eds.), Multiword expressions at length and in depth: Ex-
tended papers from the MWE 2017 workshop, 209–226. Berlin: Language Science Press.
DOI:10.5281/zenodo.1469561

Hazem Al Saied, Marie Candito & Matthieu Constant

(extraction, coordination etc…). This renders the VMWE identification task even
more challenging than general MWE identification, in which fully frozen and
continuous expressions contribute to an increase in the overall performance.

Our objective was to design a data-driven system applicable to several lan-
guages, with limited language-specific tuning.We took advantage of the datasets
provided within the shared task on automatic identification of VMWEs (Savary
et al. 2017) to train and test our system.These datasets concern 18 languages, and
consist of tokenized sentences in which VMWEs are annotated. One VMWE in-
stance is a set made either of several tokens, potentially non-continuous, or of
one single token (i.e. a multiword token, hereafter MWT, such as amalgamated
verb-particle in German).1 A VMWE may be embedded in another longer one,
and two VMWEs can overlap. Each annotated VMWE is tagged with a cate-
gory among Light-Verb Constructions (LVC), IDioms (ID), Inherently REFLex-
ive Verbs (IReflV), Verb-Particle Constructions (VPC) and OTHer verbal MWEs
(OTH). The datasets are quite heterogeneous, both in terms of size and of accom-
panying resources: 4 languages have none (Bulgarian, Spanish, Hebrew, Lithua-
nian), for 4 languages, morphological information such as lemmas and POS is pro-
vided (Czech, Maltese, Romanian, Slovene), and for the 10 remaining languages,
full dependency parses are provided.

The system we describe in the current paper is an extension of the ATILF-
LLF system (Al Saied et al. 2017), a one-pass greedy transition-based system
which participated in the shared task, obtaining very competitive results (here-
after ATILF-LLF 1). The new system (ATILF-LLF 2) categorizes the VMWEs on
top of identifying them, and has an extended expressive power, handling some
cases of VMWE embedded in another one. Both for ATILF-LLF 1 and 2, we tuned
a set of feature template for each language, relying exclusively on training data,
accompanying CoNLL-U files when available, and basic feature engineering.

The remainder of the article is organized as follows: we describe our system
in Section 2, and comment its expressive power as opposed to ATILF-LLF 1. We
then describe the experimental setup in Section 3, and comment the results in
Section 4. Section 5 is devoted to related work. We conclude in Section 6 and
give perspectives for future work.

1The majority of annotated VMWEs are multi-token. The prevalence of MWTs varies greatly
among languages. While absent from seven languages and very rare for nine other languages,
they are very frequent in German and Hungarian.

210

7 A transition-based verbal multiword expression analyzer

2 System description

The analyzers we developed (ATILF-LLF 1 and 2) are simplified versions of the
system proposed by Constant &Nivre (2016). Building on the classic arc-standard
dependency parser (Nivre 2004), Constant &Nivre (2016) designed a parsing algo-
rithm that jointly predicts a syntactic dependency tree and a forest of multiword
lexical units. Their system uses both a syntactic and a lexical stack and specific
transitions merge tokens to create MWEs, as proposed by Nivre (2014). We have
simplified this formal apparatus keeping only the lexical stack, and predicting
MWEs only.

A transition-based system applies a sequence of actions (usually called transi-
tions) to incrementally build the expected output structure in a bottom-up man-
ner. Each transition is usually predicted by a classifier given the current state of
the system (namely a configuration).

A configuration in our system consists of a triplet 𝑐 = (𝜎, 𝛽, 𝐿), where 𝜎 is a
stack containing units under processing, 𝛽 is a buffer containing the remaining
input tokens, and 𝐿 is a set of output MWEs.

The initial configuration for a sentence 𝑥 = 𝑥1, ..., 𝑥𝑛, i.e. a sequence of 𝑛 tokens,
is represented by 𝑐𝑠 as: 𝑐𝑠(𝑥) = ([], [𝑥1, … , 𝑥𝑛], ∅) and the set of terminal config-
urations 𝐶𝑡 contains any configuration of the form 𝑐𝑡 = ([], [], 𝐿). At the end of
the analysis, the identified VMWEs are simply extracted from 𝐿.

Single tokens are brought to the stack by the Shift transition, and are poten-
tially marked as (mono-token) VMWE using the Mark as C transition, whereas
trees are formed using merge transitions (cf. §2.1).

The output VMWEs are the units added to 𝐿, either by theMark as C orMerge
as C transitions. When one VMWE is embedded in another one, both VMWEs
appear separately in 𝐿 (which is thus redundant).2

2.1 Transition set

Our system uses the following transitions:

1. the Shift transition moves the first element of the buffer to the stack

Precondition: the buffer is not empty.

2. the Reduce removes the top element of the stack

Precondition: the stack is not empty.

2For instance, if we represent the binary tree in bracketing format and the categorization with
a subscript, ((𝑎, 𝑏)𝐼 𝑅𝑒𝑓 𝑙𝑉 , 𝑐)𝐼𝐷 represents an IReflV 𝑎 + 𝑏 embedded within an ID 𝑎 + 𝑏 + 𝑐. Both
((𝑎, 𝑏)𝐼 𝑅𝑒𝑓 𝑙𝑉 , 𝑐)𝐼𝐷 and (𝑎, 𝑏)𝐼 𝑅𝑒𝑓 𝑙𝑉 will appear in 𝐿.

211

Hazem Al Saied, Marie Candito & Matthieu Constant

3. the White Merge transition combines the two top elements of the stack
into a single element;

Precondition: the stack contains at least two elements.

4. five Merge As C transitions (where C stands for a VMWE category) per-
form a white merge, mark the resulting unit as a VMWE of category C,
and add it to 𝐿.

Precondition: the stack contains at least two elements.

5. In order to cope with MWTs, we added five Mark as C transitions, which
mark the top stack element as a VMWE, assign to it the category C, and
add it to 𝐿.

Precondition: The stack is not empty and its head is a non-marked
single token.3

Figure 1 shows the analysis of a German sentence containing a multiword token
VPC embedded within an IReflV.

In the input, each token is associated with linguistic attributes (form, and
depending on the data sets, lemma and POS). When a merge transition is ap-
plied, the newly created element gets its attributes using basic concatenation
over forms, and over lemmas and POS tags when available.4

2.2 Parsing algorithm and training oracle

In all the following, at parsing time we use a greedy algorithm, starting with an
initial configuration 𝑐𝑠 , and applying in sequence the best-scoring legal transition
until a terminal configuration is reached.5

The training phase learns the transition-scoring classifier.This is done through
supervised learning, by converting the training sentences into sequences of [con-

3Because mono- and multi-tokens have very different linguistic properties, we preferred to dis-
tinguish transitions coping with both kinds of VMWEs. Without this restriction, as noted by a
reviewer, Merge as C would be equivalent to White Merge + Mark as C. The effectiveness
of this alternative solution remains to be tested.

4This would deserve to be improved in future experiments, with finer procedures to predict the
lemmatized form and more importantly to predict the POS tag of the merged node, although
in the special case of VMWE prediction the POS is verbal.

5Sentence analysis is composed of exactly 2𝑛 + 𝑟 transitions, with 𝑛 being the number of tokens
and 𝑟 the number of MWTs. Every single token not entering a VMWE requires a Shift and a
Reduce, every multi-token VMWE of length𝑚 requires 2𝑚 transitions (𝑚 Shifts,𝑚−2White
Merges, one Merge As C and one Reduce), while every MWT requires three transitions: a
Shift, a Mark As C and a Reduce.

212

7 A transition-based verbal multiword expression analyzer

Transition Configuration
[], [Damit,müsste,man, sich, nun, herumschlagen], []

Shift ⇒ [Damit], [müsste,man, sich, nun, herumschlagen], []
Reduce ⇒ [], [müsste,man, sich, nun, herumschlagen], []
Shift ⇒ [müsste], [man, sich, nun, herumschlagen], []
Reduce ⇒ [], [man, sich, nun, herumschlagen], []
Shift ⇒ [man], [sich, nun, herumschlagen], []
Reduce ⇒ [], [sich, nun, herumschlagen], []
Shift ⇒ [sich], [nun, herumschlagen], []
Shift ⇒ [sich, nun], [herumschlagen], []
Reduce ⇒ [sich], [herumschlagen], []
Shift ⇒ [sich, herumschlagen], [], []
Mark as VPC ⇒ [sich, herumschlagen𝑉𝑃𝐶], [], [herumschlagen𝑉𝑃𝐶]
Merge as IreflV ⇒ [(sich, herumschlagen𝑉𝑃𝐶)𝐼 𝑅𝑒𝑓 𝑙𝑉], [],[herumschlagen𝑉𝑃𝐶 , (sich, herumschlagen𝑉𝑃𝐶)𝐼 𝑅𝑒𝑓 𝑙𝑉]
Reduce ⇒ [], [], [herumschlagen𝑉𝑃𝐶 , (sich, herumschlagen𝑉𝑃𝐶)𝐼 𝑅𝑒𝑓 𝑙𝑉]

Figure 1: Transition sequence for tagging the German sentence Damit
müsste man sich nun herumschlagen ‘With-that must-SUBJUNCTIVE
one REFLEXIVE now around-struggle’⇒ ‘One would have to struggle
with that’ , containing two VMWEs: sich herumschlagen tagged as
inherently reflexive verb (IReflV), in which herumschlagen is itself a
multiword token tagged as verb-particle combination (VPC).

figuration, gold transition to apply] pairs, by using a static oracle.6 Our static
oracle returns for a given configuration the first applicable transition using the
following priority order: Mark as C, Merge As C, White Merge, Reduce and
Shift. Applicability here means not only the standard preconditions for transi-
tions, but also that the output configuration is compatible with the gold annota-
tions. We added the constraint that the White Merge is only applicable to the
right suffix of a gold VMWE. For instance, suppose we have a gold continuous
VMWE kick the bucket, when the first two elements are on top of the stack, the
White Merge is not applicable yet, it will be applied when the right suffix the
and bucket is on top of the stack.

To produce our training examples, we start by generating the initial configu-
ration for each sentence, and apply in sequence the transition predicted by the
static oracle, until a terminal configuration is reached. The analysis in Figure 1
corresponds to the oracle transition sequence for the example sentence.

6Using (Goldberg & Nivre 2013)’s terminology, a static oracle is both incomplete (defined for
configurations obtained from previous oracle transitions only) and deterministic (at each such
configuration, there is a single oracle transition to apply).

213

Hazem Al Saied, Marie Candito & Matthieu Constant

2.3 Expressive power

As far as expressive power is concerned, ATILF-LLF 2 is slightly more powerful
than ATILF-LLF 1. ATILF-LLF 2 now performs VMWE categorization and not
just identification. Both systems cannot analyze interleaving MWEs, but while
ATILF-LLF 1 could cope with no overlapping at all, ATILF-LLF 2 can cope with
some cases of embeddings, i.e. some cases of VMWE fully contained in another
one.7

In effect, ATILF-LLF 1 contained a Shift transition, a White merge, a Merge
as C+Reduce for identifying multi-token VMWEs, and a Mark as C+Reduce
for MWTs.8 Because the Merge as C+Reduce transition identifies a MWE and
removes it from the stack, no cases of embeddings were covered.

In ATILF-LLF 2, some cases of embeddings are now covered (e.g. the example
in Figure 1). More precisely, the covered cases are those where one can form a
projective tree by attaching to a fictitious root all the binary trees representing
the VMWEs of a sentence, ignoring tokens not belonging to any VMWE. An al-
ternative formulation is that given any VMWE composed of the 𝑡1𝑡2...𝑡𝑚 tokens
and any gap 𝑔1𝑔2...𝑔𝑛 appearing between a pair of components 𝑡𝑖𝑡𝑖+1, the condi-
tion is that the 𝑔𝑖 tokens cannot belong to a MWE having components outside
the set 𝑔1...𝑔𝑛. So a non-covered case is found for instance in Let1,2 the1 cat1
out1,2 of1 the1 bag1: the VMWE Let out has a gap containing tokens the1
cat1, which belong to a VMWE with tokens outside the gap.

3 Experimental setup

For a given language, and a given train/dev split, we use the oracle-based re-
sulting transition sequences to train a multi-class SVM classifier.9 We describe
in the next subsections the feature templates we used (§3.1) and how we tuned
them (§3.2).

7It is worth noting that embedded VMWEs are very rare in the datasets: there are twenty to
thirty embedded VMWEs in German, Hebrew and Hungarian and about 150 in Czech.

8ATILF-LLF 1 used hard-coded procedures for matching MWTs (if seen in the training set),
which we replaced by features used by the classifier.

9The whole system was developed using Python 2.7, with 4,739 lines of code, using the Scikit-
learn 0.19. We used the Error-correcting output codes framework for the multi-class SVM clas-
sifier. The code is available on Github: https://goo.gl/1j8mVu under the MIT license.

214

7 A transition-based verbal multiword expression analyzer

Table 1: System setting code descriptions.

Code Setting description

A use of POS and lemmas
A’ use of suffixes
B use of syntactic dependencies
C use of bigrams S1S0, S0B0, S1B0 and S0B1
D use of the trigram S1S0B0
E use of the S0B2 bigram
F use of transition history (length 1)
G use of transition history (length 2)
H use of transition history (length 3)
I use of distance between S0 and S1
J use of distance between S0 and B0
K use of B1
L use of training corpus VMWE lexicon
M use of stack length
N use of MWT dictionary

3.1 Feature templates

A key point in a classical transition-based system is feature engineering, known
to have great impact on performance. We have gathered feature templates into
groups, forwhichwe provide short descriptions in Table 1, alongwith code letters
that we use in §4 to describe which feature groups were used for each language
in the final shared task results. We describe in this section each feature group.
We hereafter use symbol 𝐵𝑖 to indicate the ith element in the buffer. 𝑆0 and 𝑆1
stand for the top and the second elements of the stack. For every unit 𝑋 in the
stack or buffer, we denote 𝑋𝑤 its word form, 𝑋𝑙 its lemma and 𝑋𝑝 its POS tag.
The concatenation of two elements 𝑋 and 𝑌 is noted 𝑋𝑌 .

Basic linguistic features

For each language, we used a precise set of stack or buffer elements, hereafter
the focused elements, to derive unigram, bigram and trigram features. By default,
the focused elements are 𝑆0, 𝑆1 and 𝐵0. For some languages, 𝐵1 was also used
(code K in Table 1). If bigrams are on (code C in Table 1) features are generated
for the element pairs 𝑆1𝑆0, 𝑆0𝐵0, 𝑆1𝐵0, plus 𝑆0𝐵1 if K is on, and plus 𝑆0𝐵2 for a few

215

Hazem Al Saied, Marie Candito & Matthieu Constant

languages (code E). For trigrams, we only used the features of the 𝑆1𝑆0𝐵0 triple
(code D).

For any resulting unigram, bigram or trigram, we use by default the word form
(e.g. 𝑆0𝑤). For languages whose datasets comprise morphological information,
we further use the lemmas and POS tags (code A in Table 1), i.e. 𝑋𝑙 and 𝑋𝑝 . The
precise features for a bigram 𝑋𝑌 are 𝑋𝑤𝑌𝑤 , 𝑋𝑝𝑌𝑝 , 𝑋𝑙𝑌𝑙 , 𝑋𝑝𝑌𝑙 and 𝑋𝑙𝑌𝑝 . Those for
a trigram 𝑋𝑌𝑍 are 𝑋𝑤𝑌𝑤𝑍𝑤 , 𝑋𝑙𝑌𝑙𝑍𝑙 , 𝑋𝑝𝑌𝑝𝑍𝑝 , 𝑋𝑙𝑌𝑝𝑍𝑝 , 𝑋𝑝𝑌𝑙𝑍𝑝 , 𝑋𝑝𝑌𝑝𝑍𝑙 , 𝑋𝑙𝑌𝑙𝑍𝑝 ,
𝑋𝑙𝑌𝑝𝑍𝑙 , 𝑋𝑝𝑌𝑙𝑍𝑙 .

For the languages lacking companion morphological information, we tried to
mimic that information using suffixes (code A’ in Table 1), more precisely the last
two and last three letters, which we used for unigram elements only.

Syntax-based features

After integrating classical linguistic attributes, we investigated using more lin-
guistically sophisticated features. First of all, syntactic structure is known to help
MWE identification (Fazly et al. 2009; Seretan 2011; Nagy T. & Vincze 2014). So
for datasets comprising syntactic information, we introduced features capturing
the existence of syntactic dependencies between elements of the buffer and of
the stack (code B in Table 1). More precisely, provided that 𝑆0 is a single token,
we generate (i) the features RightDep (S0, B𝑖) = True and RightDepLab (S0,
B𝑖) = l for each buffer token B𝑖 that is a syntactic dependent of 𝑆0 with label 𝑙,
and (ii) the features LeftDep (S0, B𝑖) = True and LeftDepLab (S0, B𝑖) = l when
a buffer element 𝐵𝑖 is 𝑆0’s syntactic governor.

Other syntax-based features aim at modeling the direction and label of a syn-
tactic relation between the top two tokens of the stack (feature syntacticRela-
tion (S0, S1) = ± l is used for S0 governing/governed by S1, provided 𝑆0 and 𝑆1
are single tokens).10 All these syntactic features try to capture syntactic regular-
ities between the tokens composing a VMWE.

Miscellaneous features

We found that other traditional features, used in transition-based systems, were
sometimes useful like (local) transition history of the system. We thus added
History-based features to represent the sequence of previous transitions (of
length one, two or three, cf. codes F, G and H in Table 1).

10For ATILF-LLF 1, we used gold syntactic features for the languages accompanied with gold
dependency companion files, as authorized in the closed track. Performance when using pre-
dicted syntax will be evaluated in future work.

216

7 A transition-based verbal multiword expression analyzer

We also added Distance-based features, known to help transition-based de-
pendency parsing (Zhang & Nivre 2011), more precisely the distance between S0
and S1 and between S0 and B0 (respectively codes I and J in Table 1). We also
extracted Stack-length-based features (code M in Table 1).

The VMWE identification task is highly lexical so we found it useful to use
dictionary-based features, which use “dictionaries” extracted from the training
set, both for multi-token VMWEs and MWTs. The dictionaries are lemma-based
when lemmas are available, and form-based otherwise. These dictionary-based
features include (i) a boolean feature set to true when S0 belongs to the MWT
dictionary (code N in Table 1), and (ii) boolean features firing when 𝑆0, 𝑆1, 𝐵0, 𝐵1
or 𝐵2 belong to an entry of the extracted VMWE dictionary (code L in Table 1).

3.2 Feature tuning

We first divided the data sets into three groups, based on the availability of
CoNLL-U files: (a) for Bulgarian, Hebrew and Lithuanian neither morphological
nor syntactic information is available on top of tokens and VMWE annotation;
(b) Czech, Spanish, Farsi, Maltese and Romanian are accompanied by CoNLL-
U files with morphological information only, and (c) the other languages11 are
accompanied by a fully annotated CoNLL-U file.

In the first tuning phase, we used one “pilot” language for each group (Bulgar-
ian, Czech and French).Then, German was added as pilot language to investigate
features for languages with high percentage of MWTs and embedded VMWEs.
We tuned the features using both development sets extracted from the provided
training sets, and using cross-validation.

Finally, we used the discovered feature groups as a source of inspiration for
producing specialized feature groups for all other languages. Note that given the
combinatorial explosion of feature combinations, we could not apply a full grid-
search for the pilot languages, and a fortiori for all languages.

4 Results

We provide the identification results in Table 2, in which the performance of
ATILF-LLF 2, both in the shared task test sets and in cross-validation, can be
compared with (i) a baseline system, (ii) the best performing system of the shared

11These languages are German, Greek, French, Hungarian, Italian, Polish, Portuguese, Slovene,
Swedish, and Turkish.

217

Hazem Al Saied, Marie Candito & Matthieu Constant

Table 2: VMWE identification: The first column provides the language,
it is shown whether the companion file contains morpho and syntax,
morpho only (∗) or nothing (∗∗). The last column lists the feature groups
used for that language (using the codes of Table 1). Columns 2, 3, 4:
VMWE-based F-scores on test sets, for the baseline system,ATILF-LLF
2, and the best performing Shared task systems (Best of ST). Columns
5, 6, 7: same as 2, 3, 4 but token-based. Columns 8, 9, 10: VMWE-based
results in 5-fold cross-validation over training sets, for the baseline sys-
tem, ATILF-LLF 1, and ATILF-LLF 2. The last row (Avg) provides the
average results weighted by the size of the test sets (or train sets for
cross-validation results). The stars in columns Best of ST are those for
which ATILF-LLF 1 did not rank first.

Test dataset Cross validation

VMWE-based F1 Token-based F1 VMWE-based F1

La
ng

ua
ge

B
as
el
in
e

A
T
IL
F-
LL

F
2

B
es
to

fS
T

B
as
el
in
e

A
T
IL
F-
LL

F
2

B
es
to

fS
T

B
as
el
in
e

A
T
IL
F-
LL

F
1

A
T
IL
F-
LL

F
2

Feature Settings

BG∗∗ 47.6 55.8 61.3 50.7 60.2 66.2 48.3 57.1 53.0 A’ C D F G I L

CS∗ 61.6 70.9 71.7 66.7 73.9 73.7 60.1 71.4 68.9 A C F G H I J K L M

DE 37.9 45.8 41,1 33.3 44.8 *45.5 39.9 27.9 47.6 A B C D E J L N

EL 35.6 42.8 40.1 39.9 46.3 46.9 48.0 56.2 57.3 A B C E J K L

ES∗ 56.9 58.9 57.4 56.7 60.3 58.4 61.2 63.5 66.0 A C D F G H I J K L

FA∗ 72.2 84.3 86.6 72.5 84.8 90.2 67.3 87.7 81.1 A C I J K

FR 44.6 60.6 57.7 49.3 62.6 *61.5 66.0 71.1 73.8 A B C E I J K L

HE∗∗ 33.4 29.9 33.4 29.6 30.5 31.3 30.0 17.0 26.8 A’ C E F G H K L

HU 68.3 74.8 *74.0 64.9 72.1 *70.8 73.7 23.5 83.7 A B C D F G H K L N

IT 39.2 28.2 39,9 39.5 29.8 43.6 33.7 27.4 27.2 A B C H J L

LT∗∗ 30.5 34.1 28.4 27.3 31.7 25.3 20.7 8.6 21.5 A’ C D E F G H I J K L M

MT∗ 8.2 6.9 14.4 12.3 9.4 16.3 7.7 8.1 7.2 A C F G H J L M

PL 72.6 75.1 69.1 71.8 75.5 *72.7 70.0 70.4 73.6 A B C H L

PT 65.5 69.6 67.3 67.4 71.4 70.9 65.2 64.7 67.5 All features

RO∗ 55.0 86.3 *77.8 65.4 87.0 *83.6 61.8 86.3 86.0 A C D E F G H I J K

SL 13.9 42.9 43.2 17.6 45.7 46.6 17.3 47.7 40.8 A B C F G H I K N

SV 10.4 30.1 30.4 10.1 34.3 *31.5 6.9 25.0 24.7 All features except N

TR 11.3 53.8 55.4 18.1 53.9 55.3 19.3 58.1 60.1 A B C F G H I K

AVG 46.2 56.5 56.7 48.5 58.1 59.2 52.0 60.3 64.5

218

7 A transition-based verbal multiword expression analyzer

task, and with (iii) ATILF-LLF 1.12 The table shows that results are very hetero-
geneous across languages. We can hypothesize that multiple factors come into
play, such as the size of corpora, the availability and the quality of annotations,
the most common VMWE categories in train and test sets, the percentage of un-
known VMWEs in test sets. For example, Figure 2 illustrates the impact of this
last trait, showing an approximative linear negative correlation between VMWE-
based F-score and the proportion of unknown VMWE occurrences in test sets.13

Because the datasets have very varying sizes across languages, we provide
in the last row of the table the weighted average F-scores, with each language F-
scoreweighted by the size of the test set (or of the training set in cross-validation).

Comparison with the best results at the shared task: Although the ATILF-
LLF 2 benefited from more design time, it is interesting to compare its results to
the best results obtained at the shared task for each language. When considering
the weighted average results (last row of Table 2), it can be seen that the VMWE-
based results are almost as high for ATILF-LLF 2 as for the Best of ST (56.5 versus
56.7), and are ahead for 9 languages out of 18. For token-based results, our system
is a bit less effective: while still ahead for 10 languages out of 18, it is on average 1.1
point lower (58.1 versus 59.2). This can be viewed as a particularity of our system:
while the token-based results are generally higher than the VMWE-based ones
(for the baseline, or for other participating systems, cf. Savary et al. 2017), the
gap is less pronounced in our case.

Comparisonwith the baseline:Thebaseline system is a stringmatching-based
system that uses a lemma-based VMWE dictionary extracted from the training
set and identifies as VMWEs all matching strings in the test set.

Thematching procedure is very simple: a VMWE is identified inside a sentence
if all of its components (lemmas if available, otherwise word forms) occur in the
sentence, provided that the order of the components corresponds to an order
observed in the dictionary and that the distances between them do not exceed
the maximal observed distances in the training dataset.

12More precisely, for the results on the test sets (columns 2 to 7), the Best of ST columns re-
flect the performance of ATILF-LLF 1 for the non starred values (cf. no star means we ranked
first). F-scores of ATILF-LLF 1 for starred values are as following: Hungarian=70%, Roma-
nian=75% for VMWE-based and German=41%, French=60%, Hungarian=67.4%, Polish=70.5%,
Romanian=79.1% and Swedish=30% for token-based.

13We also checked for the correlation between the F-score and the training set size, and obtained
a positive correlation, but less marked, in particular some languages like Czech and Turkish
reach relatively low scores given the size of training data, which is better explained considering
the unknown VMWE rate.

219

Hazem Al Saied, Marie Candito & Matthieu Constant

Regarding VMWE-based evaluation, ATILF-LLF 2 outperforms the baseline
in all experimental settings but four (VMWE-based evaluation on test set for
Hebrew and VMWE-based cross-validation for Hebrew and Italian): on average,
we obtain about 10- and 12.5-point F-score difference when evaluating on the
test set and in cross-validation respectively. Yet, the baseline consistently beats
our system on Hebrew. This might be explained by several characteristics of this
language preventing the system to generalize well to morpho-syntactic variants:
(i) small training set and (ii) no companion linguistic information (no POS, no
lemmas, no syntactic parses).

Comparison between ATILF-LLF 2 and ATILF-LLF 1: The ATILF-LLF 1 sys-
tem participated in the shared task and reached the best VMWE-based scores for
almost all languages (cf. the two starred results out of 18 in column Best of ST,
for Hungarian and Romanian). It can be seen that ATILF-LLF 2 shows compa-
rable performance on the same test sets (see in particular the weighted average
performance shown in the last row: 56.5 versus 56.7). It is worth noticing though
that there is great variation between results on test sets and results in cross-
validation. As the latter are more representative, let us focus on them (columns
8 to 10). Despite a few languages showing a drop in performance (in particular
Bulgarian, Farsi and Slovene), ATILF-LLF 2 beats ATILF-LLF 1 for 10 languages
out of 18, and the average result (last row of Table 2) has improved (4.2-point
gain). Again, even though ATILF-LLF 2 benefited from more design time, this
is a good result considering that (i) ATILF-LLF 1 did identification only, and the
introduction of the categorization task led us to multiply the number of transi-
tions (e.g. 5 Merge as C transitions instead of 1), (ii) the expressive power was
increased to some cases of embeddings and (iii) the overall architecture is more
elegant since hard-coded procedures included in the rush of the shared task have
been replaced by features.14

Categorization results: Table 3 details the categorization results for the ba-
sic categories over all languages but Farsi (cf. the Farsi dataset does not com-
prise VMWE category information).15 The table allows us to compare the per-
formance of our system with best-performing shared task systems (for the sys-
tems having the optional categorization predictions, note that our former system
ATILF-LLF 1 is excluded given that it does not categorize VMWEs). It can be seen

14It is worth noting that feature groups for each language were very close for both systems
(ATILF-LLF 1, 2). However, we transformed the dictionary-based hard-coded feature groups
into dynamic ones.

15We do not include the category OTH because of its marginal presence in test and train datasets
for all languages but Turkish (for which our F-score is 51.5 and the Shared task best F-score is
54.6).

220

7 A transition-based verbal multiword expression analyzer

Table 3: VMWE categorization: detailed results for the four basic cat-
egories over all the languages except Farsi. For each category, we dis-
play the proportion of the given category in test set, the F-scores F1
for ATILF-LLF 2, and the best performing shared task systems (Best
of ST), among systems having provided categorization information.

LVC IReflV VPC ID

% F1 F1 % F1 F1 % F1 F1 % F1 F1

La
ng

ua
ge

s

In
te
st

se
t

A
T
IL
F-
LL

F
2

B
es
to

fS
T

In
te
st

se
t

A
T
IL
F-
LL

F
2

B
es
to

fS
T

In
te
st

se
t

A
T
IL
F-
LL

F
2

B
es
to

fS
T

In
te
st

se
t

A
T
IL
F-
LL

F
2

B
es
to

fS
T

BG 16 28.6 63 68.3 46.6 21 19.4
CS 20 53.3 40.1 68 80.7 73.3 11 33.6 22.0
DE 8 4.7 2.3 4 8.9 16.0 45 58.3 43.3 43 29.1 16.4
EL 67 44.4 33.2 3 52.2 36.4 25 27.1 15.4
ES 21 49.0 35.1 44 72.0 40.4 33 39.0 13.8
FR 54 40.0 42.8 21 78.6 68.3 24 75.0 60.8
HE 25 31.4 37 27.2 6 16.2
HU 29 50.9 41.5 71 80.3 77.2
IT 17 17.5 12.9 30 30.3 9.3 2 50.0 14.3 50 25.7 20.3
LT 42 56.3 58 14.9
MT 52 6.6 5.8 52 7.7 2.1
PL 34 62.9 39.1 53 87.3 80.2 13 51.5
PT 66 68.0 16 68.9 18 65.3
RO 27 87.4 86.3 58 86.3 79.1 15 76.7 65.6
SL 9 7.4 8.3 51 45.7 40.8 22 47.5 34.5 18 09.1 3.9
SV 6 16.7 21.1 6 08.7 66 33.6 30.2 21 13.3 3.8
TR 40 57.6 59.1 11 49.3 49.8

that our system reaches high performance on categorization too, although per-
formance varies greatly across categories. Although the general trend is higher
performance for IReflV, then LVC, then ID, Figure 3 shows that this pattern is
not systematic. For instance, results are relatively low for Czech given its high
IReflV proportion. On the contrary, results for Portuguese are high despite a high
LVC ratio.

221

Hazem Al Saied, Marie Candito & Matthieu Constant

Figure 2: Correlation between the ATILF-LLF 2 identification results
for each language (F-score, on the x axis) and the percentage of occur-
rences of test VMWEs unknown in the train set (y axis).

Figure 3: A graph ranking all languages except Farsi according to their
F-scores. In each bar, the proportions of VMWE categories in the test
set are shown using symbols.

222

7 A transition-based verbal multiword expression analyzer

5 Related work

A popular VMWE identification method is to use a sequence labeling approach,
with IOB-based tagsets. For instance, Diab & Bhutada (2009) apply a sequential
SVM to identify verb-noun idiomatic combinations in English. Note also that
three (out of seven) systems participating in the PARSEME shared task used such
approach (Boroş et al. 2017; Maldonado et al. 2017; Klyueva et al. 2017). Such
an approach was also investigated for MWE identification in general (including
verbal expressions) ranging from continuous expressions (Blunsom & Baldwin
2006) to gappy ones (Schneider et al. 2014). Recently, neural networks have been
successfully integrated into this framework (Legrand & Collobert 2016; Klyueva
et al. 2017).

VMWE identification can naturally take advantage of previously predicted
syntactic parses. Some systems use them as soft constraints. For instance, the
sequence labeling systems of the shared task and our system use them as source
of features in their statistical tagging models. There also exist approaches us-
ing syntactic parses as hard constraints. For example, Baptista et al. (2015) ap-
ply hand-crafted identification rules on them. Fazly et al. (2009) and Nagy T. &
Vincze (2014) propose a two-pass identification process consisting of candidate
extraction followed by binary classification. In particular, candidate extraction
takes advantage of predicted syntactic parses, through the use of linguistic pat-
terns.

A joint syntactic analysis and VMWE identification approach using off-the-
shelf parsers is another interesting alternative that has shown to help VMWE
identification such as light-verb constructions (Eryiğit et al. 2011; Vincze & Csirik
2010). Some parsers integrate mechanisms into the parsing algorithm to identify
MWEs on top of predicting the syntactic structure, like in Wehrli (2014) and
Constant & Nivre (2016), our system being a simplified version of the latter.

6 Conclusion and future work

This article presents a simple transition-based system devoted to VMWE identi-
fication and categorization. In particular, it offers a simple mechanism to handle
discontinuity and embedding, which is a crucial point for VMWEs. Results on
the PARSEME Shared Task datasets show that our system is quite robust across
languages, and achieves very competitive results. Its linear time complexity is
also an asset.

223

Hazem Al Saied, Marie Candito & Matthieu Constant

As future work, we would like to apply more sophisticated syntax-based fea-
tures, as well as more advanced machine-learning techniques like neural net-
works. We also plan to investigate the use of a dynamic oracle (Goldberg & Nivre
2012).

Acknowledgements

This work was partially funded by the French National Research Agency
(PARSEME-FR ANR-14-CERA-0001).

Abbreviations
id Idiom
iob inside outside beginning
IReflV inherently reflexive verb
lvc light-verb construction
mwe multiword expression

mwt multiword token
oth other verbal MWE
vmwe verbal multiword expression
vpc verb-particle construction

References

Al Saied, Hazem, Matthieu Constant & Marie Candito. 2017. The ATILF-LLF sys-
tem for parseme shared task: A transition-based verbal multiword expression
tagger. In Proceedings of the 13thWorkshop onMultiword Expressions (MWE ’17),
127–132. Association for Computational Linguistics. DOI:10.18653/v1/W17-
1717

Baptista, Jorge, Graça Fernandes, Rui Talhadas, Francisco Dias & Nuno Mamede.
2015. Implementing European Portuguese verbal idioms in a natural language
processing system. In Gloria Corpas Pastor (ed.), Proceedings of europhras 2015,
102–115.

Blunsom, Phil & Timothy Baldwin. 2006. Multilingual deep lexical acquisition
for HPSGs via supertagging. In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing, 164–171. Sydney, Australia: Associa-
tion for Computational Linguistics. DOI:10.3115/1610075.1610101

Boroş, Tiberiu, Sonia Pipa, Verginica Barbu Mititelu & Dan Tufiş. 2017. A data-
driven approach to verbal multiword expression detection. PARSEME shared
task system description paper. In Proceedings of the 13th Workshop on Multi-
word Expressions (MWE ’17), 121–126. Association for Computational Linguis-
tics. DOI:10.18653/v1/W17-1716

224

7 A transition-based verbal multiword expression analyzer

Constant, Matthieu & Joakim Nivre. 2016. A transition-based system for joint
lexical and syntactic analysis. In Proceedings of the 54th annual meeting of the
association for computational linguistics (volume 1: Long papers), 161–171. Asso-
ciation for Computational Linguistics. http://www.aclweb.org/anthology/P16-
1016.

Diab, Mona & Pravin Bhutada. 2009. Verb noun constructionMWE token classifi-
cation. In Proceedings of the Workshop on Multiword Expressions: Identification,
Interpretation, Disambiguation and Applications, 17–22. Association for Compu-
tational Linguistics. http://www.aclweb.org/anthology/W/W09/W09-2903.

Eryiğit, Gülşen, Tugay İlbay & Ozan Arkan Can. 2011. Multiword expressions in
statistical dependency parsing. In Proceedings of IWPT Workshop on Statistical
Parsing of Morphologically-Rich Languages (SPMRL 2011), 45–55. http://dl.acm.
org/citation.cfm?id=2206359.2206365. October 6, 2011.

Fazly, Afsaneh, Paul Cook & Suzanne Stevenson. 2009. Unsupervised type and
token identification of idiomatic expressions. Computational Linguistics 35(1).
61–103. http://aclweb.org/anthology/J09-1005.

Goldberg, Yoav& JoakimNivre. 2012. A dynamic oracle for arc-eager dependency
parsing. In Proceedings of the 24th International Conference on Computational
Linguistics (COLING), 959–976.

Goldberg, Yoav & Joakim Nivre. 2013. Training deterministic parsers with non-
deterministic oracles. Transactions of the Association for Computational Lin-
guistics 1. 403–414.

Klyueva, Natalia, Antoine Doucet & Milan Straka. 2017. Neural networks for
multi-word expression detection. In Proceedings of the 13th Workshop on Multi-
word Expressions (MWE ’17), 60–65. Association for Computational Linguistics.
April 4, 2017. DOI:10.18653/v1/W17-1707

Legrand, Joël & Ronan Collobert. 2016. Phrase representations for multiword
expressions. In Proceedings of the 12th Workshop on Multiword Expressions
(MWE ’16), 67–71. Association for Computational Linguistics. http://anthology.
aclweb.org/W16-1810.

Maldonado, Alfredo, LifengHan, ErwanMoreau, Ashjan Alsulaimani, Koel Dutta
Chowdhury, Carl Vogel & Qun Liu. 2017. Detection of verbal multi-word ex-
pressions via conditional random fields with syntactic dependency features
and semantic re-ranking. In Proceedings of the 13th Workshop on Multiword
Expressions (MWE ’17), 114–120. Association for Computational Linguistics.
DOI:10.18653/v1/W17-1715

Nagy T., István & Veronika Vincze. 2014. VPCTagger: Detecting verb-particle
constructions with syntax-based methods. In Proceedings of the 10th Workshop

225

Hazem Al Saied, Marie Candito & Matthieu Constant

on Multiword Expressions (MWE ’14), 17–25. Association for Computational
Linguistics. http://www.aclweb.org/anthology/W14-0803.

Nivre, Joakim. 2004. Incrementality in deterministic dependency parsing. In
Frank Keller, Stephen Clark, Matthew Crocker & Mark Steedman (eds.), Pro-
ceedings of the ACLWorkshop on Incremental Parsing: Bringing Engineering and
Cognition together, 50–57. Association for Computational Linguistics.

Nivre, Joakim. 2014. Transition-based parsing with multiword expressions. IC1207
COST PARSEME 2nd general meeting. Athens, Greece. https : / / typo . uni -
konstanz . de / PARSEME / images /Meeting / 2014 - 03 - 11 - Athens - meeting /
PosterAbstracts/WG3-Nivre-athens-poster.pdf.

Savary, Agata, Carlos Ramisch, Silvio Cordeiro, Federico Sangati, Veronika
Vincze, Behrang QasemiZadeh, Marie Candito, Fabienne Cap, Voula Giouli,
Ivelina Stoyanova&Antoine Doucet. 2017.The PARSEME Shared Task on auto-
matic identification of verbal multiword expressions. In Proceedings of the 13th
Workshop on Multiword Expressions (MWE ’17), 31–47. Association for Compu-
tational Linguistics. DOI:10.18653/v1/W17-1704

Schneider, Nathan, Emily Danchik, Chris Dyer & Noah A. Smith. 2014. Discrim-
inative lexical semantic segmentation with gaps: Running the MWE gamut.
Transactions of the Association for Computational Linguistics 2(1). 193–206.
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/article/view/281.

Seretan, Violeta. 2011. Syntax-based collocation extraction (Text, Speech and Lan-
guage Technology). Dordrecht, Heidelberg, London, New York: Springer.

Vincze, Veronika & János Csirik. 2010. Hungarian corpus of light verb construc-
tions. In Proceedings of the 23rd International Conference on Computational Lin-
guistics (COLING ’10), 1110–1118. Association for Computational Linguistics.
http://www.aclweb.org/anthology/C10-1125.

Wehrli, Eric. 2014. The relevance of collocations for parsing. In Proceedings of
the 10th Workshop on Multiword Expressions (MWE ’14), 26–32. Association for
Computational Linguistics. 26-27 April, 2014.

Zhang, Yue & JoakimNivre. 2011. Transition-based dependency parsing with rich
non-local features. In Proceedings of the 49th annual meeting of the association
for computational linguistics: Human language technologies, 188–193. Associa-
tion for Computational Linguistics. http://www.aclweb.org/anthology/P11-
2033.

226

