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The prime goal of this paper is to establish sharp lower and upper bounds for useful functions such as the exponential functions, with a focus on exp(-x 2 ), the trigonometric functions (cosine and sine) and the hyperbolic functions (cosine and sine). The bounds obtained for hyperbolic cosine are very sharp. New proofs, refinements as well as new results are offered. Some graphical and numerical results illustrate the findings.

Introduction

Sharp bounds for useful functions play a central role in many areas of mathematics and theoretical physics. They aim to provide some properties of functions of interest, possibly complex, by dealing with more tractable functions (in the context). The literature on the bounds dealing with the special functions such as e -x 2 , cos(x), sin(x), sinc(x), cosh(x), sinh(x) and tanh(x), is very vast. Recent developments can be found in [START_REF] Chesneau | Some tight polynomial-exponential lower bounds for an exponential function[END_REF][START_REF] Chesneau | On two simple and sharp lower bounds for exp(x 2 )[END_REF][START_REF] Bagul | Some sharp circular and hyperbolic bounds of exp(x 2 ) with Applications[END_REF][START_REF] Bagul | Inequalities involving circular, hyperbolic and exponential functions[END_REF][START_REF] Alzer | On Jordan's inequality[END_REF][START_REF] Yang | Jordan type inequalities for hyperbolic functions and their applications[END_REF][START_REF] Qi | Refinements, generalizations and applications of Jordan's inequality and related problems[END_REF][START_REF] Bagul | New inequalities involving circular, inverse circular, hyperbolic, inverse hyperbolic and exponential functions[END_REF][START_REF] Malesevic | One method for proving some classes of exponential analytic inequalities[END_REF][START_REF] Bagul | On Simple Jordan type inequalities[END_REF][START_REF] Zhu | A source of inequalities for circular functions[END_REF][START_REF] Neuman | On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker and Huygens inequalities[END_REF][START_REF] Bagul | On exponential bounds of hyperbolic cosine[END_REF][START_REF] Bhayo | New trigonometric and hyperbolic inequalities[END_REF] - [START_REF] Lv | A note on Jordan type inequalities for hyperbolic functions[END_REF][START_REF] Huygens | Oeuvres completes[END_REF][START_REF] Sándor | Sharp Cusa-Huygens and related inequalities[END_REF][START_REF] Sándor | On Cusa-Huygens type trigonometric and hyperbolic inequalities[END_REF] and the references therein. In this paper, we offer new simple tight (lower and upper) bounds involving these functions, with a high potential of interest for many researchers in mathematics or theoretical physics. Some proofs of our results are based on the so-called l'Hospital's rule of monotonicity, the others used recent results with a new approach. The sharpness of our bounds are highlighted by some graphics and numerical studies using a global L 2 error as benchmark.

The result below shows bounds for e -x 2 defined with the cosine function and well-chosen constants. Proposition 1. For x ∈ (0, π/2), the best possible constants α and β in the following inequalities cos(x) -1 + α α e -x 2 cos(x) -1 + β β (1.1) are 1/2 and ≈ 1.092663 respectively.

The interest of Proposition 1 is the simplicity of the bounds, with very tractable expressions. It can be useful to evaluate complex functions depending on e -x 2 (Gaussian probability density function, error function etc.). The bounds of Proposition 1 are illustrated in Figure 1. We see that the lower bound is sharp for small values for x. Note: Using exponential and cosine series, Proposition 1 can be expressed in terms of alternating series as follows. For x ∈ (-π/2, π/2), we have

1 α ∞ k=1 (-1) k x 2k (2k)! ∞ k=1 (-1) k x 2k k! 1 β ∞ k=1 (-1) k x 2k (2k)! ,
where α and β are as defined above. Now let us recall that the sinc function is defined by

sinc(x) = sin(x) x x = 0, 1 x = 0. (1.2)
It is of importance due to it's frequent occurrence in Fourier analysis. So the interest of finding the bounds of this type of functions is increasing. In the next proposition, we give new bounds to sinc function using hyperbolic tangent.

Proposition 2. For x ∈ (0, π/2), we have

tanh(x) x δ < sin(x) x < tanh(x) x η (1.3)
with the best possible constants δ = 0.839273 and η = 1/2.

In the following propositions, the inequalities presented are somewhat Cusa-Huygen's type [START_REF] Huygens | Oeuvres completes[END_REF][START_REF] Sándor | Sharp Cusa-Huygens and related inequalities[END_REF]. Proposition 3 below provides bounds for the sinc function using e -x 2 or hyperbolic cosine. In view of Propositions 2 and 3, it is natural to address the following question: Which bounds for sinc are the best ? We provide the answer by doing a numerical study. We investigate the global L 2 error defined by

e(u) = π/2 0 sinx x -u(x) 2 dx,
where u(x) denotes bound (lower or upper) in (1.3), (1.4) and (1.5). The results are summarized in Table 1. The next result provides bounds for x/sinh(x) using cosine function.

Proposition 4. If x ∈ (0, π/2) then we have

2 + cos(x) 3 m < x sinh(x) < 2 + cos(x) 3 n (1.6)
with the constants m ≈ 1.014227 and n ≈ 0.928648.

The obtained bounds are illustrated in Figure 3. x sinh(x) Note: The inequality

( ( 2 + cos(x) ) 3) m ( ( 2 + cos(x) ) 3) n
2 + cos(x) 3 < x sinh(x)
is more sharp version of left inequality of (1.6). It is appeared in [START_REF] Sándor | On Cusa-Huygens type trigonometric and hyperbolic inequalities[END_REF]Theorem 6].

Proposition 5 below presents sharp bounds for sinh(x)/x using hyperbolic cosine.

Proposition 5. For x ∈ (0, π/2) one has

2 + cosh(x) 3 p < sinh(x) x < 2 + cosh(x) 3 q (1.7)
with the constants p ≈ 0.928648 and q ≈ 1.009155.

The bounds are illustrated in Figure 4. Note: The hyperbolic Cusa-Huygen's inequality [START_REF] Neuman | On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker and Huygens inequalities[END_REF] sinh(x) x < 2 + cosh(x) 3 is however more sharp than right inequality of (1.7).
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The rest of the study is devoted to new bounds for cosh(x), with discussion. A well-known upper bound for cosh(x) is given by e x 2 /2 . This result was recently completed by Yogesh Bagul [13, Theorem 2.1] who finds a sharp lower bound, i.e. e ax 2 < cosh(x) < e x 2 /2 , x ∈ (0, 1), (1.8) with the best possible constants a ≈ 0.433781 and 1/2. We now aim to refine the inequalities of (1.8) in Proposition 6 below. Proposition 6. For x ∈ (0, 1), we have

exp 3 2 1 -e -x 2 /3 cosh(x) exp 1 2θ 1 -e -θx 2 (1.9)
with θ ≈ 0.272342.

Note: Using the well-known inequality e y 1 + y for y ∈ R, we obtain exp 1 -e -θx 2 /(2θ) e x 2 /2 . This proves that the upper bound in (1.9) is sharper to the one in (1.8).

Alternative bounds are given in Proposition 7 below, with discussion. Proposition 7. For x ∈ (0, 1), we have

1 + x 2 3 3/2 cosh(x) 1 + x 2 ξ ξ/2
(1.10)

with ξ ≈ 3.194528.

Note: Again, using the well-known inequality e y 1 + y for y ∈ R, we get (1 + x 2 /ξ) ξ/2 e x 2 /2 . This shows that the upper bound in (1.10) is sharper to the one in (1.8).

We now claim that the bounds obtained in (1.10) are better than those in (1.8) and (1.9). Numerical results support this claim. Indeed, by considering the global L 2 error defined by

e * (u) = 1 0 (cosh(x) -u(x)) 2 dx,
where u(x) denotes bound (lower or upper) in (1.8), (1.9) and (1.10), Table 2 indicates that (1.10) are the best.

Table 2: Global L 2 errors e * (u) for cosh(x) and the functions u(x) in the bounds of (1.8), (1.9) and (1.10) for x ∈ (0, 1). The sharpness of the obtained bounds is illustrated in Figures 5 and6 (for a zoom on the interval (0.95, 1) where the hierarchy of the bounds is more clear). Note: To prove the inequalities (1.5), (1.6) and (1.7), we will simply use the results of [START_REF] Bagul | Some sharp circular and hyperbolic bounds of exp(x 2 ) with Applications[END_REF][START_REF] Bagul | Inequalities involving circular, hyperbolic and exponential functions[END_REF]. We stress on the fact that it is not difficult to verify that all the results in [START_REF] Bagul | Inequalities involving circular, hyperbolic and exponential functions[END_REF] are also true in (0, π/2) with the respective best possible constants obtained accordingly (see [START_REF] Chesneau | A note on some new bounds for trigonometric functions using infinite products[END_REF]). Propositions 6 and 7 will be proved by the techniques of integration on some known results [START_REF] Bagul | New inequalities involving circular, inverse circular, hyperbolic, inverse hyperbolic and exponential functions[END_REF][START_REF] Bagul | On Simple Jordan type inequalities[END_REF]. For proving Proposition 1, Proposition 2 and Proposition 3, we need the Lemmas presented in the next section.

(1 + x 2 3) (3 2) (1 + x 2 ξ) (ξ 2)
(1 + x 2 3) (3 2) (1 + x 2 ξ) (ξ 2)

Lemmas

The following Lemma is known as l'Hospital's rule of monotonicity [START_REF] Anderson | Conformal Invarients, Inequalities and Quasiconformal maps[END_REF]. The strictness of the monotonicity of A(x) and B(x) depends on the strictness of monotonicity of f /g . Lemma 2. H(x) = sin(x)-x cos(x)

A(x) = f (x) -f (a) g(x) -g(a) and B(x) = f (x) -f (b) g(x) -g(b) .
x 2 sin(x)
is strictly positive increasing in (0, π/2).

Proof: H(x) is positive as cos(x) < sin(x)

x on (0, π/2). Consider,

H(x) = sin(x) -x cos(x) x 2 sin(x) = H 1 (x) H 2 (x)
where H 1 (x) = sin(x)-x cos(x) and H 2 (x) = x 2 sin(x) are such that H 1 (0) = 0 and H 2 (0) = 0. By differentiating

H 1 (x) H 2 (x) = sin(x) x cos(x) + 2sin(x) = H 3 (x) H 4 (x)
where H 3 (x) = sin(x) and H 4 (x) = x cos(x) + 2 sin(x) with H 3 (0) = 0 and H 4 (0) = 0. Again differentiating we get

H 3 (x) H 4 (x) = cos(x) -x sin(x) + 3cos(x) = 1 -x tan(x) + 3 .
Now it is well known that -x tan(x) is decreasing in (0, π/2) and so is -x tan(x) + 3. By Lemma 1, H(x) is strictly increasing function in (0, π/2).

Proofs of the Main Results

This section is devoted to the proofs of our main results.

Proof of Proposition 1: Clearly equalities hold at x = 0. Consider

f (x) = cos(x) -1 e -x 2 -1 = f 1 (x) f 2 (x) ,
where

f 1 (x) = cos(x) -1 and f 2 (x) = e -x 2 -1 with f 1 (0) = 0 and f 2 (0) = 0.
By differentiation, we obtain

f 1 (x) f 2 (x) = sin(x) e x 2 2 x = f 3 (x) f 4 (x) ,
where f 3 (x) = sin(x) e x 2 and f 4 (x) = 2 x with f 3 (0) = 0 and f 4 (0) = 0. Again differentiating we get

f 3 (x) f 4 (x) = e x 2 2 [cos(x) + 2 x sin(x)] = e x 2 2 F (x),
where F (x) = cos(x) + 2 x sin(x). Differentiation gives F (x) = 2 x cos(x) + sin(x) > 0 in (0, π/2), which implies that F (x) is increasing. Thus

f 3 (x) f 4 (x)
being a product of two positive increasing functions is a positive increasing. By Lemma 1, f (x) is also increasing in (0, π/2).

So α = f (0+) = 1/2 and β = f (π/2-) = -1/[e -(π/2) 2 -1] ≈ 1.092663. Proof of Proposition 2: Let us set h(x) = log(sin(x)/x) log(tanh(x)/x) = h 1 (x) h 2 (x) ,
where h 1 (x) = log(sin(x)/x) and h 2 (x) = log(tanh(x)/x) with h 1 (0+) = 0 and h 2 (0+) = 0. Differentiating we get

h 1 (x) h 2 (x) = sin(x) -x cos(x) x 2 sin(x) x 2 tanh(x) tanh(x) -x sech 2 (x) = H(x) J(x),
where H(x) = sin(x)-x cos(x)

x 2 sin(x)

and J(x) =

x 2 tanh(x) tanh(x)-x sech 2 (x) . Now set

J(x) = J 1 (x) J 2 (x)
where J 1 (x) = x 2 tanh(x) and J 2 (x) = tanh(x) -x sech 2 (x) withJ 1 (0) = 0 and J 2 (0) = 0. Differentiation gives

J 1 (x) J 2 (x) = x sech 2 (x) + 2 tanh(x) 2 sech 2 (x) tanh(x) = 1 2 x tanh(x) + cosh 2 (x),
which is clearly increasing as both x/tanh(x) and cosh 2 (x) are increasing. By Lemma 1, J(x) is also increasing in (0, π/2). Moreover, J(x) is positive as x/sinh(x) < cosh(x). By Lemma 2, H(x) is strictly positive increasing in (0, π/2). h 1 (x)/h 2 (x), being product of two positive increasing functions is positive increasing. Again by Lemma 1, h(x) is strictly increasing in (0, π/2). So δ = log(2/π)/log(2tanh(π/2)/π) ≈ 0.839273 and η = f (0+) = 1/2, by l'Hospital's rule. This completes the assertion.

Proof of Proposition 3:

• Proof of (1.4). Let

f (x) = log (sin(x)/x) log (2 + e -x 2 ) -log3 = f 1 (x) f 2 (x) ,
where f 1 (x) = log (sin(x)/x) and f 2 (x) = log 2 + e -x 2 -log3 such that f 1 (0+) = 0 and f 2 (0) = 0. Differentiation gives

f 1 (x) f 2 (x) = 1 2 (sin(x) -x cos(x)) x 2 sin(x) (2e x 2 + 1) = 1 2 H(x) G(x),
where H(x) = sin(x)-x cos(x)

x 2 sin(x)
is strictly positive increasing in (0, π/2)

by Lemma 2 and G(x) = 2e x 2 + 1 is also clearly positive increasing. Therefore H(x) G(x) is strictly increasing. By making use of Lemma 1, we conclude that f (x) is strictly increasing in (0, π/2). So where k = -log(2/π) (π/2) 2 . After rearrangement, it can be written as

f (0+) < f (x) < f (π/2); x ∈ (0, π/2). Hence, a = f (π/2) = log(2/π)/[log(2 + e -(π/2) 2 ) -log3] ≈ 1.
sin(x) x 6 < e -x 2 < sin(x) x 1/k . ( 3.1) 
By virtue of [3, Theorem 2] we write

3 2 + cosh(x) γ < e -x 2 < 3 2 + cosh(x) 6 , (3.2) 
where γ = Proof of Proposition 4: According to [4, Theorem 3] and [START_REF] Chesneau | A note on some new bounds for trigonometric functions using infinite products[END_REF] we have e -x 2 /6 < x sinh(x) < e -tx 2 , x ∈ (0, π/2)

where t = -log[π/(2sinh(π/2))] (π/2) 2
. It is equivalent to

x sinh(x) 1/t < e -x 2 < x sinh(x) 6 . (3.3) 
Similarly, using [3, Theorem 1] we have Proof of Proposition 6: For x = 0 equalities hold obviously. Rearranging [8, Theorem 5], for any t ∈ (0, 1), we have t e -t 2 /3 < tanh(t) < t e -θt 2 with θ ≈ 0.272342. Therefore by integration, for x ∈ (0, 1), we get 1 -e -x 2 /3 < log(cosh(x)) < 1 2θ

2 + cos(x) 3 λ < e -x 2 < 2 + cos(x) 3 6 , (3.4 
1 -e -θx 2 .

By composing with the exponential function, we get the required result.

Proof of Proposition 7: Clearly, equalities hold at x = 0. Rearranging [10, Theorem 4], for any t ∈ (0, 1), we have 3t 3 + t 2 < tanh(t) < ξt ξ + t 2 with ξ ≈ 3.194528. On integration, for x ∈ (0, 1), we have The desired result follows by composing with the exponential function.
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 1 Figure 1: Graphs of the functions of the bounds (1.1) for x ∈ (0, π/2).
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 3 For x ∈ (0, π/2), the inequalities 2 + e -x 2 3 are true with the best possible constants a ≈ 1.240827, b = 1/2, c ≈ 1.108171 and d = 1.
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 2 Figure 2: Graphs of the functions of the bounds (1.5) for x ∈ (0, π/2).
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 3 Figure 3: Graphs of the functions of the bounds (1.6) for x ∈ (0, π/2).
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 4 Figure 4: Graphs of the functions of the bounds (1.7) for x ∈ (0, π/2).
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 5 Figure 5: Graphs of the functions of the bounds (1.10) for x ∈ (0, 1).

Figure 6 :

 6 Figure 6: Graphs of the functions of the bounds (1.10) for x ∈ (0.95, 1).

Lemma 1 .

 1 ( [15]) Let f, g be two real valued functions which are continuous on [a, b] and differentiable on (a, b), where -∞ < a < b < ∞ and g (x) = 0, for ∀x ∈ (a, b). Let,

  Then I) A(x) and B(x) are increasing on (a, b) if f /g is increasing on (a, b) and II) A(x) and B(x) are decreasing on (a, b) if f /g is decreasing on (a, b).

•

  240827 and b = f (0+) = 1/2 by l'Hospital's rule. Proof of (1.5). Utilizing [4, Theorem 2], [20, Proposition 3] we have e -kx 2 < sin(x) x < e -x 2 /6 ,

(π/2) 2

 2 log[(2+cosh(π/2))/3] . Combining (3.1) and (3.2)2+cosh(π/2))/3] ≈ 1.108171.

= λ 6 = 5 :

 65 -(π/2) 2 6log(2/3) ≈ 1.014227 and n = 6t = -6log[π/(2sinh(π/2))] The proof follows easily by combining inequalities (3.2) and (3.3) to getp = -6log[π/2sinh(π/2)] (π/2) 2 ≈ 0.928648 and q = (π/2) 26log[(2+cosh(π/2))/3] ≈ 1.009155.

Table 1 :

 1 Global L 2 errors e(u) for sinc(x) and the functions u(x)

	in the

e(u) ≈ 6.53313 × 10 -5 ≈ 0.0001542441

It follows from Table

1

that the bounds (1.5) are more sharp. This sharpness is illustrated in Figure

2

.