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Abstract. The prime goal of this paper is to establish sharp lower and upper
bounds for useful functions such as the exponential functions, with a focus on
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1 Introduction

Sharp bounds for useful functions play a central role in many areas of math-
ematics and theoretical physics. They aim to provide some properties of
functions of interest, possibly complex, by dealing with more tractable func-
tions (in the context). The literature on the bounds dealing with the special
functions such as e−x

2
, cos(x), sin(x), sinc(x), cosh(x), sinh(x) and tanh(x),

is very vast. Recent developments can be found in [1–14] - [16–19] and the
references therein. In this paper, we offer new simple tight (lower and up-
per) bounds involving these functions, with a high potential of interest for
many researchers in mathematics or theoretical physics. Some proofs of our
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results are based on the so-called l’Hospital’s rule of monotonicity, the others
used recent results with a new approach. The sharpness of our bounds are
highlighted by some graphics and numerical studies using a global L2 error
as benchmark.

The result below shows bounds for e−x
2

defined with the cosine function
and well-chosen constants.

Proposition 1. For x ∈ (0, π/2), the best possible constants α and β in the
following inequalities

cos(x)− 1 + α

α
6 e−x

2

6
cos(x)− 1 + β

β
(1.1)

are 1/2 and ≈ 1.092663 respectively.

The interest of Proposition 1 is the simplicity of the bounds, with very
tractable expressions. It can be useful to evaluate complex functions depend-
ing on e−x

2
(Gaussian probability density function, error function etc.). The

bounds of Proposition 1 are illustrated in Figure 1. We see that the lower
bound is sharp for small values for x.
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Figure 1: Graphs of the functions of the bounds (1.1) for x ∈ (0, π/2).

Note: Using exponential and cosine series, Proposition 1 can be ex-
pressed in terms of alternating series as follows.
For x ∈ (−π/2, π/2), we have

1

α

∞∑
k=1

(−1)k x2k

(2k)!
6

∞∑
k=1

(−1)k x2k

k!
6

1

β

∞∑
k=1

(−1)k x2k

(2k)!
,

where α and β are as defined above.
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Now let us recall that the sinc function is defined by

sinc(x) =

{
sin(x)
x

x 6= 0,
1 x = 0.

(1.2)

It is of importance due to it’s frequent occurrence in Fourier analysis. So
the interest of finding the bounds of this type of functions is increasing. In
the next proposition, we give new bounds to sinc function using hyperbolic
tangent.

Proposition 2. For x ∈ (0, π/2), we have(
tanh(x)

x

)δ
<
sin(x)

x
<

(
tanh(x)

x

)η
(1.3)

with the best possible constants δ = 0.839273 and η = 1/2.

In the following propositions, the inequalities presented are somewhat
Cusa-Huygen’s type [17, 18]. Proposition 3 below provides bounds for the
sinc function using e−x

2
or hyperbolic cosine.

Proposition 3. For x ∈ (0, π/2), the inequalities(
2 + e−x

2

3

)a

<
sin(x)

x
<

(
2 + e−x

2

3

)b

(1.4)

and (
3

2 + cosh(x)

)c
<
sin(x)

x
<

(
3

2 + cosh(x)

)d
(1.5)

are true with the best possible constants a ≈ 1.240827, b = 1/2, c ≈ 1.108171
and d = 1.

In view of Propositions 2 and 3, it is natural to address the following
question: Which bounds for sinc are the best ? We provide the answer by
doing a numerical study. We investigate the global L2 error defined by

e(u) =

∫ π/2

0

(
sinx

x
− u(x)

)2

dx,

where u(x) denotes bound (lower or upper) in (1.3), (1.4) and (1.5). The
results are summarized in Table 1.
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Table 1: Global L2 errors e(u) for sinc(x) and the functions u(x) in the
bounds of (1.3), (1.4) and (1.5) for x ∈ (0, π/2).

Inequality (1.3)

u(x) lower upper

e(u) ≈ 0.001421437 ≈ 0.003648618

Inequality (1.4)

u(x) lower upper

e(u) ≈ 0.006242974 ≈ 0.008628254

Inequality (1.5)

u(x) lower upper

e(u) ≈ 6.53313× 10−5 ≈ 0.0001542441

It follows from Table 1 that the bounds (1.5) are more sharp. This sharp-
ness is illustrated in Figure 2.
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Figure 2: Graphs of the functions of the bounds (1.5) for x ∈ (0, π/2).
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The next result provides bounds for x/sinh(x) using cosine function.

Proposition 4. If x ∈ (0, π/2) then we have(
2 + cos(x)

3

)m
<

x

sinh(x)
<

(
2 + cos(x)

3

)n
(1.6)

with the constants m ≈ 1.014227 and n ≈ 0.928648.

The obtained bounds are illustrated in Figure 3.
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Figure 3: Graphs of the functions of the bounds (1.6) for x ∈ (0, π/2).

Note: The inequality

2 + cos(x)

3
<

x

sinh(x)

is more sharp version of left inequality of (1.6). It is appeared in [19, Theo-
rem 6].

Proposition 5 below presents sharp bounds for sinh(x)/x using hyperbolic
cosine.

Proposition 5. For x ∈ (0, π/2) one has(
2 + cosh(x)

3

)p
<
sinh(x)

x
<

(
2 + cosh(x)

3

)q
(1.7)

with the constants p ≈ 0.928648 and q ≈ 1.009155.
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The bounds are illustrated in Figure 4.
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Figure 4: Graphs of the functions of the bounds (1.7) for x ∈ (0, π/2).

Note: The hyperbolic Cusa-Huygen’s inequality [12]

sinh(x)

x
<

2 + cosh(x)

3

is however more sharp than right inequality of (1.7).

The rest of the study is devoted to new bounds for cosh(x), with discus-
sion. A well-known upper bound for cosh(x) is given by ex

2/2. This result
was recently completed by Yogesh Bagul [13, Theorem 2.1] who finds a sharp
lower bound, i.e.

eax
2

< cosh(x) < ex
2/2, x ∈ (0, 1), (1.8)

with the best possible constants a ≈ 0.433781 and 1/2. We now aim to refine
the inequalities of (1.8) in Proposition 6 below.

Proposition 6. For x ∈ (0, 1), we have

exp

(
3

2

(
1− e−x2/3

))
6 cosh(x) 6 exp

(
1

2θ

(
1− e−θx2

))
(1.9)

with θ ≈ 0.272342.
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Note: Using the well-known inequality ey > 1 + y for y ∈ R, we obtain

exp
((

1− e−θx2
)
/(2θ)

)
6 ex

2/2. This proves that the upper bound in (1.9)

is sharper to the one in (1.8).

Alternative bounds are given in Proposition 7 below, with discussion.

Proposition 7. For x ∈ (0, 1), we have(
1 +

x2

3

)3/2

6 cosh(x) 6

(
1 +

x2

ξ

)ξ/2
(1.10)

with ξ ≈ 3.194528.

Note: Again, using the well-known inequality ey > 1 + y for y ∈ R,

we get (1 + x2/ξ)
ξ/2 6 ex

2/2. This shows that the upper bound in (1.10) is
sharper to the one in (1.8).

We now claim that the bounds obtained in (1.10) are better than those in
(1.8) and (1.9). Numerical results support this claim. Indeed, by considering
the global L2 error defined by

e∗(u) =

∫ 1

0

(cosh(x)− u(x))2 dx,

where u(x) denotes bound (lower or upper) in (1.8), (1.9) and (1.10), Table
2 indicates that (1.10) are the best.

Table 2: Global L2 errors e∗(u) for cosh(x) and the functions u(x) in the
bounds of (1.8), (1.9) and (1.10) for x ∈ (0, 1).

Inequality (1.8)

u(x) lower upper

e∗(u) ≈ 0.0001352084 ≈ 0.001139289

Inequality (1.9)

u(x) lower upper

e∗(u) ≈ 1.335929× 10−5 ≈ 7.004029× 10−6

Inequality (1.10)

u(x) lower upper

e∗(u) ≈ 9.456552× 10−7 ≈ 6.895902× 10−7
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The sharpness of the obtained bounds is illustrated in Figures 5 and 6
(for a zoom on the interval (0.95, 1) where the hierarchy of the bounds is
more clear).
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Figure 5: Graphs of the functions of the bounds (1.10) for x ∈ (0, 1).
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Figure 6: Graphs of the functions of the bounds (1.10) for x ∈ (0.95, 1).

Note: To prove the inequalities (1.5), (1.6) and (1.7), we will simply use
the results of [3, 4]. We stress on the fact that it is not difficult to verify
that all the results in [4] are also true in (0, π/2) with the respective best
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possible constants obtained accordingly (see [20]). Propositions 6 and 7 will
be proved by the techniques of integration on some known results [8,10]. For
proving Proposition 1, Proposition 2 and Proposition 3, we need the Lemmas
presented in the next section.

2 Lemmas

The following Lemma is known as l’Hospital’s rule of monotonicity [15].

Lemma 1. ( [15]) Let f, g be two real valued functions which are continuous
on [a, b] and differentiable on (a, b), where −∞ < a < b <∞ and g′(x) 6= 0,
for ∀x ∈ (a, b). Let,

A(x) =
f(x)− f(a)

g(x)− g(a)

and

B(x) =
f(x)− f(b)

g(x)− g(b)
.

Then
I) A(x) and B(x) are increasing on (a, b) if f ′/g′ is increasing on (a, b) and
II) A(x) and B(x) are decreasing on (a, b) if f ′/g′ is decreasing on (a, b).
The strictness of the monotonicity of A(x) and B(x) depends on the strictness
of monotonicity of f ′/g′.

Lemma 2. H(x) = sin(x)−x cos(x)
x2 sin(x)

is strictly positive increasing in (0, π/2).

Proof: H(x) is positive as cos(x) < sin(x)
x

on (0, π/2).
Consider,

H(x) =
sin(x)− x cos(x)

x2 sin(x)
=
H1(x)

H2(x)

whereH1(x) = sin(x)−x cos(x) andH2(x) = x2 sin(x) are such thatH1(0) =
0 and H2(0) = 0. By differentiating

H ′1(x)

H ′2(x)
=

sin(x)

x cos(x) + 2sin(x)
=
H3(x)

H4(x)

where H3(x) = sin(x) and H4(x) = x cos(x) + 2 sin(x) with H3(0) = 0 and
H4(0) = 0. Again differentiating we get

H ′3(x)

H ′4(x)
=

cos(x)

−x sin(x) + 3cos(x)
=

1

−x tan(x) + 3
.

Now it is well known that −x tan(x) is decreasing in (0, π/2) and so is
−x tan(x) + 3. By Lemma 1, H(x) is strictly increasing function in (0, π/2).
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3 Proofs of the Main Results

This section is devoted to the proofs of our main results.

Proof of Proposition 1: Clearly equalities hold at x = 0. Consider

f(x) =
cos(x)− 1

e−x2 − 1
=
f1(x)

f2(x)
,

where f1(x) = cos(x)− 1 and f2(x) = e−x
2 − 1 with f1(0) = 0 and f2(0) = 0.

By differentiation, we obtain

f ′1(x)

f ′2(x)
=
sin(x) ex

2

2x
=
f3(x)

f4(x)
,

where f3(x) = sin(x) ex
2

and f4(x) = 2x with f3(0) = 0 and f4(0) = 0.
Again differentiating we get

f ′3(x)

f ′4(x)
=
ex

2

2
[cos(x) + 2 x sin(x)]

=
ex

2

2
F (x),

where F (x) = cos(x) + 2 x sin(x). Differentiation gives

F ′(x) = 2x cos(x) + sin(x) > 0

in (0, π/2), which implies that F (x) is increasing. Thus
f ′3(x)

f ′4(x)
being a product

of two positive increasing functions is a positive increasing. By Lemma 1,
f(x) is also increasing in (0, π/2). So α = f(0+) = 1/2 and β = f(π/2−) =
−1/[e−(π/2)

2 − 1] ≈ 1.092663.

Proof of Proposition 2: Let us set

h(x) =
log(sin(x)/x)

log(tanh(x)/x)
=
h1(x)

h2(x)
,

where h1(x) = log(sin(x)/x) and h2(x) = log(tanh(x)/x) with h1(0+) = 0
and h2(0+) = 0. Differentiating we get

h′1(x)

h′2(x)
=
sin(x)− x cos(x)

x2 sin(x)

x2 tanh(x)

tanh(x)− x sech2(x)
= H(x) J(x),
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where H(x) = sin(x)−x cos(x)
x2 sin(x)

and J(x) = x2 tanh(x)
tanh(x)−x sech2(x) . Now set

J(x) =
J1(x)

J2(x)

where J1(x) = x2 tanh(x) and J2(x) = tanh(x) − x sech2(x) withJ1(0) = 0
and J2(0) = 0. Differentiation gives

J ′1(x)

J ′2(x)
=
x sech2(x) + 2 tanh(x)

2 sech2(x) tanh(x)

=
1

2

x

tanh(x)
+ cosh2(x),

which is clearly increasing as both x/tanh(x) and cosh2(x) are increasing.
By Lemma 1, J(x) is also increasing in (0, π/2). Moreover, J(x) is positive
as x/sinh(x) < cosh(x). By Lemma 2, H(x) is strictly positive increasing in
(0, π/2). h′1(x)/h′2(x), being product of two positive increasing functions is
positive increasing. Again by Lemma 1, h(x) is strictly increasing in (0, π/2).
So δ = log(2/π)/log(2tanh(π/2)/π) ≈ 0.839273 and η = f(0+) = 1/2, by
l’Hospital’s rule. This completes the assertion.

Proof of Proposition 3:

• Proof of (1.4). Let

f(x) =
log (sin(x)/x)

log (2 + e−x2)− log3
=
f1(x)

f2(x)
,

where f1(x) = log (sin(x)/x) and f2(x) = log
(

2 + e−x
2
)
− log3 such

that f1(0+) = 0 and f2(0) = 0. Differentiation gives

f ′1(x)

f ′2(x)
=

1

2

(sin(x)− x cos(x))

x2 sin(x)
(2ex

2

+ 1)

=
1

2
H(x)G(x),

where H(x) = sin(x)−x cos(x)
x2 sin(x)

is strictly positive increasing in (0, π/2)

by Lemma 2 and G(x) = 2ex
2

+ 1 is also clearly positive increasing.
Therefore H(x)G(x) is strictly increasing. By making use of Lemma
1, we conclude that f(x) is strictly increasing in (0, π/2). So

f(0+) < f(x) < f(π/2); x ∈ (0, π/2).

Hence, a = f(π/2) = log(2/π)/[log(2 + e−(π/2)
2
) − log3] ≈ 1.240827

and b = f(0+) = 1/2 by l’Hospital’s rule.
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• Proof of (1.5). Utilizing [4, Theorem 2], [20, Proposition 3] we have

e−kx
2

<
sin(x)

x
< e−x

2/6,

where k = −log(2/π)
(π/2)2

. After rearrangement, it can be written as

(
sin(x)

x

)6

< e−x
2

<

(
sin(x)

x

)1/k

. (3.1)

By virtue of [3, Theorem 2] we write(
3

2 + cosh(x)

)γ
< e−x

2

<

(
3

2 + cosh(x)

)6

, (3.2)

where γ = (π/2)2

log[(2+cosh(π/2))/3]
. Combining (3.1) and (3.2), we get(

3

2 + cosh(x)

)c
<
sin(x)

x
<

(
3

2 + cosh(x)

)
,

where c = kγ = −log(2/π)
log[(2+cosh(π/2))/3]

≈ 1.108171.

Proof of Proposition 4: According to [4, Theorem 3] and [20] we have

e−x
2/6 <

x

sinh(x)
< e−tx

2

, x ∈ (0, π/2)

where t = −log[π/(2sinh(π/2))]
(π/2)2

. It is equivalent to

(
x

sinh(x)

)1/t

< e−x
2

<

(
x

sinh(x)

)6

. (3.3)

Similarly, using [3, Theorem 1] we have(
2 + cos(x)

3

)λ
< e−x

2

<

(
2 + cos(x)

3

)6

, (3.4)

where λ = −(π/2)2
log(2/3)

. Combining (3.3) and (3.4) we get(
2 + cos(x)

3

)m
<

x

sinh(x)
<

(
2 + cos(x)

3

)n
,
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where m = λ
6

= −(π/2)2
6log(2/3)

≈ 1.014227 and n = 6t = −6log[π/(2sinh(π/2))]
(π/2)2

≈
0.928648.

Proof of Proposition 5: The proof follows easily by combining inequal-
ities (3.2) and (3.3) to get

p = −6log[π/2sinh(π/2)]
(π/2)2

≈ 0.928648 and q = (π/2)2

6log[(2+cosh(π/2))/3]
≈ 1.009155.

Proof of Proposition 6: For x = 0 equalities hold obviously. Rear-
ranging [8, Theorem 5], for any t ∈ (0, 1), we have

t e−t
2/3 < tanh(t) < t e−θt

2

with θ ≈ 0.272342. Therefore by integration, for x ∈ (0, 1), we get∫ x

0

t e−t
2/3 dt <

∫ x

0

tanh(t) dt <

∫ x

0

t e−θt
2

dt,

which yields

3

2

(
1− e−x2/3

)
< log(cosh(x)) <

1

2θ

(
1− e−θx2

)
.

By composing with the exponential function, we get the required result.

Proof of Proposition 7: Clearly, equalities hold at x = 0. Rearranging
[10, Theorem 4], for any t ∈ (0, 1), we have

3t

3 + t2
< tanh(t) <

ξt

ξ + t2

with ξ ≈ 3.194528. On integration, for x ∈ (0, 1), we have∫ x

0

3t

3 + t2
dt <

∫ x

0

tanh(t) dt <

∫ x

0

ξt

ξ + t2
dt

which implies that

3

2
log

(
1 +

x2

3

)
< log(cosh(x)) <

ξ

2
log

(
1 +

x2

ξ

)
.

The desired result follows by composing with the exponential function.
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