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New estimates on the regularity of the pressure in density-constrained Mean Field Games

We consider variational Mean Field Games endowed with a constraint on the maximal density of the distribution of players. Minimizers of the variational formulation are equilibria for a game where both the running cost and the final cost of each player is augmented by a pressure effect, i.e. a positive cost concentrated on the set where the density saturates the constraint. Yet, this pressure is a priori only a measure and regularity is needed to give a precise meaning to its integral on trajectories. We improve, in the limited case where the Hamiltonian is quadratic, which allows to use optimal transport techniques after time-discretization, the results obtained in a paper of the second author with Cardaliaguet and Mészáros. We prove H 1 and L 8 regularity under very mild assumptions on the data, and explain the consequences for the MFG, in terms of the value function and of the Lagrangian equilibrium formulation.

Introduction

The main motivation of this paper is to provide improved regularity estimates about the pressure arising in a class of variational Mean Field Games (MFG) where the interaction between players is due to a density constraint ρ ď 1 instead of arising from a penalization on the density itself. For the whole theory of Mean Field Games, a recent hot topic in applied mathematics introduced by Lasry and Lions in [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF] and, independently, by Caines, Huang and Malamé in [START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF], we refer to the lecture notes by Cardaliaguet [START_REF] Cardaliaguet | Notes on Mean Field Games, unublished[END_REF] and to the video-recorded lectures by Lions, [START_REF] Lions | Cours au Collège de France[END_REF]. This theory is concerned with the behavior of a continuous family of rational agents, who need to choose a strategy on how to move in a domain where they meet other agents and their cost is affected by their presence. The goal is to study the Nash equilibria and characterize them in terms of PDEs. Most models assume stochastic effects on the trajectory of the agents, and the corresponding PDEs include diffusion terms which make the solution smooth and simplify the analysis, besides being reasonable from the modeling point of view. Analytically, the most difficult case consists in problems where the interaction between players is local (i.e. the cost at point x and time t depends on the value of the density ρ t pxq, without averaging it in a neighborhood) and no diffusion is present. This case is essentially attacked when the game is of variational origin, i.e. it is a potential game, and the equilibrium condition arises as an optimality condition for an optimization problem in the class of density evolutions. For local potential MFG, we refer to [START_REF] Cardaliaguet | Weak solutions for first order mean field games with local coupling. Analysis and geometry in control theory and its applications[END_REF][START_REF] Cardaliaguet | Mean field games systems of first order[END_REF] and to the survey [START_REF] Benamou | Variational Mean Field Games[END_REF].

A particular potential MFG has been studied in [START_REF] Cardaliaguet | Santambrogio First order mean field games with density constraints: pressure equals price[END_REF], where the density ρ is constrained to be below a certain threshold, which represents a capacity constraint of the transportation network or of the medium where agents move. In this case a pressure appears: according to what we know from fluid mechanics, the pressure is a scalar field, vanishing where the density does not saturate the constraint, and its gradient affects the accelaration of the particles. In terms of the equilibrium problem, the pressure is a price to pay to pass through saturated regions. This means that agents compute their total cost by integrating the pressure along their trajectory, but this generates some issues about its regularity, since it is a priori not well-defined on negligible sets such as curves.

Inspired by the considerations in [START_REF] Ambrosio | On the regularity of the pressure field of Brenier's weak solutions to incompressible Euler equations[END_REF][START_REF] Ambrosio | Geodesics in the space of measure-preserving maps and plans[END_REF], in [START_REF] Cardaliaguet | Santambrogio First order mean field games with density constraints: pressure equals price[END_REF] two facts were proven. First, there is a way to define a precise representative p of the pressure p such that almost every trajectory followed by the agents optimize a cost involving ω Þ Ñ ş 1 0 ppt, ωptqqdt among curves ω such that ş 1 0 pM pqpt, ωptqqdt ă `8 (M p is the maximal function of p; such an integrability condition is required since p is defined as a limit of averages on balls and this is necessary to pass to the limit the averaged estimations). Second, the pressure p belongs, under some assumptions on the data, to L 2 t,loc BV x (same regularity as the one obtained in [START_REF] Ambrosio | On the regularity of the pressure field of Brenier's weak solutions to incompressible Euler equations[END_REF]), which guarantees L 1`ε summability. This implies, by well-known harmonic analysis results, that M p is also summable to the same power, and guarantees that the class of curves satisfying the integrability condition on M p is large enough.

In the present paper this result is improved in several different ways, but we have to pay a price: we need to specialize to the case where the Hamiltonian is quadratic. This means that the cost payed by the agents following a trajectory ω is of the form

ż 1 0 ˆ1 2 | 9 ωptq| 2 `Ṽpt, ωptqq ˙dt `Ψpωp1qq,
where Ṽ " V `p is given by a running cost plus the pressure, and Ψ is given by the final cost, augmented by a final pressure P 1 . Note that we cannot exclude the presence of a pressure effect concentrated at the final time (the pressure should be considered as a measure with a singular part concentrated on t " 1); we know that it is indeed possible to observe it in some particular cases, and this is indeed the role played by P 1 (see Sections 1.1 and 2.3).

In particular, the dependence in the velocity is quadratic, instead of using more general convex, and possibly spacedependent, functions Lpωptq, 9

ωptqq. This allows to use properties of optimal transport and of the Wasserstein distance W 2 . In this precise setting, the results in [START_REF] Cardaliaguet | Santambrogio First order mean field games with density constraints: pressure equals price[END_REF] provided L 2 t,loc BV x regularity for the pressure if both the running cost V and the final cost Ψ were C 1,1 ; here (see Theorem 2.8 for the precise statement) we manage to obtain L 8 t H 1 x under the only assumption V P H 1 . Moreover, we obtain an inequality on the Laplacian of the pressure which, thanks to quite standard Moser iterations, provides p P L 8 as soon as V P W 1,q for q ą d (d being the space dimension). This boundedness is very important since it implies that the integrability condition on M p is always satisfied, and the class of competitor curves in the equilibrium condition includes now all curves. Finally, similar result are obtained for the singular pressure P 1 at time t " 1, while [START_REF] Cardaliaguet | Santambrogio First order mean field games with density constraints: pressure equals price[END_REF] did not adress its behavior. As a last remark, the achievements of the present paper are global on a general bounded convex space domain, while the techniques in [START_REF] Cardaliaguet | Santambrogio First order mean field games with density constraints: pressure equals price[END_REF] could not easily be adapted to domains with boundary (they were presented in the torus; the technique can be adapted to other domains but only obtaining local results).

The main tool to obtain the desired estimate is an inequality on ∆pp `Vq, valid at any time t on the saturated region where p ą 0, and all the estimates derive from this one (analogously, we also use a similar inequality on ∆pP 1 `Ψq). We first provide (in Section 1.1) an heuristic derivation of this inequality, based on the use of the convective derivative along the flow. In order to make the proof rigorous, the strategy is very much inspired from our previous work [START_REF] Lavenant | Optimal density evolution with congestion: L 8 bounds via flow interchange techniques and applications to variational Mean Field Games[END_REF], based on time-discretization, even if the inequalities we use are not the same.

As we said at the beginning, MFG with density constraints are the motivation for this work and they are the setting where these estimates show better their potential of applications. However, we believe that the technique deserves attention both for its remarkable simplicity, and for the possibility of being applied to other settings.

A similar setting can be found in the variational formulation by Brenier of the incompressible Euler equation. Yet, the sharp regularity of the pressure is in such a setting an open problem, as semi-concavity is a reasonable conjecture advanced by Brenier, but the current achievements do not go beyond the L 2 t BV x result mentioned above. Yet, due to the multiphasic nature of the problem formulated by Brenier, it is in general not possible to translate all the available techniques into such a more complicated setting (see for instance [START_REF] Lavenant | Time-convexity of the entropy in the multiphasic formulation of the incompressible Euler equation[END_REF] where the time-convexity of the entropy is proven, but, differently from [START_REF] Lavenant | Optimal density evolution with congestion: L 8 bounds via flow interchange techniques and applications to variational Mean Field Games[END_REF], the same cannot be obtained for other internal energies; analogously, the same results of [START_REF] Lavenant | Time-convexity of the entropy in the multiphasic formulation of the incompressible Euler equation[END_REF] are also recovered in [START_REF] Baradat | Small noise limit and convexity for generalized incompressible flows, Schrödinger problems, and optimal transport[END_REF], and the same algebraic obstruction prevents from generalizing the result to more general energies). On the other hand, the works on density-constrained MFG (including a first attempt, with a non-variational model, in [START_REF] Santambrogio | A modest proposal for MFG with density constraints[END_REF]) were inspired by previous works of the second author on crowd motion formulated as a gradient flow with density constraints (see [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF] and [START_REF] Santambrogio | Crowd motion and population dynamics under density constraints[END_REF]), and the present technique seems possible to be applied to such a first-order (in time) setting. Indeed, as explained in the core of the article, the technique of proof for the regularity of the final pressure P 1 is performed exactly as if we had a JKO scheme for a gradient flow (see [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]).

From the point of view of generalizations, in particular to other Hamiltonians, or to quadratic Hamiltonians on manifold (which could require to use curvature assumptions on the manifold), it seems that the main point is the computation of the Laplacian of the Hamilton-Jacobi equation: once suitable inequalities are available on it, the approach could be generalized.

The paper is organized as follows. In the rest of Section 1 we present first the heuristic derivation of our estimates and then some consequences, in the framework of MFG, on the regularity of the value function. Section 2 presents useful preliminaries, then the context and the precise results we will prove, and finally the time-discrete approximation we choose. Section 3 contains the main estimates, divided into interior regularity for p and then "boundary" regularity for P 1 . Section 4 shows how to translate the discrete estimates into continuous ones, by providing limit results both on the primal and on the dual problem.

Heuristic derivation of the estimates

We start with the MFG system, which can be obtained as a consequence of the primal-dual optimality conditions of a variational problem, see [START_REF] Cardaliaguet | Santambrogio First order mean field games with density constraints: pressure equals price[END_REF]. These conditions read, for functions depending on time t P r0, 1s and space x P Ω,

$ ' ' ' & ' ' ' % B t ρ ´∇ ¨pρ∇φq " 0, ´Bt φ `1 2 |∇φ| 2 ď P `V (with equality on tρ ą 0u), ρp0, ¨q " ρ0 , φp1, ¨q ď Ψ (with equality on tρ 1 ą 0u),
where P ě 0 is a measure concentrated on the set tρ " 1u. As far as this heuristic justification is concerned, we will just look at the conditions which are satisfied on the support of ρ, where the inequalities become equalities. As we are interested in estimates on the pressure P, i.e. on the set tρ " 1u, this is a legit restriction. As we will see later, the pressure P is a measure which can be decomposed into two parts: its restriction to r0, 1q ˆΩ is absolutely continuous w.r.t. the Lebesgue measure on r0, 1q ˆΩ, and its density is denoted by p; on the other hand, there is also a part on t1u ˆΩ which is singular, but absolutely continuous w.r.t. the Lebesgue measure on Ω, and its density is denoted by P 1 . This second part represents a jump of the function φ at t " 1, which allows to re-write the system as follows.

$ ' ' ' & ' ' ' % B t ρ ´∇ ¨pρ∇φq " 0, ´Bt φ `1 2 |∇φ| 2 " p `V, ρp0, ¨q " ρ0 , φp1, ¨q " Ψ `P1 . (1.1) 
where the density ρ satisfies ρ ď 1 everywhere and p, P 1 ě 0 are strictly positive only on the regions where the constraint involving ρ is saturated, i.e. where ρ " 1 (ρ 1 " 1 in the case of P 1 ). We denote by D t :" B t ´∇φ ¨∇ the convective derivative. The idea is to look at the quantity ´Dtt pln ρq. Indeed, the first equation of (1.1) can be rewritten D t pln ρq " ∆φ. On the other hand, taking the Laplacian of the second equation in (1.1), it is easy to get, dropping a positive term, ´Dt p∆φq ď ∆pp `Vq. Hence, ´Dtt pln ρq ď ∆pp `Vq.

( 

where n Ω is the outward normal to Ω. As ∇pp `Vq is the acceleration of the agents, who are constrained to stay in Ω, under the assumption that Ω is convex we get ∇pppt, ¨q `Vq ¨nΩ ď 0, hence the l.h.s. of (1.3) is negative. From this we immediately see that }∇ppt, ¨q} L 2 pΩq ď }∇V} L 2 pΩq , i.e. that p P L 8 pp0, 1q; H 1 pΩqq. Moreover, taking m ą 1 and mutliplying by p m , and provided that ∇V P L q pΩq with q ą d, we can use Moser iterations (i.e. iterating the inequality we obtain for different values of m) to prove that ppt, ¨q P L 8 pΩq with a norm depending only on V and Ω. For the final pressure P 1 , we only look at D t pln ρq " ∆φ. Using the equation for the terminal value of φ, D t pln ρqp1, ¨q " ∆pP 1 `Ψq.

(1.4)

The l.h.s. is positive at every point x such that ρp1, xq " 1, hence we get ∆pΨ `P1 q ě 0 on tP 1 ą 0u. From exactly the same computations, we deduce }∇P 1 } L 2 pΩq ď }∇Ψ} L 2 pΩq and the L 8 pΩq norm of P 1 depends only on Ω and Ψ provided that ∇Ψ P L q pΩq with q ą d.

Let us say that this strategy, namely looking at the convective derivative of quantities such as ln ρ was in fact already used by Loeper [START_REF] Loeper | The reconstruction problem for the Euler-Poisson system in cosmology[END_REF] to study a problem similar to ours (related to the reconstruction of the early universe), but in a case without potential and where ∆p :" ρ ´1. In his case, (1.2) leads to a differential inequality involving only ρ from which a L 8 bound on ρ was deduced.

The assumption of convexity of Ω can be surprising, but is crucial for our method, as it was already the case in our previous work [START_REF] Lavenant | Optimal density evolution with congestion: L 8 bounds via flow interchange techniques and applications to variational Mean Field Games[END_REF]. Roughly speaking, it prevents the interaction with the boundary from causing congestion: only the potentials V and Ψ are a source of congestion. As far as we can see, we do not know how to relax the assumption of convexity of Ω and still be able to control the r.h.s. of (1.3).

It is also possible to adapt these heuristic computations to the case of more general Hamiltonians. For instance, if we replace Ω by a Riemannian manifold (i.e. if we stick to a quadratic Lagrangian and Hamiltonian but insert a specific x-dependency), it is clear that the heuristic computation can be performed exactly in the same way provided that the manifold has a positive Ricci curvature, as the inequality involving the Laplacian of the Hamilton-Jacobi equation can be deduced from Bochner's formula. On the other hand, if we take a Lagrangian which is not quadratic, for instance of the form Lp 9 ωq (we omit explicit dependence on the point, not to overburden the computations), the mean field game system now reads (we have not included the temporal boundary conditions)

# B t ρ ´∇ ¨pρ∇Hp∇φqq " 0, ´Bt φ `Hp∇φq " p `V,
where H is the Legendre transform of L. Compared to the previous system (1.1), the velocity of the agents appearing in the continuity equation is given by ´∇Hp∇φq and the convective derivative is now D t " B t ´∇Hp∇φq ¨∇. Expanding the continuity equation leads to D t pln ρq " ∇ ¨p∇Hp∇φqq.

For instance, for Lp 9 ωq " | 9 ω| r {r, we have Hpzq " |z| q {q, where q is the conjugate exponent to r, and we have D t pln ρq " ∆ q pφq. Because of the non-linearity of this term, as the reader can see, computations become much more involved than the quadratic case, but it is still possible to obtain an inequality of the form ∇ ¨pD 2 Hp∇φq∇pp `Vqq ě 0, which proves again that p `V is a subsolution of a suitable elliptic equation. Unfortunately this equation, though being linear in p `V, can be highly degenerate if H is not uniformly elliptic, and the analysis of the resulting estimates is far from the objectives of this paper.

On the consequences for the value function and the Lagrangian point of view

Though they can be seen as interesting in themselves, the estimates obtained on the pressure have consequences for the interpretation of the MFG system.

The first one has to do with the regularity of the value function φ. Indeed, as understood in the works by Cardaliaguet and collaborators [START_REF] Cardaliaguet | Weak solutions for first order mean field games with local coupling. Analysis and geometry in control theory and its applications[END_REF][START_REF] Cardaliaguet | Mean field games systems of first order[END_REF][START_REF] Cardaliaguet | Sobolev regularity for the first order Hamilton-Jacobi equation[END_REF], a solution of a Hamilton-Jacobi equation exhibits regularity as soon as the r.h.s. is bounded from below and its positive part lies in L 1`d{2`ε . In the aforementioned articles, such an assumption on the r.h.s. was obtained by assuming a moderate growth on the penalization of congestion in the primal problem. In the case studied in this article, where the density is forced to stay below a given threshold, the naive estimate on the r.h.s. of the Hamilton-Jacobi equation leads to a L 1 bound. The estimates obtained previously in [START_REF] Cardaliaguet | Weak solutions for first order mean field games with local coupling. Analysis and geometry in control theory and its applications[END_REF] do not allow to deduce regularity of the value function (except if d " 1). However, with what we prove in the present paper, one can deduce the following (see Section 2.3 below for the definition of the dual and primal problem).

Proposition 1.1. Assume that either V P H 1 pΩq and d ď 4 or that V P W 1,q pΩq with q ą d. Then there exists p φ, Pq a solution to the dual problem such that, for any r0, T s ˆΩ compactly embedded in r0, 1q ˆΩ, the function φ is Hölder-continuous on r0, T s ˆΩ and B t φ P L 1`ε pr0, T s ˆΩq, ∇ φ P L 2`ε pr0, T s ˆΩq for some ε ą 0.

Sketch of the proof. The proof of this result can be obtained thanks to Theorem 2.8 proved below. Indeed, if either one of these assumption is true, it implies (thanks to Sobolev injections) that the density p of P is such that p`V P L r pr0, T sˆΩq for some r ą 1 `d{2. Combined with [9, Lemma 3.5] (for the Hölder regularity) and [12, Theorem 1.1] (for the Sobolev regularity), we deduce the result.

On the other hand, we can also deduce some information about the Lagrangian point of view, for instance when we have L 8 bounds on the pressure. The necessity for such bounds is explained in details in the introduction of our previous article [START_REF] Lavenant | Optimal density evolution with congestion: L 8 bounds via flow interchange techniques and applications to variational Mean Field Games[END_REF], let us just say that it has to do with how one chooses the correct representative for the pressure. We do not reproduce the derivation here, but just state the result. For that, we need to choose P a solution of the dual problem. We know from our theorem 2.8 that it has a density that we will call p on r0, 1q ˆΩ, and we select a precise representative of it, according to the formula in [START_REF] Ambrosio | Geodesics in the space of measure-preserving maps and plans[END_REF], in the following way: ppt, xq " lim sup (1.5)

Notice that if V, Ψ P W 1,q pΩq, we know that V, Ψ are continuous and (thanks to Theorem 2.8), that p is in L 8 pp0, 1q

Ωq. Analogously, we also set

P1 pxq " lim sup εÑ0 1 |Bpx, εq| ż Bpx,εq
P1 pyq dy.

(1.6)

We will need to use the notation e t : ω P H 1 pr0, 1s, Ωq Ñ ωptq P Ω which denotes the evaluation operator.

Proposition 1.2. Assume that V, Ψ P W 1,q pΩq, that p φ, Pq is the solution of the dual problem given in Theorem 2.8, and that p, P1 are defined everywhere by (1.5) and (1.6). Then there exists Q P PpH 1 pr0, 1s, Ωqq a measure on the set of H 1 curves valued in Ω such that ρ : t Ñ e t #Q is a solution of the primal problem and, for Q-a.e. γ, the curve γ minimizes

ω Ñ 1 2 ż 1 0 | 9 ωptq| 2 dt `ż 1 0
pVpωptqq `ppt, ωptqqq dt ``Ψpωp1qq `P 1 pωp1qq ȃmong all curves ω P H 1 pr0, 1s, Ωq such that ωp0q " γp0q.

If we come back to the interpretation of the MFG system, Q exactly describes the strategy of all the agents: it is the ditribution of mass on the possible strategies, and Proposition 1.2 reads as the fact that Q is a Nash-equilibrium, provided that the agents pay the prices p and P1 in the regions where the constraint ρ ď 1 is saturated.

Notations, optimal transport and the variational problems

In all the sequel, Ω will denote the closure of an open bounded convex domain of R d with smooth boundary. We assume that the Lebesgue measure of Ω, denoted by |Ω| is strictly larger than 1: it will be necessary to get existence of probability measures on Ω with density bounded by 1. The generalization to the case where Ω is the d-dimensional torus is straightforward and we do not address it explicitly. The space of probability measures on Ω will be denoted by PpΩq. This space PpΩq is endowed with the weak-* topology, i.e. the topology coming from the duality with CpΩq, the continuous functions from Ω valued in R.

We will also make use of the space of positive measures on the product r0, 1sˆΩ which we denote by M `pr0, 1sˆΩq. In all the sequel, when the element of integration is not specified, it is assumed tacitly that integration is performed w.r.t. the Lebesgue measure (either the d-dimensional Lebesgue measure on Ω or the d `1-dimensional Lebesgue measure on r0, 1s ˆΩ). Similarly, a measure is said to be absolutely continuous if it is the case w.r.t. the Lebesgue measure.

The Wasserstein space

The space PpΩq of probability measures on Ω is endowed with the Wasserstein distance: if µ and ν are two elements of PpΩq, the 2-Wasserstein distance W 2 pµ, νq between µ and ν is defined via

W 2 pµ, νq :" d min "ż ΩˆΩ |x ´y| 2 dγpx, yq : γ P PpΩ ˆΩq and π 0 #γ " µ, π 1 #γ " ν * . (2.1)
In the formula above, π 0 and π 1 : Ω ˆΩ Ñ Ω stand for the projections on respectively the first and second component of Ω ˆΩ. If T : X Ñ Y is a measurable application and µ is a measure on X, then the image measure of µ by T , denoted by T #µ, is the measure defined on Y by pT #µqpBq " µpT ´1pBqq for any measurable set B Ă Y. For general results about optimal transport, the reader might refer to [START_REF] Villani | Topics in optimal transportation[END_REF] or [START_REF] Santambrogio | Optimal transport for applied mathematicians: calculus of variations[END_REF].

In all the sequel, we identify a measure with its density w.r.t. the Lebesgue measure on Ω. Moreover, if µ P PpΩq, we write µ ď 1 if the measure µ is absolutely continuous and its density is a.e. bounded by 1.

The Wasserstein distance admits a dual formulation, the dual variables being the so-called Kantorovich potentials. The main properties of these potentials, in the case which is of interest to us, are summarized in the proposition below. We restrict to the cases where the measures have a strictly positive density a.e., as in this particular case the potentials are unique (up to a global additive constant). The proof of these results can be found in (but not exclusively) [26, Chapters 1 and 7].

Proposition 2.1. Let µ, ν P PpΩq be two absolutely continuous probability measures with strictly positive density. Then there exists a unique (up to adding a constant to ϕ and subtracting it from ψ) pair pϕ, ψq of Kantorovich potentials satisfying the following properties.

1. The squared Wasserstein distance W 2 2 pµ, νq can be expressed as

W 2 2 pµ, νq 2 " ż Ω ϕµ `żΩ ψν.
2. The "vertical" derivative of W 2 2 p¨, νq at µ is ϕ: if ρ P PpΩq is any probability measure, then

lim εÑ0 W 2 2 pp1 ´εqµ `ε ρ, νq ´W2 2 pµ, νq 2 " ż Ω ϕp ρ ´µq.
3. The potentials ϕ and ψ are one the c-transform of the other, meaning that we have

$ ' ' & ' ' % ϕpxq " inf yPΩ ˆ|x ´y| 2 2 ´ψpyq ψpyq " inf xPΩ ˆ|x ´y| 2 2 ´ϕpxq ˙.
4. There holds pId ´∇ϕq#µ " ν and the transport plan γ :" pId, Id ´∇ϕq#µ is optimal in the problem (2.1).

The function ϕ (resp. ψ) is called the Kantorovitch potential from µ to ν (resp. from ν to µ).

Absolutely continuous curves in the Wasserstein space

We will denote by Γ the space of continuous curves from r0, 1s to PpΩq. This space will be equipped with the distance d Γ of the uniform convergence, i.e.

d Γ pρ 1 , ρ 2 q :" max tPr0,1s W 2 pρ 1 t , ρ 2 t q.
Following [4, Definition 1.1.1], we will introduce the following subset of Γ.

Definition 2.2. We say that a curve ρ P Γ is 2-absolutely continuous if there exists a function a P L 2 pr0, 1sq such that, for every 0 ď t ď s ď 1,

W 2 pρ t , ρ s q ď ż s t aprq dr.
The main interest of this notion lies in the following theorem, which we recall.

Theorem 2.3. If ρ P Γ is a 2-absolutely continuous curve, then the quantity

| 9 ρ t | :" lim hÑ0 W 2 pρ t`h , ρ t q h
exists and is finite for a.e. t. Moreover, 

ż 1 0 | 9 ρ t | 2 dt " sup Ně2 sup 0ďt 1 ăt 2 ă...ăt N ď1 N ÿ k"2 W 2 2 pρ t k´1 , ρ t k q t k ´tk´1 . ( 2 

Primal and dual problem

To state our main theorem, we do the following assumptions, which will hold throughout the whole article. (A2) We fix V P H 1 pΩq (the "running" cost) and assume that it is positive.

(A3) We fix Ψ P H 1 pΩq (the "final" cost ) and assume that it is positive.

(A4) We take ρ0 P PpΩq (the initial probability measure) such that ρ0 ď 1.

We denote by Γ 0 Ă Γ the set of curves such ρ P Γ that ρ 0 " ρ0 . As we will see below in the definition of the primal problem, it does not change anything to add a constant to V or Ψ, hence (A2) and (A3) are equivalent to ask that V and Ψ are bounded from below. Note that the important assumption on Ω is its convexity, as already indicated by the formal computation in the introduction.

The primal objective functional reads Apρq :"

$ & % ż 1 0 1 2 | 9 ρ t | 2 dt `ż 1 0 ˆżΩ Vρ t ˙dt `żΩ Ψρ 1 if ρ t ď 1 for all t P r0, 1s, ` 8 else. 
Definition 2.4. The primal problem is min tApρq : ρ P Γ 0 u (2.3)

We will need to consider the dual of this problem. Let φ P C 1 pr0, 1s ˆΩq and P P Cpr0, 1s ˆΩq be smooth functions with p positive and in such a way that the Hamilton Jacobi equation is satisfied as an inequality

´Bt φ `1 2 |∇φ| 2 ď V `P (2.4)
and the final value of φ is constrained by φp1, ¨q ď Ψ.

(2.5)

The dual functional is defined as follows:

Bpφ, Pq :"

ż Ω φp0, ¨q ρ0 ´ij r0,1sˆΩ P.
and there is no duality gap between the primal and the dual problem. However, to get existence of a solution of the dual problem, it is too restrictive to look only at smooth functions. As understood in [START_REF] Cardaliaguet | Santambrogio First order mean field games with density constraints: pressure equals price[END_REF], the right functional space is the following.

Definition 2.5. Let K be the set of pairs pφ, Pq where φ P BVpr0, 1s ˆΩq X L 2 pr0, 1s, H 1 pΩqq and P P M `pr0, 1s ˆΩq is a positive measure, and the Hamilton Jacobi equation (2.4) is understood in the distributional sense, provided we set φp1 `, ¨q " Ψ and that we take in account the possible jump from φp1 ´, ¨q to φp1 `, ¨q in the temporal distributional derivative. Specifically, we impose that for any smooth and non-negative function f defined on r0, 1s ˆΩ,

ij r0,1sˆΩ B t f φ ´żΩ f p1, xqΨpxq dx `żΩ f p0, xqφp0 `, xq dx `ij r0,1sˆΩ 1 2 f |∇φ| 2 ď ij r0,1sˆΩ f V `ij r0,1sˆΩ f dP.
For pφ, Pq P K, the dual functional is understood in the following sense:

Bpφ, Pq :"

ż Ω φp0 `, ¨q ρ0 ´Ppr0, 1s ˆΩq.
Notice, in the definition of solutions of the Hamilton Jacobi equation we assume φp0 ´, ¨q " φp0 `, ¨q (no jump for t " 0) but we set φp1 `, ¨q " Ψ. The measure P can have a part concentrated on t " 1, which may lead to φp1 ´, ¨q ą φp1 `, ¨q " Ψ, provided the jump is compensated by the part of P on t1u ˆΩ.

Definition 2.6. The dual problem is max tBpφ, Pq : pφ, Pq P Ku .

(2.6)

These two problems are in duality in the following sense [11, Propositions 3.3 and 3.8].

Theorem 2.7. There holds min tApρq : ρ P Γ 0 u " max tBpφ, Pq : pφ, Pq P Ku .

Notice that the existence of a solution to both the primal and the dual problem are included in this statement. The main result of this paper is the following:

Theorem 2.8. There exists a solution p φ, Pq of the dual problem such that:

• The restriction of P to r0, 1q ˆΩ has a density w.r.t. to the d `1-dimensional Lebesgue measure and this density, denoted by p; satisfies }∇ ppt, ¨q} L 2 pΩq ď }∇V} L 2 pΩq for a.e. t P r0, 1s. Moreover, if V P W 1,q pΩq with q ą d, then } p} L 8 pr0,1qˆΩq ď C ă `8 with C depending only on }∇V} L q pΩq and Ω.

• The restriction of P to t1uˆΩ has a density w.r.t. to the d-dimensional Lebesgue measure and this density (denoted by P1 ) satisfies }∇ P1 } L 2 pΩq ď }∇Ψ} L 2 pΩq . Moreover, if Ψ P W 1,q pΩq with q ą d, then } P1 } L 8 pΩq ď C ă `8 with C depending only on }∇Ψ} L q pΩq and Ω.

As already understood in [11, Section 5], there are situations where the pressure is concentrated on t1u ˆΩ: one cannot expect P to have a density with respect to the Lebesgue measure on the closed interval r0, 1s. Nevertheless we prove in our theorem that the part of the pressure concentrated on t1u ˆΩ has spatial regularity, namely H 1 pΩq and even L 8 pΩq if Ψ P W 1,q pΩq with q ą d. The rest of this paper is devoted to the proof of this theorem, the wrapping of the arguments being located at page 18.

The discrete problem

To tackle this problem and make rigorous the estimate given in the introduction, we will approximate the primal problem in the following way:

• We introduce a time-discretization. The integer N `1 denotes the number of time steps. The time step will be denoted by τ and we use the approximation

ż 1 0 1 2 | 9 ρ t | 2 dt » N´1 ÿ k"0 W 2 2 pρ kτ , ρ pk`1qτ q 2τ .
• We add an infinitesimal entropic penalization. The goal is to make sure that the density of the minimizers of the discrete problem will be bounded from below, which is necessary when we want to write the optimality conditions.

• For technical reasons, we need to regularize V and Ψ. We take pV N q NPN a sequence which converges to V in H 1 pΩq and such that V N is Lipschitz for any N ě 1. We can assume moreover that }∇V N } L 2 pΩq ď }∇V} L 2 pΩq and V N is positive. Similarly, we take a sequence Ψ N going to Ψ in H 1 pΩq satisfying analogous properties.

The entropic penalization will be realized with the help of the following functional: for any ρ P PpΩq, we set

Hpρq :" $ & % ż Ω lnpρqρ if ρ is absolutely continuous, ` 8 else. 
It is known [START_REF] Santambrogio | Optimal transport for applied mathematicians: calculus of variations[END_REF]Chapter 7] that H is lower semi-continuous on PpΩq. Moreover, a simple application of Jensen's inequality yields ´lnp|Ω|q ď Hpρq ď 0 as soon as ρ ď 1.

To define the discrete problem, we take N ě 1 and denote by Γ N 0 :" tpρ kτ q kPt0,1,...,Nu : ρ kτ P PpΩq and ρ 0 " ρ0 u Ă pPpΩqq N`1 the set of discrete curves starting from ρ0 . We denote by τ :" 1{N the time step. We choose pλ N q NPN which goes to 0 while being strictly positive, it will account for the scale of the entropic penalization. The speed at which λ N Ñ 0 is irrelevant for the analysis, hence we do not need to specify it. The discrete functional A N is defined on Γ N 0 as

A N pρq :" $ ' & ' % N´1 ÿ k"0 W 2 2 pρ kτ , ρ pk`1qτ q 2τ `N´1 ÿ k"1 τ ˆżΩ V N ρ kτ `λN Hpρ kτ q ˙`ż Ω Ψ N ρ 1 `λN Hpρ 1 q if ρ kτ ď 1 for all k P t0, 1, . . . , Nu, ` 8 else. 
The discrete problem reads as min A N pρq :

ρ P Γ N 0 ( . (2.7) 
Proposition 2.9. For any N ě 1, there exists a unique solution to the discrete problem.

Proof. The functional A N is l.s.c. on Γ N 0 . Moreover, the curve ρ which is constant and equal to ρ0 belongs to Γ N 0 and is such that A N pρq ă `8. As Γ N 0 is compact (for the topology of the weak convergence of measures), the direct method of calculus of variations ensures the existence of a minimizer.

Uniqueness clearly holds as λ N ą 0 and the entropy is a strictly convex function on PpΩq.

From now on, for any N ě 1, we fix ρN the unique solution of the discrete problem

Estimates on the discrete problem

Let us comment on a technical refinement: for some computations to be valid, we will need to assume that ρ0 is smooth is strictly positive. If it is not the case, it is easy to approximate (for fixed N) the measure ρ0 with a sequence ρpnq 0 of smooth densities. For such a ρpnq 0 , the estimates obtained below for a given N (Corollary 3.6) do not depend on n. Hence it is easy to send n to `8, using the stability of the Kantorovich potentials [26, Theorem 1.52] to see that these estimates are still satisfied for the solution of the discrete problem with initial condition ρ0 . In short: we will do as if our initial condition ρ0 were smooth, and as long as the final estimates do not depend on the smoothness of ρ0 this will be legitimate.

Interior regularity

We begin with the interior regularity. In this subsection, we fix N ě 1 and k P t1, 2, . . . , N ´1u a given instant in time. We use the shortcut ρ :" ρN kτ and we also denote µ :" ρN pk´1qτ and ν :" ρN pk`1qτ . As ρN is a solution of the discrete problem, we know that ρ is a minimizer, among all probability measures with density bounded by 1, of

ρ Þ Ñ W 2 2 pµ, ρq `W2 2 pρ, νq 2τ `τ ˆżΩ V N ρ `λN Hpρq ˙.
Lemma 3.1. The density ρ is strictly positive a.e.

Proof. This is exactly the same proof as [20, Lemma 3.1], as the construction done in this proof preserves the constraint of having a density smaller than 1.

Proposition 3.2. Let us denote by ϕ µ and ϕ ν the Kantorovich potentials for the transport from ρ to µ and ν respectively. There exists p P L 1 pΩq, positive, such that tp ą 0u Ă t ρ " 1u and a constant C such that ϕ µ `ϕν τ 2 `VN `p `λN lnp ρq " C a.e.

(3.1)

Moreover p and lnp ρq are Lipschitz and ∇p ¨∇ lnp ρq " 0 a.e.

Proof. Let ρ P PpΩq such that ρ ď 1. We define ρ ε :" p1 ´εq ρ `ε ρ and use it as a competitor. Clearly ρ ε ď 1, i.e. it is an admissible competitor. Comparing A N pρ ε q to A N pρq, we extract the following information. Using Proposition 2.1, as ρ ą 0, the Kantorovich potentials ϕ µ and ϕ ν are unique (up to a constant) and

lim εÑ0 W 2 2 pµ, ρ ε q ´W2 2 pµ, ρq `W2 2 pρ ε , νq ´W2 2 p ρ, νq 2τ 2 " ż Ω ϕ µ `ϕν τ p ρ ´ρq.
The term involving V N is straightforward to handle as it is linear. The only remaining term is the one involving the entropy. But here, using the same reasoning as in [20, Proposition 3.2], we can say that lim sup

εÑ0 Hpρ ε q ´Hp ρq ε ď ż Ω lnp ρqp ρ ´ρq.
Putting the pieces together, we see that ş Ω h p ρ ´ρq ě 0 for any ρ P PpΩq with ρ ď 1, provided that h is defined by

h :" ϕ µ `ϕν τ 2 `VN `λN lnp ρq
It is known, analogously to [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF]Lemma 3.3], that this leads to the existence of a constant C such that

$ ' & ' % ρ " 1 on th ă Cu ρ ď 1 on th " Cu ρ " 0 on th ą Cu (3.2)
Specifically, C is defined as the smallest real C such that Lpth ď Cuq ě 1 (L being the Lebesgue measure on Ω), and it is quite straightforward to check that this choice works. Note that the case th ą Cu can be excluded by Lemma 3.1. The pressure p is defined as p " pC ´hq `, thus (3.1) holds. It satisfies p ě 0, and ρ ă 1 implies p " 0.

It remains to answer the question of the integrability properties of p and lnp ρq. Notice that p is positive, and non zero only on t ρ " 1u. On the other hand, lnp ρq ď 0 and it is non zero only on t ρ ă 1u. Hence, one can write

p " ˆC ´ϕµ `ϕν τ 2 `VN ˙`and lnp ρq " ´1 λ N ˆC ´ϕµ `ϕν τ 2 `VN ˙´. (3.3)
Given that the Kantorovich potentials and V N are Lipschitz, it implies the Lipschitz regularity for p and lnp ρq. Moreover, the identity ∇p ¨∇ lnp ρq " 0 is straightforward using ∇ f `" ∇ f ½ f ą0 a.e., which is valid for any f P H 1 pΩq.

Let us note that ϕ µ and ϕ ν have additional regularity properties, even though they depend heavily on N.

Lemma 3.3. The Kantorovich potentials ϕ µ and ϕ ν belong to C 2,α p Ωq X C 1,α pΩq.

Proof. If k P t2, . . . , Nu, thanks to Proposition 3.2 (applied in k ´1 and k `1), we know that µ and ν have a Lipschitz density and are bounded from below. Using the regularity theory for the Monge Ampère-equation [27, Theorem 4.14], we can conclude that ϕ µ and ϕ ν belong to C 2,α p Ωq X C 1,α pΩq.

Theorem 3.4. For any m ě 1, the following inequality holds:

ż Ω ∇pp m q ¨∇pp `VN q ď 0. (3.4)
Proof. The (optimal) transport map from ρ to µ is given by Id ´∇ϕ µ , and similarly for ν. We consider the following quantity, (defined on the whole Ω given the regularity of µ, ν, ϕ µ and ϕ ν ), which is a discrete analogue of the l.h.s. of (1.2):

Dpxq :" ´lnpµpx ´∇ϕ µ pxqqq `lnpνpx ´∇ϕ ν pxqqq ´2 lnp ρpxqq τ 2 .

Notice that if ρpxq " 1, then by the constraint µpx ´∇ϕ µ pxqq ď 1 and νpx ´∇ϕ ν pxqq ď 1 the quantity Dpxq is positive.

On the other hand, using pId ´∇ϕ µ q# ρ " µ and the Monge-Ampère equation, for all x P Ω there holds µpx ´∇µ ϕ µ pxqq " ρpxq detpId ´D2 ϕ µ pxqq , and a similar identity holds for ϕ ν . Hence the quantity Dpxq is equal, for all x P Ω, to

Dpxq " lnpdetpId ´D2 ϕ µ pxqqq `lnpdetpId ´D2 ϕ ν pxqqq τ 2 .
Diagonalizing the matrices D 2 ϕ µ , D 2 ϕ ν and using the convexity inequality lnp1 ´yq ď ´y, we end up with Dpxq ď ´∆pϕ µ pxq `ϕν pxqq τ 2 .

We multiply this identity by p m and integrate. Thanks to the fact that D is positive on t ρ " 1u, as p is positive and does not vanish only on t ρ " 1u, the quantity p m D is positive on Ω. As the latter coincides, up to a Lebesgue negligible set, with Ω, we get ż

Ω p m ∆pϕ µ `ϕν q τ 2 ď 0. (3.5)
We do an integration by parts, which reads

ż Ω p m ∆pϕ µ `ϕν q τ 2 " ż BΩ p m ∇ pϕ µ `ϕν q τ 2 ¨nΩ ´żΩ ∇pp m q ¨∇ pϕ µ `ϕν q τ 2 (3.6)
To handle the boundary term, recall that ∇ϕ µ is continuous up to the boundary and that x ´∇ϕ µ pxq P Ω for every x P Ω as pId ´∇ϕ µ q# ρ " µ. Given the convexity of Ω, it implies ∇ϕ µ pxq ¨nΩ pxq ě 0 for every point x P BΩ for which the outward normal n Ω pxq is defined. As it is the case for a.e. point of the boundary, as a similar inequality holds for ϕ ν , and given that p m is positive, we can drop the boundary term in (3.6) and get ż Ω p m ∆pϕ µ `ϕν q τ 2 ě ´żΩ ∇pp m q ¨∇ pϕ µ `ϕν q τ 2 .

We emphasize that dropping this boundary term corresponds exactly to the heuristic inequality ∇pppt, ¨q `Vq ¨nΩ ď 0 evoked in the introduction below equation (1.3). Using the optimality conditions (3.1), we see that

0 ě ż Ω p m ∆pϕ µ `ϕν q τ 2 ě ż Ω ∇pp m q ¨∇pp `VN `λN lnp ρqq
Now remember that in Proposition 3.2 we have proved that ∇p ¨∇ lnp ρq " 0 a.e., which is sufficient to drop the term involving ∇ lnp ρq and get (3.4).

The inequation (3.4) implies the H 1 pΩq and L 8 pΩq regularity for the pressure: this can be seen as a consequence of Moser's regularity for elliptic equations [START_REF] Moser | A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations[END_REF]. We still give the proof for the sake of completeness, and also because in the inequality (3.4), the boundary terms have already been taken in account, which enables to get regularity up to the spatial boundary in a single set of iterations. Lemma 3.5. Let f, W be Lipschitz functions defined on Ω such that f vanishes on a set of measure at least |Ω| ´1 ą 0 and such that, for any m ě 1, ż Ω ∇p f m q ¨∇p f `Wq ď 0.

Then there holds }∇ f } L 2 pΩq ď }∇W} L 2 pΩq . Moreover, if ∇W P L q pΩq with q ą d, then f P L 8 pΩq and } f } L 8 pΩq is bounded by a constant which depends only on Ω and }∇W} L q pΩq .

Proof. With m " 1 we immediately get

}∇ f } L 2 pΩq ď }∇W} L 2 pΩq ,
In particular, using the Poincaré inequality and the fact that |t f " 0u| ě |Ω| ´1, we see that } f } L 1 pΩq is bounded by a constant depending only on Ω and V.

In the rest of the proof, we denote by C a constant which depends only on Ω and }∇W} L q pΩq , and can change from line to line. We write the estimate, for any m ě 1, as

ż Ω |∇ f | 2 f m´1 ď ´żΩ p∇ f ¨∇Wq f m´1 Using Young's inequality, it is clear that 2 pm `1q 2 ż Ω ˇˇ∇ ´f pm`1q{2 ¯ˇˇ2 " 1 2 ż Ω |∇ f | 2 f m´1 ď 1 2 ż Ω |∇W| 2 f m´1 .
Take β ă β ă d d´2 sufficiently close to d d´2 in such a way that 2 β{p β ´1q ď q. In particular, the L 2 β{p β´1q pΩq norm of ∇W is bounded by C}∇W} L q pΩq . Moreover, we know that H 1 pΩq ãÑ L 2β pΩq. Considering the fact that f pm`1q{2 vanishes on a subset of measure at least |Ω| ´1, it enables us to write [23, Lemma 2] 

ˆżΩ f pm`1qβ ˙1{β ď C ż Ω ˇˇ∇ ´f pm`1q{2 ¯ˇˇ2 ď Cpm `1q 2 ż Ω |∇W| 2 f m´1 ď Cpm `1q 2 ˆżΩ |∇W| 2 β{p β´1q ˙pβ ´1q{ β ˆżΩ f pm´1q β˙1 { β ,
where the last inequality is Hölder's inequality with an exponent β. Thanks to this choice, taking the power 1{pm `1q on both sides,

} f } L pm`1qβ pΩq ď " Cpm `1q 2 ‰ 1{pm`1q } f } pm´1q{pm`1q L pm´1q β .
It is easy to iterate this inequation. With r " pm ´1q β, as pm `1qβ ě βr{ β, one can write that } f } L β{ βr pΩq ď rCpr `1qs C{r max `} f } L r pΩq , 1 ˘.

An easy induction (recall that we already know that f is bounded in L 1 pΩq by a constant depending only on Ω and W) with r n " `β{ β˘n shows that } f } L rn pΩq is bounded by a constant which depends only on }∇W} L q pΩq and Ω, which implies the claimed L 8 pΩq bound.

Corollary 3.6. There holds }∇p} L 2 pΩq ď }∇V} L 2 pΩq . Moreover, if V P W 1,q pΩq with q ą d, then p P L 8 pΩq and }p} L 8 pΩq is bounded by a constant which depends only on Ω and }∇V} L q pΩq . Proof. It is enough to combine Lemma 3.5 and (3.4): one has to remember that p vanishes where ρ " 1, which is of measure at least |Ω| ´1, that }∇V N } L 2 pΩq ď }∇V} L 2 pΩq , and that }∇V N } L q pΩq is bounded independently on N if V P W 1,q pΩq.

Boundary regularity

As we said, we will see that the pressure has a part which is concentrated on the time-boundary t " 1. The regularity of this part is proved exactly by the same technique than in the interior, hence we will only sketch it. In this subsection, we fix N ě 1. We use the shortcut ρ :" ρN Nτ " ρN 1 for the final measure and we also denote µ :" ρN pN´1qτ . As ρN is a solution of the discrete problem, we know that ρ is a minimizer, among all probability measures with density bounded by 1, of

ρ Þ Ñ W 2 2 pµ, ρq 2τ `ˆż Ω Ψ N ρ `λN Hpρq ˙.
This variational problem would be exactly the one obtained if we were to discretize the (Wasserstein) gradient flow of the functional Ψ N `λN H (with the constraint that the density does not exceed 1) using the minimizing movement scheme (known in this context as the JKO scheme [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]). In particular, all the computations of this paragraph could be translated in the framework of gradient flows, i.e. first order evolutions in time.

Lemma 3.7. The density ρ is strictly positive a.e.

Proof. This property holds for exactly the same reason as in Lemma 3.1. The integrability properties of p and lnp ρq are derived in the same way as in the proof of Proposition 3.2.

The additional regularity for ϕ µ is exactly the same than for the interior case (this is why we have also used an entropic penalization at the boundary).

Lemma 3.9. The Kantorovich potential ϕ µ belongs to C 2,α p Ωq X C 1,α pΩq.

Theorem 3.10. For any m ě 1, the following inequality holds:

ż Ω ∇pp m q ¨∇pp `ΨN q ď 0. (3.8) 
Proof. On the set Ω we consider the following quantity, which is the analogue of the l.h.s. of (1.4):

Dpxq :" lnp ρpxqq ´lnpµpx ´∇ϕ µ pxqqq τ .

If ρpxq " 1, then by the constraint µpx ´∇ϕ µ pxqq ď 1 the quantity Dpxq is positive. On the other hand, exactly by the same estimate than in the proof of Theorem 3.4, Dpxq ď ´p∆ϕ µ qpxq τ .

We multiply this inequality by p m , do an integration by parts (the boundary term is handled exactly as in Theorem 3.4), and we end up with (3.8).

Corollary 3.11. There holds }∇p} L 2 pΩq ď }∇Ψ} L 2 pΩq . Moreover, if Ψ P W 1,q pΩq with q ą d, then p P L 8 pΩq and }p} L 8 pΩq is bounded by a constant which depends only on Ω and }∇Ψ} L q pΩq .

Proof. Exactly as in the proof of Corollary 3.6, it is enough to combine Lemma 3.5 and the estimate (3.8).

Convergence to the continuous problem

Recall that for any N ě 1, ρN denotes the solution of the discrete problem.

Convergence of the primal problem

This convergence is very similar to the one performed in [START_REF] Lavenant | Optimal density evolution with congestion: L 8 bounds via flow interchange techniques and applications to variational Mean Field Games[END_REF] hence we will not really reproduce it. Furthermore, as we are ultimately interested in the dual problem, we need only the convergence of the value of the primal problem, not of the minimizers. Define ÃN on Γ N 0 exactly as the discrete primal functional A N , but where the regularized potentials V N and Ψ N are replaced by the true potentials V and Ψ. Given the L 8 bound on ρ (which holds if A N or ÃN are finite), one can see that for any ρ P Γ N 0 with density bounded by 1,

ˇˇA N pρq ´Ã N pρq ˇˇď }V ´VN } L 1 pΩq `}Ψ ´ΨN } L 1 pΩq , (4.1) 
and the r.h.s. goes to 0 uniformly in ρ as N Ñ `8.

On the other hand, using exactly the same proofs as in [START_REF] Lavenant | Optimal density evolution with congestion: L 8 bounds via flow interchange techniques and applications to variational Mean Field Games[END_REF], Section 5.1 and 5.2, one can easily check (the only thing to check is that all the constructions are compatible with the constraint of having a density bounded by 1 but it is straightforward) that the value of the discrete problem min ÃN pρq : ρ P Γ N 0 ( converges to the minimal value of the primal problem (notice that it is for this result that we need the scale λ N of the entropic penalization to go to 0). Combined with (4.1), one can conclude the following. A N p ρN q " min tApρq : ρ P Γ 0 u .

Convergence to the dual problem

In this subsection, we want to build a value function φ N which will go, as N Ñ `8, to a solution of the (continuous) dual problem. Notice that the discrete functional A N is convex, hence we could consider discrete dual problem but we will not do it explicitly: indeed, the approximate value function φ N will not be a solution of the discrete dual problem and we will not prove a duality result at the discrete level.

On the contrary, we will just guess the expression of φ N (we have to say to the inspiration for this kind of construction was found in the work of Loeper [START_REF] Loeper | The reconstruction problem for the Euler-Poisson system in cosmology[END_REF]) and use the explicit expression to prove that the value of some quantity which looks like the continuous dual objective, evaluated at φ N , is closed to the value of the discrete primal problem. Then, sending N to `8, we recover an admissible p φ, Pq for the continuous dual problem such that Bp φ, Pq is larger than the optimal value of the continuous primal problem (and this comes from estimates proved at the discrete level). It will allow us to conclude that p φ, Pq is a solution of the dual problem thanks to the absence of duality gap at the continuous level. Eventually, we pass to the limit the discrete estimates in Corollary 3.6 and Corollary 3.11 to get the ones for p and P1 .

Let us recall that ρN is the solution of the discrete problem. For any k P t0, 1, . . . , N ´1u, we choose pϕ N kτ , ψ N kτ q a pair of Kantorovich potential between ρN kτ and ρN pk`1qτ , such choice is unique up to an additive constant. According to Proposition 3.2 and Proposition 3.8, making the dependence on N and k explicit, for any k P t1, 2, . . . , Nu, there exists a pressure p N kτ positive and Lipschitz, and a constant C N kτ such that

$ ' ' & ' ' % ψ N pk´1qτ `ϕN kτ τ 2 `VN `pN kτ `λN lnp ρN kτ q " C N kτ k P t1, 2, . . . , N ´1u, ψ N pk´1qτ τ `ΨN `pN 1 `λN lnp ρN kτ q " C N 1 k " N. (4.2) 
We define the following value function, defined on the whole interval r0, 1s which can be thought as a function which looks like a solution of what could be called a discrete dual problem. Definition 4.2. Let φ N P BVpr0, 1s ˆΩq X L 2 pr0, 1s ˆH1 pΩqq the function defined as follows. The "final" value is given by φ N p1 Notice that we have not included the entropic term: its only effect would have been to decrease φ N (which in the end decreases the value of the dual functional) and it would have prevented us from getting compactness on the sequence φ N . The link between this value function and the Kantorovich potentials is the following.

Lemma 4.3. For any k P t1, 2, . . . , Nu, one has

φ N ppkτq ´, ¨q ě C N 1 `τ N´1 ÿ j"k C N jτ ´ψN pk´1qτ τ . (4.6) 
For any k P t0, 1, . . . , N ´1u, one has

φ N ppkτq `, ¨q ě C N 1 `τ N´1 ÿ j"k`1 C N jτ `ϕN kτ τ . (4.7) 
Proof. We will prove it by (decreasing) induction on k P t0, 1, . . . , Nu. For k " N, by the optimality conditions (4.2) and the fact that lnp ρN 1 q ď 0, it is clear that (4.6) holds. Now assume that (4.6) holds for some k. Using (4.4), one has

φ N pppk ´1qτq `, xq " inf yPΩ ˆ|x ´y| 2 2τ `φN ppkτq ´, yq ě C N 1 `τ N´1 ÿ j"k C N jτ `inf yPΩ ˜|x ´y| 2 2τ ´ψN pk´1qτ pyq τ " C N 1 `τ N´1 ÿ j"k C N jτ `1 τ inf yPΩ ˆ|x ´y| 2 2 ´ψN pk´1qτ pyq ˙" C N 1 `τ N´1 ÿ j"k C N jτ `ϕN pk´1qτ pxq τ ,
where the last inequality comes from the fact that ϕ N pk´1qτ is the c-transform of ψ N pk´1qτ . This gives us (4.7) for k ´1. On the other hand, assume that (4.7) holds for some k. Using (4.5) and the optimality conditions (4.2) ,

φ N ppkτq ´, xq " φ N ppkτq `, xq `τ `VN `pN kτ ě C N 1 `τ N´1 ÿ j"k`1 C N jτ `ϕN kτ τ `τ `VN `pN kτ " C N 1 `τ N´1 ÿ j"k`1 C N jτ `CN kτ ´ψN kτ τ ´λN τ lnp ρN kτ q ě C N 1 `τ N´1 ÿ j"k C N jτ ´ψN kτ τ ,
which means that (4.6) holds for k.

From this identity, we can express some kind of duality result at the discrete level, which reads as follows.

Proposition 4.4. For N ě 1, the following inequality holds:

A N p ρN q ď ż Ω φ N p0 `, ¨q ρ0 ´τ N´1 ÿ k"1 ż Ω p N kτ ´żΩ p N 1 . (4.8) 
We have an inequality and not an equality because we have not included the entropic terms in the value function.

is also satisfied in the sense of distributions, as ∇φ N is bounded and B t φ may have some singular parts, but they are positive.

Provided that we set φ N p0 ´, ¨q " φ N p0 `, ¨q and φ N p1 `, ¨q " Ψ N , the measure B t φ N has a singular negative part at tτ, 2τ, . . . , 1u corresponding to the jumps of the function φ N ; but, given (4.3) and (4.5), the negative part of B t φ N is exactly ´αN . The next step is to pass to the limit N Ñ `8. To this extent, we need uniform bounds on α N , which derive easily from the bounds that we have on the pressure. Lemma 4.7. There exists a constant C, independent of N, such that α N pr0, 1s ˆΩq ď C and P N pr0, 1s ˆΩq ď C.

Recall that both α N and P N are positive measures as we have chosen V N in such a way that it is positive.

Proof. We know that the p N kτ , for k P t1, 2, . . . , Nu have a gradient which is bounded uniformly in L 2 pΩq. As moreover they all vanish on a set of measure at least |Ω| ´1, they are bounded uniformly (w.r.t. N) in L 1 pΩq. This is enough, in order to get the uniform bound on P N . Given the way V N is built, the one for α N is a straightforward consequence of the one on P N . Now that we have a bound on α N , to get compactness on the sequence φ N , we use the same kind of estimates used to prove existence of a solution in the dual at the continuous level, see for instance [START_REF] Cardaliaguet | Santambrogio First order mean field games with density constraints: pressure equals price[END_REF]Section 3]. We recall that K, the set of admissible competitors for the dual problem, was defined in Definition 2.5. Proof. Given Lemma 4.7, we know that P N is bounded in M `pr0, 1s ˆΩq independently of N. Up to the extraction of a subsequence, it converges weakly as a measure to some P. On the other hand, once we know this convergence, it is easy to see that α N converges as a measure on M `pr0, 1s ˆΩq to P `V.

We have assumed that V and Ψ are positive, and so are V N and Ψ N , independently of N. Using the definition of φ N and the positivity of the pressures, it is not hard to see that φ N is positive r0, 1s ˆΩ. Integrating the Hamilton Jacobi equation w.r.t. space and time and using the bound on α N (Lemma 4.7), we see that Combined with the positivity of φ N p0 `, ¨q and a L 1 pΩq bound on Ψ N , we see that ∇φ N is uniformly bounded in L 2 pr0, 1sΩ q.

It remains to get a bound on B t φ N . Of course, as a measure, it can be decomposed as a positive and a negative part. The negative part is concentrated on the instants tτ, 2τ, . . . , 1u as B t φ N ě 0 on the intervals pppk ´1qτq `, pkτq ´q. On the other hand, on tτ, 2τ, . . . , 1u, the temporal derivative B t φ N coincides with ´αN , hence the negative part is bounded as a measure. On the other hand, given that ij r0,1sˆΩ

B t φ N " ż Ω Ψ N ´żΩ φ N p0 `, ¨q ď ż Ω Ψ N
is bounded independently of N, we see that pB t φ N q `" B t φ N `pB t φ N q ´is also bounded as a measure. As a consequence, up to the extraction of a subsequence we know that φ N converges weakly in BVpr0, 1s ˆΩq X L 2 pr0, 1s, H 1 pΩqq to some φ. This convergence allows easily to pass to the limit in the Hamilton-Jacobi equation satisfied (in the sense of distributions) by φ N , hence p φ, Pq is admissible in the dual problem.

The last step, to show the optimality of the limit p φ, Pq, is to pass to the limit in (4.8).

Proposition 4.9. The pair p φ, Pq P K is a solution of the dual problem. To reach the conclusion of our main theorem, it is enough to show that P has the regularity we announced. But this easily derives from the weak convergence of P N to P and the estimates of Corollary 3.6 and Corollary 3.11.

  ppt, yq dy.

  The domain Ω is the closure of an open bounded convex subset of R d with Lebesgue measure |Ω| ą 1.

Proposition 4 . 1 .

 41 The value of the discrete problem converges to the one of the continuous one in the sense that lim NÑ`8

Proposition 4 . 8 .φ

 48 There exists p φ, Pq P K admissible for the dual problem such that N " φ weakly in BVpr0, 1s ˆΩq X L 2 pr0, 1s, H 1 pΩqq, lim NÑ`8 P N " P in M `pr0, 1s ˆΩq.

Proof. 8 A 1 ¸ď 1 " 0 Bφ

 8110 We have already proved in Proposition 4.1 that lim NÑ`N p ρN q " min tApρq : ρ P Γ 0 u . Given (4.8) and the duality result which holds for the continuous problem (Theorem 2.7), it is enough to show that lim sup NÑ`8 ˜żΩ φ N p0 `, ¨q ρ0 ´τ N´1 ÿ Bp φ, Pq " ż Ω φp0 `, ¨q ρ0 ´ppr0, 1s ˆΩq.The convergence of the term involving the pressure is quite easy to show. Indeed, given the positivity of the pressures, P N pr0, 1s ˆΩq Ñ ppr0, 1s ˆΩq by weak convergence. On the other hand, using the definition of the trace, φps, xq ρ0 pxq ds dx.We fix some t ą 0. Due to the convergence of φ N to φ, it clearly holds lim φ N ps, xq ρ0 pxq ds dx " 1 t ij r0,tsˆΩ φps, xq ρ0 pxq ds dx. For the value function φ N , we can use the information that we have on the temporal derivative, namely B t φ N ě ´αN . It allows us to write, given the positivity of ρ0 , φ N ps, xq ρ0 pxq ds dx " t φ N pr, xq dr ˙ρ 0 pxq ds dx ě ż Ω φ N p0 `, ¨q ρ0 ´1 t ij r0,tsˆΩ sα N ps, xq ρ0 pxq ds dx ě ż Ω φ N p0 `, ¨q ρ0 pxq ´ij r0,tsˆΩ α N ps, xq ρ0 pxq ds dx. Now, recall that ρ0 ď 1 and α N converges as a measure to p `V, hence 1 t ij r0,tsˆΩ φps, xq ρ0 pxq ds dx " lim φ N ps, xq ρ0 pxq ds dx ě lim sup NÑ`8 ˆżΩ φ N p0 `, ¨q ρ0 ˙´p p `Vqpr0, ts ˆΩq. Now we send t to 0, and use the fact that p p `Vqpt0u ˆΩq " 0 (this can be seen as a consequence of Corollary 3.N p0 `, ¨q ρ0 ď ż Ω φp0 `, xq ρ0 , which gives us the announced result.

  .2) Proof. The first part is just [4, Theorem 1.1.2]. The proof of the representation formula (2.2) can easily be obtained by adapting the proof of [1, Theorem 4.1.6]. The quantity | 9 ρ t | is called the metric derivative of the curve ρ and heuristically corresponds to the norm of the derivative of ρ at time t in the metric space pPpΩq, W 2 q. The quantity ş 1 0 | 9 ρ t | 2 dt behaves like a H 1 norm, see [20, Proposition 2.7], but we will not make a use of this.

  Proposition 3.8. Let us denote by ϕ µ the Kantorovich potential for the transport from ρ to µ. There exists p P L 1 pΩq, positive, such that tp ą 0u Ă t ρ " 1u and a constant C such that Moreover p and lnp ρq are Lipschitz and ∇p ¨∇ lnp ρq " 0 a.e.Proof. We use exactly the same competitor as in the proof of Proposition 3.2. It leads to the conclusion that ş Ω hp ρ´ρq ě 0 for any ρ P PpΩq with ρ ď 1 where h is defined as It implies the existence of a constant C such that (3.2) holds, and we define p exactly in the same way, as p :" pC ´hq

	ϕ µ τ	`ΨN `p `λN lnp ρq " C.	(3.7)
	h :"	ϕ µ τ	`ΨN `λN lnp ρq.

`.

  Provided that the value φ N ppkτq ´, ¨q is defined for some k P t1, 2, . . . , Nu, the value of φ N on ppk ´1qτ, kτq ˆΩ is defined by φ N pt, xq :" inf If k P t1, 2, . . . , N ´1u, the function φ N has a temporal jump at t " kτ defined by φ N ppkτq ´, xq :" φ N ppkτq `, xq

	yPΩ	ˆ|x ´y| 2 2pkτ ´tq	`φN ppkτq ´, yq ˙.	(4.4)
				`τ `VN	`pN kτ ˘pxq	(4.5)
		´, ¨q :" Ψ N	`pN 1 .	(4.3)
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Proof. The idea is to evaluate A N p ρN q by expressing the Wasserstein distances with the help of the Kantorovich potentials.

where the last equality comes from a reindexing of the sums. Now we use the optimality conditions (4.2) to handle the second and third term. Notice that, as p N kτ lives only where ρN kτ " 1, that we can replace ρN kτ by 1 when it is multiplied by the pressure. Recall also that the probability distributions, when integrated against a constant, are equal to this constant. We are left with

where the last equality comes from Lemma 4.3 which allows to make the link between the Kantorovich potential ϕ N 0 and φ N p0 `, ¨q.

We want to pass to the limit N Ñ `8. To this extent, we rely on the fact that φ N satisfies an explicit equation in the sense of distributions. We start to define the distribution which will be the r.h.s. of the Hamilton Jacobi equation. Definition 4.5. Let α N and P N the positive measures on r0, 1s ˆΩ defined as

More precisely, for any test function a P Cpr0, 1s ˆΩq,

and similarly for P N .

In other words, α N is, from the temporal point of view, a sum of delta function, each of them corresponding to the jump of the value function φ N .

Proposition 4.6. Provided that we set φ N p0 ´, ¨q " φ N p0 `, ¨q and φ N p1 `, ¨q " Ψ N , the following equation holds in the sense of distributions on r0, 1s ˆΩ:

Proof. As the pressures and the potentials V N , Ψ N are Lipschitz, for any t P r0, 1s, the value function φ N pt `, ¨q and φ N pt ´, ¨q are Lipschitz (but with a Lipschitz constant which may diverge as N Ñ `8).

Notice that on each interval pppk´1qτq `, pkτq ´q, the function φ N is defined by the Hopf-Lax formula, hence solves the Hamilton-Jacobi equation ´Bt φ N `1 2 |∇φ N | 2 " 0 a.e. [ On the other hand, if V, Ψ P W 1,q with q ą d then, using the same propositions, where C depends only on }∇V} L q pΩq , }∇Ψ} L q pΩq and Ω. Standard functional analysis manipulations provide the conclusion of Theorem 2.8.