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Abstract

State estimation is a key engineering problem when addressing control or diagnosis issues for complex dynamical systems.
The issue is still challenging when the latter systems must be modelled as hybrid discrete-continuous dynamics, which is true
for many complex and safety-critical systems. In this paper, we investigate nonlinear hybrid state estimation in a bounded-error
framework using reliable and robust methods. We first establish a testable condition for current mode location discernibility.
Then we build our hybrid state estimator which relies on a prediction-correction approach. An illustrative example is presented.

Key words: Bounded-error, hybrid systems, interval analysis, nonlinear systems, estimation, reachability, uncertain systems,

zonotope.

1 Introduction

State estimation is a key engineering problem when ad-
dressing control or diagnosis issues with complex dynam-
ical systems. Many systems exhibit both smooth contin-
uous dynamics and abrupt switches, hence can be effi-
ciently modeled using hybrid automata, which combine
discrete and continuous variables (Alur et al., 1995). Hy-
brid state estimation aims at reconstructing both the
discrete mode, hence the switching sequence, and the
associated continuous state variables, based on a set of
possibly discrete-time measurements, the knowledge of
the hybrid model, and assumptions about the uncer-
tainties and perturbations acting on the system. For
instance, Wang et al. (2007) developed a robust expo-
nentially ultimately bounded hybrid state observer us-
ing the unknown input extended Kalman observer for
hybrid systems with discrete-time nonlinear dynamics,
while Guo and Huang (2013) developed a moving hori-
zon estimation scheme for switched systems and ana-
lyzed its stability under the uniform observability prop-
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erty. Balluchi et al. (2013) addressed exponentially ulti-
mately bounded observer design for hybrid systems with
linear continuous-time dynamics, and Barhoumi et al.
(2012) addressed the synthesis of high gain observers for
uniformly observable nonlinear hybrid systems.

In this paper, we address hybrid state estimation in the
unknown-but-bounded-error (UBBE) framework, where
one assumes that all uncertain quantities, not only
measurement noise but model uncertainty and mod-
elling errors belong to a known bounded set with no
other assumption about the distribution within the set
(Schweppe, 1968; Milanese et al., 1996). In many cases,
the UBBE assumption is natural and straightforward,
and it requires less data than any statistical assump-
tions. In the UBBE framework, the estimation problem
no longer has a unique solution, but there exists a set
of state vectors that are consistent with measured data,
the model structure and the prior error bounds. Then,
set-membership estimation (SME) techniques allow the
derivation of a conservative outer-approximation of the
set of consistent state vectors at each time instant.
There has been a significant research effort related to
SME with continuous systems and the developed ap-
proaches may be sorted in two main types. One type of
methods focus on the design of Luenberger-like interval
observers, which assume the availability of continuous
measurements (a.o. (Gouzé et al., 2000; Raissi et al.,
2012; Efimov et al., 2013; Mazenc and Dinh, 2014; Tha-
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bet et al., 2014; Mazenc et al., 2015)). Another type of
methods use and extend the predictor-corrector estima-
tion scheme as encountered in the Kalman filter (Xiong
et al., 2013). For nonlinear systems, Kieffer et al. (2002)
developed the first predictor-corrector based SME ap-
proach for discrete-time systems using interval analysis,
then Jaulin (2002); Raissi et al. (2004); Meslem et al.
(2010); Meslem and Ramdani (2011) extended the ap-
proach to handle state estimation for continuous-time
systems with discrete measurements by combining in-
terval analysis and reachability computation capabilities
as obtained using guaranteed solving tools for interval
initial value problems (IVP) for nonlinear ordinary dif-
ferential equations (ODE). This paper is in line with
the second set of methods and aims at extending the
predictor-corrector-based SME approach to truly non-
linear hybrid continuous-discrete dynamical systems
with discrete measurements, thus developing an SME
technique to simultaneously reconstruct, at each time in-
stant, the set of consistant system’s switching sequence
and the corresponding set of consistent continuous state
vectors.

SME for truly nonlinear hybrid systems is a challenging
issue that has attracted only few researchers. To the best
of our knowledge, the only works addressing this issue are
by Benazera and Travé-Massuyes (2009), who addressed
hybrid systems with discrete-time only nonlinear contin-
uous dynamics, and Eggers et al. (2012) who investigated
the feasibility of using satisfiability checkers. Clearly, if
one knew in which mode the hybrid system is operating,
the estimation of the continuous component of the hy-
brid system would merely make use of the existing SME
algorithms for continuous systems. Therefore, the main
ingredient of our SME for hybrid systems is the ability
to distinguish the current active location mode from the
observation of the input-output behaviour. To the best
of our knowledge, the observability and detectability of
hybrid systems have been studied only for linear switch-
ing systems (Babaali and Pappas, 2005; De Santis et al.,
2003, 2009; Fliess et al., 2008; De Santis, 2011; De Santis
and Di Benedetto, 2017; Lou and Yang, 2011). In this
paper we introduce a new computable condition for an-
alyzing mode discernibility for the general class of non-
linear hybrid systems. We say that two location modes
are discernible if there exists a control making it possible
to distinguish them by their outputs. In the case of au-
tonomous systems, the output trajectories must differ at
some point in time. Then, using an one-parameter-tuned
composite continuous model, we show that the identi-
fiability of the tuning parameter implies current mode
discernibility. The contribution of this paper is twofold.
First, we give a computable condition for current mode
discernibility, then we build a predictor-corrector-type
scheme for SME of the complete state of general class of
hybrid systems, in the UBBE framework.

The paper is structured as follows: Sect. 2 defines hybrid
dynamical systems, while Sect. 3 formulates the estima-

tion problem. Sect. 4 introduces our approach for cur-
rent mode discernibility analysis, while Sect. 5 describes
the complete state set-membership estimation. Sect. 6
discusses method complexity and convergence. Sect. 7
reports the numerical evaluation on a realistic example,
before conclusions.

2 Hybrid dynamical systems

Hybrid dynamical systems (HDS) can be represented by
a hybrid automaton (Alur et al., 1995) given by

HA=(Q,Z,U,F,Inv, X, ¥, G,A), (1)

where: Q = {q} is a set of locations, i.e. discrete state
or modes; domain Z C R"™ is the definition domain of
the continuous component with dimension n that may
depend on ¢; domain U C R™ is the set of admissible
control inputs; F = {f,} is the set of non-autonomous
differential equations characterizing flow transition in
mode ¢, of the form

flow(q) - 2(t) = fe(2(t), u(t)), (2)
where f; : Z x U + Z is a nonlinear function assumed
sufficiently smooth over D C R"; Inv is an optional in-
variant, which assigns a domain to the continuous state
space of each location:
Inv(q) :  v4(2(t)) <0, (3)
where inequalities are taken componentwise, v, : Z —
R™ is also nonlinear, and the number m of inequalities
may also depend on ¢; ¥ is a set of exogenous events;
U = {pe}eea is the set of reset maps, taken as continuous
nonlinear functions; G = {7 }eea is the set of guard
conditions of the form:
guard(e) :  7e(z(t)) = 0; (4)
where 7.(.) : Z — R™ is a nonlinear continuous func-
tion; A C Q x Q is the set of discrete transitions {e =
(g — ¢')} given by the 5-uple (g, guard, sq, pe, ¢'), where
q and ¢’ represent upstream and downstream locations
respectively, sq € X, p. € ¥, and guard € G. A tran-
sition ¢ — ¢’ occurs when the continuous state flow
reaches the guard set, i.e. when the continuous state sat-
isfies condition (4).

Let us also consider the following measurement equation
output(q) = y(t) = pq 2(t), (5)

where py € R"*"v, depends on mode g.

Let us now recall the concept of hybrid trajectory (or
hybrid solution). Les us consider a finite time horizon



[to, tn] and denote x(to) = (qo, 24, (to)) the initial hy-
brid state. We can define as in continuous dynamics,

2qo (t; to, x(to)) (6)

the continuous state vector solution of the initial value
problem (IVP) for the continuous ordinary differential
equation (ODE) (2) starting from the initial state vec-
tor zg,(to) at time to in mode go. A discrete transi-
tion e = gy — ¢1 occurs when the continuous flow tra-
jectory intersects the guard set at time t., i.e. dt, >
t0, Ye(2g,(te)) = 0. Then, the continuous state vector is
reset as zq, (t1) = pe(zq, (t.)). The switching sequence
for HDS (2-5) may be written in the general case of M
discrete transitions as

seq = {(t07 QO)’ (tew QI)a (tezv qQ)? R (tEJ\/17 QM)} (7)

In fact, at each time instant ¢ € [to, tx], we can define
the hybrid solution trajectory of the hybrid system (2—
5) starting from the continuous state vector zy, (to) at to
in the discrete mode ¢q as

xX(t; to, x(t0)) = (@i(t), 2gi(t)(E te,, X(te,s to, x(t0))))

(8)
where ¢, is a switching time instant such that ¢, <t <
t e; € A. We can also define the HDS output by

€541

Yo (v (5 o, X(t0)) = 1, (1y2a, (0 (5 to, X(t)))  (9)

where z,, (+)(t) is the continuous component of x (¢). Now,
let us consider the set x, = Qo x Zg of possible initial
hybrid state x(to), cartesian product of the set of possi-
ble initial discrete modes @y and the the bounded initial
domain Z of z4, (to) when in any mode gy € Qp. We can
extend (8)-(9) to set-valued initial conditions, as follows

X (t; to, Xo) = {x(; to, x(t0)) | x(to) € X0}

= U Mt toxt) (10)

X0€Xo

Y(t; to, Xo) = {yq(t) (t; to, x(to)) | x(to) € X0}
= U v to. x(to)) (11)

X0EXo

3 Set-membership hybrid state estimation

Let us now assume that measurements 7; of the
output vector are available at sampling times t; €
{t1,t2,...,tn} C [to,tn]. Note that the sampling in-
terval does not need to be constant. Let us denote by
E; = [—¢j, ;] a feasible domain for the output error at

time ¢;, the feasible domain for model output at time ¢,
is then given by :

Y; =9; +Ej = [9; — 5, 95 + ¢ (12)

Remark 1 In this paper, it is assumed that there is no
outlier, i.e. the true system output lays inside the do-
mains (12).

The goal of bounded error estimation is to compute con-
servative outer enclosures for feasible sets for both the
discrete modes and associated continuous variables that
are consistent with the feasible domains for measure-
ments and the uncertain hybrid model. That is, given
two measurements Y; and Y, gathered at the two time
instants ¢; and ;11 , the estimation problem boils down
to simultaneously, forall 7,0 <j <N —1:

(i) Reconstruct all feasible switching sequences seq.
This requires to detect and identify all possible dis-
crete transitions e € A that may occur at time
te € [tj,tj11]. Because of the uncertainties, there
might be a continuum of time instants where events
may occur. There may also exist several such time
intervals in ¢, € [tj,%;41].

(ii) Reconstruct the set

x; =Q x | Zy; (13)

q€Q;

of hybrid states solutions x(¢;) = (¢(t;), 2(¢;)) at time
t;, and the set

Xi =Qir1x |J Zgin (14)
q€Q;+1

of hybrid state solutions x(tj+1) = (¢(tj+1),2(tj+1))
at time t;41 that are consistent with the switching
sequence reconstructed in (i), the HDS (2-5), and
the assumptions Vq(t;) € Qj, yq,)(t;) € Y, and
Vq(tj+1) € Qje1s Yg(t,hn)(Ei41) € Yjp1, where Qy is
the set of possible modes and Z, ;, is the set of contin-
uous state vectors at time t.

4 Mode discernibility

Here, we state our first result on current mode discerni-
bility. We show that the latter is addressed via paramet-
ric identifiability. We hence first introduce key concepts
about identifiability.

4.1 Parameter identifiability

Let us consider a controlled dynamical system described
by the ODE
z= f(Z,p, u)v (15)



and the output equation

y = 9(2,p), (16)

where z(t) € R™, p € P C R" is a parameter vector
and u(t) € R™ a control input. Here we assume the
mappings f and g are real, analytic and infinitely dif-
ferentiable on M, where M is an open set of R™. Let us
consider t € [ty,T] where T is a finite or infinite time
bound. Parameter identifiability is defined as follows by
Ljung and Glad (1994).

Definition 4.1 The parameter p; of model (15)-(16) is
globally identifiable if there exists u(t) € R™ such that

fO’f‘ a” (ﬁmpr) S ]P2a ﬁz # p;k

and the parameter vector p is globally identifiable in P if
all its components p; are globally identifiable in P™r.

Identifiability of the parameter vector p can be tested via
differential algebra. The method consists in eliminating
state variables to obtain relations linking outputs, in-
puts (if any), and parameters. For doing this, one can use
the Rosenfeld-Groebner algorithm implemented in the
package DifferentialAlgebra of Maple (Boulier et al.,
1997) with the elimination order {p} < {y,u} < {z}
(Kolchin, 1973). Among the solutions delivered by the
algorithm, one is called the characteristic presentation
because it corresponds to the general solution, the other
ones being particular solutions. The characteristic pre-
sentation contains differential polynomials linking out-
puts, inputs (if any), and parameters of the form:

Ri(y,u,p) = mb(y,u) + > 5, 05 (p)mi, (v, u),

1=1,...,my,

(17)

where (QZ(p))lgkgm are rational in p, 0; £ 9171} (u #
v), mi (y,u))o<k<n,; are differential polynomials with re-
spect to y, u and mj(y, u) # 0.

Definition 4.2 {0 (p)}1<k<n, is called the ezhaustive
summary of R;.

The size of the system is the number of outputs. For
the time being, we assume that n, = 1, that is, there is
one output and we rewrite ny = i1, Ry = R, m}.(y,u) =

Let us consider AR(y,u) that denotes the functional
determinant formed from the {mg(y,u)}<k<sn and

given by the Wronskian

m1(y, u) My (y, u)
mi (y, u)V my, (y, u)V
AR(w) =||
mi (yv U’)(ﬁ_l) s mn(ya u)(ﬁ_l)

(18)

Theorem 1 (Denis-Vidal et al. (2001)) Assume
that the functional determinant AR(y,u) is not identi-
cally equal to zero' . If the mapping

pip— (Ql(p)7 s ,Gn(p))
is injective then the parameter p is globally identifiable.

When there are more than one outputs, i.e. n, > 1,
for each of the n, obtained differential polynomials
R;(y,u,p), i = 1,...,ny, the functional determinant is
evaluated. If it is not identically equal to zero, the asso-
ciated exhaustive summary is added to the image of the
function ¢ for which injectivity has to be studied.

4.2  Mode discernibility

We can now establish our contribution regarding mode
discernibility. We first foster on the following definition
of mode discernibility adapted from Babaali and Pappas
(2005) and rewritten using notation of Sect. 2.

Definition 4.3 (Mode discernibility) Two different
modes q1 and qs are discernible over T > 0 if whenever
q([0, T]) = q1 and ¢'([0, T]) = ¢2,

q1 7é q2 = 3”7 vXO7 VX67
yq([0, T7T; 0, x0,u) # yq ([0, TT; 0, x5, w). (19)

where the output vectors y, and yy in (19) are written
using the notation of (9).

In words, location modes g; and ¢o are discernible if
there exists a control making it possible to distinguish
them by their outputs.

Let us introduce the integer variable s € Q and define
the composite continuous model,

2(t) = F(z(t), s,u(t)), (20)

! This assumption consists in verifying the linear indepen-
dence of the my(y,u), k = 1,...,n. For doing this, it is suffi-
cient to find a time point at which the Wronskian is non-zero.
In the framework of differential algebra, this condition con-
sists in verifying that this functional determinant is not in
the ideal obtained after eliminating state variables. In prac-
tice, it can be checked with the function Belong_To of the
package Differential Algebra of Maple 16.



where z € Z. The mapping F : Zx Q x U — Z is
built using the collection F of the hybrid plant HA (1)
subsystems, and the set of locations QQ as follows

o= 2 (s — 45)
=1,j#1 J

F(z,8,u) = Z H;Lq -Hé.(q‘ — Q')fqi(Z7U)’ (21)
i=1 T j=LjFi\Ae J

where n, is the cardinality of set Q. Let us define
zs(t, to, 20, u) the solution of IVP for ODE (20) starting
from initial conditions zg at t;, We can now define a
composite output model

o~ 25— 4) +
ys(tat03207u) :Znnq 2 nqus(t,tO,ZO,u)_
i=1 j:l,j;ﬁi(qi —g;

(22)

Remark 1 [t is straightforward to notice that for any
i € {1,..,ng}, whenever s = q;, the composite system
(20)-(21) operates in mode q; with the appropriate output
model (22).

Theorem 2 If the scalar parameter s in system (20)-
(22) is identifiable, then modes g;, © € {1,...,nq}, of HDS
(1) are discernible.

Proof 1 If parameter s is identifiable, then it exists u
such that for any s1 = q1 and s3 = g2 in Q, one has
s1 # s2 = (Vzo, V2, It € [0, T], Vs, (t, to, 20,u) #
ysz(tathZ(l)7u))7 And (VZ()v Vzé, ysl([oa T],to,Zo,U) 7é
Vs, ([0, T), %0, 2, u)). The modes q1 and qa are dis-
cernible. This holds for any pair, hence all the modes
q; € Q are discernible.

Remark 2 Note that in our case the identifiability con-
dition of Theorem 1 needs to be checked for the parameter
p being scalar and given by the only parameter s.

Remark 3 Theorem 2 does not consider mode invari-
ants that may be used to discriminate two different
modes. It is thus not a necessary condition for mode
discernibility.

5 A Predictor-Corrector approach to complete
state estimation

In the sequel, we solve the estimation problem by using
the prediction-correction approach we extend to hybrid
dynamical systems.

For the prediction step, we rely on the hybrid reach-
ability method of (Maiga et al., 2016), and denoted
Hybrid Reach(.) in the sequel. This method combines
interval Taylor methods and zonotope enclosures to
bound the solution set of the IVP ODE at time ¢; for
each active location model. In the UBBE framework,
there can be several location modes reconstructed by the

estimator, therefore the forward reachable set may be
characterized by a union of these bounding zonotopes.
Given a set of consistent hybrid states x; reconstructed
at time t;, the prediction step computes the forward
reachable set at time ¢;1,

X +1 = Hybrid Reach(t;;1; tj, X;)- (23)

In the correction stage, we use set computations with
zonotopes to filter the forward image at time ;1. Using
measurement domains Y;4; that are available at time
tj+1, wereduce the domain of Xf 1 by removing parts in-
consistent with the model, the actual data and the error
bounds. More formally, for any reachable discrete mode
q € Qf "1, where QF is the set of forward reachable
discrete modes, we élter the associated forward contin-
uous reachable set Zé’j j+1 to obtain the set of consistent
continuous states in mode ¢. Considering (12) and (5)
for each mode, the set of continuous state vectors consis-
tent with the feasible domain for model output at time
tj+1 is the strip

Sqj+1=1{2 €L | |n] 2g — Fjs1] < €j51}- (24)

Therefore, for each mode ¢q, the state vectors consistent
with the model, the actual data and the error bounds
are given by

F
Ly i1 =Sq i1 NZLy i1, (25)

We prune off the inconsistent discrete modes, those for
which intersection computed in (25) is empty, and keep
only the consistent discrete modes. The latter are gath-
ered in set

Q1 ={a € Q1 | Zg 11 # 0} (26)

Finally the consistent hybrid states x,,;, are simply
computed as the union of hybrid states with consistent
discrete modes,

Xj+1 = U (q, Z;,j-u)- (27)

9€Qj,,

The algorithm discards inconsistent discrete modes and
prunes inconsistent continuous state vectors in each con-
sistent discrete mode, as illustrated on Fig. 1.

The correction step first checks for each forward reach-
able mode if intersection (25) is not empty. This is done
by algorithm Test_ZIS(.) which implements a testable
condition established by Vicino and Zappa (1996). If the
intersection is not empty, the zonotope of minimal size
that bounds the intersection (25) is computed by algo-
rithm Zono_Inter(.). The latter implements the explicit
solution etablished by Alamo et al. (2005). The proposed
approach is summarized in Algorithm 1 “Predictor Cor-
rector Hybrid Set-Membership Estimation”.



() = Zi (t) N S1a

reset mapping

Z?(tz) = Zf(tg) NSio

Z(ts) =0

Z8(t1) = Z5 (t1) N Saz

Fig. 1. Predictor-corrector approach to set-membership hybrid estimation. Using hybrid reachability computation, the hybrid
state (¢ = 1,27 (t1)) U (¢ = 2,Z% (t1)) reachable at time t; starting from domain (¢ = 1, Z1(to)) at time to, is computed
while correctly detecting the discrete transition mode 1 to mode 2 which occurs during time interval [to, ¢1]. In each mode,
the inconsistent continuous state vectors are pruned off by computing the intersection with the strip Sg,1 characterizing
the continuous state vectors consistent with datum domain Y(¢1). Resuming from the new domains in each mode, i.e.
(g =1,Z1(t1)) U (q = 2,Z2(t1)) the approach eventually discards mode 1 at time ¢3 since the continuous set reachable at time
t3 does not intersect strip S1,3 characterizing datum Y(¢3) in mode 1. The approach resumes from (¢ = 2,Z2(t3)) with the
single mode 2, which is the discrete mode consistent with the model, the error bounds and actual data.

Algorithm 1. Predictor Corrector Hybrid SME

1: procedure HYBRID_SME(x, (1),Yy,...,Y,)
2 for j <~ 0,n—1do
3 % Prediction step
4: X}y, < Hybrid Reach(t;,1; t;, X;;)
5: % Correction step
6: Xj+1 <0
7 for ¢ € Qf, do
8 if Test ZIS(Z); 1,84.j+1) # 0 then
9: % Strip intersects zonotope
10: ZY) ;41 + Zono Inter(Zf; 1,8q 41)
L1 Xjr1 < Xj1 U (@ Zg 1)
12: end if
13: end for
14: end for
15: return xq,...,X,
16: end procedure

6 Convergence and method complexity

The convergence of predictor-corrector set-membership
estimation methods is related to the properties of guar-

anteedness and arbitrary precision. The guaranteedness
property is the fact that the estimated set for the hy-
brid state vectors is guaranteed to enclose the actual
state vector of the system. The property of arbitrary
precision means that the estimated set converges from
the outside to the actual state vector. These issues have
been well-discussed for nonlinear discrete-time contin-
uous systems, see (Kieffer et al., 2002) for details. For
hybrid systems as studied in the present paper, the con-
vergence property of the correction step is ensured since
the correction step uses analytical expressions and the
size of the bounding zonotopes is minimized at each time
step in each discrete mode. Regarding the convergence
property of the prediction step, i.e. the hybrid reacha-
bility computation, the proposition below from (Maiga
et al., 2016) addresses guaranteedness convergence prop-
erty of hybrid reachability computation. It stems from
the use of guaranteed numerical tools.

Proposition 1 (Conservative hybrid reachability)
The hybrid reachability algorithm implemented in the



Hybrid-Reach function (23) from (Maiga et al., 2016)
provides guaranteed outputs, i.e. the flow-pipe gener-
ated by alternating continuous reachability, flow guard
intersection, and reset mappings is guaranteed in the
sense that it encloses all the trajectories and detects all
events of the HDS (2)-(5) that are consistent with the
uncertainty domains of the initial hybrid state Qg X Zyg.

To the best of our knowledge, there are no theoretical
results available regarding the arbitrary precision prop-
erty for nonlinear hybrid reachability computation. The
overall complexity of the predictor-corrector approach
stems mainly from the complexity of continuous reach-
ability and event detection and localisation in hybrid
reachability, and from the analytical expressions used in
the correction step. Continuous reachability uses an in-
terval Taylor series method, which is of polynomial com-
plexity. Furthermore, although solving constraint satis-
faction problems (CSP) in event detection and localisa-
tion is in theory NP-hard, there have been efforts to de-
velop solving techniques whose practical time complex-
ity is better than the exponential worst case (Tuy, 1995).

7 Numerical evaluation

For the experimentation purpose of this paper, we con-
sider a hybrid damped double mass-spring system where
one of the dampers is only active when the absolute
value of the velocity magnitude of one mass is greater
than a given threshold vg. Otherwise, the given mass
motion is not damped. This system may represent a ve-
hicle suspension system (Koch and Kloiber, 2014). The
hybrid dynamical system obtained is modelled by & (t) =
fo(z(t), p), z(t)) € R%, three modes ¢ € Q = {0, 1, 2}
and four transitions, i.e. using notations of (1) with
w=0and z = (z,p), fo(w,p) = Ag(p) 7, g € {0, 1,2},
where matrix A,4(p) is given by

0 1 0 —1
_p — 0
A,(p) = p1 —p2((q) P2¢(q)
0 0 0 1

ps paClq) —ps —(paC(q) + ps)

with ¢ — ((q) defined as: (0) = 0, and {(q) = 1 if ¢ >
0. Invariant, guard and reset functions are given by

vo(z,p) = (2 —vo) A (—(22 + v0)),

To +vg, e=0—2,2—0,
Ye(z,p) =
o —v9,e=0—1,1—0,

where the threshold vy = 0.1 is known, and p.(z,p) =
x, Ve. We consider an uncertain parameter vector with

very large relative uncertainties, ranging from 10% to
80%: p € P = [0.9, 1.1] x [0.035, 0.235] x [0.82, 1.02] x
[0.02, 0.22]%[0.67, 0.87]%[0.6, 0.8]. The output equation
(5) y(t) = p, x(t) is implemented with

. [1000

Bg = ; q€10, 1, 2},
! 00101 t I

7.1 Mode discernibility analysis

Before proceeding with hybrid estimation, it is impor-
tant to know which modes are discernible from a struc-
tural point of view. This analysis is performed using the
results of Sect. 4. In our case study, it is easy to see
that modes ¢; and ¢ are not discernible; they have in-
deed the same dynamics and the same output equation.
However, they can be distinguished using their invariant,
since the two mode’s invariants have empty intersection.
The mode discernibility analysis is hence focused on dis-
cernibility of modes ¢o and ¢ /g2. The composite model
Yg0/q: Of the form (20)-(22) for modes go and q; is the
following:

i (t) = wa(t) — wa(t),
io(t) = = (—pra1(t))
o (=p1aa (t) — pawa(t) + pawa(t)),
i3(t) = w4(t),
4(t) = o=t-(psw1(t) — pswa(t) — pewa(t))
+ g (P31 (t) + paza(t) — pszs(?)
—(pa + pe)za(t)).

{yl(t) = z1(t),
yg(t) l‘3(t).

Running the Rosenfeld-Groebner algorithm, we get the
characteristic presentation for the composite system
Y40/q. - Let us note that for the analysis, the parameter
to be checked for identifiability is s. The modes gy and
q1 as well as the parameters p; to pg are considered as
constants. The characteristic presentation contains the
two following differential polynomials of the form (17)
that link the outputs and the parameter s:

Ry (y,8) = (g0 — q1)iin(£) + qo(p2 + pa)in (1)

—5 (pa — p2)11(2)

+(q0 — q1)(p1 + p3)y1(t)

+(q1 — q0)pey2(t) + (1 — q0)psy2(t),
Ry (y,8) = (q0 — q1)iia(t) + (a0 — q1)posia(t)

+(q0 — q1)psy2(t) + pa(s — qo)y1 (t)ps
+(q1 = qo)p3y1(t).




Every differential polynomial has only one parameter
bloc 01(s) = s and 67(s) = s. For both, the functional
determinant is not identically equal to zero provided that
71(t) # 0 and the mapping ¢ of theorem 1 is injective.
The parameter s is hence globally identifiable. By theo-
rem 2, the modes gp and ¢; are therefore discernable (as
well as the modes gg and ¢2). Actually, one can easily
solve formally Ry (y,s) and Ra(y, s) for the parameter s
and show that they provide the same result. If we as-
sume that the system is in mode go (resp. g1), then the
result should be s = gy (resp. s = ¢1). Let us show this
for mode gqq. For this purpose, let us consider the model
Y4, for mode go:

E1(t) = w2(t) — 2a(t),

To(t) = —praa (1),

T3(t) = w4(?),

T4(t) = paz1(t) — psw3(t) — peza(t).

and generate the corresponding input/output relations:

{ R1Eq0 (y,5) = i1 (t) + (p1 + p3)y1(t) — psya(t) — peia(t),

RY™ (y,5) = ij2(t) — pavn () + psya(t) + pesia(t).

Substituting the expressions §;(t) and »(t) obtained
from Rlz‘”’ (y,s) and R?qo (y, s) respectively, in one or

the other of the relations Rlz‘“’/‘“ (y,s) or RQE‘"’/‘“ (y,8)
provides a unique solution for s that is s = qq. If the same
is done for mode g1, the obtained solution is also unique
and given by s = ¢;. This confirms that the injectivity
condition of theorem 1 is satisfied. It hence confirms that
the composite system ¥, /4, is identifiable for s and, by
theorem 2, that the modes gg and ¢; are discernable (as
well as go and ¢a).

7.2 Hybrid estimation

We will now proceed with the hybrid estimation. The
measurement time step is t;11 —t; = h = 0.15s, and
time horizon is [0, Tepq], where Tep,q = 12s. The feasible
domain for output error is taken as E; = [—¢, €], where
¢ = 0.025 in scenario 1, and € = 0.05 in scenario 2. In
both scenarios, the initial domain for the state vector is
considered unknown, hence all modes in QQ are taken ac-
tive at tg. Artificial data are generated with point param-
eter vector p = mid (P) and known initial state vector
x(to) = (1,0,0,0). The integration time step is chosen
constant and the same as the measurement time step,
also when running the state estimation Algorithm 1.

Fig. 2-(b-d,f-h) gather the reconstructed complete state

vector for scenario 1 (¢ = 0.025). The overall CPU time >
for the whole time duration is 242s. Fig. 2-(a,e) gather
the reconstructed mode and x5 state vector for scenario 2
(¢ = 0.05). The overall CPU time is 3242s. In scenario 1,
the predictor-corrector algorithm Hybrid _SME(.) starts
with the three modes {0, 1,2}, then prunes inconsis-
tant modes after 2 time steps. In each operation mode,
Hybrid_SME(.) reconstructs the feasible domains for the
unmeasured components of the continuous state vector.
Because the latter domains have non zero widths, the
set of discrete modes reconstructed by Hybrid SME(.) at
a given time instant may include several modes, among
which only one is the true mode, the others being spuri-
ous (because of structural non identifiability or because
of uncertainty). This also exemplifies the conservative-
ness of our approach, i.e. the true solution is always cap-
tured. This behaviour is observed each time the system
switches mode (t; = 2.7, t; = 6, t; = 8.65). Finally,
towards the end of the scenario, the magnitude of ve-
locity x4 varies slowly around zero, then since the re-
constructed trajectory tube for x5 has non-zero width,
the tube covers the guard set during a large time in-
terval. As a consequence, the discrete mode transition
e = 0 — 1 remains activated and the reconstructed
mode set is Q; = {0, 1}. Nonetheless, the reconstructed
tubes show widths that are consistent with the measure-
ment errors. In scenario 2, the measurement noise mag-
nitude is doubled. The reconstructed tubes show larger
diameters than in scenario 1, where diameters increase
by factor 1.5 for x1, 1.7 for x5, 2.1 for z3, and 1.8 for z4.
Hence, one observes spurious discrete mode reconstruc-
tion that lasts longer for every discrete transition. The
true transitions are nonetheless always captured. To-
wards the end of the scenario, larger reconstructed tube
for zo covers the guard set earlier than in scenario 1. In
its current implementation, algorithm Hybrid Reach(.)
merges, at each time instant, any union of trajectory
tubes when the reconstructed mode is unique. When
the reconstructed trajectory tubes cover the guard set,
there are more than one reconstructed operation mode,
hence tube merging is switched off. As a consequence,
algorithm Hybrid Reach(.) must compute with union of
tubes more often, therefore requires larger CPU time in
scenario 2 (3242s) than in scenario 1 (242s).

8 Conclusion

In this paper, we have introduced a new approach for an-
alyzing current location mode discernibility with truly

2 We use the Profil/Bias C++ class for interval com-
putation, the FABDAB++ package (www.fadbad.com) for au-
tomatic differentiation, AML++ (amlpp.sourceforge.net) and
Armadillo (arma.sourceforge.net) package for Linear alge-
bra. We use our own implementation of Lohner’s method
for continuous transitions and the CSP solving techniques
as implemented in the IBEX C++ library (www.ibex-lib.org)
for discrete transition. Experiments were conducted on an
intel 45 — 3470 — 3.6GHz—16GB running Linux.
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Fig. 2. Scenario 1 (¢ = 0.025): (b) Active mode estimation, (c) phase portrait x> X 1, time history of estimated variables (d)
z1, (f) 2, (g) x3, (h) x4, and. Scenario 2 (¢ = 0.05): (a) Active mode estimation, time history of estimated variables (e) 2.

nonlinear hybrid systems. Then, we have shown how to
build a predictor-corrector approach to set-membership
state estimation with nonlinear hybrid systems that in-
clude guards and jumps. Evaluating our methods with a
realistic hybrid system, we were able to successfully ana-
lyze and exhibit mode discernibility; then, we were able
to reconstruct the switching sequence and the feasible
set of continuous state vectors in each discrete location,
even if the initial mode were unknown. Future research
will analyze applicability of the approaches to fault de-
tection and isolation, and also investigate ways to ex-
tend the predictor-corrector approach to event-triggered
estimation.
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